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Background: Early and accurate detection of ovarian cancer (OC) remains 
clinically challenging, prompting exploration of artificial intelligence (AI)-based 
ultrasound diagnostics. This systematic review and meta-analysis critically 
evaluate diagnostic accuracy, methodological rigor, and clinical applicability of 
AI models for ovarian mass classification using B-mode ultrasound.
Methods: A systematic literature search following PRISMA guidelines was 
conducted in PubMed, IEEE Xplore, and Scopus up to December 2024. 
Eligible studies included AI-based ovarian mass classification using B-mode 
ultrasound, reporting accuracy, sensitivity, specificity, and/or area under the 
ROC curve (AUC). Data extraction, quality assessment (PROBAST), and meta-
analysis (random effects) were independently performed by two reviewers. 
Heterogeneity sources were explored.
Results: From 823 identified records, 44 studies met inclusion criteria, covering 
over 650,000 images. Pooled performance metrics indicated high accuracy 
(92.3%), sensitivity (91.6%), specificity (90.1%), and AUC (0.93). Automated 
segmentation significantly outperformed manual segmentation in accuracy 
and sensitivity, demonstrating standardization benefits and reduced observer 
variability. Dataset size minimally correlated with performance, highlighting 
methodological rigor as a primary determinant. No specific AI architecture 
consistently outperformed others. Substantial methodological heterogeneity 
and frequent risk-of-bias issues (limited validation, small datasets) currently limit 
clinical translation.
Conclusion: AI models show promising diagnostic performance for OC 
ultrasound imaging. However, addressing methodological challenges, including 
rigorous validation, standardized reporting (TRIPOD-AI, STARD-AI), and 
prospective multicenter studies, is essential for clinical integration. This review 
provides clear recommendations to enhance clinical translation of AI-based 
ultrasound diagnostics.
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1 Introduction

Ovarian cancer (OC) is the most lethal gynecological neoplasm 
and the fifth leading cause of cancer-related mortality in women 
(Dalmartello et al., 2022; Siegel et al., 2021). The incidence of OC 
in the USA is estimated to be 10.2 cases, and the mortality rate is 
6.0 deaths per 100,000 women per year, indicating approximately 
1.1% lifetime risk for women (NIH, 2020). Despite advances in 
diagnosis and treatment, the mortality rate has not shown a 
significant decline over the past three decades, primarily due to the 
challenges in early detection and limited therapeutic efficacy in 
advanced-stage disease (Badgwell and Bast, 2007; Jacobs and 
Menon, 2004; Bast et al., 2007; Torre et al., 2018). Currently, 70% of 
OC cases are diagnosed at advanced stages, where five-year survival 
drastically drops to 20%–30%, in contrast to 80%–95% survival 
when detected at early stages (Bowtell et  al., 2015). Therefore, 
improving early-stage detection methods is critically important to 
enhance patient outcomes.

Transvaginal ultrasound (TVS), computed tomography (CT), and 
magnetic resonance imaging (MRI) are the primary imaging 
modalities for OC detection. TVS is particularly advantageous as a 
non-invasive, cost-effective, accessible, and real-time imaging method, 
allowing assessment of ovarian masses’ size, shape, and internal 
structures (e.g., septa, solid tissue), aiding differentiation between 
benign and malignant tumors. However, the limited resolution of TVS 
may fail to detect small or early-stage tumors, and overlapping 
anatomical structures, such as bowel loops or normal ovarian tissue, 
complicate mass differentiation. Moreover, specific OC subtypes do 
not exhibit significant morphological changes in early phases, 
reducing sensitivity (Wu et al., 2018; Rosati et al., 2020).

Despite these limitations, TVS remains indispensable in the initial 
OC diagnosis due to accessibility and low cost. However, interpretation 
often varies significantly with radiologist experience, resulting in 
diagnostic inconsistencies and clinical errors (Bäumler et al., 2020; 
Nebgen et al., 2019). These issues underscore the critical need for 
standardized, objective, and automated diagnostic methods that 
enhance accuracy and reduce inter-observer variability.

Artificial intelligence (AI) integration has significantly advanced 
medical imaging diagnostics, improving tumor identification accuracy 
and consistency. Convolutional neural networks (CNNs), a 
sophisticated deep learning (DL) architecture, have demonstrated over 
90% accuracy in extracting complex TVS image features and 
classifying ovarian malignancy in several studies (Akazawa and 
Hashimoto, 2021; Sone et al., 2021). Beyond accuracy, AI reduces 
human interpretation errors and enables the analysis of large datasets 
(Falana et al., 2023; Sahu and Shrivastava, 2023).

However, several challenges hinder the clinical translation of AI 
in OC detection. Crucially, existing DL models suffer from inadequate 
dataset representativeness, as most research uses datasets from single 
institutions, leading to population biases. AI model performance 
notably declines when tested on populations with different ethnic, 
geographic, or technological characteristics (Noseworthy et al., 2020). 
Additionally, heterogeneity in TVS image quality, formats, resolution, 
and acquisition protocols across institutions further impairs AI model 
reproducibility and generalizability (Raciti et al., 2023).

A significant barrier is the absence of robust prospective clinical 
validation. Most AI algorithms have been validated retrospectively, 
limiting insights into their real-time clinical applicability (Raciti et al., 
2023). Furthermore, lack of standardized annotation and segmentation 
protocols significantly impacts AI model accuracy, with manual 
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segmentation inconsistencies affecting performance by up to 20% 
(Heinlein et al., 2024; Ho et al., 2022). The absence of international 
consortia, standardized benchmarking, and sufficiently large, diverse, 
open-access TVS image databases also restrict the comparative 
evaluation and robust training of AI models. While initiatives like The 
Cancer Imaging Archive (TCIA) have addressed similar needs in other 
cancer areas, a parallel effort for OC is currently lacking (NIH, n.d.).

This systematic review and quantitative meta-analysis address 
these critical knowledge gaps by evaluating the diagnostic performance 
of AI models applied specifically to B-mode TVS images for early OC 
detection. Through a comprehensive comparison of accuracy, 
sensitivity, specificity, and area under the curve (AUC) across CNNs, 
classical machine learning algorithms, and transformer-based models, 
the study assesses how methodological factors, such as segmentation 
and dataset size, influence model performance. Clarifying these 
factors is expected to enhance clinical practice directly by guiding the 
development of robust, standardized AI tools capable of improving 
early OC diagnosis, thereby increasing patient survival rates and 
clinical outcomes.

