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Introduction: This paper presents a crack detection framework employing a 
hybrid model that integrates the Swin Transformer with an Enhanced Features 
Representation Block (EFRB) to precisely detect cracks in images.
Methods: The Swin Transformer captures long-range dependencies and efficiently 
processes complex images, forming the backbone of the feature extraction process. 
The EFRB improved spatial granularity through depthwise convolutions, that focus 
on spatial features independently across each channel, and pointwise convolutions 
to improve channel representation. The proposed model used residual connections 
to enable deeper networks to overcome vanishing gradient problem.
Results and discussion: The training process is optimized using population-based 
feature selection, resulting in robust performance. The network is trained on a 
dataset split into 80% training and 20% testing, with a learning rate of 1e-3, batch 
size of 16, and 30 epochs. Evaluation results show that the model achieves an 
accuracy of 98%, with precision, recall, and F1-scores as 0.97, 0.99, and 0.98 for 
crack detection, respectively. These results show the effectiveness of the proposed 
architecture for real-world crack detection applications in structural monitoring.
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1 Introduction

Machine vision technology has seen significant advancement in the field of road crack 
detection (Yin et al., 2023). Image and video analysis demonstrate a remarkable capacity for 
detecting and identifying early signs of road cracks. They play a crucial role in monitoring and 
early warning, helping to prevent potential crack-related incidents and safeguard lives and 
property (Ma and Mei, 2021). Traditional pavement crack detection methods include 
techniques like minimum-path algorithms, image thresholding, and wavelet transformations. 
To enhance accuracy, few methods integrate free-form anisotropy and morphological filters, 
to attain a clearer depiction of crack intensity and features. Also, collaborative crack detection 
techniques have employed Sobel edge detectors with two-dimensional empirical mode 
decomposition, improving the precision of surface crack differentiation. Convolutional Neural 
Networks (CNN) are used for analyzing pavement crack images and surface characteristics to 
effectively enhance crack identification accuracy.

Cracks in road surfaces are common during road construction, initially arising from 
material aging and degradation over time and also due to climatic factors like precipitation 
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and snow. These elements result various types of surface cracks, 
which gradually expand and lead to both surface and structural 
deterioration, compromising road safety and durability. In recent 
decades, various researchers and experts have proposed multiple 
techniques for detecting cracks in road surfaces, including physical 
inspection, machine vision, and infrared imaging. Physical 
inspections are intensive, inefficient, and prone to human errors 
(Zhao et al., 2025). Machine vision techniques allows automated 
detection but needs high-quality image data and algorithms. 
Infrared imaging analyse the temperature on road surfaces that 
may indicate cracks but involves substantial equipment costs 
(Oloufa et al., 2004; Liu et al., 2024).

Recently, deep learning has significant importance in image 
processing, leading to the extensive use for road surface crack 
detection due to their high efficacy. Identifying and detecting 
structural surface issues, particularly cracks, can offer consistent 
data for the maintenance of buildings. Traditional crack detection 
methods, often produce subjective results (Zhao et al., 2022) and 
lack a standardized global framework, reducing accuracy. 
Advances in computer vision have resulted in crack detection 
algorithms that offer automation, efficiency, and non-contact 
capabilities, effectively addressing the limitations of manual 
methods. In particular, the rapid progress of deep learning 
technology in recent years has enabled CNN models to 
significantly enhance detection accuracy and efficiency. Currently, 
CNN based detection methods are applied to identify surface 
damage in buildings, bridges, and tunnels. The image classification 
schemes identify the category of the input image, the object 
detection model estimates object locations within the image, and 
the semantic segmentation model performs pixel-level analysis to 
pinpoint objects. While semantic segmentation provides the 
highest accuracy, it requires pixel based labelled data for training, 
which is difficult and limits the CNN models in the field of 
structural crack detection. The main contribution of the proposed 
work is as follows:

	•	 A Hybrid framework integrating the Swin Transformer with an 
Enhanced Features Representation Block (EFRB) to capture both 
global dependencies and fine-grained spatial features for accurate 
crack detection.

	•	 Depthwise and pointwise convolutions in the EFRB enhanced 
spatial granularity and channel-wise representation while 
residual connections and normalization stabilized the training 
and prevent overfitting.

	•	 Population-based feature selection with adaptive optimization 
further refines discriminative features, reducing computational 
complexity thus improving model generalization.

	•	 This approach outperforms, achieving 98% accuracy with better 
precision, recall, and F1-scores.

The paper is organized as follows: Section 2 details the review 
of existing crack detection methodologies. Section 3 presents the 
proposed hybrid Swin Transformer with Enhanced Features 
Representation Block (EFRB) and population-based feature 
optimization approach. Section 4 describes the dataset, evaluation 
metrics, ablation studies, and performance analysis of the 
proposed model. Section 5 concludes the paper.

2 Related work

Nguyen et al. (2021) proposed a two-stage CNN where the first 
stage reduces noise and isolates potential cracks, while the second 
stage focuses on learning contextual features of cracks within the 
identified areas. The DeepCrack dataset, used for detection and 
segmentation validation, includes 537 images of 544 × 384 pixels with 
pixel-level ground truth annotations (Liu et  al., 2019). Another 
dataset, CrackIT (Oliveira and Correia, 2014), was compiled in 
Portugal and Canada for crack analysis. Fan et al. (2020) introduced 
an automated crack detection system using a U-Hierarchical Dilated 
Network (U-HDN). This model uses hierarchical feature learning and 
dilated convolution for detailed crack detection on road pavements. 
By integrating multiple context sizes through a multi-dilation module, 
the U-HDN model improves its capability to capture complex crack 
patterns at various scales. Tests on public crack datasets show that 
U-HDN outperforms existing methods by effectively combining 
diverse context sizes and multi-scale feature maps, leading to an 
increased detection accuracy of 0.93. Liu et al. (2022a) leveraged deep 
learning, specifically CNNs, and infrared thermography to categorize 
asphalt pavement crack into four categories: no crack, low, medium, 
and high severity. Results showed fusion images resulted the good 
accuracy for models built from scratch, while visible images performed 
best in transfer learning, with EfficientNet-B3 achieving the highest 
accuracy across all categories for both methods.

