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Machine learning has advanced significantly in recent years and is being
used in higher education to perform various types of data analysis. While the
literature demonstrates the application of machine learning algorithms to predict
performance in university education, no such applications are found in EBR,
let alone in private institutions of a denominational nature, which presents an
opportunity to study prediction in these institutions. To address this gap, this
research aims to propose a predictive approach as a decision-support tool
for regular basic education, using machine learning techniques. Among the
techniques utilized, three machine learning models (Logistic Regression, Support
Vector Machine, and Random Forest), along with deep learning models (AlexNet,
Gated Recurrent Unit, and Bidirectional Gated Recurrent Unit), were analyzed, as
well as ensemble models. Nonetheless, the Ensemble model, which combines
deep learning and machine learning techniques, is preferred due to its superior
accuracy, precision, and sensitivity performance metrics.
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1 Introduction

Machine learning (ML) has advanced significantly in recent years and is increasingly
applied in higher education (HE) to analyze student performance, predict dropout risk,
and support decision-making (Fahd et al., 2022; Mashrur and Nonyelum, 2020; Singh
and Kumar, 2020). Educational data mining (EDM) serves as a key methodology for
extracting meaningful knowledge and patterns from academic databases, thereby enabling
early detection of at-risk students and guiding timely interventions (Sultana and Khan,
2019; Lopez and Ramirez, 2021). A wide variety of ML models–including decision trees
(DT), logistic regression (LR), support vector machines (SVM), random forests (RF), and
artificial neural networks (ANN)–have been employed to predict academic performance
with encouraging results (Ghosh and Sharma, 2022; Hussain and Khan, 2023; Reyes et al.,
2025).

Recent studies have also explored deep learning (DL) architectures, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to
capture complex temporal and non-linear dependencies in educational datasets (Mi and
Yeung, 2019; Ahmed et al., 2022). While these approaches have demonstrated high
predictive accuracy in various contexts, including student dropout and performance
prediction, most have been developed either with ML or DL models in isolation.
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In addition, other contributions in AI-driven educational analytics
highlight the importance of integrating advanced computational
approaches into teaching and learning practices. For example,
Tripon (2022) examined how computational thinking skills can
be promoted in STEM education through AI-enhanced teaching
strategies, demonstrating the growing role of predictive and
analytical tools in shaping educational outcomes. Incorporating
such perspectives helps to situate our study within the broader
landscape of AI applications in education while emphasizing the
unique methodological contribution of our ML+DL ensemble
approach in the RBE context. Furthermore, recent global research
highlights that higher education students are actively forming
perceptions about the role of AI tools such as ChatGPT in their
learning processes (Ravšelj et al., 2025), offering valuable insights
that can inform the design and contextualization of AI-driven
predictive models in education. Moreover, applications in Regular
Basic Education (RBE) remain limited, and virtually no work has
addressed private denominational institutions, leaving a gap in
context-specific predictive modeling.

Table 1 summarizes representative studies from the literature,
highlighting models used, datasets, and reported accuracies.
As shown, ensemble approaches often outperform single
models by combining complementary strengths (Menchaca,
2024), yet hybrid ML+DL ensembles remain underexplored in
RBE contexts.

In contrast to prior studies that have applied ML or DL models
independently (see Chen and Ding, 2023; Mohammadi et al., 2019;
Chavez et al., 2023; Adefemi et al., 2025), our work introduces a
novel ensemble framework that hybridizes both paradigms. This
framework integrates the interpretability and robustness of ML
models (e.g., SVM, RF, LR; Smith and Lee, 2017) with the capacity
of DL architectures (e.g., AlexNet, GRU, BiGRU) to capture
non-linear feature interactions (Brown, 2018; Zhang and Chen,
2021). By explicitly combining these complementary strengths,
the ensemble is expected to outperform single-model baselines
(cf. Garcia and Alvarez, 2021). Within the RBE institutional
context–where datasets often contain both structured attributes
and latent dynamic patterns–this hybrid strategy offers a unique
methodological advantage that has not been previously investigated
(Nguyen and Do, 2019; Castro and Paredes, 2022).

TABLE 1 Summary of representative studies on student performance
prediction.

Study Models
applied

Context Reported
accuracy

Ghosh and Sharma
(2022)

SVM, RF HE, India SVM: 96.9%,
RF: 81.3%

Reyes et al. (2025) Multinomial
LR

HE, Latin
America

100% (AUC =
1)

Menchaca (2024) Ensemble
models

HE, Mexico ∼90%

Baniata et al. (2024) GRU HE, Middle
East

99.7%

Fanta and Alemu
(2025)

RF HE, Africa 99% (AUC =
100%)

Mi and Yeung (2019) DL
architectures

HE, Asia 92–96%

Motivated by the urgent need to strengthen the Peruvian
education system, which is ranked 127th out of 137 countries
in terms of quality (Pachas, 2020), and aligned with the
National Education Project PEN 2036 (Vargas, 2020), this research
proposes a predictive framework for private denominational RBE
institutions. The approach follows a six-step methodology covering
preprocessing, feature selection, normalization, model training,
and evaluation. To the best of our knowledge, this is the first study
in Peru to employ an ML+DL ensemble for academic performance
prediction in RBE, providing an evidence-based decision-support
tool for targeted interventions.