2 Methodology

This study was designed and conducted following the PRISMA 
2020 guidelines (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) (Liberati et al., 2009; Page et al., 2021) to ensure 
transparency, reproducibility, and comprehensiveness in the 
systematic review and meta-analysis (Supplementary Tables S1, S2). 
The methodological protocol included a predefined search strategy, 
explicit eligibility criteria, risk of bias assessment, and statistical 
analysis of the extracted data. Specifically, the systematic review was 
guided by the following research questions:

	•	 What is the diagnostic accuracy (accuracy, sensitivity, specificity, 
and AUC) of AI-based models for ovarian mass classification 
using B-mode ultrasound?

	•	 Which methodological factors, such as segmentation 
methodology (automatic vs. manual), dataset size, AI model 
architecture, and risk of bias significantly influence the diagnostic 
performance of AI models?

2.1 Search strategy

In January 2025, a comprehensive search was conducted in three 
high-impact scientific databases: PubMed, IEEE Xplore, and Scopus. 
The search strategy included the following terms combined using 
Boolean operators: (“machine learning” OR “artificial intelligence” OR 
“deep learning” OR “neural network”) AND (“ovarian cancer” OR 
“ovarian tumor”) AND “ultrasound.” No language or publication type 
restrictions were applied during the initial search.

2.2 Eligibility criteria

The following inclusion and exclusion criteria were explicitly 
defined to ensure transparency and reproducibility in the systematic 
selection of studies (see Table 1).

Studies meeting all inclusion criteria and none of the exclusion 
criteria were eligible for inclusion in this systematic review and 
meta-analysis.

2.3 Study selection process

Two independent reviewers (IGA and FVF) initially evaluated the 
title and abstract of each article identified through the database search, 
applying the inclusion and exclusion criteria explicitly defined in 
Section 2.2. This preliminary assessment allowed for the exclusion of 
clearly irrelevant or ineligible studies. In cases of discrepancies during 
this initial stage, a third reviewer (EDB) was consulted to reach 
consensus. Subsequently, the full texts of the preselected articles were 
reviewed again by both reviewers (IGA and FVF) to confirm their 
definitive eligibility for inclusion in the quantitative analysis.

2.4 Data extraction

The following variables were extracted from each study: author, 
year, type of segmentation, model architecture, model name, image 
dataset size, type of ovarian masses, number of classes, and 
performance metrics (accuracy, sensitivity, specificity, and AUC). For 
studies reporting multiple models, the one with the best overall 
performance was selected to avoid data duplication. The information 
was systematized into a structured database for subsequent 
statistical analysis.

2.5 Risk of bias assessment

The methodological quality of the included studies was assessed 
using the PROBAST tool (Prediction model Risk of Bias Assessment 
Tool) (Wolff et  al., 2019), which evaluates the risk of bias and 
applicability in studies that develop or validate prediction models. 

TABLE 1  Inclusion and exclusion criteria for study selection.

Inclusion criteria Exclusion criteria

Original research articles evaluating AI 

models

Systematic reviews, meta-analyses, 

letters to the editor, or abstracts from 

conferences

Studies utilizing 2D B-mode 

transvaginal ultrasound (TVS) images

Studies employing imaging modalities 

other than ultrasound (e.g., CT, MRI)

Studies involving the detection or 

classification of ovarian cancer in 

humans

Studies exclusively focused on 

serological biomarkers, genomic 

analyses, or animal models

Studies reporting at least one 

performance metric (accuracy, 

sensitivity, specificity, or AUC)

Studies without accessible full text or 

not reporting any relevant performance 

metric

Studies based on real patient data Purely theoretical studies without 

clinical validation

Full-text articles published in English 

or Spanish

Studies published in languages other 

than English or Spanish

Studies published up to December 2024 Studies published after December 2024
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PROBAST comprises 20 items grouped into four domains: (i) 
participant selection, (ii) predictors, (iii) outcomes, and (iv) statistical 
analysis. Two reviewers (IGA and FVF) independently performed this 
evaluation. Discrepancies were resolved by consensus. A detailed 
assessment of the 20 PROBAST items for each study and domain-
specific classifications is included as Supplementary Tables S3, S4.

2.6 Statistical analysis

2.6.1 Descriptive statistics and distribution 
assessment

Descriptive statistics were calculated for performance metrics, 
including accuracy, sensitivity, specificity, and AUC, and are reported 
as means, standard deviations, and ranges. The Shapiro–Wilk test was 
used to assess the normality of distributions, while Levene’s test was 
applied to evaluate the homogeneity of variances.

Because F1-score was rarely reported and often lacked the 
underlying confusion matrix, we  did not meta-analyze F1. For 
interpretability, accuracy, sensitivity, specificity, and AUC remained 
our primary endpoints.

2.6.2 Comparison between segmentation 
methods (automatic vs. manual)

Given the presence of non-normal distributions and limited 
subgroup sizes, non-parametric tests were prioritized to enhance 
statistical validity. Specifically, a Mann–Whitney U test was used to 
compare accuracy between automatic and manual 
segmentation strategies.

2.6.3 Comparison across AI model architectures
Differences in accuracy across AI architecture categories (e.g., 

CNN, ML, ANN) were assessed using a Kruskal–Wallis H test. 
Additionally, performance variation between DL models (e.g., CNNs) 
and classical machine learning approaches was evaluated using 
one-way analysis of variance (ANOVA).

2.6.4 Correlation between dataset size and 
diagnostic performance

The relationship between dataset size and diagnostic performance 
was explored using Pearson’s correlation, excluding studies with more 
than 5,000 images to mitigate the influence of extreme values.

2.6.5 Meta-regression analysis of methodological 
factors

A meta-regression analysis was performed using ordinary least 
squares (OLS) modeling to investigate the combined influence of 
methodological variables on diagnostic performance. Accuracy was 
modeled as the dependent variable, and key predictors included 
dataset size, segmentation type (automatic vs. manual), model 
architecture (CNN vs. other), and risk of bias (high vs. low). The 
regression included 26 studies with complete data and demonstrated 
that segmentation type was a significant predictor of accuracy 
(β = 0.0656, p = 0.007), while the other covariates did not reach 
statistical significance. The model explained approximately 32% of 
the variance in accuracy (adjusted R2 = 0.32), supporting the 
relevance of segmentation quality as a determinant of AI 
model performance.

