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Introduction: This paper presents a crack detection framework employing a
hybrid model that integrates the Swin Transformer with an Enhanced Features
Representation Block (EFRB) to precisely detect cracks in images.

Methods: The Swin Transformer captures long-range dependencies and efficiently
processes compleximages, forming the backbone of the feature extraction process.
The EFRB improved spatial granularity through depthwise convolutions, that focus
on spatial features independently across each channel, and pointwise convolutions
to improve channel representation. The proposed model used residual connections
to enable deeper networks to overcome vanishing gradient problem.

Results and discussion: The training process is optimized using population-based
feature selection, resulting in robust performance. The network is trained on a
dataset split into 80% training and 20% testing, with a learning rate of le-3, batch
size of 16, and 30 epochs. Evaluation results show that the model achieves an
accuracy of 98%, with precision, recall, and Fl-scores as 0.97, 0.99, and 0.98 for
crack detection, respectively. These results show the effectiveness of the proposed
architecture for real-world crack detection applications in structural monitoring.

KEYWORDS

swin transformer, crack detection, convolutional neural network, residual network,
population-based optimization

1 Introduction

Machine vision technology has seen significant advancement in the field of road crack
detection (Yin et al., 2023). Image and video analysis demonstrate a remarkable capacity for
detecting and identifying early signs of road cracks. They play a crucial role in monitoring and
early warning, helping to prevent potential crack-related incidents and safeguard lives and
property (Ma and Mei, 2021). Traditional pavement crack detection methods include
techniques like minimum-path algorithms, image thresholding, and wavelet transformations.
To enhance accuracy, few methods integrate free-form anisotropy and morphological filters,
to attain a clearer depiction of crack intensity and features. Also, collaborative crack detection
techniques have employed Sobel edge detectors with two-dimensional empirical mode
decomposition, improving the precision of surface crack differentiation. Convolutional Neural
Networks (CNN) are used for analyzing pavement crack images and surface characteristics to
effectively enhance crack identification accuracy.

Cracks in road surfaces are common during road construction, initially arising from
material aging and degradation over time and also due to climatic factors like precipitation
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and snow. These elements result various types of surface cracks,
which gradually expand and lead to both surface and structural
deterioration, compromising road safety and durability. In recent
decades, various researchers and experts have proposed multiple
techniques for detecting cracks in road surfaces, including physical
inspection, machine vision, and infrared imaging. Physical
inspections are intensive, inefficient, and prone to human errors
(Zhao et al.,, 2025). Machine vision techniques allows automated
detection but needs high-quality image data and algorithms.
Infrared imaging analyse the temperature on road surfaces that
may indicate cracks but involves substantial equipment costs
(Oloufa et al., 2004; Liu et al., 2024).

Recently, deep learning has significant importance in image
processing, leading to the extensive use for road surface crack
detection due to their high efficacy. Identifying and detecting
structural surface issues, particularly cracks, can offer consistent
data for the maintenance of buildings. Traditional crack detection
methods, often produce subjective results (Zhao et al., 2022) and
lack a standardized global framework, reducing accuracy.
Advances in computer vision have resulted in crack detection
algorithms that offer automation, efficiency, and non-contact
capabilities, effectively addressing the limitations of manual
methods. In particular, the rapid progress of deep learning
technology in recent years has enabled CNN models to
significantly enhance detection accuracy and efficiency. Currently,
CNN based detection methods are applied to identify surface
damage in buildings, bridges, and tunnels. The image classification
schemes identify the category of the input image, the object
detection model estimates object locations within the image, and
the semantic segmentation model performs pixel-level analysis to
pinpoint objects. While semantic segmentation provides the
highest accuracy, it requires pixel based labelled data for training,
which is difficult and limits the CNN models in the field of
structural crack detection. The main contribution of the proposed
work is as follows:

« A Hybrid framework integrating the Swin Transformer with an
Enhanced Features Representation Block (EFRB) to capture both
global dependencies and fine-grained spatial features for accurate
crack detection.

» Depthwise and pointwise convolutions in the EFRB enhanced
spatial granularity and channel-wise representation while
residual connections and normalization stabilized the training
and prevent overfitting.

Population-based feature selection with adaptive optimization
further refines discriminative features, reducing computational
complexity thus improving model generalization.

« This approach outperforms, achieving 98% accuracy with better
precision, recall, and F1-scores.

The paper is organized as follows: Section 2 details the review
of existing crack detection methodologies. Section 3 presents the
proposed hybrid Swin Transformer with Enhanced Features
Representation Block (EFRB) and population-based feature
optimization approach. Section 4 describes the dataset, evaluation
metrics, ablation studies, and performance analysis of the
proposed model. Section 5 concludes the paper.

Frontiers in Artificial Intelligence

10.3389/frai.2025.1655091

2 Related work

Nguyen et al. (2021) proposed a two-stage CNN where the first
stage reduces noise and isolates potential cracks, while the second
stage focuses on learning contextual features of cracks within the
identified areas. The DeepCrack dataset, used for detection and
segmentation validation, includes 537 images of 544 x 384 pixels with
pixel-level ground truth annotations (Liu et al, 2019). Another
dataset, CrackIT (Oliveira and Correia, 2014), was compiled in
Portugal and Canada for crack analysis. Fan et al. (2020) introduced
an automated crack detection system using a U-Hierarchical Dilated
Network (U-HDN). This model uses hierarchical feature learning and
dilated convolution for detailed crack detection on road pavements.
By integrating multiple context sizes through a multi-dilation module,
the U-HDN model improves its capability to capture complex crack
patterns at various scales. Tests on public crack datasets show that
U-HDN outperforms existing methods by effectively combining
diverse context sizes and multi-scale feature maps, leading to an
increased detection accuracy of 0.93. Liu et al. (2022a) leveraged deep
learning, specifically CNNs, and infrared thermography to categorize
asphalt pavement crack into four categories: no crack, low, medium,
and high severity. Results showed fusion images resulted the good
accuracy for models built from scratch, while visible images performed
best in transfer learning, with EfficientNet-B3 achieving the highest
accuracy across all categories for both methods.