The remainder of the paper is structured as follows. Section 2
details the hybrid predictive approach used to evaluate the
performance problem of RBE students. Section 3 presents the
results and discussion, and Section 4 outlines the conclusions and
directions for future research.

2 Materials and methods

This study uses a predictive approach to evaluate the
comparative effectiveness of seven machine learning algorithms in
predicting the academic performance of regular basic education
students (see Figure 1). This approach allows identifying low-
performing students by visualizing the results of predictive models,
thus facilitating decision-making by educational institutions. The
evaluated algorithms include: Support Vector Machine (SVM),
Random Forest (RF), Logistic Regression (LR), AlexNet, Gated
Recurrent Unit (GRU), Bidirectional GRU (BiGRU), and an
Ensemble model.

2.1 Educational and learning
comprehension

Academic performance is understood as a way of measuring
how the teaching-learning process is developed. It is directly
linked to the evaluation of acquired knowledge, so it is necessary
to use various instruments that are properly structured and
organized (Pacheco et al., 2021). Academic achievement as a
complex phenomenon resulting from various personal and social
variables, argued as an educational and evaluation element in
most countries of the world. This performance is framed within
the dynamics of interaction generated daily between students,
teachers and the knowledge shared in the educational environment
(Santander, 2011). Academic performance is determined by several
factors, one of the most relevant of which is the understanding
of the student’s learning processes, which allows the development
of appropriate methodological strategies (Núñez et al., 2022).
Academic achievement defined as a complex process that could well
be projected as an ascending property of an educational system,
and where multiple variables are intertwined, with qualitative and
quantitative aspects (Ariza et al., 2018). Other research indicates
that academic achievement is linked to individual, psychological,
cognitive and intellectual factors, as well as to variables related
to educational processes, structural aspects and administrative
elements. This perspective provides key concepts for understanding
academic achievement as a pedagogical construct of a multicausal,
multidimensional and multifactorial nature (Murillo, 2024). The
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FIGURE 1

Hybrid predictive approach scheme to evaluate academic performance in students of RBE. It is used to identify key information and significant
patterns that allow analyzing the academic performance of students in Regular Basic Education. This approach is developed through six stages that
are executed in a sequential and cyclical manner: (a) Understanding the educational and learning context, (b) Data exploration, (c) Data preparation,
(d) Development of predictive models, (e) Evaluation of results, and (f) Selection of the best method to measure student performance.

study of academic performance focuses on the grades obtained
by students in the first through fifth grades of regular basic
education, which represent the outcome of the educational process.
In this context, academic performance is considered a fundamental
indicator for decision-making at the institutional level, as it enables
both the provision of incentives to high-performing students and
the implementation of support measures for those with low results.

2.2 Understanding data

In this research, characteristics linked to students’ academic
performance were selected, the most important being the grades
obtained from their report cards throughout their time at school.
Demographic variables such as gender, location by department
and city, and courses completed were also included, as these data
provide relevant information about students’ personal backgrounds
and could have an impact on their academic performance (see
Table 2). Meanwhile, the structure and presentation of the data
followed the data organization presented in Kord et al. (2025).

2.3 Data preparation

2.3.1 Sample selection
The study sample consists of academic data from students at

11 schools belonging to the Adventist Educational Network in
southern Peru, in the cities of Arequipa, Moquegua, Puno, Juliaca,
Azángaro, Cusco, Espinar, Quillabamba, and Puerto Maldonado.

TABLE 2 Data description.

Attribute Data classification Possible values

Gender Binary (symmetric) F-M

Year Categorical 2019–2021

Association Categorical MPS-MPLT-MSOP

Cities Categorical Cus-Esp-Pto Mald-Quill-

Are-Mog-Aza-Jul-Pun

Courses Categorical Des Per-Cs Soc-Ed Rel-Ed

Tra-Ed Fis-Com-Art Cul -

Ing-Mat-Cie Tec-Ent Vir-

Apr Aut

Qualification Float 0–20

The database includes information collected between 2019 and
2021 (see Table 3). The students in the sample attend regular basic
education, ensuring the homogeneity of the group in terms of
educational level. No additional exclusion criteria were established,
so data from all students at the selected institutions were included
in the analysis.

2.3.2 Data collection
The total data set consisted of 155 transcripts from 3,247

Regular Basic Education students with 17 characteristics. These
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TABLE 3 Detailed description of the dataset variables, including types, ranges, and educational context.

