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When maliciously tampered images are disseminated in the media, they
can potentially cause adverse effects and even jeopardize national security.
Therefore, it is necessary to investigate effective methods to detect tampered
images. As a challenging task, the localization of image splicing tampering
investigates whether an image contains tampered regions spliced from another
image. Given the lack of global information interactions in existing methods, a
multi-scale, deeply supervised image splicing tampering localization network is
proposed. The proposed network is based on an encoder–decoder architecture,
where the decoder uses different levels of feature maps to supervise the locations
of splicing, enabling pixel-wise prediction of tampered regions. Moreover, a
multi-scale feature extraction module is utilized between the encoder and
decoder, which expands the global view of the network, thereby enabling
more effective differentiation between tampered and non-tampered regions.
F1 scores of 0.891 and 0.864 were achieved using the CASIA and COLUMB
datasets, respectively; and the proposed model was able to accurately locate
tampered regions.

KEYWORDS

image forensics, image splicing, multi-scale, encoder–decoder, deep learning

1 Introduction

Digital media has become the main form of information exchange. The expanding
social media networks and various fields such as military, legal, political, medical,
education, and business all depend on digital media to accomplish various crucial tasks.
Compared to text, images provide a more intuitive way to convey information. In the
past, many people had great confidence in the information conveyed by images. However,
this credibility is constantly decreasing in the current time. A large amount of image
data on the Internet has been tampered with and disseminated through various digital
media platforms, as people can easily learn to use powerful image editing software such as
Photoshop, CorelDraw, and GIMP to edit or manipulate images (Farid, 2009; Carvalho
et al., 2013; Liao et al., 2020). Among the most common types of image tampering is
image splicing tampering, which combines different parts of two or more images to
create a new one. Image splicing tampering has the potential to be used for a variety of
purposes, such as creating fake news and publicity, leading to serious security concerns.
Therefore, the detection of image splicing has become increasingly important in the field
of digital forensics, and image splicing detection and localization have attracted widespread
attention from researchers in recent years.
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The detection of image splicing (He et al., 2012; Zhao et al.,
2015; El-Alfy and Qureshi, 2015) aims to determine whether
an image has been spliced, which is a problem of image-level
classification. However, the spliced regions of the image cannot be
located by them. The spliced regions of the image often convey
more splicing information and are more in line with practical
needs, but the task of locating these regions poses a greater
challenge. The task of image splicing tampering location is more
challenging and important than splicing detection.

Traditional methods for locating tampered regions in image
splicing mainly rely on comparing features between different
regions of the image. There are three types of traditional methods
based on manual design features for image splicing tampering
localization: those based on inconsistent blur types, those based on
inconsistent noise levels, and those based on inconsistent lighting
conditions. In methods based on the inconsistency of blur types,
Kakar, Sudha, and Ser proposed a method that uses differences in
motion blur to locate the image splicing region (Kakar et al., 2011).
Image tampering causes the motion blur in the tampered region
to be inconsistent with the blur in the rest of the image. Using
this property, the regions of image tampering can be located. A
framework for detecting and locating image splicing was proposed
by Bahrami et al. (2013), based on inconsistencies between blur and
depth information in the image. The splicing region is identified by
classifying image blocks with different levels of blur. Image splicing
tampering can also cause differences in noise distribution. Some
researchers have conducted studies on image splicing detection
and localization algorithms based on the inconsistency of noise
in tampered images. The approach of Mahdian and Saic (2009)
divides the image into non-overlapping image blocks and uses a
median-based method to evaluate the noise standard deviation
of each block to delineate the tampered regions on the image.
Typically, shadow and lighting inconsistencies exist in images used
for splicing manipulation due to different shooting angles. Based
on this property, a scheme for image splicing tampering detection
based on shadow brightness inconsistencies is proposed (Liu et al.,
2011). It extracts shadow boundaries and half-shadow regions in
the image and determines the tampered regions by evaluating
the consistency of the shadow mask values of the shadows in
the image. However, the method fails when the shadows of the
tampered region are consistent with the shadows of the source
region. This shows that these traditional methods for tampering
detection and localization are often only applicable to images
under some specific conditions, and the generality of the algorithm
is poor.

Given the successful application of deep learning techniques
in various computer vision tasks, research has begun to explore
leveraging the adaptive nature of deep learning models to
automatically extract splicing tampering features from images (Su
et al., 2025; Jiang et al., 2025; Zhang et al., 2024; Hou et al.,
2024). Inspired by the use of full convolutional networks (Long
et al., 2015) for semantic segmentation tasks, a multi-task network
framework (Salloum et al., 2018) based on edge enhancement
is proposed for achieving pixel-level image splicing tampering
localization. The method extracts the tampering features of the
image using VGG-16 and subsequently uses full convolution to
form two decoding branches. One decoding branch predicts the

image tampered regions, and the other one is used to predict the
edges of the tampered region. In Xiao et al.’s study (Xiao et al.,
2020), a cascade-based convolutional neural network (CNN) was
proposed for image splicing tampering localization, which consists
of two main parts. One part is a CNN from coarse to fine, and
this part first roughly learns the difference between tampered and
untampered regions in the image, with a particular focus on the
edges. The other part is an adaptive clustering algorithm, which
is used to get the final results. The approach by Bi et al. (2019)
is also based on the idea of image segmentation to design a novel
network with encoding modules consisting of residual propagation
and residual feedback. The network is able to effectively distinguish
between untampered and tampered regions. The approach by Wei
et al. (2021) devises a clever strategy to control the size of the local
perceptual field of each building block, based on the work of Bi
et al. (2019) and uses BAM attention (Park et al., 2018). However,
its ability to capture global contextual information in the image is
still limited. Most of the existing splicing tampering localization
methods can only provide rough locations of tampered regions
or detect localization unsatisfactorily, and the connection between
global features is not considered.

