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The retinal age gap, defined as the difference between the predicted retinal age 
and chronological age, is an emerging biomarker for many eye conditions and 
even non-ocular diseases. Machine learning (ML) models are commonly used for 
retinal age prediction. However, biases in ML models may lead to unfair predictions 
for some demographic groups, potentially exacerbating health disparities. This 
retrospective cross-sectional study evaluated demographic biases related to sex 
and ethnicity in retinal age prediction models using retinal imaging data (color 
fundus photography [CFP], optical coherence tomography [OCT], and combined 
CFP + OCT) from 9,668 healthy individuals (mean age 56.8 years; 52% female) in 
the UK Biobank. The RETFound foundation model was fine-tuned to predict retinal 
age, and bias was assessed by comparing mean absolute error (MAE) and retinal 
age gaps across demographic groups. The combined CFP + OCT model achieved 
the lowest MAE (3.01 years), outperforming CFP-only (3.40 years) and OCT-only 
(4.37 years) models. Significant sex differences were observed only in the CFP 
model (p < 0.001), while significant ethnicity differences appeared only in the OCT 
model (p < 0.001). No significant sex/ethnicity differences were observed in the 
combined model. These results demonstrate that retinal age prediction models 
can exhibit biases, and that these biases, along with model accuracy, are influenced 
by the choice of imaging modality (CFP, OCT, or combined). Identifying and 
addressing sources of bias is essential for safe and reliable clinical implementation. 
Our results emphasize the importance of comprehensive bias assessments and 
prospective validation, ensuring that advances in machine learning and artificial 
intelligence benefit all patient populations.
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Introduction

Retinal imaging has become a valuable, non-invasive data source for studying aging and 
ocular and systemic health (Li and Lin, 2024). Due to its shared embryological origins with 
the central nervous system, the retina can reflect vascular and neurodegenerative changes 
that are otherwise difficult to assess. High-resolution retinal imaging enables the direct 
visualization of microvasculature and neural tissue, offering insights into ocular, 
cardiovascular, and neurological health. Recent advances in machine learning (ML) have 
enabled the estimation of biological retinal age from retinal images, leading to the concept 
of the retinal age gap, which denotes the difference between predicted retinal age and true 
chronological age (Nielsen et al., 2025a; Nielsen et al., 2025b). Recent studies suggest that 

OPEN ACCESS

EDITED BY

Alessandro Bria,  
University of Cassino, Italy

REVIEWED BY

Volha V. Malechka,  
Harvard Medical School, United States
Michael J. Beyeler,  
Université de Lausanne, Switzerland
Zhaohua Yu,  
Uppsala University, Sweden

*CORRESPONDENCE

Christopher Nielsen  
 csnielse@ucalgary.ca

RECEIVED 24 June 2025
ACCEPTED 26 August 2025
PUBLISHED 10 October 2025

CITATION

Nielsen C, Stanley EAM, Wilms M and 
Forkert ND (2025) Assessment of 
demographic bias in retinal age prediction 
machine learning models.
Front. Artif. Intell. 8:1653153.
doi: 10.3389/frai.2025.1653153

COPYRIGHT

© 2025 Nielsen, Stanley, Wilms and Forkert. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Brief Research Report
PUBLISHED  10 October 2025
DOI  10.3389/frai.2025.1653153

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1653153&domain=pdf&date_stamp=2025-10-10
https://www.frontiersin.org/articles/10.3389/frai.2025.1653153/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1653153/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1653153/full
mailto:csnielse@ucalgary.ca
https://doi.org/10.3389/frai.2025.1653153
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1653153


Nielsen et al.� 10.3389/frai.2025.1653153

Frontiers in Artificial Intelligence 02 frontiersin.org

increased retinal age gaps may indicate elevated risk for stroke, 
Parkinson’s disease, and mortality, supporting a shift toward 
biological age markers as more accurate indicators of health than 
chronological age alone (Grimbly et al., 2024).

Despite these promising results, concerns are growing regarding 
the fairness and generalizability of ML tools across diverse 
populations (Norori et  al., 2021). For example, if an ML model 
underestimates retinal age in certain demographic groups, clinicians 
may misjudge disease risk, leading to potentially missed diagnoses 
and exacerbated health disparities. Previous literature has shown how 
biases from imbalanced demographics, spurious correlations, or 
mismatches between training and deployment populations can 
reduce model reliability (Jacoba et al., 2023). As ML becomes more 
common in ophthalmology, understanding how such biases can 
influence predictive performance is critical. For example, Burlina 
et  al. (2021) showed that imbalanced training sets can reduce 
diagnostic consistency in diabetic retinopathy detection, while Lin 
et al. (2023) found that ML models may misclassify glaucoma in 
underrepresented groups. However, it remains unclear whether and 
to what extent retinal age prediction models may be affected by biases 
leading to unfair biological age predictions for different 
demographic groups.

