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The retinal age gap, defined as the difference between the predicted retinal age
and chronological age, is an emerging biomarker for many eye conditions and
even non-ocular diseases. Machine learning (ML) models are commonly used for
retinal age prediction. However, biases in ML models may lead to unfair predictions
for some demographic groups, potentially exacerbating health disparities. This
retrospective cross-sectional study evaluated demographic biases related to sex
and ethnicity in retinal age prediction models using retinal imaging data (color
fundus photography [CFP], optical coherence tomography [OCT], and combined
CFP + OCT) from 9,668 healthy individuals (mean age 56.8 years; 52% female) in
the UK Biobank. The RETFound foundation model was fine-tuned to predict retinal
age, and bias was assessed by comparing mean absolute error (MAE) and retinal
age gaps across demographic groups. The combined CFP + OCT model achieved
the lowest MAE (3.01 years), outperforming CFP-only (3.40 years) and OCT-only
(4.37 years) models. Significant sex differences were observed only in the CFP
model (p < 0.001), while significant ethnicity differences appeared only in the OCT
model (p < 0.001). No significant sex/ethnicity differences were observed in the
combined model. These results demonstrate that retinal age prediction models
can exhibit biases, and that these biases, along with model accuracy, are influenced
by the choice of imaging modality (CFP, OCT, or combined). Identifying and
addressing sources of bias is essential for safe and reliable clinical implementation.
Our results emphasize the importance of comprehensive bias assessments and
prospective validation, ensuring that advances in machine learning and artificial
intelligence benefit all patient populations.
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Introduction

Retinal imaging has become a valuable, non-invasive data source for studying aging and
ocular and systemic health (Li and Lin, 2024). Due to its shared embryological origins with
the central nervous system, the retina can reflect vascular and neurodegenerative changes
that are otherwise difficult to assess. High-resolution retinal imaging enables the direct
visualization of microvasculature and neural tissue, offering insights into ocular,
cardiovascular, and neurological health. Recent advances in machine learning (ML) have
enabled the estimation of biological retinal age from retinal images, leading to the concept
of the retinal age gap, which denotes the difference between predicted retinal age and true
chronological age (Nielsen et al., 2025a; Nielsen et al., 2025b). Recent studies suggest that
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increased retinal age gaps may indicate elevated risk for stroke,
Parkinson’s disease, and mortality, supporting a shift toward
biological age markers as more accurate indicators of health than
chronological age alone (Grimbly et al., 2024).

Despite these promising results, concerns are growing regarding
the fairness and generalizability of ML tools across diverse
populations (Norori et al., 2021). For example, if an ML model
underestimates retinal age in certain demographic groups, clinicians
may misjudge disease risk, leading to potentially missed diagnoses
and exacerbated health disparities. Previous literature has shown how
biases from imbalanced demographics, spurious correlations, or
mismatches between training and deployment populations can
reduce model reliability (Jacoba et al., 2023). As ML becomes more
common in ophthalmology, understanding how such biases can
influence predictive performance is critical. For example, Burlina
et al. (2021) showed that imbalanced training sets can reduce
diagnostic consistency in diabetic retinopathy detection, while Lin
et al. (2023) found that ML models may misclassify glaucoma in
underrepresented groups. However, it remains unclear whether and
to what extent retinal age prediction models may be affected by biases
leading to wunfair biological age predictions for different
demographic groups.

In this work, we exemplarily investigate bias differences in the
context of ML models trained on two commonly used retinal imaging
modalities: color fundus photography (CFP) and optical coherence
tomography (OCT). More specifically, we evaluate how RETFound, a
widely used retinal image analysis model performs for retinal age
prediction across these modalities and examine whether differences
in model prediction errors exist within two demographic factors,
namely sex and ethnicity.