Elghaish et al. (2022) evaluated models like AlexNet, GoogleNet,
and two others for highway crack identification and classification, and
introduced a new CNN model optimized for accuracy across diverse
learning rates. The novel CNN model achieved 97.62% accuracy using
a dataset of 4,663 crack images grouped into three categories,
outperforming GoogleNet’s 89.08% and AlexNet’s 87.82%, utilizing
Adam optimization at a learning rate of 0.001 for efficient highway
crack recognition. Ahmadi et al. (2022) proposed a approach
combining segmentation, noise reduction, heuristic-based feature
extraction, and the Hough transform with crack classification using
six classifiers. The hybrid model achieved the highest accuracy at
93.86%, surpassing individual classifiers. Liu et al. (2022b) employed
infrared thermography and CNNs to classify asphalt pavement fatigue
crack severity into four levels, using three image types. CNN models,
including EfficientNet-B4, were trained, with accuracy surpassing 0.95
across all image types, particularly on infrared images. Grad-CAM
and Guided Grad-CAM analyses indicated fusion images are highly
effective for reliable fatigue crack classification.

Oliveira and Correia (2014) developed a comprehensive MATLAB
toolbox for crack detection and characterisation on road pavement
surfaces, which includes algorithms for preprocessing, crack
identification, and classification. The toolbox includes 84 pavement
surface images obtained from standard road surveys, providing a
valuable resource for evaluating crack detection algorithms. Yamaguchi
and Hashimoto (2010) presented a rapid crack identification method
for concrete surfaces using percolation-based image processing, which
reduces computational time by incorporating skip processes and
assessing pixel circularity. Experimental results show reduced
computation costs while maintaining high crack detection accuracy.
Vivekananthan et al. (2023) developed a grey intensity adjustment
model for crack detection, employing grey level discrimination and the
Otsu method to set threshold ranges and Sobel’s filter for edge
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detection. This approach achieved a maximum detection accuracy of
95% while addressing constraints related to aspect ratio and margin
parameters. Liu et al. (2023) introduced a tunnel crack detection
method using image processing with deep learning, comparing SVM
and AlexNet based models. AlexNet achieved 96.7% test accuracy,
indicating deep CNN models’ superior performance for identifying
structural flaws in subway tunnels. Malek et al. (2023) created a real-
time augmented reality (AR) crack detection system, overcoming
traditional AR limitations by adapting the Canny algorithm to the AR
headset platform for autonomous processing. Experimental results
confirm this AR method’s efficiency and practicality for real-time crack
detection in field inspections. Tran et al. (2023) presented a process
based deep learning approach for bridge deck crack detection and
segmentation, testing five object detection networks including
YOLOV7 and achieved a detection accuracy of 92.38%. The proposed
U-Net also exhibited enhanced performance, successfully identifying
and quantifying cracks on bridge decks.

Pham et al. (2023) employed U-Net, LinkNet, FPN, and
Deeplabv3, achieving F1 scores between 0.877 and 0.896 at 7.48-8.01
frames per second (FPS), notably outperforming traditional image
processing methods in speed and accuracy. Nyathi et al. (2023)
developed an approach for measuring concrete crack, achieving high
precision with absolute error between 0.02 mm and 0.57 mm,
facilitating compliance with international standards. Zhang et al.
(2023b) presented a lightweight crack detection technique for bridges
using  YOLOv4,
computational demands for edge devices. The modified YOLO v4
achieved 93.96% precision, 90.12% recall, and F1 score of 92%,
requiring only 23.4 MB and running at 140.2 FPS. Xu et al. (2023)
introduced the YOLOvV5-IDS model, integrating the YOLOv5
architecture with a bilateral segmentation network for concrete crack

incorporating lighter networks to reduce

detection and measurement, achieving an mAP@0.5 of 84.33% and an
mloU of 94.78%, with rapid detection at 159 FPS.