2.6.6 Subgroup and sensitivity analyses
Subgroup analyses were conducted based on risk of bias 

(assessed by PROBAST), and a sensitivity analysis was performed by 
excluding studies rated as high risk to determine the robustness 
of findings.

2.6.7 Software and reproducibility
All statistical analyses were conducted using Python (v3.12), 

leveraging the pandas, numpy, scipy, statsmodels, matplotlib, and 
seaborn libraries. Complete analysis code and data visualizations are 
available upon request.

All figures include concise alternative text in the captions, and a 
separate Supplementary material provides long textual descriptions.

3 Results

The systematic search in the PubMed, IEEE Xplore, and Scopus 
databases yielded 823 studies. After removing 58 duplicates, 765 titles 
and abstracts were screened. Of these, 686 were excluded for not 
meeting the inclusion criteria, resulting in 79 articles for full-text 
review. Finally, 44 studies were included in the quantitative analysis 
(Figure 1).

The studies cover a period up to December 2024. Collectively, 
they analyzed over 650,000 B-mode TVS images for ovarian mass 
classification using various AI models. Most studies (n = 27; 61.4%) 
used automatic segmentation, while the remainder (n = 17; 38.6%) 
employed manual segmentation. The predominant architectures were 
CNNs, followed by classical ML algorithms, conventional artificial 
neural networks (ANNs), and transformer-based architectures that 
have emerged in recent years (Table 2).

3.1 Overall performance of AI models

The analysis of the 44 included studies revealed the high average 
diagnostic performance of AI models applied to B-mode TVS images 
for OC detection. The mean accuracy was 92.3% ± 5.8, with mean 
sensitivity and specificity of 91.6% ± 7.2 and 90.1% ± 8.1, respectively. 
AUC values were reported in only 23 studies, with a mean of 
0.93 ± 0.04, reflecting strong overall discriminative capacity. However, 
the partial availability of AUC reporting may indicate a potential 
reporting bias that limits the robustness of comparative analysis across 
all models. Beyond AUC’s limited reporting (23/44 studies), F1-score 
was scarcely available across the corpus. This pattern likely reflects 
historical reliance on accuracy/sensitivity/specificity in ultrasound AI, 
frequent absence of continuous model scores (hindering AUC), and 
the lack of confusion matrices or class-wise results needed for F1. In 
addition, F1 is sometimes reported as Dice in segmentation studies; 
because our review targets classification performance, segmentation-
specific Dice metrics were not pooled, which might also contribute to 
the perceived under-reporting of F1.

Figure  2 provides a comparative overview of the four main 
performance metrics for the 10 top-performing models. This 
visualization highlights how specific models exhibit strong accuracy 
yet relatively lower specificity, an observation with important clinical 
implications when considering false-positive rates in 
diagnostic triage.
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Several models, including those based on OCD-FCNN, 
probabilistic neural networks (PNN), and ResNet-34, reported peak 
performance values exceeding 95%. However, many of these models 
were trained and tested on small or non-external datasets, lacked 
proper cross-validation, or relied exclusively on internal test sets. Such 
methodological limitations increase the likelihood of overfitting and 
restrict the generalizability of reported outcomes. None of the highest-
performing models reported prospective validation or integration into 
clinical workflows, which remains essential for evaluating real-
world applicability.

To assess whether methodological design influenced diagnostic 
performance, non-parametric tests were conducted using accuracy as 
the outcome variable. A Mann–Whitney U-test revealed a statistically 
significant difference in accuracy between models using automatic 
versus manual segmentation (U = 234.0, p = 0.007), favoring automatic 

methods. This finding suggests that automated segmentation enhances 
standardization and reduces variability across studies.

Conversely, a Kruskal–Wallis test comparing performance across 
AI architectures (e.g., CNN, ML, ANN) did not identify statistically 
significant differences (H = 6.53, p = 0.258), indicating that no specific 
architectural family demonstrated superior accuracy within the 
current dataset. Nevertheless, visual inspection using violin plots 
(Figure 3) showed a moderately higher central tendency and reduced 
the variance in accuracy among CNN-based models compared to 
classical machine learning (ML) approaches. While this pattern may 
reflect the architectural strengths of CNNs in capturing spatial 
hierarchies within medical images (Litjens et  al., 2017), it should 
be interpreted cautiously. CNN-based models were more frequently 
applied in recent studies, which may also have benefited from 
advances in data augmentation, automatic segmentation, and 

FIGURE 1

PRISMA flow diagram of our study. The figure illustrates the study selection process following PRISMA 2020 guidelines. A total of 823 records were 
identified through three databases (PubMed, IEEE Xplore, and Scopus). After removing 58 duplicates, 765 titles and abstracts were screened, excluding 
686 studies that did not meet the eligibility criteria. Seventy-nine full-text articles were assessed for inclusion, of which 35 were excluded for using 
non-ultrasound imaging modalities (e.g., CT or MRI), focusing exclusively on segmentation methods, or lacking histopathological validation. Ultimately, 
44 studies were included in the final quantitative analysis.
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TABLE 2  List of the 44 articles analyzed.