Elghaish et al. (2022) evaluated models like AlexNet, GoogleNet, 
and two others for highway crack identification and classification, and 
introduced a new CNN model optimized for accuracy across diverse 
learning rates. The novel CNN model achieved 97.62% accuracy using 
a dataset of 4,663 crack images grouped into three categories, 
outperforming GoogleNet’s 89.08% and AlexNet’s 87.82%, utilizing 
Adam optimization at a learning rate of 0.001 for efficient highway 
crack recognition. Ahmadi et  al. (2022) proposed a approach 
combining segmentation, noise reduction, heuristic-based feature 
extraction, and the Hough transform with crack classification using 
six classifiers. The hybrid model achieved the highest accuracy at 
93.86%, surpassing individual classifiers. Liu et al. (2022b) employed 
infrared thermography and CNNs to classify asphalt pavement fatigue 
crack severity into four levels, using three image types. CNN models, 
including EfficientNet-B4, were trained, with accuracy surpassing 0.95 
across all image types, particularly on infrared images. Grad-CAM 
and Guided Grad-CAM analyses indicated fusion images are highly 
effective for reliable fatigue crack classification.

Oliveira and Correia (2014) developed a comprehensive MATLAB 
toolbox for crack detection and characterisation on road pavement 
surfaces, which includes algorithms for preprocessing, crack 
identification, and classification. The toolbox includes 84 pavement 
surface images obtained from standard road surveys, providing a 
valuable resource for evaluating crack detection algorithms. Yamaguchi 
and Hashimoto (2010) presented a rapid crack identification method 
for concrete surfaces using percolation-based image processing, which 
reduces computational time by incorporating skip processes and 
assessing pixel circularity. Experimental results show reduced 
computation costs while maintaining high crack detection accuracy. 
Vivekananthan et al. (2023) developed a grey intensity adjustment 
model for crack detection, employing grey level discrimination and the 
Otsu method to set threshold ranges and Sobel’s filter for edge 
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detection. This approach achieved a maximum detection accuracy of 
95% while addressing constraints related to aspect ratio and margin 
parameters. Liu et  al. (2023) introduced a tunnel crack detection 
method using image processing with deep learning, comparing SVM 
and AlexNet based models. AlexNet achieved 96.7% test accuracy, 
indicating deep CNN models’ superior performance for identifying 
structural flaws in subway tunnels. Malek et al. (2023) created a real-
time augmented reality (AR) crack detection system, overcoming 
traditional AR limitations by adapting the Canny algorithm to the AR 
headset platform for autonomous processing. Experimental results 
confirm this AR method’s efficiency and practicality for real-time crack 
detection in field inspections. Tran et al. (2023) presented a process 
based deep learning approach for bridge deck crack detection and 
segmentation, testing five object detection networks including 
YOLOv7 and achieved a detection accuracy of 92.38%. The proposed 
U-Net also exhibited enhanced performance, successfully identifying 
and quantifying cracks on bridge decks.

Pham et  al. (2023) employed U-Net, LinkNet, FPN, and 
Deeplabv3, achieving F1 scores between 0.877 and 0.896 at 7.48–8.01 
frames per second (FPS), notably outperforming traditional image 
processing methods in speed and accuracy. Nyathi et  al. (2023) 
developed an approach for measuring concrete crack, achieving high 
precision with absolute error between 0.02 mm and 0.57 mm, 
facilitating compliance with international standards. Zhang et  al. 
(2023b) presented a lightweight crack detection technique for bridges 
using YOLOv4, incorporating lighter networks to reduce 
computational demands for edge devices. The modified YOLO v4 
achieved 93.96% precision, 90.12% recall, and F1 score of 92%, 
requiring only 23.4 MB and running at 140.2 FPS. Xu et al. (2023) 
introduced the YOLOv5-IDS model, integrating the YOLOv5 
architecture with a bilateral segmentation network for concrete crack 
detection and measurement, achieving an mAP@0.5 of 84.33% and an 
mIoU of 94.78%, with rapid detection at 159 FPS.

Hu et al. (2024) proposed an advanced approach to road surface 
crack detection using an enhanced YOLOv5 model, addressing the 
complexities of information extraction from vehicle-mounted 
imagery. Key improvements include the Slim-Neck architecture for 
targeted crack focus, the C2f structure and Decoupled Head for 
optimized data utilization, and a split SPPCSPC structure for 
enhanced efficiency and precision. Experimental results demonstrate 
significant improvements across multiple evaluation metrics 
compared to five other sophisticated models, affirming the 
effectiveness of the proposed approach. Dong et al. (2024) introduced 
YOLOv8-Crack Detection (YOLOv8-CD), a lightweight, optimized 
algorithm for concrete crack detection aimed at boosting 
infrastructure safety and maintenance efficiency. The model leverages 
visual attention networks and a Large Separable Kernel Attention 
module to enhance crack shape detection and feature extraction. 
Experimental findings reveal substantial gains in mAP scores and 
detection speed, achieving 88 FPS while reducing processing 
demands, thereby validating its advantage over other object detection 
techniques. Chen et al. (2023) explored the role of deep learning, 
specifically transfer learning, in automating the detection of building 
cracks. Addressing the need for efficient large-scale inspections, 
transfer learning significantly improved CNN performance, boosting 
accuracy from 89 to 94%, demonstrating its efficacy in image 
classification with limited data, aligning with national smart nation 
goals for intelligent technology in construction.