To demonstrate the architectural innovations of the proposed
model, a direct comparison was made with representative two-
branch encoder–decoder frameworks, such as those developed
by Zhu et al. (2022) and Luo et al. (2024), from which the
proposed architecture distinguishes itself in three fundamental
aspects. Firstly, unlike prior methods that assign separate branches
to different tasks (e.g., region and edge prediction), the proposed
model employs a deep supervision strategy where all decoder
side outputs contribute to the single primary task of predicting
tampered region masks. These multi-scale outputs are subsequently
fused to generate a more refined and accurate result, thereby
concentrating the network’s full capacity on a unified objective.
Secondly, the model is built upon the U2-Net backbone, a
nested U-structure where each stage (Residual U-block (RSU)
module) is itself a U-Net-like architecture. This design facilitates
significantly richer multi-scale feature extraction and a more
powerful capture of intra- and inter-scale contextual information
than standard VGG-based encoders. Finally, to overcome the
critical limitation of insufficient global context modeling in
purely convolutional approaches, this study integrates a multi-
scale Transformer module between the encoder and decoder. This
module utilizes self-attention mechanisms to explicitly model long-
range dependencies across the entire feature map, providing a
comprehensive global perspective that is otherwise difficult to
achieve. In this study, a multi-scale, deeply supervised image
splicing tampering localization network is proposed to accurately
locate the tampered region of the spliced image at the pixel level.
The proposed network employs a fully convolutional encoder–
decoder architecture. In the decoder, a multi-resolution feature
map is utilized from low to high resolution to perform supervision
for the localization of the tampered region, which enhances the
use of shallow information and enables pixel-wise prediction of
the tampered region. Moreover, a multi-scale feature extraction
module is utilized between the encoder and decoder to extend the
network’s global view and more effectively discover the features
of the tampered region, thereby detection accuracy is improved.
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Experiments are performed on two standard tampered datasets,
and ultimately, it is evident that the proposed model achieves good
localization performance.

In summary, the main contributions are as follows: (1) a multi-
scale, deeply supervised image splicing localization network is
proposed, which can effectively locate spliced regions in the image.
(2) A multi-scale feature extraction module is introduced to better
capture the features of spliced regions. (3) The effectiveness of the
proposed model is verified on the CASIA (Dong et al., 2013) and
COLUMB (Paszke et al., 2017) datasets, where the F1 score reached
0.891 and 0.864, respectively.

The rest of the article is organized as follows: Section 2 briefly
introduces some prerequisite knowledge. Section 3 provides a
detailed description of the model structure. Section 4 reports the
experimental results and experimental analysis. Finally, Section 5
presents the conclusion.

2 Preliminaries

Image tampering localization can be considered a complex
image segmentation task. Therefore, it is possible to apply
convolutional neural network-based image segmentation methods
for the localization of tampered regions in images. U-Net was
initially proposed for medical image segmentation (Ronneberger
et al., 2015). Due to its excellent performance, U-Net has become
not only a popular network in the field of medical image
segmentation but also has led to the emergence of various networks
based on U-Net. These networks are widely used in different
fields, such as satellite image segmentation (Soni et al., 2020) and
industrial defect detection (Cui et al., 2023). Similarly, U-Net-
based improved networks have also been used for image tampering
localization (Shi et al., 2020; Bi et al., 2019). Specifically, U-
Net is an end-to-end network designed for image segmentation
tasks, built upon the foundation of a fully convolutional neural
network. Adopting the classic encoder–decoder architecture, U-
Net is symmetrical from left to right, comprising three key
components: The contracting path (encoder) on the left, the
expanding path (decoder) on the right, and the skip connection.
Figure 1 illustrates a concrete example of such a U-Net-like
encoder–decoder framework applied to the task of image splicing
localization. In this architecture, the initial input image passes
through a combined features module, which often includes parallel
convolutional layers such as a standard convolution and spatial
rich model (SRM) to extract rich low-level features. The encoder
path, composed of a series of ringed residual units and max-pooling
layers, is responsible for progressive downsampling to capture deep
semantic information. Subsequently, the decoder path performs
upsampling via deconvolution and fuses shallow features from
the corresponding encoder levels using skip connections, thereby
precisely recovering details and spatial resolution. A semantic
enhancement module bridges the encoder and decoder paths.
Finally, an output convolutional layer generates the pixel-level
localization mask. The contracting path consists of CNNs for
extracting the features of the input. In addition, 2 × 2 max-
pooling layers are used in the contracting path to downsample
the feature maps, and the number of feature channels is doubled

after each downsampling. The expanding path upsamples the
high-dimensional feature maps through transpose convolution,
restores feature map resolution, and reduces the count of feature
map channels by half. In the end, the feature map is mapped
by a 1 × 1 convolution to yield the final segmentation result,
and the segmentation mask is output. Although there are some
discriminative features that can be extracted from the dataset using
U-Net, they are more likely to be less discriminative and not
sufficient to localize the tampered region.

Numerous CNNs have been successfully used for various
fields, such as image classification (Krizhevsky et al., 2012), object
detection (Ren et al., 2017), and segmentation (Ronneberger
et al., 2015). Although the CNN is advantageous in local feature
extraction, there are difficulties in global feature extraction. The
Transformer (Vaswani et al., 2017), due to its powerful ability
to model long-term contextual information in natural language
processing tasks, has made a deep impression on people. In
recent years, some researchers have introduced it into computer
vision tasks. The approach by Dosovitskiy et al. (2020) applies
the standard Transformer to images. Specifically, the image is first
segmented into small blocks and then fed into the Transformer
through positional encoding. The global information of the input
image is modeled in the Transformer using self-attention and a
multi-layer perceptron, with excellent results in image recognition
tasks. In the approach by Carion et al. (2020), the Transformer is
applied for object detection. The CNN is first used to extract the
feature maps, then the extracted feature maps are position encoded
and fed to the encoder and decoder consisting of the Transformer.
Finally, the object is obtained using prediction heads. Given that
image splicing tampering involves a broad range of contextual
information, a more globally aware approach is needed.