Id References Year Segmentation Algorithm 
architecture

Artificial 
intelligence 
model

Size of 
dataset

Type of 
masses

Classes Accuracy Sensitivity Specificity AUC Risk of 
bias

1 Ravishankar et al. (2023) 2023 Automatic CNN OCD-FCNN 440 Cysts 8 0.984 0.97 – – High

2 Li et al. (2022) 2022 Automatic CNN LKResNet-18 5,714 Tumors 3 0.9145 0.918 0.918 – Low

3 Fan et al. (2023) 2023 Automatic CNN Ocys-Net 750 Cysts 3 0.955 – – 0.885 Unclear

4 Al-karawi et al. (2021) 2021 Manual ML SVM 242 Tumors 3 0.8058 0.8104 0.8022 – Low

5 Patil et al. (2024) 2024 Automatic ML RF 187 Tumors 3 0.86 – – – Unclear

6 Kiruthika et al. (2023) 2023 Automatic ML SVM 630 Tumors 3 0.965 0.96 0.955 – Low

7 Wang et al. (2021) 2021 Manual CNN ResNet-34 279 Tumors 3 0.914 0.914 0.914 0.963 Low

8 Shih-Tien et al. (2022) 2022 Automatic ML EL 1896 Tumors 2 0.9215 0.9137 0.9292 – Low

9 Meijing et al. (2023) 2023 Manual CNN ResNext50 1,142 Cysts 7 0.952 0.895 0.992 0.997 Low

10 Chen et al. (2022) 2022 Manual CNN ResNet-18 422 Tumors 2 – 0.92 0.85 0.93 Low

11 Gao et al. (2022) 2022 Automatic CNN DenseNet-121 575,930 Tumors 2 0.888 0.789 0.932 0.911 Low

12 Xiang et al. (2024) 2024 Automatic ML EL 3,972 Tumors 2 0.876 0.973 0.741 0.97 Low

13 Du et al. (2024) 2024 Manual ANN DLRN 849 Tumors 2 0.871 0.733 0.880 0.928 Unclear

14 Miao et al. (2024) 2024 Automatic CNN ConvNeXt 575 Cysts 2 0.90 0.90 – 0.90 Unclear

15 Alwan et al. (2023) 2023 Automatic CNN CNN 196 Tumors 2 0.9897 – – – High

16 Martínez-Más et al. (2019) 2019 Manual ML SVM 187 Tumors 2 0.8770 0.91 0.83 0.8740 Unclear

17 Acharya et al. (2014) 2014 Automatic ANN PNN 2,600 Tumors 2 0.9981 0.9992 0.9969 – High

18 Hussein et al. (2020) 2020 Automatic FDA Viola-Jones 125 Tumors 2 0.9484 0.9696 0.9032 – Unclear

19 Hussein et al. (2022) 2021 Automatic ANN ANN 250 Tumors 2 0.9587 0.9701 0.9333 – Unclear

20 Acharya et al. (2014) 2014 Automatic ANN PNN 2,600 Tumors 2 1.00 1.00 1.00 – High

21 Jeevitha and Priya (2022) 2022 Automatic ML SVM 100 Cysts 3 0.985 0.940 – – Unclear

22 Wang et al. (2024) 2024 Manual CNN ResNet-50 1,054 Tumors 2 0.9476 0.9428 0.9500 0.984 Low

23 Narmatha et al. (2023) 2023 Automatic RNN Deep 

Q-Network

478 Cysts 7 0.96 0.96 – – Unclear

24 Yuyeon et al. (2022) 2022 Automatic CNN DenseNet161 1,613 Cysts 5 0.9012 0.8667 0.9185 0.9406 Low

25 Pham and Le (2024) 2024 Automatic CNN YOLOv8 1,469 Tumors 8 0.9126 0.8330 – – Low

26 Kongara et al. (2024) 2024 Automatic CNN CNN 3,280 Cysts 2 0.9918 – – – Unclear

27 Li et al. (2024) 2024 Automatic CNN PMFFNet 1,469 Cysts 7 0.9724 0.9855 – – Low

28 Miao et al. (2023) 2023 Automatic CNN ResNet-34 1,130 Tumors 2 – 0.97 0.93 0.95 Low

(Continued)
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TABLE 2  (Continued)

Id References Year Segmentation Algorithm 
architecture

Artificial 
intelligence 
model

Size of 
dataset

Type of 
masses

Classes Accuracy Sensitivity Specificity AUC Risk of 
bias

29 Moro et al. (2024) 2024 Manual ML RF 775 Tumors 2 – 0.99 0.64 0.88 Low

30 Chiappa et al. (2021) 2020 Manual CNN CNN 241 Cysts 3 0.83 0.78 0.85 0.88 Low

31 Xi et al. (2023) 2023 Automatic CNN DenseNet 1,103 Tumors 2 0.964 0.997 0.952 0.973 Low

32 Ștefan et al. (2021) 2021 Automatic ML KNN 123 Tumors 2 – 0.9048 0.931 0.951 Unclear

33 Christiansen et al. (2021) 2021 Manual ML EL 3,077 Tumors 2 – 0.971 0.937 0.958 Low

34 Aramendía-Vidaurreta 

et al. (2015)

2015 Manual ANN MLP 145 Tumors 2 0.9878 0.9850 0.9890 0.997 Unclear

35 Liu et al. (2024) 2024 Manual CNN ResNet-101 1,080 Tumors 2 0.849 0.930 0.817 0.935 Low

36 Liu et al. (2024) 2024 Manual ML LR 407 Cysts 2 0.948 0.955 0.942 0.981 Low

37 Du et al. (2024) 2024 Manual CNN ResNet-50 849 Tumors 3 0.8003 0.7515 – 0.85 Low

38 Tang et al. (2022) 2022 Manual ML LR 206 Tumors 2 – – – 0.886 Low

39 Acharya et al. (2018) 2018 Manual ML RF 469 Tumors 2 0.8060 0.8140 0.7630 – High

40 Sha (2024) 2024 Automatic CNN AdaResU-Net 700 Tumors 2 0.9887 0.9850 0.9960 – High

41 Xie et al. (2024) 2024 Automatic CNN YOLOv8 1,619 Tumors 2 0.935 0.905 0.935 0.930 Low

42 Giourga et al. (2024) 2024 Automatic ML EL 3,510 Cysts 2 0.909 0.965 0.881 0.922 Low

43 He et al. (2024) 2024 Manual TBM Swin 

transformer

7,639 Tumors 2 – 0.872 0.943 0.920 Low

44 Dai et al. (2024) 2024 Automatic TBM Pyramid visual 

transformer

6,938 Tumors 3 0.873 0.878 0.869 0.941 Low

AUC, area under the curve; CNN, convolutional neural network; FCNN, fuzzy rule-based convolutional neural network; ML, machine learning; SVM, support vector machine: RF, random forest; EL, ensemble learning; ANN, artificial neural network; DLRN, deep 
learning radiomics nomogram; PNN, probabilistic neural network; FDA, face detection algorithm; RNN, recurrent neural network; KNN, K-nearest neighbor; MLP, multilayer perceptron networks; LR, logistic regression; TBM, transformer-based models.
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FIGURE 2

Top 10 AI models (comparison of accuracy, sensitivity, specificity, and AUC). This figure compares performance metrics (accuracy, sensitivity, 
specificity, and AUC) of the 10 highest-performing AI models identified in the review. Generally high accuracy is observed across models, but some 
exhibit trade-offs between sensitivity and specificity. This variability highlights the importance of selecting models not only with high overall accuracy 
but also clinically meaningful balance to minimize diagnostic errors, particularly false positives and false negatives.

preprocessing pipelines. Therefore, the observed trend could 
be  confounded by methodological improvements rather than an 
inherent advantage of architecture.