Materials and methods
Dataset

We utilized data from the UK Biobank, a large population-based
repository of participants who underwent detailed health
assessments, including retinal imaging (Bycroft et al., 2018). Our final
cohort comprised 9,668 participants, selected through a multi-step
filtering process designed to ensure data quality and create a healthy
cohort for model training and evaluation. First, we performed
rigorous quality control on both CFP and OCT images to remove
scans with motion artifacts or any other significant acquisition issues.
CFP image quality was assessed using a deep learning-based method
proposed by Fu et al. (2019), while OCT images were evaluated using
the image quality score provided by the Topcon Advanced Boundary
Segmentation (TABS) algorithm, as described by Chen et al. (2024).
A primary inclusion criterion was the availability of a matched pair
of high-quality CFP and OCT images for each participant. Following
this, we excluded participants with any self-reported medical
conditions, based on the criteria developed by Zhu et al. (2023).
Finally, only images from the right eye of each unique participant
were included in the final dataset. This approach was chosen to
maximize the number of individuals in our cohort, as requiring high-
quality images from both eyes would have significantly reduced the
sample size. Additionally, using only one eye per participant avoids
the need for statistical correction for within-subject inter-eye
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correlation. In the next step, self-reported ethnicities with less than
200 participants were excluded to ensure robust statistical analyses.
The dataset was split into training (50%), validation (10%), and test
(40%) sets, stratified by age, sex, and self-reported ethnicity to ensure
balanced representation. Demographics for each split are shown in
Table 1.

Model architecture and training

We employed the publicly available RETFound foundation model,
which was previously successful in many retinal image analysis tasks
(Zhou et al., 2023). Model weights were fine-tuned for retinal age
prediction based on the RETFound authors’ guidelines across three
configurations: (1) CFP only, (2) OCT only, and (3) combined
CFP + OCT. The combined approach used late-fusion, concatenating
single-modality representations before the final layer. Fine-tuning was
used to minimize mean squared error loss between predicted and
chronological age, using the Adam optimizer with early stopping
based on validation loss. Training was conducted in PyTorch 1.13.1
on an NVIDIA RTX 3090 GPU.

Statistical analysis

Retinal age prediction performance was evaluated using mean
absolute error (MAE) between predicted biological age and
chronological age. To assess demographic bias, we adapted the
approach by Picarra and Glocker (2023), previously applied to assess
sex and ethnicity bias in brain age prediction. Kruskal-Wallis tests
were used to compare retinal age gaps across sex and ethnicity groups.
To correct for multiple comparisons (three model types, two subgroup

categories), we applied a

threshold of o = 06£

Bonferroni-adjusted  significance

Results

The combined CFP + OCT model yielded the lowest overall MAE
(3.01 years), outperforming the CFP-only (3.40) and OCT-only (4.37)
models (Table 2). Sex-based performance varied: the combined model
showed minimal difference (females: 2.98; males: 3.04), CFP slightly

TABLE 1 Demographic information for participants included in the
training, validation, and test sets.

Characteristic =~ Training Validation
Age (mean = SD) 52.9 + 8.0 52.9 + 8.1 52.9+8.0
Sex
Female 54.0% (2,612) 54.0% (522) 54.1% (2,092)
Male 46.0% (2,222) 46.0% (444) 45.9% (1,776)
Ethnicity
White 94.0% (4,544) 94.0% (908) 94.0% (3,635)
Asian 3.0% (144) 3.0% (29) 3.0% (115)
Black 3.0% (146) 3.0% (29) 3.1% (118)

The dataset was stratified to ensure similar distributions of age, sex, and ethnicity across all
three sets.
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favored males (3.34 vs. 3.45), and OCT favored females (4.11 vs. 4.67).
The combined model also achieved the lowest MAE across ethnic
groups: White (3.01), Asian (2.75), and Black (3.16). Kruskal-Wallis
tests revealed significant sex bias in the CFP model (p < 0.001), but
not in the OCT (p =0.798) or combined models (p =0.019; not
significant after correction). Ethnicity bias was significant in OCT
(p <0.001), but not in the CFP (p =0.032) or combined models
(p=0.131).

Discussion

The results of this study highlight that finetuning ML models
for retinal age prediction can result in significant performance
differences between sex and ethnicity groups. This aligns with prior
work in ophthalmic imaging artificial intelligence, where models
for classifying conditions like age-related macular degeneration,
diabetic retinopathy, and glaucoma have shown performance
disparities between demographic groups (Luo et al., 2024). These
findings highlight the importance of evaluating and understanding
biases before clinical deployment of ML models. An unrecognized
bias could have downstream effects on disease detection and
patient care. Thus, thorough bias analyses and prospective
validation across diverse populations are of paramount importance
(Krause, 2024).