Number Feature name Type Range Feature description

1 DPCC Number 0–20 Personal Development, Citizenship and Civics

2 CS Number 0–20 Social Sciences

3 ER Number 0–20 Religious education

4 EPT Number 0–20 Education for Work

5 EF Number 0–20 Physical education

6 C Number 0–20 Communication

7 AC Number 0–20 Art and Culture

8 I Number 0–20 English

9 M Number 0–20 Mathematics

10 CT Number 0–20 Science and Technology

11 TICs Number 0–20 It operates in virtual environments generated by ICTs

12 AA Number 0–20 Manage learning autonomously

13 Grade Categorical 1st–5th Grade level

14 Year Categorical 2019–2021 Year of data

15 Gender Binary (symmetric) F – M Gender of student

16 Place of origin Categorical Cities Place of origin

17 Educational Association Categorical Regions Educational Association

TABLE 4 Table with processed data from grade transcripts 2019–2021.

Year Assoc School Grad Gd DPCC CS ED EPT EF C AC 1 M CT TICs AA

2019 MSOP PARDO Seg A M 15 13 13 15 16 14 15 17 15 14 15 15

2019 MSOP PARDO Seg A F 18 18 18 18 17 17 19 17 18 16 18 18

2019 MSOP PARDO Seg A F 16 15 18 16 17 17 19 17 18 16 18 18

2019 MSOP PARDO Seg A M 14 12 14 15 15 14 13 12 12 14 13 13

characteristics represent: year of study, place of origin, educational
association, academic grade, gender, courses taken, and grades
from the first to fifth years (see Table 4). They were classified
as qualitative (nominal categorical and ordinal categorical) and
quantitative. These variables were processed and analyzed using
three machine learning models: Support Vector Machine (SVM),
Random Forest (RF), and Logistic Regression (LR); as well as three
deep learning models: AlexNet, Gated Recurrent Unit (GRU), and
Bidirectional GRU (BiGRU); in addition to an ensemble model.
The objective was to determine which of these models offers
the best performance in predicting the academic performance of
Regular Basic Education students, with a view to contributing
to administrative decision-making within educational institutions.
The analysis considered 12 subjects: Personal Development,
Citizenship and Civics, Social Sciences, Religious Education,
Education for Work, Physical Education, Communication, Art and
Culture, English, Mathematics, Science and Technology, Develops
in virtual environments generated by ICTs and Manages their
learning independently. Likewise, five qualitative characteristics
were incorporated: gender, place of origin, educational association,
year of study and academic degree. Grades are expressed on a
vigesimal scale (0 to 20), considering 11 as the minimum passing

grade. Likewise, it is important to emphasize that the characteristics
of subjects and qualitative characteristics described are similar
and coincide across institutions, thus achieving homogeneity in
the data.

2.3.3 Dataset description and preprocessing
After preprocessing, the final dataset retained 17 features,

encompassing academic indicators (such as grades in individual
courses and the number of failed courses) along with demographic
variables. The predictive task is formulated as a supervised
binary classification problem. Specifically, the target label classifies
students as either “Pass” or “Fail”, based on their academic
results. This formulation allows for a straightforward assessment
of academic success and failure, evaluating predictive models more
directly aligned with educational decision-making.

Preprocessing was guided by three key criteria: completeness,
consistency, and coherence. Records with missing values were
imputed using the mean (for numerical attributes) or mode
(for categorical attributes). Consistency was ensured by unifying
categorical values (e.g., “Female” and “F” both mapped to “F”;
“Male” and “M” mapped to “M”), while numerical attributes
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(e.g., performance scores) were restricted to four decimal places.
Coherence was verified by checking for outliers and distributional
anomalies. Outlier detection revealed that some exchange students
and Theology majors were older than the average student body.
Still, these cases were retained since they aligned with the overall
trends of the dataset.

To enable machine learning models to operate effectively,
quantitative attributes were standardized to a mean of 0 and a
standard deviation of 1. Each variable Xi was transformed into its
standardized form Zi using:

Zi = (Xi − X)
Sn−1

, i = 1, . . . , n,

where

X = 1
n

n∑
i=1

Xi, Sn−1 =
√√√√ 1

n − 1

n∑
i=1

(Xi − X)2.

2.3.4 Feature selection
To reduce dimensionality and enhance interpretability, a two-

stage feature selection procedure was adopted:

1. Correlation analysis. Pairwise correlations between predictors
and the target variable were computed. Features with
negligible association to the outcome or those exhibiting
strong multicollinearity (Pearson’s r > 0.85) were flagged
for removal.

2. Recursive Feature Elimination (RFE). Using logistic regression
as a base estimator, RFE iteratively eliminated the least essential
predictors based on coefficient weights. Cross-validation
determined the optimal subset of features by maximizing
predictive accuracy on the validation set.