It is also important to note that model performance was evaluated 
exclusively using accuracy, as this was the most consistently reported 
metric across studies. While this allowed for comparability, it may 
limit interpretability in class-imbalanced settings, where metrics such 
as AUC or F1-score are often more informative. Future studies should 
prioritize the reporting of multiple complementary metrics to capture 
diagnostic value more comprehensively.

These descriptive findings are further explored and formally 
tested in the meta-regression presented in Section 3.4.

In summary, while reported performance metrics are generally 
high, the absence of standardized validation protocols, partial 
reporting of key metrics, lack of weighted or stratified analyses, and 
underreporting of methodological variables (especially segmentation 
and validation strategies) limit the interpretability and clinical 
generalizability of the findings. Future studies should adopt 
harmonized reporting guidelines (e.g., TRIPOD-AI, PROBAST-AI), 
employ multicenter and external validation, and report performance 
metrics in clinically meaningful terms to support reliable and 
reproducible integration into diagnostic workflows.

3.2 Relationship between dataset size and 
performance

The relationship between the number of images used to train AI 
models and their diagnostic performance was evaluated using 

non-parametric correlation analysis. Although Pearson’s method was 
initially considered, the Shapiro–Wilk test confirmed that dataset size 
and performance metrics (accuracy, sensitivity, specificity) were not 
normally distributed (p < 0.001 for all), prompting the use of 
Spearman’s rank correlation.

Studies with more than 5,000 images were excluded from this 
analysis to reduce the risk of statistical distortion from highly 
imbalanced sample sizes. While large-scale datasets (up to 575,000 
images) have become increasingly common in AI development, such 
volumes do not reflect typical clinical practice and may 
disproportionately drive correlation estimates. The 5,000-image 
threshold was selected to capture real-world data conditions better 
while preserving inter-study variability. Descriptive analysis of the full 
dataset showed that this threshold approximately corresponds to the 
75th percentile of dataset sizes among included studies.

Spearman correlation coefficients between dataset size (≤5,000) 
and model performance metrics were weak and statistically 
non-significant. Specifically, the correlation with accuracy was 
ρ = 0.080 (p = 0.653), with a 95% confidence interval of −0.27 to 0.41 
and an R2 of 0.006, suggesting that less than 1% of the variation in 
accuracy could be  explained by dataset size. For sensitivity, the 
correlation was ρ = 0.246 (p = 0.154; 95% CI: −0.09 to 0.54; 
R2 = 0.061), and for specificity, ρ = 0.183 (p = 0.350; 95% CI: −0.20 to 
0.52; R2 = 0.034). Table  3 summarizes these results, including the 
correlation coefficients, confidence intervals, and the proportion of 
explained variance.

While these findings suggest that increasing dataset size within the 
studied range does not systematically improve model performance, this 
interpretation should be  cautiously made. The exclusion of large 
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datasets may limit the generalizability of these findings, and potential 
interaction effects, such as those involving the segmentation method, 
risk of bias, or model architecture, were not examined in this univariate 
analysis. These results are, however, consistent with the multivariable 
meta-regression analysis presented in Section 4, in which dataset size 
did not emerge as a significant independent predictor of accuracy.

One plausible explanation lies in the widespread adoption of data 
augmentation strategies. Techniques such as image rotation, scaling, 
contrast adjustment, and noise addition simulate data variability and 
may reduce the dependency on raw volume. However, excessive use 
of augmentation may also lead to redundancy or learning saturation, 
where additional data no longer meaningfully improves generalization.

This interpretation is in line with prior literature. For instance, 
Roberts et  al. (2021) found that dataset size was not consistently 
associated with performance in a comprehensive medical imaging AI 
studies review. Instead, methodological rigor, validation strategy, and 
data diversity were identified as stronger predictors of performance. 
Furthermore, the risk of performance overestimation due to 
augmented or homogeneous datasets remains a critical concern in 
model evaluation.

Figure  4 presents scatterplots of accuracy, sensitivity, and 
specificity versus dataset size (≤5,000), each overlaid with a 
non-parametric LOWESS regression line and 95% confidence bands. 

While substantial scatters are observed across all metrics, the absence 
of clear or consistent directional trends underscores the importance 
of factors beyond sample size, such as annotation quality and 
experimental design in developing reliable diagnostic models.

3.3 Comparison between automatic and 
manual segmentation

To evaluate the impact of segmentation strategy on the diagnostic 
performance of AI models, performance metrics were compared 
between studies that implemented automatic segmentation (n = 27) 
and those that used manual segmentation (n = 17).

Models using automatic segmentation achieved a significantly 
higher average accuracy (94.2% ± 4.3) than manual segmentation 
(88.2% ± 6.6, p = 0.012). Sensitivity also favored automatic 
segmentation (93.7% ± 5.6 vs. 88.6% ± 8.3, p = 0.042). Although 
specificity was higher in the automatic group (92.5% ± 6.0 vs. 
87.3% ± 9.5), the difference was not statistically significant (p = 0.084). 
AUC values were nearly identical between both groups (p = 0.839). 
Confidence intervals for these comparisons were not reported but are 
recommended for future studies to enhance the interpretability and 
reproducibility of statistical estimates.

Levene’s test revealed a significantly more significant variance in 
specificity within the manual segmentation group (p = 0.045), 
indicating less consistency. This is consistent with previous literature 
findings, highlighting manual segmentation’s susceptibility to inter- 
and intra-observer variability, particularly when standardized 
annotation protocols or multiple expert raters are not employed (Taha 
and Hanbury, 2015; Menze et al., 2015).

Although the primary studies reported heterogeneous 
segmentation details that precluded a stratified meta-analysis by 

FIGURE 3

Accuracy distribution by AI architecture: CNN vs. classical machine learning (ML). This figure illustrates that, although there is no statistically significant 
difference between architectures (p = 0.258), CNN-based models tend to display higher median accuracy and reduced variability compared to 
classical ML models. This result suggests a potential advantage of CNNs, likely due to their superior ability to capture complex features from medical 
images, though methodological advances in recent studies may also contribute to this observed trend.