Hu et al. (2024) proposed an advanced approach to road surface
crack detection using an enhanced YOLOv5 model, addressing the
complexities of information extraction from vehicle-mounted
imagery. Key improvements include the Slim-Neck architecture for
targeted crack focus, the C2f structure and Decoupled Head for
optimized data utilization, and a split SPPCSPC structure for
enhanced efficiency and precision. Experimental results demonstrate
significant improvements across multiple evaluation metrics
compared to five other sophisticated models, affirming the
effectiveness of the proposed approach. Dong et al. (2024) introduced
YOLOV8-Crack Detection (YOLOvV8-CD), a lightweight, optimized
algorithm for concrete crack detection aimed at boosting
infrastructure safety and maintenance efficiency. The model leverages
visual attention networks and a Large Separable Kernel Attention
module to enhance crack shape detection and feature extraction.
Experimental findings reveal substantial gains in mAP scores and
detection speed, achieving 88 FPS while reducing processing
demands, thereby validating its advantage over other object detection
techniques. Chen et al. (2023) explored the role of deep learning,
specifically transfer learning, in automating the detection of building
cracks. Addressing the need for efficient large-scale inspections,
transfer learning significantly improved CNN performance, boosting
accuracy from 89 to 94%, demonstrating its efficacy in image
classification with limited data, aligning with national smart nation
goals for intelligent technology in construction.
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Zhang et al. (2023a) present a lightweight learning model for
concrete crack detection, named MobileNetV3-BLS, which overcomes
the challenges of complex architectures and high computational
requirements. This method improves feature extraction by integrating
MobileNetV3’s inverted residual structure as a convolutional module,
employing random mapping and enhancement nodes to train the
model. MobileNetV3-BLS exhibits enhanced accuracy and training
speed, facilitating dynamic updates for incremental learning with new
data and nodes. Zadeh et al. (2024) evaluate multiple deep learning
architectures: InceptionV3, VGG19, ResNet50, and EfficientNetV2
using fine-tuning for concrete crack detection. Results show
EfficientNetV2 achieves 99.6% accuracy, 99.3% precision, and a recall
of 1, leading to a balanced F1 score of 99.6%, effectively minimizing
false positives and maximizing true crack identification.

Guo F etal. (2024) analysed in two stages where Stage I detects
images with pixel cracks using a CNN-based classifier, while Stage II
uses a separation combination approach and CTv2 (Crack
Transformer v2) for pixel level detection. Extensive testing confirms
the framework’s advantage and efficiency, facilitating scalable
automated pavement crack detection. Karimi et al. (2024) developed
a robust deep learning model for detecting cracks across various
Cultural Heritage (CH) materials using the YOLO object detection
network. The study examines masonry types (stone, brick, cob, tile)
and modern materials like concrete with a dataset of 1,213 images
across categories. Results show mean average precision values of
94.4% for concrete, 93.9% for concrete and cob, 92.7% for cob, 87.2%
for stone, 83.4% for stone and brick, 81.6% for brick, and 70.3% for
tile, highlighting the model’s potential for efficient CH crack detection,
aiding specialists in damage assessment.

Guo C. et al. (2024) proposed SegCrackNet, an innovative neural
network with multi-level output fusion, dropout layers, and T-bridge
block configurations to reduce overfitting and enhance the utilization
of contextual information. Experimental results reveal notable
improvements over other models, with IoU score increases of 4.3%,
9.4%, and 3.7% for the Crack500, Crack200, and pavement images
datasets, respectively. Yu et al. (2024) presented an optimized
lightweight segmentation model similar to BiSeNetv for automated
pavement crack detection. Results show that this model outperforms
prior methods with an F1 score improvement of 10.14%, underscoring
its precision and robustness in segmenting pavement cracks.

Liu and Xu (2023) utilized a VGG16-based CNN for crack
classification, incorporating an enhanced Class Activation Map
(CAM) technique for precise localization and distribution of cracks.
Integrating simple linear iterative clustering (SLIC) superpixel
segmentation with CAM, the semantic segmentation accuracy is
improved to a greater extend. Bayesian optimization identifies ideal
parameters, and test results that indicate the algorithm’s support on
image-level labelling that significantly reduced labour and cost thus
maintaining accuracy. Table 1 details an overview of the various crack
detection methods.

Shaoze et al. (2025) introduced a variant in YOLO achieving
86.4% mAP@50, demonstrating strong detection performance in
complex environments. Tang et al. (2024) proposed BsS-YOLO for
road crack detection, integrating improved PAN and BiFPN feature
fusion structures along with attention mechanisms, leading to a 2.8%
mAP gain over baseline YOLO models. For bridge crack detection,
Dong et al. (2025) proposed YOLO11n-BD that incorporates an
Efficient Multi-Scale Cross Attention (EMSCA) module and a
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Lightweight Dynamic Head (LDH), achieving 94.3% mAP@50 and an
F1-score of 89.2% while maintaining real-time performance at 555
FPS. Zhu et al. (2025) proposed FD?-YOLO that enhanced YOLOv11n
with a dual-stream architecture combining spatial and frequency-
domain features, improving detection robustness on noisy surfaces
with 88.3% mAP@50 and 88.4% precision. Zhao et al. (2025)
developed a YOLOV11 for intelligent tunnel lining crack detection,
achieving 93.3% accuracy, 94.5% recall, and 96.9% average precision.
Their approach effectively identifies cracks under complex lighting

TABLE 1 An overview of different DL methodologies for crack detection.

10.3389/frai.2025.1655091

and structural conditions, ensuring robust performance for real-world

tunnel inspections.

3 Proposed methodology

The proposed study presents custom hybrid framework for

detecting surface cracks in concrete floors as illustrated in Figure 1.

The main objective is to create a computationally efficient and accurate

Ref Methodology Categories Dataset Metric Inference
crack detection and Achieves high performance on
DeepCrack, CrackIT,
Nguyen et al. (2021) CNN segmentation Fl-measure - 0.91 noisy, low-resolution, and
2StagesCrack dataset
imbalanced data.
Pavement crack detection Superior detection accuracy
U-Hierarchical Dilated Pr: 0.92, Re: 0.93, F1: 0.92
Fan et al. (2020) AigleRN through multi-scale feature
Network accuracy - 93%
extraction.
Pavement crack severity Fusion images yield better
classification accuracy; EfficientNet-B3
Liu et al. (2022a) Transfer Learning Models Asphalt Accuracy —93%
performs best across all image
types.
Highway cracks New CNN model outperforms
convolutional neural 4,663 images of
Elghaish et al. (2022) 97.62% accuracy existing models like GoogleNet
network highway cracks
and AlexNet.
neural network, decision Crack classification Hybrid model surpasses
Ahmadi et al. (2022) tree, SVM, KNN, Bagged 400 images 93.86% accuracy individual classifiers for crack

Trees,

classification.