Our findings further demonstrate that combining multiple
imaging modalities may improve predictive performance while
helping to reduce bias. The CFP + OCT model achieved the lowest
MAE, indicating superior accuracy, and showed no significant
differences between sex or ethnicity groups. A possible explanation
for these results is that CFP and OCT introduce different sources of
bias, where CFP was significantly associated with sex-related bias,
while OCT showed significant bias related to ethnicity.
We hypothesize that these modality-specific biases may reflect true
biological differences in retinal aging across demographic groups,
which are captured uniquely by each imaging modality. For example,
a recent study by Bottger et al. suggested that sex-specific retinal

TABLE 2 Model performance, measured by mean absolute error (MAE) in
years, and bias analysis results.

3.40 4.37 3.01

Overall MAE
Sex
Female 3.45 4.11 2.98
Male 3.34 4.67 3.04
p-value <0.001* 0.798 0.019
Ethnicity
White 3.41 4.37 3.01
Asian 3.24 4.10 2.75
Black 3.34 4.45 3.16
p-value 0.032 <0.001* 0.131

MAE values are reported for the overall test set and stratified by sex and ethnicity for each of
the three models (CFP-only, OCT-only, and combined CFP + OCT). p-values are from
Kruskal-Wallis tests comparing retinal age gaps between demographic subgroups for each
model. The asterisk (*) indicates statistical significance after applying a Bonferroni
correction for multiple comparisons.
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vascular traits can be detected in CFP images (Bottger et al., 2025).
Furthermore, Varma et al. (1994) found that males have 2-3% larger
optic discs than females, measurable via CFP. Similarly, Wagner-
Schuman et al. (2011) and Poon et al. (2018) reported ethnicity-
related differences in central retinal thickness detectable using
OCT. Therefore, by leveraging data from both modalities, the
combined CFP + OCT model may gain a more comprehensive bias-
free understanding of retinal aging, overcoming the biases of the
single modality approaches. However, further research is necessary
to explore multimodal strategies as a means of enhancing fairness in
retinal ML models and to better understand the origins of these
biases. For instance, it may be argued that the predictive power of
our fine-tuned models may rely heavily on the foundational feature
representations learned by the RETFound model during its extensive
pretraining. It is plausible that the pretraining dataset enabled
RETFound to learn feature representations that are more robust or
discriminative for predicting age in certain groups, contributing to
the observed performance differences. Future work could
incorporate visual interpretability methods, such as saliency maps,
to identify the specific retinal features driving these predictions and
better understand the anatomical basis of model bias (Stanley
etal., 2022).

While this study offers valuable insights into bias in retinal age
prediction models, certain limitations warrant further investigation.
Notably, the UK Biobank predominantly consists of Caucasian
participants, with a limited representation of other ethnic groups.
Additionally, our definition of a healthy cohort relies on the absence
of self-reported disease. Although this aligns with previous UK
Biobank retinal age studies (Zhu et al., 2023; Zhang et al., 2023; Hu
etal., 2022), this approach may unintentionally include participants
with undiagnosed or subclinical conditions that could affect the
performance of the retinal age prediction models. Furthermore, our
sample size was also constrained by the availability of matched, high-
quality CFP and OCT images from healthy participants within a
single visit. Moreover, this study relied on self-reported ethnicity,
which is an interpretable but broad categorization. Future research
could benefit from correlating prediction errors with genetic
principal components to uncover ancestry-related associations that
might be overlooked by discrete categories. Additionally, exploring
socioeconomic factors as potential biases in retinal age prediction
models would be beneficial for future studies. Finally, while this
work offers valuable insights based on a large UK-based population
cohort, external validation is essential. Broadening the analysis to
encompass more diverse datasets and additional machine learning
architectures will further strengthen the generalizability of
the results.

Conclusion

This work demonstrates that imaging modality selection (CEP vs.
OCT vs. combined) affects both performance and bias profiles of
retinal age prediction models. As the retinal age gap emerges as a
promising biomarker for disease detection, understanding and
mitigating bias sources is crucial for safe, reliable implementation. Our
findings underscore the need for thorough bias analyses and
prospective evaluation to ensure ophthalmic artificial intelligence
advancements benefit all patient populations.
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