TABLE 3  Correlation between dataset size and performance metrics.

Performance 
metric

Spearman ρ 95% CI R2

Accuracy 0.080 [−0.27, 0.41] 0.006

Sensitivity 0.246 [−0.09, 0.54] 0.061

Specificity 0.183 [−0.20, 0.52] 0.034
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FIGURE 4

Non-parametric association between dataset size and model performance metrics (≤5,000 images). Scatter plots depict the relationship between 
dataset size and three key performance metrics: (A) accuracy, (B) sensitivity, and (C) specificity across studies with ≤5,000 training images. The red 
lines represent LOWESS (locally weighted scatterplot smoothing) regression fits with 95% confidence bands. Although minor local variations are 
observed, no clear or systematic trend indicates a significant improvement in these performance metrics with increasing dataset size within the 
clinically relevant range analyzed. This finding suggests that methodological factors other than dataset size may have a greater influence on diagnostic 
model accuracy.

architecture, a brief practical comparison is informative for clinical 
implementation. U-Net remains the canonical encoder–decoder with 
skip connections that performs well when lesion boundaries are 
reasonably defined, and training data are limited. AdaResU-Net 
augments U-Net with residual blocks and adaptive mechanisms that 
enlarge the effective receptive field and stabilize gradient flow, 
improving boundary delineation in speckle-rich ultrasound and in the 
presence of heterogeneous echotexture. In practice, U-Net offers 
simplicity and fast deployment; AdaResU-Net can yield crisper 
contours and fewer leakage errors near cyst walls at the cost of extra 
parameters. These architectural tradeoffs are likely to contribute to the 
higher and less variable accuracy we observed with automated vs. 
manual segmentation. Future primary studies should report 
standardized segmentation metrics (e.g., Dice, surface distance) 
alongside classification endpoints to enable formal architecture-
level synthesis.

Figure 5 presents comparative boxplots of accuracy, sensitivity, 
specificity, and AUC by segmentation type. The distributions reveal 
higher mean values for automatic segmentation across most metrics, 
lower dispersion, and fewer outliers, especially for specificity and 

sensitivity. This visual trend suggests increased consistency, which 
may be  attributed to the standardization benefits of 
automated pipelines.

Table  4 provides a detailed summary of methodological 
characteristics and performance metrics stratified by segmentation 
type. Studies using automatic segmentation not only performed better 
on average but also used considerably larger datasets (mean = 22,941 
vs. 1,121 images) and demonstrated lower standard deviation across 
metrics such as accuracy (4% vs. 7%) and specificity (6% vs. 10%).

However, this interpretation should be approached with caution. 
Although these group-level comparisons suggest superior 
performance with automatic segmentation, the analysis did not 
control for potential confounders such as dataset size, model 
architecture, training methodology, or publication year. Importantly, 
these variables may co-vary with segmentation strategy, particularly 
since automatic methods are more prevalent in recent, technically 
advanced studies.

As shown in the meta-regression (Section 3.4), the segmentation 
strategy remained a significant independent predictor of accuracy 
even after adjusting for these covariates. Nevertheless, the unadjusted 
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differences observed here might still reflect broader methodological 
convergence rather than a causal advantage of automatic 
segmentation per se.

Future studies should incorporate multivariable models, 
harmonized annotation protocols, and prospective designs to clarify 
the segmentation method’s isolated effect on AI model performance. 
Moreover, reporting standards such as STARD-AI and TRIPOD-AI 
should be  adopted to ensure replicability and transparency in 
performance evaluation across studies (Collins et  al., 2021; 
Sounderajah et al., 2021).

3.4 Meta-regression analysis of 
methodological factors

To further explore the drivers of diagnostic performance, a meta-
regression was performed using accuracy as the dependent variable 
and four predictors: dataset size, segmentation strategy (automatic vs. 
manual), model architecture (CNN vs. other), and risk of bias (high 
vs. low). The regression model included 26 studies with complete data 
across all variables (Figure 6).

The overall model was statistically significant (F = 3.98, 
p = 0.015), with an adjusted R2 of 0.32, indicating that the included 
predictors could explain approximately 32% of the variance in 
reported accuracy.

Among the covariates, segmentation strategy emerged as a 
significant predictor: studies using automatic segmentation reported 
on average, a 6.6 percentage point higher accuracy compared to 

those using manual segmentation (β = 0.0656, p = 0.007). This 
aligns with previous findings suggesting that automated 
preprocessing may reduce inter-observer variability and 
improve reproducibility.

Other predictors, such as dataset size, CNN architecture, and risk 
of bias, were not statistically significant at the conventional threshold 
(p > 0.050). However, the effect of high risk of bias approached 
significance (β = 0.0427, p = 0.096), suggesting a possible inflation of 
performance estimates in studies with methodological limitations.

Notably, dataset size was not a significant predictor (p = 0.323), 
corroborating earlier findings that performance does not linearly scale 
with sample size within the studied range, possibly due to saturation 
effects or compensatory use of data augmentation techniques.

These results reinforce the critical role of segmentation quality in 
shaping model performance and highlight the need for more 
standardized methodologies and transparent reporting in AI-based 
diagnostic research.

3.5 Temporal analysis

The progression of AI architectures in the included studies reflects 
a clear methodological shift over time. Temporal analysis of 
architectural usage revealed a transition from traditional ML 
techniques and ANNs to DL approaches, particularly CNNs. Between 
2014 and 2018, studies primarily employed ML methods such as 
support vector machines (SVM), random forests (RF), and logistic 
regression (LR), representing approximately 85% of the methodologies 

FIGURE 5

Diagnostic performance metrics stratified by segmentation type (automatic vs. manual). Boxplots illustrate the distribution of (A) accuracy, 
(B) sensitivity, (C) specificity, and (D) AUC across studies using either automatic or manual segmentation. Automatic segmentation models demonstrate 
higher mean values and reduced dispersion for most metrics, particularly accuracy and specificity. The manual segmentation group shows greater 
variability and outliers, suggesting less consistency. These visual differences align with the hypothesis that automated segmentation enhances 
reproducibility and standardization; however, causal interpretation should be made cautiously due to potential confounding factors.

TABLE 4  Dataset size and performance by segmentation type.