A noteworthy trend in image tampering localization research is
the adoption of multi-stream or multi-modal network architecture,
which aims to extract complementary tampering features from
different information dimensions. A recent model is the two-
branch network proposed by Luo et al. (2024). The core idea
of their model is to process two different information streams
from the same image in parallel: one branch (the RGB stream)
learns content and tampering features directly from the image’s
spatial domain, while the other branch (the frequency stream)
uses the Frequency-Aware Decomposition (FAD) module to
specifically extract frequency-domain features that can reveal subtle
forgery artifacts. Finally, the feature maps from both branches
are effectively integrated using the Convolutional Block Attention
Module (CBAM) to enhance focus on the tampered regions. The
rationale behind this approach is that information from the spatial
and frequency domains can complement each other to achieve
more robust tampering localization.

The single-backbone, multi-scale framework proposed in this
study differs substantially from the methodologies described above.
This method does not focus on fusing inputs from different
modalities. Instead, it aims to extract deeper and broader contextual
features from a single RGB information stream by leveraging
the deeply nested U2-Net architecture and an innovative multi-
scale Transformer module. It improves localization accuracy
by enhancing the model’s global perspective and the richness
of its feature representations, whereas the model proposed by
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FIGURE 1

A flowchart of the U-Net-like encoder–decoder architecture for image splicing localization.

Luo et al. (2024) represents another effective technical path
that enhances robustness through the fusion of heterogeneous
information sources.

3 Proposed model

This model introduces a hierarchical, two-level multi-scale
feature fusion strategy. This strategy creates a more comprehensive
understanding of image content than existing single-level
approaches. The proposed model has two distinct levels. At the
local level, the model uses a U²-Net backbone. This nested U-Net
structure has Residual U-blocks (RSU). They are designed to
capture rich, multi-scale contextual information within each
stage of the encoder and decoder. This provides a detailed
feature representation before any global analysis. At the global
level, the proposed model introduces a multi-scale Transformer
module between the encoder and decoder. This module uses a
self-attention mechanism across various patch scales (e.g., 16x16,
8x8, 4x4, and 2x2) to capture long-range dependencies. The main

innovation is the synergy between these two levels. The U2-Net
generates a detailed, locally-aware feature set. The Transformer
then contextualizes these features globally. This holistic approach
ensures effective modeling of both fine-grained tampering artifacts
and large-scale semantic inconsistencies.

The hierarchical architecture offers distinct advantages over
state-of-the-art models. While approaches such as MCNL-Net
integrate CNNs with attention mechanisms (e.g., BAM), and
Mobile-Pspnet prioritizes lightweight design, the proposed model
fundamentally enhances global contextual modeling through its
two-level multi-scale strategy. This design synergistically captures
both core tampered regions and subtle boundary artifacts, enabling
comprehensive localization of spliced content. Empirical validation
of these advantages (including comparative F1 scores and recall
rates against benchmarks) is systematically presented in Section
4.3.2 (Quantitative Results) and visually corroborated using
heatmap analyses in Section 4.3.3 (Qualitative Results).

This model is inspired by M2TR’s multi-scale attention module.
However, the model innovatively integrates this concept into a
nested, high-resolution segmentation backbone such as U2-Net.
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The overall framework of the network.

This creates specialized architecture for image splicing localization.
Unlike M2TR, which is a general deepfake detection framework,
the proposed model is tailored to address the unique challenges of
image splicing localization.

As shown in Figure 2, a network is proposed with multi-
scale and deep supervision characteristics, which can locate the
tampered region in spliced tampered images. Inspired by the
outstanding performance of U2-Net in salient object detection
(Qin et al., 2020), in the context of image tampering detection,
the difference between the tampered and untampered regions in
an image can be regarded as a saliency task, and the tampered
region in the image can be segmented. Therefore, theoretically,
applying U2-Net to image tampering detection is feasible. The
fully convolutional network structure of U2-Net also enables the

model to obtain good segmentation results without complicated
post-processing. Moreover, a multi-scale feature extraction module
is employed during the transition from network encoding to
decoding. This module operates on feature maps of different
spatial sizes to detect local inconsistencies in tampered regions
of various size levels. Afterward, the decoder learns from the
feature maps at low resolution and uses deep supervision during
training to enable the network to be more fully trained. Finally,
the network can predict the tampered region on a per-pixel basis.
Due to its structure, the network can locate spliced regions in an
image from a global perspective. Therefore, it can achieve good
results in detecting image splicing in most cases. In the following
sections, the construction of the proposed model is described
in detail.
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3.1 U2-Net-based backbone network
architecture

According to the analysis, it was found that the U2-Net-based
network is suitable for achieving the localization of tampered
regions in image splicing at the pixel level. U2-Net is a network
structure proposed on the basis of U-Net (Ronneberger et al., 2015),
which is also an encoding–decoding network structure. RSU is used
for network extraction features. Each RSU is constructed based
on the U-Net network. It can be said that U2-Net is a nested
network based on U-Net, where the residual block and the overall
network are shaped like a U. Therefore, the network structure is
a nested U-Net, which strengthens the learning capability of the
model and increases the learning of multiple scales to obtain good
localization results.