This hybrid strategy combines the statistical efficiency of
correlation analysis with the model-based refinement of RFE. As a
result, the feature set was reduced from 22 to 12 attributes without
loss of predictive power. In fact, models trained on the reduced set
achieved slightly higher accuracy, F1-score, and AUC, highlighting
both the computational efficiency and predictive robustness of the
streamlined dataset.

2.4 Predictive modeling

This section details how the predictive models in this work
were used to predict student performance. Hence, three machine-
learning models, such as the Logistic regression model, Support
Vector Machine model, and Random forest model; three deep
learning models, including the Alexnet, the Gated Recurrent
Unit, and Bidirectional Gated Recurrent Unit; and their proposed
ensemble model. The details of each model are given below.

2.4.1 Logistic regression
The linear regression (LGR) is the basic method of binary

classification, which estimates the probability of observation
belonging to a particular category. The sigmoid function converts

linear combinations of features into probability values. The LGR
model requires careful parameter tweaking and is best suited
for binary classification problems. However, while using this
strategy, it is critical to keep certain assumptions in mind, such
as the assumption of feature independence. The LGR model is
mathematically represented as follows: Let X represent an instance’s
feature vector, and y represent the binary class label (0 or 1). Given
X, the logistic regression (LGR) model computes the probability
that y = 1. This probability is denoted as:

P(y = 1/X) = 1
1 + e−(α0+α1X1+α2X2+...+αPXP) (1)

where P(y = 1/X) represents the probability that the class label
y is one given the feature vector X, while e means the base of
the natural logarithm (∼2.71828), and α0, α1, α2, . . . , αP are the
coefficients (parameters) of the model to be learned during training.
X1, X2, . . . , XP are the features of the instance X. The sigmoid
function 1

1+e−z maps the linear combination of features α0+α1X1+
α2X2 + . . . + αPXP generates a value between 0 and 1, which
indicates the probability that the observation is assigned to class
1. The model assigns the example to the class with the higher
probability. Despite the effectiveness of logistic regression in binary
classification, it is crucial to verify the validity of its assumptions,
such as the assumption of linearity and feature independence, as
these can impact its performance in real-world applications. Proper
parameter tuning is also crucial for achieving optimal results with
logistic regression.

2.4.2 Support vector machine
Support Vector Machine (SVM) model is one of the most

commonly used ML algorithms to identify a hyperplane in N-
dimensional space that classifies the data points. It helps find a
plane that maximizes the margin. The diversity of N-dimensional
space is based on the number of features; two features can be
smoothly compared. However, it is more complex in the case of
several features in classification. Maximizing the margin leads to
a more accurate prediction. The margin refers to the distance
between the decision hyperplane and the nearest instances, which
is the number of that class. Most of the time, data is not linearly
separable; in that case, SVM uses various types of functions called
kernels to transform the data into the desired shape through input
vectors. This study uses a linear kernel function. A linear kernel
is one of the most straightforward functions for transforming data
into the desired shape. These functions return the inner product
between two suitable feature points in a dimensional space.

K(yi, yj) = (yi.yj+1) (2)

2.4.3 Random forest model
The ensemble learning technique known as Random Forest

(RF) combines the predictive strength of many decision trees with
the addition of randomization to reduce overfitting. RF produces
multiple decision trees and uses bootstrapping to train each tree
using a different data part. The final ranking is determined by
combining the results from the individual tree, which can be
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achieved by majority voting for classification tasks or by averaging
for regression tasks. Mathematically, let’s represent a Random
Forest ensemble as a set of decision trees (T1, T2, . . . , Tn), where
each tree Ti is trained on a different bootstrapped sample from the
original training dataset. The classification for a new sample Xnew
using the Random Forest ensemble can be expressed as follows:

For classification

ŷRF(Xnew) = MajorityVote(T1(Xnew), T2(Xnew), . . . , Tn(Xnew))
(3)

For regression

ŷRF(Xnew) = 1
n

n∑
i=1

Ti(Xnew) (4)

where: ŷRF(Xnew) represents the final prediction or classification
for the new sample Xnew using the Random Forest ensemble.
Ti(Xnew) represents the prediction or classification made by the
ith decision tree in the ensemble for the new sample. Majority
Vote (.) calculates the majority vote among the individual tree
predictions for classification tasks, and s is the total number of
decision trees in the RF ensemble. RF is powerful. After all, it may
average or combine the outputs of several trees, each trained on
a separate subset of the data, because it can decrease overfitting.
The model’s resilience and capacity for generalization are improved
by this ensemble technique, making it a popular option for various
machine-learning applications.