Pavement fatigue crack

2,211 images, while

Fusion images are effective for

Hashimoto (2010) processing

surfaces images

Liu et al. (2022b) EfficientNet-B4 severity classification their size is 640 x 480. | Accuracy - 95% fatigue crack severity
asphalt classification.
Crack detection re = 98.4% Toolbox provides crack
Oliveira and Correia CrackIT toolbox
84 pavement surface pr=95.5% detection and characterization
(2014) algorithms
100% of recall algorithms for research use.
Yamaguchi and Percolation-based image Concrete crack detection | 60 images concrete
Pre-0.95 Reduced computation costs.

Vivekananthan et al. Gray intensity adjustment

Otsu and Sobel methods

2068 crack images 95% detection accuracy | improve crack detection
(2023) model for crack detection
accuracy.

Image processing and deep | Crack images in subway SVM: 88%; AlexNet: Performs effectively for crack
Liu et al. (2023) 3,000 data images

learning and SVM tunnels, 96.7% detection in tunnels.

Process-based deep Crack detection and Two bridge datasets 1 Outperforms other networks
Tran et al. (2023) learning for bridge deck segmentation bridge decks in South | Precision —0.83 in speed and accuracy for

crack detection Korea crack detection.

Ground crack detection
U-Net, LinkNet, Feature

510 crack, 185 slope

Outperform traditional

methods for crack

mloU: 94.78%

Pham et al. (2023) Pyramid Network and F1 score: 0.877-0.896
and 325 field images identification and
Deeplabv3
measurement.
Bridge crack detection About 800 photos of Method is effective for edge
Precision: 93.96%; Recall:
Zhang et al. (2023b) YOLO v4 bridges around deployment with minimal
90.12%
Guizhou University. computational requirements.
Crack detection and Achieves high accuracy and
mAP®@0.5: 84.33%;
Xu et al. (2023) YOLOv5-IDS segmentation 302 crack images processing speed for crack

detection.
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TABLE 1 (Continued)

Ref Methodology Categories

Road surface

Hu et al. (2024) Improved YOLOV5

10.3389/frai.2025.1655091

Dataset Metric Inference

Enhance information

extraction from vehicle-
13,508 images F1 score - 0.5876

mounted images for better

crack detection.

Crack detection

Improves feature extraction

Zadeh et al. (2024) Deep learning architectures | and classification

YOLOVS8-Crack Detection RDD2022 and Wall
Dong et al. (2024) precision of 91.5% and detection speed for
(YOLOv8-CD) Crack datasets
concrete surface cracks.
Transfer learning for Crack detection
3,600 building crack Traditional CNN: 89%; Significantly enhances crack
Chen et al. (2023) automated building facade
images Transfer learning: 94% classification performance.
crack inspection
Surface crack detection 20,000 images from Achieves high accuracy and

structures within the InceptionV3-94% minimizes false positives in

METU Campus crack detection.
Pavement surface crack Identifies and detects pixel-
i Two-stage framework CNN
Guo E et al. (2024) detection CrackSD dataset Deep LabV3-97.21 level cracks for large-scale
with a transformer model
applications.
Crack damages Identifies cracks in various

materials, supporting

Karimi et al. (2024) YOLOvV5 1,213 bricks Mean AP: 94.4%
inspection professionals in
damage assessments.
Crack500, Crack200, Effectively detects subtle
SegCrackNet for crack
Guo C. et al. (2024) d and pavement images 79.85,44.97 and 49.66% | variations and improves crack
etection
datasets detection accuracy.
Pavement surface crack Demonstrates effectiveness and
CFD dataset, Crack500,
Yu et al. (2024) BiSeNetv2 detection Recall - 91.09 robustness in segmenting

CrackSC
pavement surface cracks.

model that integrates the strengths of the Swin Transformer, skip
learning, Enhanced Features Representation Block, along with an
attention mechanism to precisely identify surface cracks in
concrete structures.

This model used the Swin Transformer (STg) and skip
connections, fine-tuned through an Enhanced Feature Representation
Block (EFRp), with varying filter sizes. Feature selection and
optimization are achieved using Population-Based Optimization
(POFSg) which conducts a randomized search to identify optimal
solutions for the efficient crack detection in images.

3.1 Swin Transformer

Unlike CNNSs, Vision Transformers (ViTs) utilize the attention
mechanism of Transformers for image data. A key benefit of ViT is its
ability to represent global features without depending on local
receptive fields. Transformers self-attention necessitates calculating
weights between all other tokens, leading to increased computational
complexity. As a result, the computational cost associated with super-
resolution images can be substantial. In contrast to ViT, the Swin
Transformer (Liu et al., 2021) incorporates a mechanism known as the
shifted window, which segments into non-overlapping localized.
Features are further processed among windows through this shifting
process. Swin Transformer employed a hierarchical process composed
of various stages, each containing several transformer blocks. Figure 2
provides the summary of the Swin Transformer architecture.