The RSU module is used as the main encoding module of
the network. As shown in Figure 3, RSU_L is composed of an
input layer that gathers local features and conversion channels, a
U-shaped network structure that extracts and encodes contextual
information, and an output layer that combines the input layer
and middle layer. Similar to U-Net, the left half of the structure
is the encoding stage, which extracts features using the 3 × 3
convolution and increases the receptive field by downsampling.
The right half is the decoding structure, which upsamples features
to a high-resolution feature map and cascades the feature map at
the encoding and decoding using a skip connection. The value
of L is typically set according to the size of the feature map.
The larger the size of the feature map, the larger the L used to
obtain more information. Therefore, in the encoding stage, the
value of L generally decreases from the upper layer to the lower
layer. In Figure 3, when L is seven, the input channel number is
Cin, the middle channel number is M, and the output channel
number is Cout . The feature map is first transformed by the 3 × 3
convolution for channel number transformation, then it enters the
middle layer of the entire structure. The 3 × 3 convolution and 1/2
downsampling are used at the left stage of the middle layer. Since
L = 7, the left stage of the middle layer uses seven layers of cascaded
convolution with downsampling at each layer. The seventh layer
uses dilated convolution. Then, the feature map is sent to the right
side of the structure. The feature maps of each layer on the right side
and the corresponding layer on the left side are superimposed by
channels, and the 3×3 convolution and upsampling are performed.
Finally, the output of the middle layer and the input of the middle
layer are added to obtain the output of an RSU. This is the workflow
of the RSU.

The backbone network based on U2-Net is mainly composed of
the following parts: The five-layer encoder, the four-layer decoder,
and the binary map for tampered region localization obtained
through multi-level supervision. As shown in Figure 2, the network
uses RSU_7, RSU_6, RSU_5, RSU_4, and RSU_4F for the encoding
stage, with each layer connected through the 2 × 2 max-pooling
layer. Therefore, the size of each layer’s feature map is reduced by
half (except for the last layer of the encoder, which does not use
pooling). Specifically, RSU_7 has an input channel of 3, a middle
channel of 32, and an output channel of 64. RSU_6 has an input
channel of 64, a middle channel of 32, and an output channel
of 128. RSU_5 has an input channel of 128, a middle channel of

32, and an output channel of 256. The last two RSU_4 modules
(RSU_4 and RSU_4F) have input channels of 256 and 512, middle
channels of 128 and 256, and output channels of 512, respectively.
The 16 × 16 × 512 feature maps are obtained in the encoding
stage. For the upsample process on the right side of the network,
each stage uses an RSU that corresponds to the structure on the left
encoding side. However, since the output of the decoder’s RSU is
concatenated with the corresponding feature map from the left side,
the input channel, middle channel, and output channel settings of
the RSU are different from those on the right side. Specifically, the
input channel of RSU_4 in the decoder is 1,024, the middle channel
is 128, and the output channel is 256. RSU_5 has an input channel of
512, a middle channel of 64, and an output channel of 128. RSU_6
has an input channel of 256, a middle channel of 32, and an output
channel of 64. RSU_7 has an input channel of 128, a middle channel
of 16, and an output channel of 64.

In this network, deep supervision refers to a training
mechanism where multiple intermediate feature maps of the
decoder are supervised via loss functions. As shown in Figure 2,
the feature maps output by each RSU in the decoder (e.g., side
outputs Side1–Side4) are directly compared to the ground-truth
mask to calculate auxiliary losses, which enhance gradient flow
and improve shallow feature extraction. On the other hand, side
supervision is the supervision applied to individual side paths
within the decoder. Each side path corresponds to a specific
resolution level (e.g., Side1 for high-resolution features), and its
loss lnside is weighted in the total loss (Equation 1). This multi-
level approach enables pixel-level prediction of tampered regions.
The overall framework, as depicted in Figure 1, presents the deep
supervision path (decoder branch) and side supervision (specific
path outputs). Nested supervision is a training mechanism that
applies separate auxiliary loss functions to each side path, forming
a multi-scale constraint system. This “nested” design ensures that
supervisory signals propagate only within specific paths, avoiding
inter-path interference.

Each side path (Side 1–Side 4 in Figure 2) corresponds to RSU
(Figure 3) in the decoder. The RSU’s U-shaped architecture enables
multi-scale feature extraction within a single path. First, the input
layer performs feature transformation through a convolutional
layer (filter size 3 × 3), projecting the input feature maps from Cin
to Cout. Then, the intermediate layer consists of downsampling
(with L = 7 for Side 1), followed by dilated convolutions and
upsampling. Finally, the output layer fuses shallow and deep
features to localize tampered regions. This nested design allows
each side path to impose supervision at its native resolution.

To thoroughly clarify the combination mechanism of side and
fused outputs in the loss function, it is essential to understand
its parallel and aggregative nature. The total loss function is not
a single, internally intertwined complex calculation but rather a
simple summation of multiple independently calculated loss values.
For each training sample processed by the network, the total loss
is effectively the sum of five loss components computed, which is
defined as follows:

L =
N∑

n=1
wn

sidelnside + wfuselfuse.
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FIGURE 3

Structure of the residual U-block, L is the layer parameter.

For this specific model, the formula fully expands into a direct
sum of five components, which can be described as follows:

L = (w1
side·l1side)+(w2

side·l2side)+(w3
side·l3side)+(w4

side·l4side)+(wfuse· lfuse).

Each of these five loss components is independently calculated
using the standard Binary Cross-Entropy (BCE) loss function. For
any given prediction map (whether a side output or fused output),
its BCE loss is calculated as follows:

l = −
(H,W)∑

(r,c)

[yGlnyS + (1 − yG)(1 − yS)].

This formula measures the discrepancy between the predicted
probability and the ground truth on a pixel-by-pixel basis. Here, yG
is the value of the ground-truth mask at pixel (r, c) (1 for tampered,
0 for pristine), while yS is the network’s predicted probability that
the pixel belongs to a tampered region. This process means the
network generates five prediction maps, and each of these five maps
is compared against the same single ground-truth map, resulting in
five independent BCE loss values.