In this work, we exemplarily investigate bias differences in the 
context of ML models trained on two commonly used retinal imaging 
modalities: color fundus photography (CFP) and optical coherence 
tomography (OCT). More specifically, we evaluate how RETFound, a 
widely used retinal image analysis model performs for retinal age 
prediction across these modalities and examine whether differences 
in model prediction errors exist within two demographic factors, 
namely sex and ethnicity.

Materials and methods

Dataset

We utilized data from the UK Biobank, a large population-based 
repository of participants who underwent detailed health 
assessments, including retinal imaging (Bycroft et al., 2018). Our final 
cohort comprised 9,668 participants, selected through a multi-step 
filtering process designed to ensure data quality and create a healthy 
cohort for model training and evaluation. First, we  performed 
rigorous quality control on both CFP and OCT images to remove 
scans with motion artifacts or any other significant acquisition issues. 
CFP image quality was assessed using a deep learning-based method 
proposed by Fu et al. (2019), while OCT images were evaluated using 
the image quality score provided by the Topcon Advanced Boundary 
Segmentation (TABS) algorithm, as described by Chen et al. (2024). 
A primary inclusion criterion was the availability of a matched pair 
of high-quality CFP and OCT images for each participant. Following 
this, we  excluded participants with any self-reported medical 
conditions, based on the criteria developed by Zhu et  al. (2023). 
Finally, only images from the right eye of each unique participant 
were included in the final dataset. This approach was chosen to 
maximize the number of individuals in our cohort, as requiring high-
quality images from both eyes would have significantly reduced the 
sample size. Additionally, using only one eye per participant avoids 
the need for statistical correction for within-subject inter-eye 

correlation. In the next step, self-reported ethnicities with less than 
200 participants were excluded to ensure robust statistical analyses. 
The dataset was split into training (50%), validation (10%), and test 
(40%) sets, stratified by age, sex, and self-reported ethnicity to ensure 
balanced representation. Demographics for each split are shown in 
Table 1.

Model architecture and training

We employed the publicly available RETFound foundation model, 
which was previously successful in many retinal image analysis tasks 
(Zhou et al., 2023). Model weights were fine-tuned for retinal age 
prediction based on the RETFound authors’ guidelines across three 
configurations: (1) CFP only, (2) OCT only, and (3) combined 
CFP + OCT. The combined approach used late-fusion, concatenating 
single-modality representations before the final layer. Fine-tuning was 
used to minimize mean squared error loss between predicted and 
chronological age, using the Adam optimizer with early stopping 
based on validation loss. Training was conducted in PyTorch 1.13.1 
on an NVIDIA RTX 3090 GPU.

Statistical analysis

Retinal age prediction performance was evaluated using mean 
absolute error (MAE) between predicted biological age and 
chronological age. To assess demographic bias, we  adapted the 
approach by Piçarra and Glocker (2023), previously applied to assess 
sex and ethnicity bias in brain age prediction. Kruskal-Wallis tests 
were used to compare retinal age gaps across sex and ethnicity groups. 
To correct for multiple comparisons (three model types, two subgroup 
categories), we  applied a Bonferroni-adjusted significance 

threshold of α =
0.05
6

.

Results

The combined CFP + OCT model yielded the lowest overall MAE 
(3.01 years), outperforming the CFP-only (3.40) and OCT-only (4.37) 
models (Table 2). Sex-based performance varied: the combined model 
showed minimal difference (females: 2.98; males: 3.04), CFP slightly 

TABLE 1  Demographic information for participants included in the 
training, validation, and test sets.

Characteristic Training Validation Test

Age (mean ± SD) 52.9 ± 8.0 52.9 ± 8.1 52.9 ± 8.0

Sex

 � Female 54.0% (2,612) 54.0% (522) 54.1% (2,092)

 � Male 46.0% (2,222) 46.0% (444) 45.9% (1,776)

Ethnicity

 � White 94.0% (4,544) 94.0% (908) 94.0% (3,635)

 � Asian 3.0% (144) 3.0% (29) 3.0% (115)

 � Black 3.0% (146) 3.0% (29) 3.1% (118)

The dataset was stratified to ensure similar distributions of age, sex, and ethnicity across all 
three sets.
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favored males (3.34 vs. 3.45), and OCT favored females (4.11 vs. 4.67). 
The combined model also achieved the lowest MAE across ethnic 
groups: White (3.01), Asian (2.75), and Black (3.16). Kruskal–Wallis 
tests revealed significant sex bias in the CFP model (p < 0.001), but 
not in the OCT (p = 0.798) or combined models (p = 0.019; not 
significant after correction). Ethnicity bias was significant in OCT 
(p < 0.001), but not in the CFP (p = 0.032) or combined models 
(p = 0.131).