Frontiers in Artificial Intelligence

The input image, of size Hx W x 3, is splitted into non-overlapping
patches of size ZXIX 48. The input data is processed at the final

stage through a linear layer that transforms the feature into C which
is enhanced through an attention model. The same operations are
repeated in the subsequent three stages. The adjacent 2x 2 patches are
combined through a patch merging, which reduces size by half
through a linear layer followed by multiple blocks to enhance the

merged patches using attention blocks. Ultimately, the resulting data
has dimensions of > X F™ x8C. Figure 2 depicts two consecutive Swin

Transformer blocks, where the conventional multi-head self-attention
mechanism (MSA) is substituted with window-based multi-head self-
attention (W-MSA) and shifted window multi-head self-attention
(SW-MSA). By leveraging the partitioning shifted window technique,
the representation generated by successive Swin Transformer blocks
can be expressed as Equations 1-4:

§! =W—MSA(LN(SI_1))+SI_1 1)
1_ Al Al
s _MLP(LN(s ))+s @)
05 frontiersin.org
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Population-based
,| Optimization for
Feature
Selection
T [
EFRB EFRB EFRB
Patch
. Stage Stage Stage Stage . | Output
Eactit 1 2 3 4 Class
on
[ SWIN Transformer
FIGURE 1
Architecture of the proposed system.
s oW — MSA (LN (51 )) Tl (3) essential and discriminative features efficiently. Depthwise
Convolution where each filter is applied to only one input channel. In
contrast to standard convolutions, depthwise convolutions reduce
1+1 —-MLP(L Al+1 +Al+1 (4) . ) ) o )
s = N|S § computational complexity as given in Equation 7.

Where §!,s! represent the output of the (S)W-MSA and the MLP
module of block /, respectively; and SW-MSA and W-MSA refer to
window-based multi-head self-attention mechanisms that utilize
standard and shifted window partitioning processes, respectively.
Consider each window includes MxM patches, the complexity of
multi-head self-attention module and W-MSA for h x w patches are as
given in Equations 5, 6:

2
QMSA = 4hwC? +2 (hw)"C (5)

QW —MSA = 4hwC? +2 M?hwC (6)

The complexity of MSA is quadratically linked to patch count,
meaning it increases significantly with a larger number of patches. In
contrast, when the size M is constant, the complexity of W-MSA
remains linear. As a result, the rise in complexity is quite modest even
with a greater number of patches. This characteristic improves the
scalability of W-MSA for processing large-scale images.

3.2 Enhanced features representation
block

A neural network block combining Depthwise and Pointwise
Convolutions leverages Depthwise Convolutions (Guo et al., 2019) to
capture spatial features independently across each channel, enhancing
spatial granularity. The Pointwise Convolution (Hua et al., 2018) then
integrates these spatially focused features, creating a rich, channel-
combined representation that enhances the model’s ability to capture
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Xy (mn) =Y, (m+in+j)- Wy (ij)
Lj

7)

where Yy, is the v?* channel of the input, Wy, is the depthwise filter
for that channel, and X, is the corresponding output. This is a
standard 2D convolution applied after the depthwise convolution. It
combines the output from the depthwise convolution across channels
as shown in Equation 8.

O(m,n):leV (m,n)-Vv (8)

Where V,, represents the filters in this conv2D layer applied across
the depthwise operator. GELU is a smooth activation function, where
the output is a stochastic binary decision with some non-linearity as
shown in Equations 9, 10.

Gelu(y)zy-P(Y<y):y-;(1+e(j5D ©)

(10)

This process normalizes the activations across the features within
a layer to improve stability and training efficiency. f refers mean and
y represents standard deviation within a layer. The output of the
depthwise convolution branch is added back to the input via a residual
connection, helping in training deeper networks by avoiding vanishing

frontiersin.org
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Stage 1
[ Lincar Embedading |
I ST Block j
1 Stage 2
[ e e T |
r ST Block ]
1 Stage 3

[ Linear Embedding

|
[ ST Block 1

1 Stage 4
| Linear Embedding |

[ ST Block ]

+

FIGURE 2
Flow of layers in Swin Transformer.

itk

gradient issues. Pointwise Convolution is a 1x1 convolution applied
across the channels, used to fuse information across channels without
altering the spatial dimensions as given in Equation 11.

Xp(mn)=>Y (mny)-W(LLy) (1)

where v refers the channels in the input and the pointwise
convolution across all channels. Conv2D, GELU, Layer Normalization,
Dropout follow the same principles as the depthwise convolution
branch. The Conv2D is used to mix information across channels after
the pointwise convolution. GELU activation, Layer Normalization,
and Dropout work identically in both branches to introduce
non-linearity, normalize activations, and prevent overfitting,
respectively. Similar to the depthwise branch, the output from the
pointwise convolution branch is added back to the input. The
depthwise convolution enahances the spatial features whereas
Pointwise convolutions combine features across channels efficiently.
The residual connections helped to overcome the vanishing gradients,
and the normalization layers stabilized the learning process effectively.
Layer Normalization and Dropout layers help improve the model’s
generalization by stabilizing training and reducing overfitting,
respectively. Figure 3 details the layers included in the enhanced
feature representation model.

3.3 Optimised feature selection

Population-based optimization techniques use random searches
to identify the optimal solutions. Also, an adaptive local search
technique called Adaptive g-Hill Climbing (APHC) is used to fine-
tune the selected feature. This feature forms a mapping to the output
classes, resulting in the Hierarchical Deep Learning Classifier

Frontiers in Artificial Intelligence

(HDLC) to effectively distinguish between cracked and non-cracked
surfaces based on the refined input features. The Sine-Cosine
Algorithm (SCA) is a population-based metaheuristic used for
feature selection and optimization (Mirjalili, 2016). It uses sine and
cosine functions in an iterative process with two phases: exploration,
which introduces diverse solutions to search broadly, and
exploitation, which fine-tunes solutions by reducing randomness.
12 defines
these functions.