One of the most strategic decisions in this design is setting
all loss term weights (wn

side and wfuse) to 1. This embodies an
“equally important” strategy, sending a clear signal to the network
that making an accurate prediction at every scale is just as
important as making the final, precise prediction. This training
strategy for an “honest network” prevents the model from “taking
shortcuts” during the learning process. It forces the network to

avoid being “lazy” and deferring all difficult decisions to the final
high-resolution stages.

During backpropagation, because the total loss is a simple sum
of the five components, the total gradient is correspondingly a
simple sum of the five component gradients:

∇L = ∇l1side +∇l2side +∇l3side +∇l4side + ∇ lfuse.

This process is analogous to having five “teachers” instructing
the network simultaneously: one “general teacher” (lfuse) evaluating
the final comprehensive performance, while four “specialist
teachers” (lside) evaluating performance at different scales. This
multi-pronged gradient flow provides short and strong update
paths for the deep layers of the network (like the early stages
of the encoder), directly and effectively addressing the vanishing
gradient problem and compelling the network to learn a more
comprehensive and robust feature hierarchy.

3.2 Multi-scale feature extraction

In this model, to further detect tampered regions of different
sizes at multiple scales, the multi-scale Transformer is introduced
into the network, as shown in Figure 4. It is built based on a
Transformer that can be more sensitive to different scales of regions
on the feature map and has better global properties than CNNs
(Wang et al., 2022). Typically, CNNs suffer from limited receptive
fields, and the attention can only be focused on a portion of the
region. Therefore, it is often necessary to construct a network
by stacking multiple layers. However, the Transformer (Vaswani
et al., 2017; Dosovitskiy et al., 2020) allows the modeling of global
information more efficiently due to its self-attention mechanism
and enhances the network’s representation by mapping the feature
map to multiple spaces.

In the proposed model, the last layer of the encoding stage is
equipped with the multi-scale Transformer to extract multi-scale
features. As discussed in the previous section, the output feature
map size of the encoding stage is 16 × 16 × 512, which serves as
the input to this module. To learn at multiple scales, the feature
map is divided into different-sized patches, and different heads of
self-attention are calculated. Specifically, it is evenly split into four
feature maps along the channel, and four different scales are set:
16 × 16, 8 × 8, 4 × 4, and 2 × 2. The feature map is sampled to
obtain different patches at these four scales: 1 × 128 feature maps
are obtained using 16 × 16 sampling, 4 × 128 feature maps are
obtained using 8 × 8 sampling, 16 × 128 feature maps are obtained
using 4×4 sampling, and 64×128 feature maps are obtained using
2 × 2 sampling. The feature map sequence obtained at each scale
is adjusted to a one-dimensional vector sequence, and the feature
vector q is obtained through linear mapping and concatenation
with positional embedding vectors. Similar operations are repeated
to obtain feature vectors k and v. At different scales, self-attention
is calculated by using feature vectors q, k, and v, respectively.
Finally, the outputs at each scale are reshaped into the original
spatial resolution and concatenated together, then sent to the 3 × 3
convolution to obtain the features of the multi-scale Transformer.
The use of multi-scale feature encoding improves the localization
accuracy of the network, expands the global field of view, and
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FIGURE 4

The structure of the multi-scale feature extraction module. (a) A diagram of feature extraction using different scales of the header, (b) the specific
flow of feature extraction using the 4 × 4 scale as an example.

avoids stacking too many layers, which would make the network
parameters too numerous.

4 Experimental results

This section presents the details of the dataset and
experimental setup and provides the experimental results
and performance analysis.

4.1 Implementation details and evaluation
metrics

To train the proposed model, the stochastic gradient descent
method was used for optimizing the network, with the learning rate
of 0.0005, a batch size of 10, a momentum of 0.9, and a weight
decay of 0.0005, which are shown in Table 1. Hyperparameters.
The parameters of all layers were initialized using PyTorch’s default
parameter initialization (Paszke et al., 2017), that is, with normally
distributed random numbers. All experiments in the section were
conducted on a computer equipped with an NVIDIA RTX 3090
GPU. The evaluation metrics for the network in image splicing
tampering localization were precision (P), recall (R), and F1 score.
The formulas for calculating these metrics are as follows:

P = TP
TP + FP

,

R = TP
TP + FN

,

F1 = 2 × P × R
P + R

,

where the pixels of the image are classified as tampered or
untampered, the number of tampered pixels correctly detected by
the model is TP, the number of untampered pixels incorrectly
detected is FN, and the number of pixels incorrectly detected as
tampered is FP. Therefore, P is the proportion of the number of
tampered pixels correctly detected to the number of pixels detected
as tampered, and R is the proportion of the number of tampered

TABLE 1 Hyperparameters.

Learning
rate

Batch size Momentum Weight
decay

0.0005 10 0.9 0.0005

pixels correctly detected to the number of tampered pixels in the
image. The F1 score is a metric that measures the accuracy of the
model, considering both precision and recall of the model. It is the
weighted average of model precision and recall.

4.2 Dataset

Two image tampering datasets, the CASIA (Dong et al.,
2013) and COLUMB (Paszke et al., 2017) datasets, were used for
evaluation in the experiment. The CASIA dataset includes the
CASIAv1 and CASIAv2 datasets and mainly consists of two types of
tampering: splicing tampering and copy-move tampering, with the
CASIAv2 dataset containing more samples. Therefore, the CASIA
dataset in the experiment refers to the CASIAv2 dataset. Splicing
tampering images from the CASIA dataset were selected for the
experiment, where most of the images were post-processed, such
as by compression. In the CASIA dataset, 100 tampered images
were randomly selected as the test set. The COLUMB dataset is
also a dataset consisting of splicing images. As the dataset only
provides the label mask in RGB mode, it was properly processed
to obtain a binarized label. Likewise, 44 images were randomly
selected from the COLUMB dataset as the test set. The tampered
images in the datasets without any data augmentation were called
source images and were used for testing. The tampered images with
data augmentation using horizontal and vertical flips were used
for training, and the image size was resized to 256 × 256. The
distributions of the two datasets for the experiments are shown in
Table 2.