Zhang et  al. (2023a) present a lightweight learning model for 
concrete crack detection, named MobileNetV3-BLS, which overcomes 
the challenges of complex architectures and high computational 
requirements. This method improves feature extraction by integrating 
MobileNetV3’s inverted residual structure as a convolutional module, 
employing random mapping and enhancement nodes to train the 
model. MobileNetV3-BLS exhibits enhanced accuracy and training 
speed, facilitating dynamic updates for incremental learning with new 
data and nodes. Zadeh et al. (2024) evaluate multiple deep learning 
architectures: InceptionV3, VGG19, ResNet50, and EfficientNetV2 
using fine-tuning for concrete crack detection. Results show 
EfficientNetV2 achieves 99.6% accuracy, 99.3% precision, and a recall 
of 1, leading to a balanced F1 score of 99.6%, effectively minimizing 
false positives and maximizing true crack identification.

Guo F. et al. (2024) analysed in two stages where Stage I detects 
images with pixel cracks using a CNN-based classifier, while Stage II 
uses a separation combination approach and CTv2 (Crack 
Transformer v2) for pixel level detection. Extensive testing confirms 
the framework’s advantage and efficiency, facilitating scalable 
automated pavement crack detection. Karimi et al. (2024) developed 
a robust deep learning model for detecting cracks across various 
Cultural Heritage (CH) materials using the YOLO object detection 
network. The study examines masonry types (stone, brick, cob, tile) 
and modern materials like concrete with a dataset of 1,213 images 
across categories. Results show mean average precision values of 
94.4% for concrete, 93.9% for concrete and cob, 92.7% for cob, 87.2% 
for stone, 83.4% for stone and brick, 81.6% for brick, and 70.3% for 
tile, highlighting the model’s potential for efficient CH crack detection, 
aiding specialists in damage assessment.

Guo C. et al. (2024) proposed SegCrackNet, an innovative neural 
network with multi-level output fusion, dropout layers, and T-bridge 
block configurations to reduce overfitting and enhance the utilization 
of contextual information. Experimental results reveal notable 
improvements over other models, with IoU score increases of 4.3%, 
9.4%, and 3.7% for the Crack500, Crack200, and pavement images 
datasets, respectively. Yu et  al. (2024) presented an optimized 
lightweight segmentation model similar to BiSeNetv for automated 
pavement crack detection. Results show that this model outperforms 
prior methods with an F1 score improvement of 10.14%, underscoring 
its precision and robustness in segmenting pavement cracks.

Liu and Xu (2023) utilized a VGG16-based CNN for crack 
classification, incorporating an enhanced Class Activation Map 
(CAM) technique for precise localization and distribution of cracks. 
Integrating simple linear iterative clustering (SLIC) superpixel 
segmentation with CAM, the semantic segmentation accuracy is 
improved to a greater extend. Bayesian optimization identifies ideal 
parameters, and test results that indicate the algorithm’s support on 
image-level labelling that significantly reduced labour and cost thus 
maintaining accuracy. Table 1 details an overview of the various crack 
detection methods.

Shaoze et  al. (2025) introduced a variant in YOLO achieving 
86.4% mAP@50, demonstrating strong detection performance in 
complex environments. Tang et al. (2024) proposed BsS-YOLO for 
road crack detection, integrating improved PAN and BiFPN feature 
fusion structures along with attention mechanisms, leading to a 2.8% 
mAP gain over baseline YOLO models. For bridge crack detection, 
Dong et  al. (2025) proposed YOLO11n-BD that incorporates an 
Efficient Multi-Scale Cross Attention (EMSCA) module and a 
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Lightweight Dynamic Head (LDH), achieving 94.3% mAP@50 and an 
F1-score of 89.2% while maintaining real-time performance at 555 
FPS. Zhu et al. (2025) proposed FD2-YOLO that enhanced YOLOv11n 
with a dual-stream architecture combining spatial and frequency-
domain features, improving detection robustness on noisy surfaces 
with 88.3% mAP@50 and 88.4% precision. Zhao et  al. (2025) 
developed a YOLOv11 for intelligent tunnel lining crack detection, 
achieving 93.3% accuracy, 94.5% recall, and 96.9% average precision. 
Their approach effectively identifies cracks under complex lighting 

and structural conditions, ensuring robust performance for real-world 
tunnel inspections.

3 Proposed methodology

The proposed study presents custom hybrid framework for 
detecting surface cracks in concrete floors as illustrated in Figure 1. 
The main objective is to create a computationally efficient and accurate 

TABLE 1  An overview of different DL methodologies for crack detection.

Ref Methodology Categories Dataset Metric Inference

Nguyen et al. (2021) CNN

crack detection and 

segmentation
DeepCrack, CrackIT, 

2StagesCrack dataset
F1-measure - 0.91

Achieves high performance on 

noisy, low-resolution, and 

imbalanced data.

Fan et al. (2020)
U-Hierarchical Dilated 

Network

Pavement crack detection

AigleRN
Pr: 0.92, Re: 0.93, F1: 0.92 

accuracy – 93%

Superior detection accuracy 

through multi-scale feature 

extraction.

Liu et al. (2022a) Transfer Learning Models

Pavement crack severity 

classification
Asphalt Accuracy −93%

Fusion images yield better 

accuracy; EfficientNet-B3 

performs best across all image 

types.

Elghaish et al. (2022)
convolutional neural 

network

Highway cracks
4,663 images of 

highway cracks
97.62% accuracy

New CNN model outperforms 

existing models like GoogleNet 

and AlexNet.

Ahmadi et al. (2022)

neural network, decision 

tree, SVM, KNN, Bagged 

Trees,

Crack classification

400 images 93.86% accuracy

Hybrid model surpasses 

individual classifiers for crack 

classification.