2.4.4 The AlexNet model
One of the significant developments in computer vision and

deep learning, AlexNet, is a large-scale convolutional neural
network (CNN) architecture that has significantly increased picture
classification precision in Image Network datasets. Three entirely
interconnected layers, one final softmax layer for classification,
and five convolutional layers make up an AlexNet architecture.
A number of new methods have also been introduced, such
as dropout regularization to prevent over-adjustment, data
improvement by picture reflection and cropping, and the use of
rectified linear units (ReLUs) as activation functions. AlexNet’s
primary contribution was paving the way for further developments
in the field of image identification by demonstrating the efficacy
of deep neural networks for such tasks. Currently, a lot of the
most sophisticated CNN architectures are built on top of AlexNet’s
foundations and keep pushing the limits of computer vision
applications like image recognition.

2.4.5 The gated recurrent unit model
The RNN design known as the Gated Recurrent Unit (GRU)

solves the fading gradient issue and makes it possible to identify
persistent dependencies in the order of data. It is presented
as a more straightforward and effective design substitute for
conventional long-term memory units (LSTMs). GRU units are
made up of update and reset gates to regulate the information flow
within the network. The updated door determines what exactly

should be added to the new input and what should be kept
from the prior hidden state. By pressing the reset button, the
network may calculate the number of hidden states from the past
that are important to the input at hand. GRU can record both
short- and long-term dependencies with these gates by selectively
updating and resetting its hidden state in response to the input
sequence. GRU’s streamlined architecture, which requires fewer
parameters and expedites training, is one of its advantages over
LSTM. This is especially helpful when working with huge data
sets or constrained computational resources. Additionally, GRU
and LSTM demonstrated comparable performance in a number of
tasks, including machine translation, sentiment analysis, language
modeling, and language recognition. Because GRU technology can
manage both short- and long-term dependencies, it has shown
effectiveness in modeling sequence data. It is extensively utilized
in many different domains, such as sequence data production,
time series analysis, and natural language processing. To increase
efficiency and accuracy, scientists and industry professionals are
still investigating and fine-tuning GRU-based models and their
modifications and combinations with other methods.

2.4.6 The bidirectional gated recurrent unit
model

A general-purpose deep learning architecture called the
Bidirectional Gated Recurrent Unit (BiGRU) is utilized for
sequential data modeling, including time series, text, and speech
data. It is a development of the conventional GRU design that
adds two-way processing to let networks remember past, present,
and future input patterns. Two contemporaneous GRU layers
comprise the architecture; one processes the order of inputs
forward and the other backward. The outputs from these two
layers are concatenated when going through dense layers for
regression and classification. For applications involving natural
language processing, including machine translation, sentiment
analysis, and named entity recognition, BiGRU is especially helpful
when information about previous and upcoming input sequences
is available. BiGRU is frequently utilized as a benchmark model to
assess more intricate designs against, as it has demonstrated state-
of-the-art performance for an extensive array of workloads. All
things considered, sequential data modeling has been using BiGRU,
a strong and adaptable deep-learning method, more and more in
recent years. Time sequence data, speech, text, and other sequential
data types are frequently processed using RNNs, a deep learning
model. RNNs are made to work with variable-length sequences, in
contrast to classic neural networks, which accept fixed inputs and
generate fixed outputs. This is accomplished by adding loops to
the network that allow information to endure over time. Because
of this, they are especially good at processing stimuli that are
sequential or have a temporal component.

2.4.7 The proposed ensemble model
Ensemble learning is an approach for improving model

accuracy and efficacy. It is a powerful meta-learning strategy that
combines weak and strong learners to boost the effectiveness of
the weak learner. This article uses the ensemble approach to
increase the accuracy of several models for BC illness prediction.
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Combining several models tries to improve performance over
individual models. This work creates an ensemble using six models:
LGR, SVML, RF, Alexnet, GRU, and BiGRU. The ensemble model
is built using a weighting approach. The weighted average ensemble
approach allows several models to contribute to a forecast based on
their confidence level or anticipated performance. Each member’s
contribution to the final forecast is weighed against the model’s
performance in a weighted ensemble. The model weights are tiny
positive numbers totaling one, reflecting each model’s degree of
trust or predicted performance. This work assigns the Ensemble
model weights: LGR: 0.1511, SVM: 0.2151, RF: 0.1179, Alexnet:
0.1912, GRU: 0.1329, and BiGRU: 0.1818.

2.5 Evaluation

The proposed intelligence hybrid system has been evaluated by
six different performance metrics (accuracy, sensitivity, specificity,
F1 score, Brier score, and error rate), an equal prediction test
statistical test (the Diabold-Marino test), and a visual analysis (bar
plot, line plot, and level plot; Iftikhar et al., 2023; Cuba et al., 2024;
Gonzales et al., 2024; Alshanbari et al., 2023). The specifications are
as follows:

Accuracy = TP+TN
TP+FP+TN+FN

, (5)

The following formulas show that TP is a true positive number,
TN is a false negative number, FP is a false positive number, and FN
is a false negative number.