To ensure a fair and unbiased evaluation of the proposed
model’s components, all internal ablation experiments (as detailed
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TABLE 2 Dataset distribution for the training and testing sets.

Dataset Case CASIA COLUMB

Training Set Augmented splicing 2,860 500

Source image 715 125

Testing Set Source image 100 44

TABLE 3 Comparison of precision, recall, and F1 score on the CASIA
dataset.

Methods Precision Recall F1

Base 0.775 0.871 0.820

Base-Trans 0.820 0.903 0.860

This model 0.842 0.946 0.891

The bold values denote the best-performing results.

in Section 4.3.1) were conducted using the exact same training
and testing splits described above. For comparisons against
other state-of-the-art methods (as detailed in Section 4.3.2), the
reported performance metrics for competing models are cited
from their respective original publications. As such, the data
splits used in those studies may differ from the splits used in
this study. This comparison is intended to position the proposed
model’s performance within the context of existing literature and
demonstrate its competitive capabilities.

4.3 Experimental results

Details regarding the experiments and performance analysis
of the network are provided. The compared methods included
traditional methods based on manual design features (Mahdian
and Saic, 2009; Ferrara et al., 2012; Ye et al., 2007) and advanced
methods based on deep learning (Xiao et al., 2020; Bi et al., 2019;
Wei et al., 2021; Huh et al., 2018; Zhao and Tian, 2022).

4.3.1 Ablation experiment
To verify the effectiveness of the network constructed based

on U2-Net and the multi-scale feature extraction module, the
effectiveness of the U2-Net-based backbone and multi-scale feature
extraction were tested using the CASIA dataset, respectively. The
“Base” in Table 3 indicates that only the U2-Net-based network
was used for training. The “Base-Trans” indicates the use of U2-
Net and the Transformer encoding module for tampering region
localization. As shown in Table 3, the U2-Net with the Transformer
encoding module achieved better results in all three metrics, while
the encoding with multi-scale feature extraction further improved
the representational ability of the network, achieving an F1 score
3.1% higher than Base-Trans. It is thus evident that combining
U2-Net with the multi-scale feature extraction module is effective.

4.3.2 Comparison with other existing methods
To evaluate the tampering localization capability of the

network, it was compared with other methods. Table 4 shows the

TABLE 4 Performance comparison of the proposed model with other
methods on the CASIA dataset.

Methods Precision Recall F1

CFA (Ferrara et al., 2012) 0.057 0.846 0.108

DCT (Ye et al., 2007) 0.349 0.871 0.498

NOI (Mahdian and Saic, 2009) 0.079 0.088 0.083

C2R-Net (Xiao et al., 2020) 0.417 0.424 0.420

FCN (Long et al., 2015) 0.509 0.173 0.259

MCNL-Net (Wei et al., 2021) 0.909 0.828 0.866

RRU-Net (Bi et al., 2019) 0.848 0.834 0.841

Mobile-Pspnet (Zhao and Tian, 2022) 0.910 0.801 0.832

This work 0.842 0.946 0.891

The bold values denote the best-performing results.

comparison of the proposed model with other methods on the
CASIA dataset. The F1 score of the proposed model reached 0.891.
Although the proposed model was lower than Mobile-Pspnet (Zhao
and Tian, 2022) in terms of precision, the recall of the model
was 14.5% higher than that of Mobile-Pspnet. In addition, on the
CASIA dataset, the F1 score of the proposed model outperformed
other methods. It was 2.5% higher than MCNL-Net (Wei et al.,
2021), which had the best F1 score performance among these
methods. Although MCNL-Net utilizes residual propagation and
feedback to enhance the learning capability of the CNN and uses
the BAM attention mechanism (Park et al., 2018), its ability to
capture global contextual information in images is still limited. The
proposed model uses multi-scale feature extraction, which further
extends the global views of the network and contributes to better
learning of the features by the network.

Table 5 shows the comparison of the proposed model with
other methods on the COLUMB dataset, and the proposed
model was slightly lower than Mobile-Pspnet in terms of the
F1 score. Considering that the splicing tampered images in the
COLUMB dataset originate from different cameras, both captured
and synthesized, the noise caused by the different cameras could
potentially affect the detection capability of the proposed model.
However, the proposed model’s F1 score was still 9.2% higher than
that of MCNL-Net. As shown in Tables 4, 5, the deep learning-
based approach for image tampering detection outperformed the
traditional detection methods. The proposed model achieved the
best results on the CASIA dataset and outperformed most of the
methods on the COLUMB dataset among the deep learning-based
methods.

A closer examination of Tables 4, 5 reveals an important
performance nuance: The proposed model achieved the state-
of-the-art result on the CASIA dataset but was outperformed
by models such as RRU-Net and Mobile-Pspnet on the smaller
COLUMB dataset. This discrepancy is unlikely due to simple
overfitting but rather stems from an interplay between this
model’s architectural complexity and the distinct characteristics of
each dataset.

A primary factor to consider is the substantial discrepancy in
the scale of the employed datasets. The CASIA training set was
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more than five times larger than the COLUMB set (2,860 vs. 500
augmented images). The proposed network, featuring a deep U2-
Net backbone and a multi-scale Transformer, possesses a high
learning capacity. This complexity is an advantage in large datasets
such as the CASIA dataset, as it allows the model to learn highly

TABLE 5 Performance comparison of the proposed model with other
methods on the COLUMB dataset.