Equation how positions are updated using

,]+k11x51n(k )

5Nj - C"“ kilj<0.5
crl = (12)

+k1]><cos(k )

SN - Clif iy 205

Here, cr j is the position in Ji " dimension of " search element at
h iteration. Ky ],k3 i and kJ' jare random numbers,N represents

the position of ;" " best solution at m™" iteration and I denotes the

absolute value. A random value k{" ; enables the transition from
exploration to exploitation as shown in Equation 13.

kij =ﬂ—m% (13)

Here, f and M characterize the constant value, and iterations,

respectively. kf’j decides whether the search region is for ( kl',"j e[—l,l])
or exploration (klmj e[—l,Z]) or (k1mj 6[1,2])

kﬁ'fj , ranging within 0,27, controls the search agent’s direction

. The stochastic variable

relative to the destination, aligning with the sine and cosine cycle. kg}j

balances exploration and exploitation by assigning a random weight
between 0 and 2, influencing step size—greater than 1 emphasizes,
while less than 1 de-emphasizes the destination’s impact. kg}j manages
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FIGURE 3

Overview of the enhanced feature representation model.

T

the switch between sine and cosine functions, as outlined in
Equation 14. The SCA feature optimization process is summarized in
the flowchart shown in Figure 4. In order to enhance the exploitation
ability Adaptive g-Hill Climbing (ASHC) is integrated that utilizes
local search-based techniques using two control parameters and

Np and By . The parameter Ny is assigned close to 1 value which
gradually decreases as the search process progresses. This permits the
process to dynamically adjust Ny, to advance the search performance,
as given in Equation 14.

(14)

Here, N}nlnC denotes Ny at time m, P linearly decrease the Ny,
to a value close to 0 and My, represents the upper limit B

min pmax

parameter adapts a range € By ', By ** , mathematically expressed

in Equation 15.

max _ Bmin
m _ pmin hc hc

he =Bpe Tmx (15)

max

'Here, maC represents the rate of By at iteration m, with
B"" and B indicating the minimum and maximum value of
Bpc respectively, M. denotes the total number of iterations,
and m refers to the current iteration. Figure 4 details the
flowchart for the Population-based optimization algorithm
(Raghaw et al., 2024) detailing the selection process of the
optimized features.
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4 Experimental results and discussion

Overview of the dataset, data augmentation methods,
experimental setup, model training, and validation. It also details the
performance metrics used to analyse the proposed model is detailed
in this section.

4.1 Description of the dataset

Concrete surface cracks is a defect commonly identified in civil
infrastructure. Building inspection is crucial for assessing the
structural integrity and tensile strength of these constructions.
Crack detection ((")*//genel, 2019; Ozgenel and Goneng Sorgug, 2018)
plays a vital role in this process by identifying structural flaws and
evaluating the overall condition of the building. These images are
organized into two class: negative (no cracks) and positive (with
cracks), suitable for image classification tasks. Each category
includes 20,000 images, resulting in a total of 40,000 RGB images,
each with a resolution of 227 x 227 pixels. The dataset was
developed from 458 high-resolution images (4,032 x 3,024 pixels)
following the method introduced by Zhang et al. (2016). These
high-resolution images display considerable variation in surface
texture and lighting conditions. Figure 5 shows few sample images
for each class.

4.2 Environmental setup

The proposed model was implemented using PyTorch, an open-
source deep learning framework. To optimize the model and minimize
loss, the Adam optimizer was incorporated with a learning rate set to
0.0001. The training was performed on an Azure virtual machine
powered by an NVIDIA Tesla P40 GPU.

4.3 Evaluation metrics

The metrics that are used to evaluate the model are as given in
Equations 16-20. Accuracy measures how the predicted values are
similar with the actual values. Precision identified true positive
values. Specificity indicates the model’s ability to correctly identify
true negatives, computed as the ratio of true negatives to the total
number of negative cases. Recall represents the proportion of
correctly predicted positive cases out of all actual positive data in
the dataset. The F1 score, which is the harmonic mean of precision
and recall, which reflects the model’s effectiveness in detecting
positive samples. These evaluation metrics are calculated based on
True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN), as given in Equations 8-12.

TP
Accuracy =—————————— (16)
TP+TN+FP+EN
Precision = _Tr (17)
TP+ FP
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FIGURE 4
The flowchart for the population-based optimization algorithm.
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FIGURE 5
Sample images for both crack and non-crack images.
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Recall = _™ (18)
TP+EN
TN
Specificity =—— 19
P ¥ TN +FP (19)
Fl Score = 2 * Precision * Recall (20)
Precision + Recall

4.4 Training detai

ls

The model included a 2 x 2 patch size for the initial image

segmentation and processes these patches with 8 attention heads

and a 64-dimensional embedding. The attention mechanism is

performed within a 2 x 2 window which incorporates a shifted

window of size 1. Dropout is applied with 0.03 to avoid overfitting.

The training is carried out with a learning rate of le-3, batch size

of 16, and 30 epochs, utilizing weight decay and label smoothing

for improved generalization. The model used 80:20 ratio ensuring

a suitable split for evaluating performance during the

training process.

4.5 Ablation studies

This study evaluates the efficiency of major components in the

proposed architectural framework that helps to optimize the

performance. The efficiency of the following levels was evaluated:

Swin Transformer, Enhanced Features Representation Block and

Population based Optimisation for Feature Selection.