Sensitivity = TP
TP + FN

. (6)

Specificity = TN
TN + FP

(7)

F1-Score = 2 × Precision × Recall
Precision + Recall

, (8)

The F1 score ranges from zero to one. A score near to one
implies more incredible model performance, whereas a value close
to zero indicates poor performance.

Brier Score = 1
n

n∑
i=1

(yi − ŷi)2, (9)

where n is the number of instances, yi is the observed binary output,
and ŷi is the predicted binary output for instance i. Brier Score
ranges between 0 and 1, where a value closer to zero indicates better
performance, while a value close to 1 shows poor performance of
the predictive models.

Error = (yi − ŷi), (10)

where yi represents actual value and ŷi denotes the predicted value
in specific data points.

Furthermore, to the performance metrics, the Diebold-Mariano
(DM) test has been performed to examine the significance of
the variations in the prediction performance of the predictive
models (Diebold and Mariano, 2002). This equal prediction test
is commonly used to compare predictions from various models
(Qureshi et al., 2024; Iftikhar et al., 2024b; Qureshi et al., 2025;
Iftikhar et al., 2024a). The DM statistic may be calculated using the
following equation:

DMs = ȳ√
Var(ȳ)

, (11)

where,

ȳ = 1
H

H∑
h=1

yh, yh = (ch − c̃1h)2 − (ch − c̃2h)2, (12)

Var(ȳ) = 1
H

(2
h−1∑
j=1

rj + r0), and rj = cov(yh − yh-j). (13)

the estimated value of the first predicting model is c̃1h, whereas the
predicted value of the second predicting model at time h is c̃2h.

2.6 Selection

The results obtained after applying various algorithms to data
from regular basic education students show that the ensemble
model performs best in predicting academic performance, standing
out for its high precision, accuracy, and sensitivity. This
suggests that its implementation could be useful for educational
institutions to design more effective policies and strategies
aimed at strengthening and supporting students based on their
estimated performance.

3 Results and discussion

Table 5 provides the performance metrics of various machine
learning, deep learning, and ensemble models assessed through
a cross-validation method over 500 iterations. It is categorized
into three distinct scenarios, each representing a different split
of training and testing data: 50%–50% (Scenario 1), 75%–25%
(Scenario 2), and 90%–10% (Scenario 3). The models evaluated
include Support Vector Machine (SVM), Random Forest (RF),
Logistic Regression (LR), AlexNet, Gated Recurrent Unit (GRU),
Bidirectional GRU (BiGRU), and an Ensemble model.

Each model is assessed based on metrics such as Accuracy,
Sensitivity, Specificity, F1 Score, Brier Score (BS), and Error Rate.
In all three scenarios, the Ensemble model consistently delivers the
highest scores in terms of accuracy, sensitivity, specificity, and F1
score, while also achieving the lowest error rates and Brier scores.
This indicates that integrating multiple models leads to enhanced
performance and robustness.

When analyzing individual models, deep learning-based
frameworks like AlexNet, GRU, and BiGRU generally outperform
conventional machine learning models such as SVM, RF, and LR
in most instances. AlexNet and BiGRU show strong sensitivity
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TABLE 5 Performance measures: results of the evaluation of the deep learning, machine learning, and ensemble models with a cross-validation
approach of 500 executions.

Models Accuracy Sensitivity Specificity FS BS Error

1st scenario (50%, 50%)

SVM 0.9055 0.9538 0.9538 0.9599 0.0242 0.0945

RF 0.8826 0.9217 0.9217 0.9281 0.0359 0.1174

LR 0.8854 0.9296 0.9296 0.9388 0.0325 0.1146

Alexnet 0.9089 0.9582 0.9582 0.9641 0.0208 0.0911

GRU 0.8953 0.9518 0.9518 0.9467 0.0258 0.1047

BiGRU 0.8994 0.9522 0.9522 0.9515 0.0272 0.1006

Ensemble 0.9244 0.9715 0.9715 0.9774 0.0187 0.0756

Models Accuracy Sensitivity Specificity F1 score Brier score Error

2nd scenario (75%, 25%)

SVM 0.9111 0.9594 0.9594 0.9655 0.0216 0.0889

RF 0.8882 0.9273 0.9273 0.9337 0.0333 0.1118

LR 0.8910 0.9352 0.9352 0.9444 0.0299 0.1090

Alexnet 0.9145 0.9638 0.9638 0.9697 0.0182 0.0855

GRU 0.9009 0.9574 0.9574 0.9523 0.0232 0.0991

BiGRU 0.9050 0.9578 0.9578 0.9571 0.0246 0.0950

Ensemble 0.9244 0.9715 0.9715 0.9774 0.0187 0.0756

3rd scenario (90%, 10%)

SVM 0.9137 0.9637 0.9637 0.9698 0.0196 0.0864

RF 0.8908 0.9316 0.9316 0.9380 0.0313 0.1093

LR 0.8936 0.9395 0.9395 0.9487 0.0279 0.1065

Alexnet 0.9171 0.9681 0.9681 0.9740 0.0162 0.0830

GRU 0.9035 0.9617 0.9617 0.9566 0.0212 0.0966

BiGRU 0.9076 0.9621 0.9621 0.9614 0.0226 0.0925

Ensemble 0.9244 0.9715 0.9715 0.9774 0.0187 0.0756

and specificity values, highlighting their effectiveness in accurately
identifying both positive and negative instances. Among the
machine learning models, SVM ranks highest, followed closely by
LR and RF.