Liu et al. (2022b) EfficientNet-B4

Pavement fatigue crack 

severity classification

2,211 images, while 

their size is 640 × 480.

asphalt

Accuracy – 95%

Fusion images are effective for 

fatigue crack severity 

classification.

Oliveira and Correia 

(2014)

CrackIT toolbox 

algorithms

Crack detection

84 pavement surface

re = 98.4%

pr = 95.5%

100% of recall

Toolbox provides crack 

detection and characterization 

algorithms for research use.

Yamaguchi and 

Hashimoto (2010)

Percolation-based image 

processing

Concrete crack detection 60 images concrete 

surfaces images
Pre-0.95 Reduced computation costs.

Vivekananthan et al. 

(2023)

Gray intensity adjustment 

model for crack detection
2068 crack images 95% detection accuracy

Otsu and Sobel methods 

improve crack detection 

accuracy.

Liu et al. (2023)
Image processing and deep 

learning and SVM

Crack images in subway 

tunnels,
3,000 data images

SVM: 88%; AlexNet: 

96.7%

Performs effectively for crack 

detection in tunnels.

Tran et al. (2023)

Process-based deep 

learning for bridge deck 

crack detection

Crack detection and 

segmentation

Two bridge datasets l 

bridge decks in South 

Korea

Precision −0.83

Outperforms other networks 

in speed and accuracy for 

crack detection.

Pham et al. (2023)

U-Net, LinkNet, Feature 

Pyramid Network and 

Deeplabv3

Ground crack detection

510 crack, 185 slope 

and 325 field images
F1 score: 0.877–0.896

Outperform traditional 

methods for crack 

identification and 

measurement.

Zhang et al. (2023b) YOLO v4

Bridge crack detection About 800 photos of 

bridges around 

Guizhou University.

Precision: 93.96%; Recall: 

90.12%

Method is effective for edge 

deployment with minimal 

computational requirements.

Xu et al. (2023) YOLOv5-IDS

Crack detection and 

segmentation 302 crack images
mAP@0.5: 84.33%; 

mIoU: 94.78%

Achieves high accuracy and 

processing speed for crack 

detection.

(Continued)
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model that integrates the strengths of the Swin Transformer, skip 
learning, Enhanced Features Representation Block, along with an 
attention mechanism to precisely identify surface cracks in 
concrete structures.

This model used the Swin Transformer ( BST ) and skip 
connections, fine-tuned through an Enhanced Feature Representation 
Block ( BEFR ) , with varying filter sizes. Feature selection and 
optimization are achieved using Population-Based Optimization 
( BPOFS )  which conducts a randomized search to identify optimal 
solutions for the efficient crack detection in images.

3.1 Swin Transformer

Unlike CNNs, Vision Transformers (ViTs) utilize the attention 
mechanism of Transformers for image data. A key benefit of ViT is its 
ability to represent global features without depending on local 
receptive fields. Transformers self-attention necessitates calculating 
weights between all other tokens, leading to increased computational 
complexity. As a result, the computational cost associated with super-
resolution images can be substantial. In contrast to ViT, the Swin 
Transformer (Liu et al., 2021) incorporates a mechanism known as the 
shifted window, which segments into non-overlapping localized. 
Features are further processed among windows through this shifting 
process. Swin Transformer employed a hierarchical process composed 
of various stages, each containing several transformer blocks. Figure 2 
provides the summary of the Swin Transformer architecture.

The input image, of size × ×H W 3, is splitted into non-overlapping 

patches of size × ×
H W 48
4 4

. The input data is processed at the final 

stage through a linear layer that transforms the feature into C which 
is enhanced through an attention model. The same operations are 
repeated in the subsequent three stages. The adjacent ×2 2 patches are 
combined through a patch merging, which reduces size by half 
through a linear layer followed by multiple blocks to enhance the 

merged patches using attention blocks. Ultimately, the resulting data 

has dimensions of × ×
H W 8C
32 32

. Figure 2 depicts two consecutive Swin 

Transformer blocks, where the conventional multi-head self-attention 
mechanism (MSA) is substituted with window-based multi-head self-
attention (W-MSA) and shifted window multi-head self-attention 
(SW-MSA). By leveraging the partitioning shifted window technique, 
the representation generated by successive Swin Transformer blocks 
can be expressed as Equations 1–4:

	 ( )( )− −= − +l l 1 l 1
Ns W MSA L s sˆ

	
(1)

	 ( )( )= +l l l
Ns MLP L s ŝˆ

	
(2)

TABLE 1  (Continued)

Ref Methodology Categories Dataset Metric Inference

Hu et al. (2024) Improved YOLOv5

Road surface

13,508 images F1 score – 0.5876

Enhance information 

extraction from vehicle-

mounted images for better 

crack detection.

Dong et al. (2024)
YOLOv8-Crack Detection 

(YOLOv8-CD)

Crack detection
RDD2022 and Wall 

Crack datasets
precision of 91.5%

Improves feature extraction 

and detection speed for 

concrete surface cracks.

Chen et al. (2023)

Transfer learning for 

automated building facade 

crack inspection

Crack detection
3,600 building crack 

images

Traditional CNN: 89%; 

Transfer learning: 94%

Significantly enhances crack 

classification performance.

Zadeh et al. (2024) Deep learning architectures

Surface crack detection 

and classification

20,000 images from 

structures within the 

METU Campus

InceptionV3–94%

Achieves high accuracy and 

minimizes false positives in 

crack detection.

Guo F. et al. (2024)
Two-stage framework CNN 

with a transformer model

Pavement surface crack 

detection CrackSD dataset Deep LabV3–97.21

Identifies and detects pixel-

level cracks for large-scale 

applications.

Karimi et al. (2024) YOLOv5

Crack damages

1,213 bricks Mean AP: 94.4%

Identifies cracks in various 

materials, supporting 

inspection professionals in 

damage assessments.