Segmentation Size of dataset 
(mean)

Size of 
dataset (std)

Accuracy 
(mean)

Accuracy (std) Sensitivity 
(mean)

Sensitivity (std)

Automatic 22940.63 110529.7 0.94 0.04 0.94 0.06

Manual 1121.35 1818.76 0.88 0.07 0.89 0.08
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FIGURE 6

Meta-regression coefficients with 95% confidence intervals. This figure presents the coefficients resulting from the meta-regression analysis evaluating 
the relative influence of various methodological factors on diagnostic accuracy. Only automatic segmentation demonstrated a statistically significant 
effect on accuracy (p = 0.007), whereas other factors such as dataset size, architecture type (CNN vs. others), and risk of bias did not reach statistical 
significance. This outcome emphasizes the critical importance of automated segmentation quality as a key determinant of AI model performance.

used during this period. ANN-type architecture was also present, 
constituting roughly 15% of studies, while no CNN-based models 
were recorded before 2020.

Figure  7 presents a stacked bar chart showing the number of 
studies using each architecture per year. CNNs emerged in 2020, 
accounting for 20% of the methodologies that year, and showed a 
marked increase in 2021, becoming the predominant architecture (65% 
of studies) in 2022. This trend intensified through 2023 (72% of studies) 
and 2024 (78% of studies), with CNNs accounting for more than half 
of the models evaluated annually. Transformer-based architectures, 
specifically Swin Transformer and Pyramid Vision Transformer, 
appeared exclusively in 2024, accounting for approximately 10% of the 
methodologies that year, indicating the beginning of a new phase of 
exploration focused on models with advanced contextual attention 
mechanisms and long-range feature integration.

This shift mirrors broader trends observed across diagnostic 
imaging AI, where deep architectures have largely replaced classical 
ML techniques due to their ability to learn hierarchical features 
directly from raw images without manual feature engineering (Litjens 
et al., 2017; Esteva et al., 2019). However, this evolution may also 
explain some of the performance differences observed in earlier 
sections. For example, the predominance of CNNs in recent years may 
co-occur with advances in preprocessing, data augmentation, and 
training infrastructure, confounding the interpretation of architecture-
based performance gains.

Notably, this trend may influence perceived model superiority, as 
CNN-based studies often reflect newer methodological standards, 
including automatic segmentation and more rigorous evaluation 
protocols. These temporal patterns underscore the importance of 

accounting for publication year and technological maturity when 
comparing performance across architectures or studies.

3.6 Heterogeneity and risk of bias analysis

To evaluate how methodological quality influences the reported 
performance of AI models, the 44 included studies were classified 
according to their overall risk of bias using the PROBAST tool. In 
total, 26 studies were classified as low risk of bias, 12 as unclear risk, 
and six as high risk (Figure 8). However, not all studies reported all 
performance metrics, and the number of studies included varied 
substantially by metric. This heterogeneity in reporting introduces 
selection bias and impairs comparability.

Studies classified as high risk of bias showed markedly elevated 
performance metrics, with a mean accuracy of 96.1% ± 7.6, a 
sensitivity of 95.4% ± 7.9, and a specificity of 93.9% ± 11.7. However, 
none of these studies reported areas under the curve (AUC) values, 
precluding the complete evaluation of discriminative performance. 
Moreover, the elevated standard deviation in specificity suggests 
potential overfitting, likely arising from methodologically weak 
practices such as internal validation without cross-validation, small 
sample sizes, and operator-dependent manual segmentation (Wolff 
et al., 2019; Collins et al., 2021). These practices have been consistently 
linked to inflated model performance in machine learning for medical 
imaging (Kelly et al., 2019).

In contrast, low-risk studies showed more conservative but 
consistent performance metrics, with lower dispersion and complete 
reporting of AUC. Specifically, they reported an accuracy of 
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90.4% ± 5.2 (n = 20), a sensitivity of 90.7% ± 7.0 (n = 25), a specificity 
of 89.1% ± 8.2 (n = 22), and an AUC of 93.5% ± 3.9 (n = 20). While 
these results appear numerically inferior, the reduced variability and 
broader metric completeness suggest higher methodological reliability 
and clinical applicability.

The unclear-risk group, often the result of poor reporting rather 
than clearly defined methodological shortcomings, yielded 
intermediate metrics (accuracy: 93.6% ± 5.0; sensitivity: 91.9% ± 7.7; 
specificity: 91.1% ± 5.4; AUC: 92.2% ± 4.6). However, the small and 

variable sample sizes for each metric (e.g., n = 6 for specificity) 
compromise interpretability and hinder statistical power.

A sensitivity analysis was conducted excluding high-risk studies, 
which resulted in a notable reduction in extreme values (e.g., 100% 
accuracy) and decreased overall dispersion, particularly in specificity. 
However, this analysis was limited by the lack of formal statistical 
testing (e.g., ANOVA or Kruskal–Wallis) to assess whether differences 
between groups were statistically significant. Furthermore, no 
regression adjustment was made for potential confounders such as 

FIGURE 7

This figure illustrates the temporal evolution in the use of different AI architectures from 2014 to 2024. A clear shift is observed from classical machine 
learning techniques (ML and ANN) to deep learning models (CNN), particularly from 2021 onwards, with transformer-based models appearing more 
recently (2024). This evolution reflects a continuous methodological transition toward increasingly sophisticated architectures capable of directly and 
deeply extracting information from images. However, this shift may also coincide with general methodological improvements over time.

FIGURE 8

Distribution of risk of bias across PROBAST domains and associated model performance metrics. (A) Distribution of the 44 included studies across the 
four PROBAST domains (participants, predictors, outcomes, and analysis), categorized by overall risk of bias (low, unclear, and high). (B) Mean values of 
accuracy, sensitivity, specificity, and AUC, stratified by overall risk of bias. Studies classified as high risk consistently report higher mean values for 
accuracy, sensitivity, and specificity but exhibit greater variability and frequently lack AUC reporting, indicating potential methodological overfitting. 
Studies with low risk exhibit more consistent and reliable performance metrics.
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dataset size or model complexity. These omissions limit the strength of 
causal inferences between risk of bias and reported model performance.

The primary sources of methodological heterogeneity across 
studies were identified as follows: (i) reliance on manual, operator-
dependent image segmentation; (ii) absence of cross-validation or 
external validation; (iii) small sample sizes (<200 cases); and (iv) lack 
of standardized metric reporting formats. These deficiencies were 
most prevalent in high- and unclear-risk studies, consistent with prior 
evidence from systematic reviews of machine learning in healthcare 
(Sounderajah et al., 2021; Liu et al., 2019).