Methods Precision Recall F1

CFA (Ferrara et al., 2012) 0.574 0.469 0.517

DCT (Ye et al., 2007) 0.365 0.633 0.463

NOI (Mahdian and Saic, 2009) 0.321 0.015 0.028

DF-Net (Huh et al., 2018) 0.528 0.468 0.496

C2R-Net (Xiao et al., 2020) 0.576 0.097 0.166

FCN (Long et al., 2015) 0.859 0.443 0.584

MCNL-Net (Wei et al., 2021) 0.839 0.715 0.772

RRU-Net (Bi et al., 2019) 0.961 0.873 0.915

Mobile-Pspnet (Zhao and Tian, 2022) 0.964 0.852 0.881

This work 0.764 0.994 0.864

The bold values denote the best-performing results.

generalizable features of splicing tampering. It is worth noting that
different types of models may exhibit their respective strengths
depending on the scale of the dataset. The model was designed
with complex architecture to learn intricate feature patterns from
large-scale, diverse data. Consequently, when applied to a scenario
with relatively limited data, such as the COLUMB dataset, its
performance may not be fully optimized. Concurrently, some
models whose inductive biases are more aligned with small-sample
learning tasks can achieve a more robust fit on a limited data
distribution by virtue of their structural advantages.

Therefore, the performance variation reflects a combined effect:
the proposed model excels on large-scale datasets where its high
capacity is an asset but shows relative sensitivity to the specific type
of artifact heterogeneity found in the smaller COLUMB dataset.

4.3.3 Qualitative results
The qualitative results for tampering localization by the

proposed model are presented in Figure 5, which primarily shows
the comparison of the baseline model (Base) and the proposed
model. The figure’s columns, respectively, display the tampered
image, the ground-truth mask, the prediction from the base model,
and the prediction from the proposed model. Furthermore, the
heat map column, along with its corresponding color bar, visualizes

FIGURE 5

Results of image tampering region localization (reproduced from the CASIA dataset, Dong et al., 2013).
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the model’s prediction probability, where the color transition from
blue to red indicates an increasing probability from 0.0 to 1.0. A
clear comparison revealed the superiority of the proposed model,
as it was more effective at detecting the edges and ensuring the
completeness of the spliced regions, which is particularly evident
in the second and third rows. In contrast, the base model suffered
from significant false negatives, failing to identify large portions
of the actual tampered regions in all four examples, resulting
in large black holes and missing sections. This demonstrates the
inadequacy of its network’s capability to form a complete and global
feature representation. The performance of the proposed model
was substantially better, a result attributed to its utilization of a
multi-scale feature extraction module that enhances the network’s
global perspective and effectively strengthens the integrity of its
feature representations.

4.3.4 Robustness
To evaluate the robustness of the proposed model, it was

tested on the test sets of the CASIA and COLUMB datasets, where
the post-processing operations used for testing included JPEG
compression and the addition of Gaussian white noise. Specifically,
JPEG quality factors of 90, 80, 70, 60, and 50 were used for
compression on the test sets of the two datasets, respectively,
followed by splicing tampering localization using the model.
Similarly, Gaussian white noise with variances of 0.02, 0.04, 0.06,
0.08, and 0.1 was processed on the test sets of the two datasets,
respectively, and splicing tampering localization was performed
using the model. The F1 scores of the model in response to JPEG
compression and Gaussian white noise are shown in Figures 6, 7.
It can be seen that the overall change in the F1 scores of the model
was not significant, despite the use of compression with different
quality factors on the datasets. On the other hand, the F1 scores
obtained by the model for different intensities of noise detection
showed a decreasing trend across both datasets. Therefore, the
model demonstrated good robustness against JPEG compression
attacks. However, it was somewhat affected by high-intensity
noise interference.

Furthermore, the datasets diverge significantly in terms of the
specific types of artifacts they contain. The CASIA dataset primarily
features images with post-processing artifacts such as JPEG
compression. The model’s strength—its ability to fuse local and
global multi-scale information—allows it to look beyond uniform
compression artifacts to identify deeper structural and semantic
inconsistencies. In contrast, the COLUMB dataset is characterized
by noise heterogeneity arising from the use of different cameras
for synthesis. As speculated, the model’s focus on structural context
might make it more sensitive to inconsistent, high-frequency noise
patterns, which could disrupt feature extraction. Models such as
RRU-Net or Mobile-Pspnet might be less affected by this specific
type of noise or may be implicitly tuned to different artifact
cues that are more prevalent in the COLUMB dataset, explaining
their strong performance. It is somewhat difficult to identify other
transformative operations such as blurring and scaling, which
fundamentally degrade the forensic clues the model relies on.
Blurring operations, acting as a low-pass filter, would likely pose
a significant challenge by directly removing the high-frequency

FIGURE 6

F1 scores based on the compression of different quality factors.

FIGURE 7

F1 scores based on Gaussian white noise with different variances.

components where tampering artifacts such as sharp splicing
boundaries and noise inconsistencies reside, thereby eliminating
the primary evidence for detection. Similarly, resizing disrupts the
image’s integrity by introducing new, uniform pixel patterns across
the entire canvas via interpolation. This process can obscure or
corrupt the original noise patterns and pixel correlations at the
splice boundary, with downscaling being particularly detrimental
due to the associated information loss that can erase subtle artifacts.

Theoretically, comparing the model’s robustness with that of
other state-of-the-art methods involves assessing the reliance of
different architecture on specific types of artifacts. For instance,
dual-stream networks that heavily leverage frequency-domain
analysis might be more sensitive to JPEG artifacts but could
exhibit different vulnerabilities to noise attacks compared to the
proposed model. In contrast, the core strength of this model
lies in its fusion of U2-Net’s nested multi-scale structure with
the Transformer’s global context modeling. This design enables it
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to perceive not only local high-frequency details but also global
structural and semantic inconsistencies. Therefore, this study posits
that the model may exhibit a relative advantage against attacks that
disrupt local details while preserving some global structures (e.g.,
moderate compression). A comprehensive robustness benchmark
would be invaluable for validating these theoretical advantages and
disadvantages across different architectural designs.