Guo C. et al. (2024)
SegCrackNet for crack 

detection

Crack500, Crack200, 

and pavement images 

datasets

79.85, 44.97 and 49.66%

Effectively detects subtle 

variations and improves crack 

detection accuracy.

Yu et al. (2024) BiSeNetv2

Pavement surface crack 

detection
CFD dataset, Crack500, 

CrackSC
Recall - 91.09

Demonstrates effectiveness and 

robustness in segmenting 

pavement surface cracks.
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	 ( )( )+ = − +l 1 l l
Ns SW MSA L s sˆ

	
(3)

	 ( )( )+ + += +l 1 l 1 l 1
N ˆs L s ˆMLP s

	
(4)

Where l lŝ ,s  represent the output of the (S)W-MSA and the MLP 
module of block 𝑙, respectively; and SW-MSA and W-MSA refer to 
window-based multi-head self-attention mechanisms that utilize 
standard and shifted window partitioning processes, respectively. 
Consider each window includes ×M M  patches, the complexity of 
multi-head self-attention module and W-MSA for ×h w patches are as 
given in Equations 5, 6:

	 ( )22MSA 4hwC 2 hw CΩ = +
	 (5)

	 Ω − = +2 2MSA 4hwC 2 M hwCW 	 (6)

The complexity of MSA is quadratically linked to patch count, 
meaning it increases significantly with a larger number of patches. In 
contrast, when the size M is constant, the complexity of W-MSA 
remains linear. As a result, the rise in complexity is quite modest even 
with a greater number of patches. This characteristic improves the 
scalability of W-MSA for processing large-scale images.

3.2 Enhanced features representation 
block

A neural network block combining Depthwise and Pointwise 
Convolutions leverages Depthwise Convolutions (Guo et al., 2019) to 
capture spatial features independently across each channel, enhancing 
spatial granularity. The Pointwise Convolution (Hua et al., 2018) then 
integrates these spatially focused features, creating a rich, channel-
combined representation that enhances the model’s ability to capture 

essential and discriminative features efficiently. Depthwise 
Convolution where each filter is applied to only one input channel. In 
contrast to standard convolutions, depthwise convolutions reduce 
computational complexity as given in Equation 7.

	
( ) ( ) ( )v v v

i,j
X m,n Y m i,n j W i,j= + + ⋅∑

	
(7)

where vY  is the vth channel of the input, vW  is the depthwise filter 
for that channel, and vX  is the corresponding output. This is a 
standard 2D convolution applied after the depthwise convolution. It 
combines the output from the depthwise convolution across channels 
as shown in Equation 8.

	
( ) ( )v

v
O m,n X m, vn V= ⋅∑

	
(8)

Where vV represents the filters in this conv2D layer applied across 
the depthwise operator. GELU is a smooth activation function, where 
the output is a stochastic binary decision with some non-linearity as 
shown in Equations 9, 10.

	
( ) ( ) 1 1

2 2
yGelu y y P Y y y e

  
= ⋅ ≤ = ⋅ +  

   	
(9)

	

β
γ
−

=ˆ yy
	

(10)

This process normalizes the activations across the features within 
a layer to improve stability and training efficiency. β  refers mean and 
γ  represents standard deviation within a layer. The output of the 
depthwise convolution branch is added back to the input via a residual 
connection, helping in training deeper networks by avoiding vanishing 

FIGURE 1

Architecture of the proposed system.
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gradient issues. Pointwise Convolution is a 1×1 convolution applied 
across the channels, used to fuse information across channels without 
altering the spatial dimensions as given in Equation 11.

	
( ) ( ) ( ), , , 1,1,p

v
X m n Y m n v W v= ⋅∑

	
(11)

where v refers the channels in the input and the pointwise 
convolution across all channels. Conv2D, GELU, Layer Normalization, 
Dropout follow the same principles as the depthwise convolution 
branch. The Conv2D is used to mix information across channels after 
the pointwise convolution. GELU activation, Layer Normalization, 
and Dropout work identically in both branches to introduce 
non-linearity, normalize activations, and prevent overfitting, 
respectively. Similar to the depthwise branch, the output from the 
pointwise convolution branch is added back to the input. The 
depthwise convolution enahances the spatial features whereas 
Pointwise convolutions combine features across channels efficiently. 
The residual connections helped to overcome the vanishing gradients, 
and the normalization layers stabilized the learning process effectively. 
Layer Normalization and Dropout layers help improve the model’s 
generalization by stabilizing training and reducing overfitting, 
respectively. Figure  3 details the layers included in the enhanced 
feature representation model.

3.3 Optimised feature selection

Population-based optimization techniques use random searches 
to identify the optimal solutions. Also, an adaptive local search 
technique called Adaptive β-Hill Climbing (AβHC) is used to fine-
tune the selected feature. This feature forms a mapping to the output 
classes, resulting in the Hierarchical Deep Learning Classifier 

(HDLC) to effectively distinguish between cracked and non-cracked 
surfaces based on the refined input features. The Sine-Cosine 
Algorithm (SCA) is a population-based metaheuristic used for 
feature selection and optimization (Mirjalili, 2016). It uses sine and 
cosine functions in an iterative process with two phases: exploration, 
which introduces diverse solutions to search broadly, and 
exploitation, which fine-tunes solutions by reducing randomness. 
Equation 12 defines how positions are updated using 
these functions.

	

( )
( )

+
 + × × − < =  

+ × × − ≥ 
 

, 1, 2, 3, , 4,1
,

, 1, 2, 3, , 4,

sin , 0.5

cos , 0.5

m m m m m m m
i j j j j j i j jm

i j m m m m m m m
i j j j j j i j j

C k k k N C k
C

C k k k N C k
	

(12)

Here, ,
m
i jC is the position in thj  dimension of thi  search element at 

thm  iteration. 2, 3, 4,,m m m
j j jk k and k are  random numbers, m

jN  represents 
the position of thj  best solution at thm  iteration and || denotes the 
absolute value. A random value 1,

m
jk enables the transition from 

exploration to exploitation as shown in Equation 13.