As the proportion of training data increases across the scenarios
(from 50% in Scenario 1 to 90% in Scenario 3), the accuracy,
sensitivity, specificity, and F1 score tend to rise, while the error
rate and Brier score tend to decrease. This illustrates that a
larger training dataset aids in enhancing model generalization and
performance. In summary, the findings highlight the advantages of
deep learning techniques compared to traditional machine learning
models in this classification challenge. Furthermore, the ensemble
model emerges as the top performer across all evaluated metrics,
making it the most dependable option for this particular issue.

On the other hand, after evaluating the model performance
with accuracy metrics (accuracy, sensitivity, specificity, F1 score,
Brier score, and error), the same prediction statistical tests (DM
tests) were used to explore the significance of different prediction
abilities between models. Table 6 shows the DM test of each

model pair to determine the outcome quality (mean performance
measurement). The results of the DM test (p-values) are shown in
Table 6. For clarity, the DM test examines whether the forecasting
errors of two models are statistically different. A p-value below 0.05
indicates that the difference in predictive performance between two
models is statistically significant at the 5% level, while higher p-
values suggest that the models perform similarly. In this study,
the table confirms that the ensemble model consistently achieves
statistically significant improvements compared to the other six
prediction models across all data-splitting scenarios.

Figure 2 illustrate the performance metrics of various
predictive models evaluated under three distinct scenarios:
(a) 50% training data and 50% testing data, (b) 75% training
data and 25% testing data and (c) 90% training data and 10%
testing data. The models considered include Support Vector
Machine (SVM), Random Forest (RF), Logistic Regression
(LR), AlexNet, Gated Recurrent Unit (GRU), Bidirectional GRU
(BiGRU), and an Ensemble model. The metrics employed for
evaluation consist of Accuracy, Sensitivity, Specificity, F1 Score
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TABLE 6 All predictive models (p-values) of DM test results are considered in all training and test dataset scenarios.

Model SVML RF LGR Alexnet GRU BiGRU Ensemble

1st scenario (50%, 50%)

SVML 0.00 0.02 0.01 0.99 0.06 0.05 0.99

RF 0.98 0.00 0.98 0.98 0.98 0.98 0.99

LGR 0.99 0.03 0.00 0.99 0.97 0.98 0.99

Alexnet 0.01 0.02 0.01 0.00 0.03 0.02 0.99

GRU 0.94 0.02 0.03 0.97 0.00 0.93 0.98

BiGRU 0.95 0.02 0.02 0.98 0.07 0.00 0.98

Ensemble 0.01 0.01 0.01 0.01 0.02 0.02 0.00

2st scenario (75%, 25%)

SVML 0.00 0.02 0.01 0.99 0.06 0.05 0.99

RF 0.99 0.00 0.98 0.99 0.98 0.98 0.99

LGR 0.99 0.02 0.00 0.99 0.97 0.98 0.99

Alexnet 0.01 0.02 0.01 0.00 0.03 0.02 0.99

GRU 0.94 0.02 0.03 0.97 0.00 0.93 0.98

BiGRU 0.95 0.02 0.02 0.98 0.07 0.00 0.99

Ensemble 0.01 0.01 0.01 0.01 0.02 0.01 0.00

3st scenario (90%, 10%)

SVML 0.00 0.01 0.01 0.99 0.06 0.05 0.99

RF 0.99 0.00 0.98 0.99 0.98 0.98 0.99

LGR 0.99 0.02 0.00 0.99 0.97 0.98 0.99

Alexnet 0.01 0.01 0.01 0.00 0.03 0.02 0.99

GRU 0.94 0.02 0.03 0.97 0.00 0.93 0.98

BiGRU 0.95 0.02 0.02 0.98 0.07 0.00 0.99

Ensemble 0.01 0.01 0.01 0.01 0.02 0.01 0.00

(FS), Brier Score (BS), and Error. Throughout all scenarios,
the models demonstrate consistently high levels of accuracy,
sensitivity, specificity, and F1 scores, indicating their effectiveness
in classification tasks. The Ensemble model consistently
achieves the best results, exhibiting minimal error and advanced
classification abilities.