Finally, this section would benefit from including confidence 
intervals and formal effect size estimates to contextualize differences 
across bias strata. Without these, claims about “superior” or “more 
stable” performance remain largely descriptive and potentially misleading.

4 Discussion

The analyzed studies demonstrate generally high diagnostic 
performance of AI models for classifying ovarian masses using 
B-mode TVS. Most studies achieved AUC values ranging from 0.85 
to 0.95, with sensitivity and specificity typically above 80% (Acharya 
et al., 2018; Sadeghi et al., 2024). However, substantial heterogeneity 
across studies suggests caution when interpreting pooled performance 
metrics due to sample size, class balance, and data quality variations.

Automatic segmentation demonstrated statistically significant 
accuracy and sensitivity superior to manual segmentation, likely due 
to reduced observer variability (p = 0.007 and p = 0.042, respectively). 
Although manual segmentation provides potentially optimal 
delineation by experts, it is prone to operator-dependent biases. 
Automatic segmentation offers reproducibility and scalability but 
introduces errors if segmentation quality is suboptimal (Chiappa 
et al., 2021). Given these findings, future research should explicitly 
compare different segmentation algorithms and validate them against 
expert delineation standards to enhance clinical applicability.

Contrary to expectations, dataset size alone showed no clear 
correlation with diagnostic performance within datasets ≤5,000 
images. Small datasets sometimes reported exceptional accuracy, 
likely due to extensive data augmentation strategies, while larger 
datasets faced increased variability and complexity, offsetting potential 
accuracy gains (Acharya et  al., 2018; Liu et  al., 2019). Thus, 
methodological rigor, dataset diversity, and validation strategy appear 
more influential than dataset volume alone.

Comparison among model architectures (classical ML, CNNs, 
and Transformers) revealed no consistent superiority. Traditional ML 
models and simple neural networks occasionally matched the 
performance of sophisticated CNNs and Transformers (Acharya et al., 
2018). Although CNN-based models showed visually higher median 
accuracy and reduced variance, no statistically significant differences 
were observed across architectures (p = 0.258). Superior results often 
correlated with modern methodological standards rather than 
architectural innovation alone. Future research should directly 
compare these architectures under standardized experimental 
conditions to clarify intrinsic performance differences clearly.

The risk of bias significantly affected the result’s validity. Studies 
with high or unclear bias frequently reported inflated performance 
metrics with notable dispersion (e.g., specificity SD = 11.7%) due 
to methodological weaknesses like internal-only validation, small 
sample sizes, and lack of external validation (Sounderajah et al., 

2021; Roberts et  al., 2021). Such biases undermine clinical 
generalizability, emphasizing the need for rigorous validation 
standards (e.g., TRIPOD-AI, STARD-AI) and multicenter, 
prospective validation.

Temporal analysis showed methodological evolution influencing 
perceived performance gains. Despite less sophisticated techniques, 
earlier studies occasionally reported superior outcomes due to less 
rigorous validation methods, whereas recent studies employed 
stricter evaluation, tempering observed performance improvements 
(Sounderajah et  al., 2021; Roberts et  al., 2021). Therefore, 
performance comparisons across time should account for these 
evolving methodological contexts.

Recent advances emphasize the critical importance of precise 
methodological design and targeted biological understanding. For 
instance, Liu et al. (2024) highlighted how epitope-specific targeting 
of HER2 significantly influences therapeutic outcomes in solid 
tumors, illustrating the necessity of methodological precision in 
clinical efficacy. Similarly, Ma et al. (2023) underscored the potential 
benefits of integrating detailed molecular insights into advanced 
diagnostics by showing how the glycolytic enzyme ENO1 modulates 
choline phospholipid metabolism and tumor proliferation. Such 
multidisciplinary integration may substantially improve cancer 
characterization and patient outcomes.

AI currently demonstrates potential as an adjunctive diagnostic 
tool rather than a standalone solution. Real-world applicability requires 
rigorous external validations, standardized metric reporting (e.g., 
sensitivity, specificity, predictive values), and integration within clinical 
workflows. Moreover, evaluating the clinical impact of AI, particularly 
for distinguishing borderline ovarian lesions, remains essential due to 
their clinical complexity and diagnostic challenges (Roberts et al., 2021).

Given the limited reporting of comprehensive metrics like AUC 
and F1-score, future studies should ensure the consistent inclusion of 
these metrics to improve clinical interpretability and decision-making.

In conclusion, while AI models for ovarian mass classification via 
TVS demonstrate promising diagnostic accuracy, significant 
methodological limitations currently restrict their clinical translation. 
Future research must prioritize external validation, robust 
methodological standards, multidisciplinary integration, and 
transparent, standardized reporting. Prospective, multicenter studies 
remain crucial to fully validate these models’ clinical utility, 
generalizability, and real-world applicability.

5 Conclusion

AI models applied to B-mode TVS images demonstrate strong 
diagnostic performance for classifying ovarian masses, achieving high 
sensitivity, specificity, and overall discriminative ability (AUC). 
Automated segmentation significantly outperformed manual methods 
in accuracy and sensitivity, likely due to enhanced standardization and 
reduced inter-observer variability.

Nevertheless, these findings must be interpreted cautiously due to 
considerable methodological heterogeneity, variations in dataset size 
and quality, and significant risks of bias identified among several 
studies. Additionally, no consistent superiority emerged among 
different AI architectures (CNNs, classical ML, or Transformers), 
suggesting that methodological rigor, validation procedures, and data 
standardization may be more influential determinants of performance 
than the specific model architecture itself.
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Future research should prioritize prospective, multicenter external 
validation under realistic clinical conditions for reliable clinical 
translation. Moreover, rigorous adherence to standardized reporting 
guidelines (e.g., TRIPOD-AI, STARD-AI), comprehensive metric 
reporting, including sensitivity, specificity, AUC, and F1-score, and 
explicit evaluation of clinical utility, especially in distinguishing 
borderline ovarian lesions, are essential.

In summary, while AI holds significant promise for OC diagnosis 
using TVS, overcoming current methodological limitations through 
robust validation and standardized methodological practices is 
imperative for successful integration into clinical practice.
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