	
ββ= −1,

m
jk m

M 	
(13)

Here, β  and M  characterize the constant value, and iterations, 

respectively. 1,
m

jk decides whether the search region is for ( )∈ −  1, 1,1m
jk  

or exploration ( )∈ −  1, 1,2m
jk or ( )∈  1, 1,2m

jk
. The stochastic variable 

2,
m

jk , ranging within π  0,2 , controls the search agent’s direction 
relative to the destination, aligning with the sine and cosine cycle. m

3,jk
balances exploration and exploitation by assigning a random weight 
between 0 and 2, influencing step size—greater than 1 emphasizes, 
while less than 1 de-emphasizes the destination’s impact. m

4,jk  manages 

FIGURE 2

Flow of layers in Swin Transformer.
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the switch between sine and cosine functions, as outlined in 
Equation 14. The SCA feature optimization process is summarized in 
the flowchart shown in Figure 4. In order to enhance the exploitation 
ability Adaptive 𝛽-Hill Climbing (A𝛽HC) is integrated that utilizes 
local search-based techniques using two control parameters and 

hc hcN and B . The parameter hcN  is assigned close to 1 value which 
gradually decreases as the search process progresses. This permits the 
process to dynamically adjust hcN  to advance the search performance, 
as given in Equation 14.

	

= −

1
p

m
hc 1

p
max

mN 1

M 	

(14)

Here, m
hcN  denotes hcN at time m, P linearly decrease the hcN  

to a value close to 0 and maxM  represents the upper limit B 
parameter adapts a range ∈ min max

hc hcB ,B , mathematically expressed 
in Equation 15.

	

−
= + ×

max min
m min hc hc
hc hc

max

B B
B B m

M 	
(15)

Here, m
hcB  represents the rate of hcB  at iteration m, with 

min max
hc hcB and B indicating the minimum and maximum value of 
hcB respectively, maxM denotes the total number of iterations, 

and m refers to the current iteration. Figure  4 details the 
flowchart for the Population-based optimization algorithm 
(Raghaw et  al., 2024) detailing the selection process of the 
optimized features.

4 Experimental results and discussion

Overview of the dataset, data augmentation methods, 
experimental setup, model training, and validation. It also details the 
performance metrics used to analyse the proposed model is detailed 
in this section.

4.1 Description of the dataset

Concrete surface cracks is a defect commonly identified in civil 
infrastructure. Building inspection is crucial for assessing the 
structural integrity and tensile strength of these constructions. 
Crack detection (Özgenel, 2019; Özgenel and Gönenç Sorguç, 2018) 
plays a vital role in this process by identifying structural flaws and 
evaluating the overall condition of the building. These images are 
organized into two class: negative (no cracks) and positive (with 
cracks), suitable for image classification tasks. Each category 
includes 20,000 images, resulting in a total of 40,000 RGB images, 
each with a resolution of 227 × 227 pixels. The dataset was 
developed from 458 high-resolution images (4,032 × 3,024 pixels) 
following the method introduced by Zhang et  al. (2016). These 
high-resolution images display considerable variation in surface 
texture and lighting conditions. Figure 5 shows few sample images 
for each class.

4.2 Environmental setup

The proposed model was implemented using PyTorch, an open-
source deep learning framework. To optimize the model and minimize 
loss, the Adam optimizer was incorporated with a learning rate set to 
0.0001. The training was performed on an Azure virtual machine 
powered by an NVIDIA Tesla P40 GPU.

4.3 Evaluation metrics

The metrics that are used to evaluate the model are as given in 
Equations 16–20. Accuracy measures how the predicted values are 
similar with the actual values. Precision identified true positive 
values. Specificity indicates the model’s ability to correctly identify 
true negatives, computed as the ratio of true negatives to the total 
number of negative cases. Recall represents the proportion of 
correctly predicted positive cases out of all actual positive data in 
the dataset. The F1 score, which is the harmonic mean of precision 
and recall, which reflects the model’s effectiveness in detecting 
positive samples. These evaluation metrics are calculated based on 
True Positives (TP), False Positives (FP), True Negatives (TN), and 
False Negatives (FN), as given in Equations 8–12.

	
=

+ + +
TPAccuracy

TP TN FP FN 	
(16)

	
=

+
TPPrecision

TP FP 	
(17)

FIGURE 3

Overview of the enhanced feature representation model.
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FIGURE 4

The flowchart for the population-based optimization algorithm.

FIGURE 5

Sample images for both crack and non-crack images.
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=

+
TPRecall

TP FN 	
(18)

	
=

+
TNSpecificity

TN FP 	
(19)

	
∗ ∗

=
+

2 Precision RecallF1Score
Precision Recall 	

(20)

4.4 Training details

The model included a 2 × 2 patch size for the initial image 
segmentation and processes these patches with 8 attention heads 
and a 64-dimensional embedding. The attention mechanism is 
performed within a 2 × 2 window which incorporates a shifted 
window of size 1. Dropout is applied with 0.03 to avoid overfitting. 
The training is carried out with a learning rate of 1e-3, batch size 
of 16, and 30 epochs, utilizing weight decay and label smoothing 
for improved generalization. The model used 80:20 ratio ensuring 
a suitable split for evaluating performance during the 
training process.

4.5 Ablation studies

This study evaluates the efficiency of major components in the 
proposed architectural framework that helps to optimize the 
performance. The efficiency of the following levels was evaluated: 
Swin Transformer, Enhanced Features Representation Block and 
Population based Optimisation for Feature Selection.