• In scenario (a) 50% training–50% testing, the models
show somewhat lower accuracy relative to scenarios with
a greater amount of training data. This indicates that a
smaller training dataset causes a slight decrease in the models’
generalization capabilities.

• In scenario (b) 75% training–25% testing, the performance
across all models improves, with higher accuracy and
decreased error. This underscores the notion that more
training data positively influences model performance.

• In scenario (c) 90% training–10% testing, the models
achieve optimal performance, as evidenced by the highest
accuracy and the lowest error rates. The Ensemble model
particularly distinguishes itself as the most dependable model,
demonstrating strong generalization capabilities.

• SVM, RF, and LR: these traditional machine learning models
display competitive results but tend to fall short compared to

deep learning models (AlexNet, GRU, and BiGRU) regarding
sensitivity and specificity.

• AlexNet, GRU, and BiGRU: these deep learning models
illustrate enhanced classification capabilities, particularly in
sensitivity and F1 score. Their effectiveness in learning
intricate patterns within data contributes to their
outstanding performance.

• Ensemble model: this model consistently surpasses all
other models, suggesting that integrating multiple classifiers
enhances predictive accuracy and robustness.

The Brier score and error metrics decrease with an increase
in the training data proportion, signifying that more training data
results in better-calibrated predictions and fewer misclassification
incidents. The lowest error rates are recorded in the 90%
training–10% testing scenario, reinforcing the advantages of
augmented training data. This analysis reveals that enhancing the
amount of training data substantially boosts model performance
across all evaluated metrics. Deep learning models (AlexNet,
GRU, BiGRU) and the Ensemble model consistently outperform
conventional machine learning methods. Notably, the Ensemble
model exhibits superior classification accuracy, sensitivity, and
specificity, positioning it as the most trustworthy predictive
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FIGURE 2

Performance measures bar plots for all predictive models for all three scenarios: (a) 50% training and 50% testing, (b) 75% training and 25% testing, (c)
90% training and 10% testing.

model in all tested scenarios. These insights highlight the
value of employing ensemble and deep learning approaches for
critical classification tasks, particularly when ample training data
is available.

4 Conclusions

The findings allow us to conclude that the chosen deep
learning, machine learning, and ensemble methods demonstrated
a strong predictive ability, primarily due to the linear correlation
between academic characteristics and student outcomes. Among
the techniques utilized, three machine learning models (Logistic
Regression, Support Vector Machine, and Random Forest), along
with deep learning models (AlexNet, Gated Recurrent Unit,
and Bidirectional Gated Recurrent Unit), were analyzed, as well
as ensemble models. Nonetheless, the Ensemble model, which
combines deep learning and machine learning techniques, is
preferred due to its superior accuracy, precision, and sensitivity
performance metrics. The critical factors for assessing a student’s
academic performance at the Peruvian university include the
number of Failed Courses and the grades received in the first 2
years, as these are crucial determinants for the student’s academic
success. To ensure that a student maintains good academic
performance in subsequent years, proactive measures should be
taken in alignment with the model’s predictions during the
initial two years. Furthermore, the consistency of the proposed
predictive system was validated by dividing the entire dataset into
three training and testing scenarios [(90%, 10%), (75%, 25%),
and (50%, 50%)], conducting a comparative assessment of the
models using six performance metrics, graphical analyses, and

statistical testing through five hundred simulation runs. According
to the evaluation results, the ensemble model consistently
outperformed the other models across all three training and
testing scenarios.

Despite the promising results, several limitations must be
acknowledged. First, the dataset is restricted to 11 schools of the
Adventist Educational Network in the macro-south of Peru, which
raises questions about external validity. The predictive power of the
model may be context-dependent, as socio-economic, cultural, and
institutional factors not captured in the dataset could significantly
influence academic performance in other settings. Therefore,
extrapolation of results beyond this specific institutional and
geographical context should be approached with caution. Second,
although rigorous data cleaning and verification procedures were
performed, reliance on institutional records may still introduce
biases or gaps in data collection that could affect the outcomes.
Finally, while the models achieve high predictive performance, the
absence of explicit interpretability analysis (e.g., SHAP or LIME)
limits their immediate practical applicability for educators and
decision-makers.

Future research should address these limitations by (i) testing
the model on external datasets from diverse institutional and
cultural contexts to assess generalizability, (ii) incorporating
broader socio-economic and demographic variables to capture a
wider range of determinants of student success, (iii) evaluating
longitudinal datasets to study dynamic academic trajectories, and
(iv) integrating explainability frameworks to provide actionable
insights into the role of specific features. By pursuing these
directions, subsequent studies can enhance the robustness, fairness,
transparency, and practical utility of AI-driven predictive systems
in education. Likewise, can also be extended to other scenarios with
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different datasets (Iftikhar et al., 2024c; Cabello-Torres et al., 2022;
Cruz et al., 2020).
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