4.5.1 Analysis of the Swin Transformer
The performance of the Swin Transformer was analyzed as an

independent module to evaluate its effectiveness in feature extraction

for crack detection. This analysis shows the model’s ability to capture

long-range dependencies, for identifying fine-grained crack patterns

10.3389/frai.2025.1655091

and irregularities in structural images. The Swin Transformer
employed a hierarchical architecture with shifted windows, enabling
efficient computation while preserving spatial granularity. The self-
attention mechanism ensures robust modeling of both local and global
contextual relationships, important for distinguishing cracks from
background textures. Figures 6, 7 illustrate the training and
performance metrics of the Swin Transformer block achieving a
testing accuracy of 91.68%. The Swin Transformer’s performance as
an independent module was further analyzed to assess its capability
in crack detection. The training and validation curves showed rapid
convergence within the first few epochs, achieving a stable testing
accuracy of 91.68% with minimal overfitting. The confusion matrix
indicated a strong balance between precision and recall for both crack
and non-crack classes, demonstrating the model’s robustness in
distinguishing fine-grained crack patterns from background noise.
This performance highlights the Swin Transformer’s ability to
effectively model both local and global contextual features through its
hierarchical shifted window mechanism while maintaining
computational efficiency, making it a reliable backbone for structural
crack detection tasks.

4.5.2 Analysis of the Swin Transformer with
enhanced features representation block

The combined performance of the Swin Transformer and the
Enhanced Features Representation Block (EFRB) was analyzed to
evaluate their collaboration in feature extraction for crack
detection. The Swin Transformer is integrated with the EFRB’s
ability to enhance spatial granularity and channel-wise
representation, resulting in a feature extraction framework. The
Swin Transformer acts as the initial stage, effectively processing
complex input images with its hierarchical architecture and shifted
window self-attention mechanism. This enables both global and
local contextual relationships critical for detection of subtle and
irregular crack patterns. The extracted features are then passed to
the Enhanced Features Representation Block, which employs
Depthwise Convolutions to independently refine spatial features
across channels and Pointwise Convolutions to fuse these features
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FIGURE 6
Accuracy and loss plot analysis obtained using Swin Transformer.
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FIGURE 7
Confusion matrix obtained using Swin Transformer.

into channel-combined representation. The EFRB’s residual
connections and Layer Normalization stabilize training, while the
GELU activation and Dropout layers prevent overfitting, ensuring
robust learning. Figures 8, 9 illustrate the training process and
performance evaluation of the Swin Transformer combined with
the EFRB. The metrics demonstrate improved convergence rates,
stability, and feature extraction efficiency compared to using the
Swin Transformer as a standalone component attaining 95.43%
as accuracy.

The integration of the Swin Transformer with the Enhanced
Features Representation Block (EFRB) demonstrated improved
feature extraction performance for crack detection. The Swin
Transformer efficiently modeled both global and local dependencies
through its hierarchical shifted window mechanism, while the EFRB
enhanced spatial granularity and channel-wise representation using
Depthwise and Pointwise Convolutions. Residual connections, Layer
Normalization, and GELU activation stabilized training and reduced
overfitting, ensuring robust learning. The training and validation
curves showed faster convergence and higher stability compared to
the Swin Transformer alone, while the confusion matrix confirmed
significant improvement in classification accuracy, achieving 95.43%,
highlighting the combined models effectiveness for precise
crack detection.

4.5.3 Performance analysis of the proposed
model

The proposed model integrates the Swin Transformer, the
Enhanced Features Representation Block (EFRB), and Population-
based Optimization for Feature Selection, resulting an enhanced
framework for crack detection. Each component contributes
distinct strengths enhancing the network’s overall performance in
extracting, refining, and selecting discriminative features. The Swin
Transformer efficiently captures both global and local dependencies
through its hierarchical architecture and shifted window
mechanism. The Enhanced Features Representation Block (EFRB)
refines and enhances the extracted features. The Depthwise
Convolutions within the EFRB specialize in spatial feature
extraction by independently processing each channel, while the
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Pointwise Convolutions integrate these spatially refined features
across channels. Residual connections, along with GELU activation,
Layer Normalization, and Dropout, ensure stable training, robust
gradient flow, and generalization, resulting in a rich and
discriminative representation tailored for crack detection.
Population-based Optimization for Feature Selection ensures that
the most relevant and informative features are prioritized while
redundant or non-contributory features are minimized. By
leveraging evolutionary algorithms, this optimization step enhances
the model’s predictive accuracy while reducing computational
overhead, making the network efficient and scalable. Table 2 shows
the accuracy attained by the ablation studies of each component of
the proposed work.

Figure 10 illustrate the training process and performance of the
proposed network. The results demonstrate a good improvement in
accuracy, robustness, and convergence compared to individual
components analyzed separately. Figure 11 shows the confusion
matrix along with the ROC plot obtained for the proposed model. The
integration of the Swin Transformer, EFRB, and Population-based
Optimization ensures a powerful and balanced approach to crack
detection, achieving high precision and generalization across
diverse datasets.

The proposed network achieves enhanced performance with an
overall accuracy of 98%, demonstrating precision, recall, and
F1-scores of 0.97, 0.99, and 0.98 for crack detection, respectively,
highlighting its robustness and effectiveness for real-world
applications as shown in Table 3.