4.5.1 Analysis of the Swin Transformer
The performance of the Swin Transformer was analyzed as an 

independent module to evaluate its effectiveness in feature extraction 
for crack detection. This analysis shows the model’s ability to capture 
long-range dependencies, for identifying fine-grained crack patterns 

and irregularities in structural images. The Swin Transformer 
employed a hierarchical architecture with shifted windows, enabling 
efficient computation while preserving spatial granularity. The self-
attention mechanism ensures robust modeling of both local and global 
contextual relationships, important for distinguishing cracks from 
background textures. Figures  6, 7 illustrate the training and 
performance metrics of the Swin Transformer block achieving a 
testing accuracy of 91.68%. The Swin Transformer’s performance as 
an independent module was further analyzed to assess its capability 
in crack detection. The training and validation curves showed rapid 
convergence within the first few epochs, achieving a stable testing 
accuracy of 91.68% with minimal overfitting. The confusion matrix 
indicated a strong balance between precision and recall for both crack 
and non-crack classes, demonstrating the model’s robustness in 
distinguishing fine-grained crack patterns from background noise. 
This performance highlights the Swin Transformer’s ability to 
effectively model both local and global contextual features through its 
hierarchical shifted window mechanism while maintaining 
computational efficiency, making it a reliable backbone for structural 
crack detection tasks.

4.5.2 Analysis of the Swin Transformer with 
enhanced features representation block

The combined performance of the Swin Transformer and the 
Enhanced Features Representation Block (EFRB) was analyzed to 
evaluate their collaboration in feature extraction for crack 
detection. The Swin Transformer is integrated with the EFRB’s 
ability to enhance spatial granularity and channel-wise 
representation, resulting in a feature extraction framework. The 
Swin Transformer acts as the initial stage, effectively processing 
complex input images with its hierarchical architecture and shifted 
window self-attention mechanism. This enables both global and 
local contextual relationships critical for detection of subtle and 
irregular crack patterns. The extracted features are then passed to 
the Enhanced Features Representation Block, which employs 
Depthwise Convolutions to independently refine spatial features 
across channels and Pointwise Convolutions to fuse these features 

FIGURE 6

Accuracy and loss plot analysis obtained using Swin Transformer.
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into channel-combined representation. The EFRB’s residual 
connections and Layer Normalization stabilize training, while the 
GELU activation and Dropout layers prevent overfitting, ensuring 
robust learning. Figures 8, 9 illustrate the training process and 
performance evaluation of the Swin Transformer combined with 
the EFRB. The metrics demonstrate improved convergence rates, 
stability, and feature extraction efficiency compared to using the 
Swin Transformer as a standalone component attaining 95.43% 
as accuracy.

The integration of the Swin Transformer with the Enhanced 
Features Representation Block (EFRB) demonstrated improved 
feature extraction performance for crack detection. The Swin 
Transformer efficiently modeled both global and local dependencies 
through its hierarchical shifted window mechanism, while the EFRB 
enhanced spatial granularity and channel-wise representation using 
Depthwise and Pointwise Convolutions. Residual connections, Layer 
Normalization, and GELU activation stabilized training and reduced 
overfitting, ensuring robust learning. The training and validation 
curves showed faster convergence and higher stability compared to 
the Swin Transformer alone, while the confusion matrix confirmed 
significant improvement in classification accuracy, achieving 95.43%, 
highlighting the combined model’s effectiveness for precise 
crack detection.

4.5.3 Performance analysis of the proposed 
model

The proposed model integrates the Swin Transformer, the 
Enhanced Features Representation Block (EFRB), and Population-
based Optimization for Feature Selection, resulting an enhanced 
framework for crack detection. Each component contributes 
distinct strengths enhancing the network’s overall performance in 
extracting, refining, and selecting discriminative features. The Swin 
Transformer efficiently captures both global and local dependencies 
through its hierarchical architecture and shifted window 
mechanism. The Enhanced Features Representation Block (EFRB) 
refines and enhances the extracted features. The Depthwise 
Convolutions within the EFRB specialize in spatial feature 
extraction by independently processing each channel, while the 

Pointwise Convolutions integrate these spatially refined features 
across channels. Residual connections, along with GELU activation, 
Layer Normalization, and Dropout, ensure stable training, robust 
gradient flow, and generalization, resulting in a rich and 
discriminative representation tailored for crack detection. 
Population-based Optimization for Feature Selection ensures that 
the most relevant and informative features are prioritized while 
redundant or non-contributory features are minimized. By 
leveraging evolutionary algorithms, this optimization step enhances 
the model’s predictive accuracy while reducing computational 
overhead, making the network efficient and scalable. Table 2 shows 
the accuracy attained by the ablation studies of each component of 
the proposed work.

Figure 10 illustrate the training process and performance of the 
proposed network. The results demonstrate a good improvement in 
accuracy, robustness, and convergence compared to individual 
components analyzed separately. Figure  11 shows the confusion 
matrix along with the ROC plot obtained for the proposed model. The 
integration of the Swin Transformer, EFRB, and Population-based 
Optimization ensures a powerful and balanced approach to crack 
detection, achieving high precision and generalization across 
diverse datasets.

The proposed network achieves enhanced performance with an 
overall accuracy of 98%, demonstrating precision, recall, and 
F1-scores of 0.97, 0.99, and 0.98 for crack detection, respectively, 
highlighting its robustness and effectiveness for real-world 
applications as shown in Table 3.

The model, integrating the Swin Transformer, Enhanced 
Features Representation Block (EFRB), and Population-based 
Optimization, achieved a testing accuracy of 98%, significantly 
outperforming the Swin Transformer alone (91.68%) and its 
combination with EFRB (95.43%). The training and validation 
curves demonstrated rapid convergence and stable performance 
across epochs, while the confusion matrix confirmed high 
classification accuracy with minimal misclassification between 
crack and non-crack classes. Furthermore, the ROC curves for both 
positive and negative classes achieved an AUC of 1.0, indicating 
excellent discriminative capability.