Discussion

The results of this study highlight that finetuning ML models 
for retinal age prediction can result in significant performance 
differences between sex and ethnicity groups. This aligns with prior 
work in ophthalmic imaging artificial intelligence, where models 
for classifying conditions like age-related macular degeneration, 
diabetic retinopathy, and glaucoma have shown performance 
disparities between demographic groups (Luo et al., 2024). These 
findings highlight the importance of evaluating and understanding 
biases before clinical deployment of ML models. An unrecognized 
bias could have downstream effects on disease detection and 
patient care. Thus, thorough bias analyses and prospective 
validation across diverse populations are of paramount importance 
(Krause, 2024).

Our findings further demonstrate that combining multiple 
imaging modalities may improve predictive performance while 
helping to reduce bias. The CFP + OCT model achieved the lowest 
MAE, indicating superior accuracy, and showed no significant 
differences between sex or ethnicity groups. A possible explanation 
for these results is that CFP and OCT introduce different sources of 
bias, where CFP was significantly associated with sex-related bias, 
while OCT showed significant bias related to ethnicity. 
We hypothesize that these modality-specific biases may reflect true 
biological differences in retinal aging across demographic groups, 
which are captured uniquely by each imaging modality. For example, 
a recent study by Böttger et al. suggested that sex-specific retinal 

vascular traits can be detected in CFP images (Böttger et al., 2025). 
Furthermore, Varma et al. (1994) found that males have 2–3% larger 
optic discs than females, measurable via CFP. Similarly, Wagner-
Schuman et al. (2011) and Poon et al. (2018) reported ethnicity-
related differences in central retinal thickness detectable using 
OCT. Therefore, by leveraging data from both modalities, the 
combined CFP + OCT model may gain a more comprehensive bias-
free understanding of retinal aging, overcoming the biases of the 
single modality approaches. However, further research is necessary 
to explore multimodal strategies as a means of enhancing fairness in 
retinal ML models and to better understand the origins of these 
biases. For instance, it may be argued that the predictive power of 
our fine-tuned models may rely heavily on the foundational feature 
representations learned by the RETFound model during its extensive 
pretraining. It is plausible that the pretraining dataset enabled 
RETFound to learn feature representations that are more robust or 
discriminative for predicting age in certain groups, contributing to 
the observed performance differences. Future work could 
incorporate visual interpretability methods, such as saliency maps, 
to identify the specific retinal features driving these predictions and 
better understand the anatomical basis of model bias (Stanley 
et al., 2022).

While this study offers valuable insights into bias in retinal age 
prediction models, certain limitations warrant further investigation. 
Notably, the UK Biobank predominantly consists of Caucasian 
participants, with a limited representation of other ethnic groups. 
Additionally, our definition of a healthy cohort relies on the absence 
of self-reported disease. Although this aligns with previous UK 
Biobank retinal age studies (Zhu et al., 2023; Zhang et al., 2023; Hu 
et al., 2022), this approach may unintentionally include participants 
with undiagnosed or subclinical conditions that could affect the 
performance of the retinal age prediction models. Furthermore, our 
sample size was also constrained by the availability of matched, high-
quality CFP and OCT images from healthy participants within a 
single visit. Moreover, this study relied on self-reported ethnicity, 
which is an interpretable but broad categorization. Future research 
could benefit from correlating prediction errors with genetic 
principal components to uncover ancestry-related associations that 
might be overlooked by discrete categories. Additionally, exploring 
socioeconomic factors as potential biases in retinal age prediction 
models would be beneficial for future studies. Finally, while this 
work offers valuable insights based on a large UK-based population 
cohort, external validation is essential. Broadening the analysis to 
encompass more diverse datasets and additional machine learning 
architectures will further strengthen the generalizability of 
the results.

Conclusion

This work demonstrates that imaging modality selection (CFP vs. 
OCT vs. combined) affects both performance and bias profiles of 
retinal age prediction models. As the retinal age gap emerges as a 
promising biomarker for disease detection, understanding and 
mitigating bias sources is crucial for safe, reliable implementation. Our 
findings underscore the need for thorough bias analyses and 
prospective evaluation to ensure ophthalmic artificial intelligence 
advancements benefit all patient populations.

TABLE 2  Model performance, measured by mean absolute error (MAE) in 
years, and bias analysis results.

Characteristic CFP OCT Combined

Overall MAE 3.40 4.37 3.01

Sex

 � Female 3.45 4.11 2.98

 � Male 3.34 4.67 3.04

p-value <0.001* 0.798 0.019

Ethnicity

 � White 3.41 4.37 3.01

 � Asian 3.24 4.10 2.75

 � Black 3.34 4.45 3.16

p-value 0.032 <0.001* 0.131

MAE values are reported for the overall test set and stratified by sex and ethnicity for each of 
the three models (CFP-only, OCT-only, and combined CFP + OCT). p-values are from 
Kruskal–Wallis tests comparing retinal age gaps between demographic subgroups for each 
model. The asterisk (*) indicates statistical significance after applying a Bonferroni 
correction for multiple comparisons.
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