The model, integrating the Swin Transformer, Enhanced
Features Representation Block (EFRB), and Population-based
Optimization, achieved a testing accuracy of 98%, significantly
outperforming the Swin Transformer alone (91.68%) and its
combination with EFRB (95.43%). The training and validation
curves demonstrated rapid convergence and stable performance
across epochs, while the confusion matrix confirmed high
classification accuracy with minimal misclassification between
crack and non-crack classes. Furthermore, the ROC curves for both
positive and negative classes achieved an AUC of 1.0, indicating
excellent discriminative capability.

4.6 Performance comparison with existing
works

Elghaish et al. (2022) evaluated AlexNet, GoogleNet, and two
others for highway crack identification and classification, and
proposed a model optimized with diverse learning rates achieving
97.62% accuracy using a dataset of 4,663 crack images grouped into
three categories, outperforming GoogleNets 89.08% and AlexNet’s
87.82%. Ahmadi et al. (2022) proposed a comprehensive approach
combining image segmentation, noise reduction, heuristic-based
feature extraction, and the Hough transform with crack classification
using six classifiers. The hybrid model achieved the highest accuracy
at 93.86%, surpassing individual classifiers. Liu et al. (2022b) employed
infrared thermography and CNNs to classify asphalt pavement fatigue
crack severity into four levels, using three image types. Thirteen CNN
models, including EfficientNet-B4, were trained, with accuracy
surpassing 0.95 across all image types, particularly on infrared images.
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FIGURE 8
Accuracy and loss plot obtained using Swin Transformer and the EFRB.
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FIGURE 9
Confusion matrix obtained using Swin Transformer and the EFRB.

TABLE 2 Performance obtained during ablation studies.

Architecture Accuracy

Swin Transformer 91.68%
Swin Transformer with enhanced features 95.43%
representation block

Proposed work 98%

Grad-CAM and Guided Grad-CAM analyses indicated fusion images
are highly effective for reliable fatigue crack classification.

Liu et al. (2023) introduced a tunnel crack detection method
using image processing with deep learning, comparing SVM and
AlexNet-based models. AlexNet achieved 96.7% test accuracy,
indicating deep CNN models’ superior performance for identifying
structural flaws in subway tunnel. Chen et al. (2023) explored the
role of deep learning, specifically transfer learning, in automating
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the detection of building facade cracks. Addressing the need for
efficient large-scale inspections, transfer learning significantly
improved CNN performance, increasing accuracy from 89% to
94%, demonstrating its efficacy in image classification with limited
data, aligning with national Smart Nation goals for intelligent
technology in construction.

Zhang et al. (2023a) presented a lightweight broad learning
system for concrete crack detection, named MobileNetV3-BLS,
which overcomes the challenges of complex architectures and high
computational requirements. This method improved feature
extraction by integrating MobileNetV3’s inverted residual
structure as a convolutional module, employing random mapping
and enhancement nodes to train the model. MobileNetV3-BLS
exhibits enhanced accuracy and training speed, facilitating
dynamic updates for incremental learning with new data and
nodes. Table 4 provides a comparative analysis between the
proposed model existing state-of-the-art architectures in
crack detection.

5 Conclusion and future work

The proposed a crack detection framework integrating the Swin
Transformer with an Enhanced Features Representation Block (EFRB)
efficiently captured long-range dependencies and process complex
images, while the EFRB improves spatial feature extraction and channel
representation through depthwise and pointwise convolutions.
Population-based feature selection optimizes the process, resulting an
robust performance through effective exploration of the feature space.
The proposed model achieved an accuracy of 98%, with precision,
recall, and F1-scores of 0.97, 0.99, and 0.98, respectively, highlighting
the models robustness in detecting cracks in real-world structural
images. The results demonstrate the potential of combining advanced
transformers with convolutional blocks for high-precision tasks in
image analysis. The proposed framework can significantly enhance the
accuracy and efficiency of crack detection systems, providing a valuable
tool for structural monitoring and maintenance.
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TABLE 3 Performance metrics of the proposed work.

Precision Recall F1-Score Sensitivity Specificity
Crack 0.97 0.9 0.98 0.99 0.96
No Crack 0.99 0.97 0.98 0.96 0.99
Accuracy 98%

TABLE 4 Comparison with state-of-the-art architectures.

Sl. No Reference Methodology Accuracy in %
Optimized CNN model with diverse learning rates vs. GoogleNet and AlexNet on 3-category crack

1 Elghaish et al. (2022) 97.62
dataset

2 Ahmadi et al. (2022) Image segmentation + noise reduction + heuristic feature extraction + hybrid model (6 classifiers) 93.86

3 Liu et al. (2022b) CNNs with infrared thermography and fused image types for fatigue crack severity classification >95.00

4 Liu et al. (2023) Image processing + deep learning (SVM vs. AlexNet) for subway tunnel crack detection 96.70

5 Chen et al. (2023) Transfer learning for building fagade crack detection 94.00
MobileNetV3-BLS: lightweight broad learning with inverted residual structure and enhancement

6 Zhang et al. (2023a) Not specified
nodes

8 Proposed Swin+EFRP+Population based Optimization 98
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5.1 Future work

While the proposed model has shown strong performance, several
avenues for future research can be explored. First, improving the model’s
efficiency for real-time crack detection in large-scale datasets would
be beneficial, potentially through model pruning, quantization, or more
advanced techniques like knowledge distillation. Furthermore, exploring
multi-modal crack detection by incorporating data from different
sensors (e.g., thermal, acoustic) could improve the model’s robustness
under diverse environmental conditions. Future work could also focus
on extending the framework to 3D crack detection, enabling the model
to handle complex, three-dimensional structural scans.
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