4.6 Performance comparison with existing 
works

Elghaish et al. (2022) evaluated AlexNet, GoogleNet, and two 
others for highway crack identification and classification, and 
proposed a model optimized with diverse learning rates achieving 
97.62% accuracy using a dataset of 4,663 crack images grouped into 
three categories, outperforming GoogleNet’s 89.08% and AlexNet’s 
87.82%. Ahmadi et al. (2022) proposed a comprehensive approach 
combining image segmentation, noise reduction, heuristic-based 
feature extraction, and the Hough transform with crack classification 
using six classifiers. The hybrid model achieved the highest accuracy 
at 93.86%, surpassing individual classifiers. Liu et al. (2022b) employed 
infrared thermography and CNNs to classify asphalt pavement fatigue 
crack severity into four levels, using three image types. Thirteen CNN 
models, including EfficientNet-B4, were trained, with accuracy 
surpassing 0.95 across all image types, particularly on infrared images. 

FIGURE 7

Confusion matrix obtained using Swin Transformer.
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Grad-CAM and Guided Grad-CAM analyses indicated fusion images 
are highly effective for reliable fatigue crack classification.

Liu et al. (2023) introduced a tunnel crack detection method 
using image processing with deep learning, comparing SVM and 
AlexNet-based models. AlexNet achieved 96.7% test accuracy, 
indicating deep CNN models’ superior performance for identifying 
structural flaws in subway tunnel. Chen et al. (2023) explored the 
role of deep learning, specifically transfer learning, in automating 

the detection of building facade cracks. Addressing the need for 
efficient large-scale inspections, transfer learning significantly 
improved CNN performance, increasing accuracy from 89% to 
94%, demonstrating its efficacy in image classification with limited 
data, aligning with national Smart Nation goals for intelligent 
technology in construction.

Zhang et al. (2023a) presented a lightweight broad learning 
system for concrete crack detection, named MobileNetV3-BLS, 
which overcomes the challenges of complex architectures and high 
computational requirements. This method improved feature 
extraction by integrating MobileNetV3’s inverted residual 
structure as a convolutional module, employing random mapping 
and enhancement nodes to train the model. MobileNetV3-BLS 
exhibits enhanced accuracy and training speed, facilitating 
dynamic updates for incremental learning with new data and 
nodes. Table  4 provides a comparative analysis between the 
proposed model existing state-of-the-art architectures in 
crack detection.

5 Conclusion and future work

The proposed a crack detection framework integrating the Swin 
Transformer with an Enhanced Features Representation Block (EFRB) 
efficiently captured long-range dependencies and process complex 
images, while the EFRB improves spatial feature extraction and channel 
representation through depthwise and pointwise convolutions. 
Population-based feature selection optimizes the process, resulting an 
robust performance through effective exploration of the feature space. 
The proposed model achieved an accuracy of 98%, with precision, 
recall, and F1-scores of 0.97, 0.99, and 0.98, respectively, highlighting 
the model’s robustness in detecting cracks in real-world structural 
images. The results demonstrate the potential of combining advanced 
transformers with convolutional blocks for high-precision tasks in 
image analysis. The proposed framework can significantly enhance the 
accuracy and efficiency of crack detection systems, providing a valuable 
tool for structural monitoring and maintenance.

FIGURE 8

Accuracy and loss plot obtained using Swin Transformer and the EFRB.

FIGURE 9

Confusion matrix obtained using Swin Transformer and the EFRB.

TABLE 2  Performance obtained during ablation studies.

Architecture Accuracy

Swin Transformer 91.68%

Swin Transformer with enhanced features 

representation block

95.43%

Proposed work 98%
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FIGURE 10

Accuracy and loss plot of the proposed model.

FIGURE 11

Performance metrics showing the confusion matrix along with the ROC plot.

TABLE 3  Performance metrics of the proposed work.

Class Precision Recall F1-Score Sensitivity Specificity

Crack 0.97 0.99 0.98 0.99 0.96

No Crack 0.99 0.97 0.98 0.96 0.99

Accuracy 98%

TABLE 4  Comparison with state-of-the-art architectures.

Sl. No Reference Methodology Accuracy in %

1 Elghaish et al. (2022)
Optimized CNN model with diverse learning rates vs. GoogleNet and AlexNet on 3-category crack 

dataset
97.62

2 Ahmadi et al. (2022) Image segmentation + noise reduction + heuristic feature extraction + hybrid model (6 classifiers) 93.86

3 Liu et al. (2022b) CNNs with infrared thermography and fused image types for fatigue crack severity classification >95.00

4 Liu et al. (2023) Image processing + deep learning (SVM vs. AlexNet) for subway tunnel crack detection 96.70

5 Chen et al. (2023) Transfer learning for building façade crack detection 94.00

6 Zhang et al. (2023a)
MobileNetV3-BLS: lightweight broad learning with inverted residual structure and enhancement 

nodes
Not specified

8 Proposed Swin+EFRP+Population based Optimization 98
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5.1 Future work

While the proposed model has shown strong performance, several 
avenues for future research can be explored. First, improving the model’s 
efficiency for real-time crack detection in large-scale datasets would 
be beneficial, potentially through model pruning, quantization, or more 
advanced techniques like knowledge distillation. Furthermore, exploring 
multi-modal crack detection by incorporating data from different 
sensors (e.g., thermal, acoustic) could improve the model’s robustness 
under diverse environmental conditions. Future work could also focus 
on extending the framework to 3D crack detection, enabling the model 
to handle complex, three-dimensional structural scans.
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