4.3.5 Discussion
To comprehensively evaluate the proposed model,

benchmarking against diverse state-of-the-art methods is essential.
For instance, IFE-Net (Su et al., 2025) is an integrated dual-
stream network that enhances RGB and noise features through
a feedback-enhanced ASPP module and a CBAM attention
module, respectively, while utilizing edge supervision to refine
localization. M2BG-Net (Jiang et al., 2025) introduces a multi-
modality boundary-guided network that jointly optimizes RGB,
high-frequency features, and boundary artifacts through dedicated
modules to improve generalization for image manipulation
localization. MSNP-Net (Zhang et al., 2024) presents a dual-branch
progressive network that uses a multi-scale noise branch to guide
a multi-resolution feature branch and progressively fuses features
to achieve accurate image splicing detection. The adaptive multi-
feature filtration method (Hou et al., 2024) extracts noise artifact
and ELA-weighted features, represents them as a point cloud
for feature filtration, and uses Alpha-shape trend connectivity to
aggregate them for final localization. This method (Qin et al.) is
distinct as it utilizes single-stream RGB input architecture with
a nested U-Net (U2-Net) backbone, unlike the dual-stream (e.g.,
RGB and noise/frequency) designs in IFE-Net (Su et al., 2025),
M2BG-Net (Jiang et al., 2025), and MSNP-Net (Zhang et al., 2024).
Its primary innovation lies in the hierarchical multi-scale feature
fusion strategy, combining the rich local context from nested RSU
blocks with explicit long-range global dependencies modeled by a
multi-scale Transformer module inserted between the encoder and
decoder. This deep learning approach, which also employs a deep
supervision strategy, fundamentally differs from the non-deep
learning, feature-engineering pipeline proposed by Hou et al.
(2024).

The two-branch architecture recently proposed by Luo
et al. (2024) represents a successful alternative strategy. By
simultaneously analyzing an image’s spatial (RGB) and frequency
information and fusing them with an attention mechanism
(CBAM), their model achieves excellent performance on datasets
such as NIST16. This explicit use of frequency-domain clues
might give their model a distinct advantage in detecting
specific high-frequency artifacts introduced by operations such as
JPEG compression.

While the proposed model in this study also achieves
competitive results (F1 score of 0.891 on the CASIA dataset),
its strengths stem from a different source. Through a deeply
supervised U2-Net and a multi-scale Transformer, it achieves
powerful global contextual modeling. This allows the proposed
model to excel at ensuring the completeness of the detected
tampered regions and avoiding large-scale false negatives, a fact
supported by qualitative results (Figure 4). It is important to note

that a direct numerical comparison of F1 scores is not possible due
to differences in dataset partitioning and test set selection between
the two studies (e.g., 100 images from the CASIA dataset were
tested in the experiment, whereas Luo et al., tested on 921 images
from the CASIAv1 dataset). In conclusion, the two approaches
represent two different yet equally valuable technical paths for
tackling the complex problem of image tampering localization: one
focusing on multi-modal information fusion and the other on deep,
multi-scale representation within a single modality.

Significant discrepancies exist between this study and
the compared literature regarding the datasets used, specific
partitioning methods, and performance evaluation metrics. For
example, the comparative studies were evaluated on test sets not
covered in this study, such as NIST16, Coverage, and IMD2020.
In addition, there are differences in metrics, with the M2BG-Net
(Jiang et al., 2025) study employing the Matthews correlation
coefficient (MCC). Given these fundamental differences in training
paradigms, dataset selection, data partitioning, and evaluation
metrics, a direct numerical comparison of performance indicators
could lead to an inequitable assessment.

5 Conclusion

In this study, a multi-scale, deeply supervised network-based
model is proposed for image splicing tamper region localization.
The model employs U2-Net as the backbone network. Deep
supervision is applied to extensively train the network and enhance
feature extraction in the shallow layer of the network. In addition,
the combination with multi-scale feature extraction enables the
model to have multiple perceptual fields, which improves the
model’s ability to capture global information. Experiments were
performed on two public datasets, with a comparison to advanced
image splicing tampering methods. The experimental results
indicated that the proposed model achieved good results and
outperformed most localization methods. Although the model is
relatively better than many other methods in splicing localization,
its generalization ability still needs to be further improved,
especially since its performance is more limited when dealing with
small datasets. The inability of small datasets to cover sufficient
diversity of situations and the fact that the model does not have
enough samples to learn enough important tampering features may
affect the generalization ability of the model.

Subsequent research will focus on several key areas to
build upon the current study. To address the model’s limited
performance on smaller datasets, future research will explore
advanced data augmentation techniques, such as using generative
adversarial networks (GANs) for data extension, and investigate
more effective loss functions to improve localization precision.

Furthermore, a primary focus will be on conducting a more
comprehensive and rigorous robustness evaluation. This should
involve testing the model’s resilience against a wider array of
common transformations not covered in this study, such as image
resizing and blurring, which are known to fundamentally degrade
high-frequency forensic clues. Furthermore, these robustness
tests should be performed in a direct comparative framework,
benchmarking the proposed model against other state-of-the-art
methods under identical attack conditions to provide a more
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thorough and equitable assessment of its capabilities. Finally, future
architectural enhancements will specifically aim to improve the
model’s resilience to high-intensity, unstructured noise, as the
analysis in this study identified this as a significant challenge that
can mask subtle tampering artifacts.
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