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Background: Early and accurate detection of ovarian cancer (OC) remains
clinically challenging, prompting exploration of artificial intelligence (Al)-based
ultrasound diagnostics. This systematic review and meta-analysis critically
evaluate diagnostic accuracy, methodological rigor, and clinical applicability of
Al models for ovarian mass classification using B-mode ultrasound.

Methods: A systematic literature search following PRISMA guidelines was
conducted in PubMed, IEEE Xplore, and Scopus up to December 2024.
Eligible studies included Al-based ovarian mass classification using B-mode
ultrasound, reporting accuracy, sensitivity, specificity, and/or area under the
ROC curve (AUC). Data extraction, quality assessment (PROBAST), and meta-
analysis (random effects) were independently performed by two reviewers.
Heterogeneity sources were explored.

Results: From 823 identified records, 44 studies met inclusion criteria, covering
over 650,000 images. Pooled performance metrics indicated high accuracy
(92.3%), sensitivity (91.6%), specificity (90.1%), and AUC (0.93). Automated
segmentation significantly outperformed manual segmentation in accuracy
and sensitivity, demonstrating standardization benefits and reduced observer
variability. Dataset size minimally correlated with performance, highlighting
methodological rigor as a primary determinant. No specific Al architecture
consistently outperformed others. Substantial methodological heterogeneity
and frequent risk-of-bias issues (limited validation, small datasets) currently limit
clinical translation.

Conclusion: Al models show promising diagnostic performance for OC
ultrasound imaging. However, addressing methodological challenges, including
rigorous validation, standardized reporting (TRIPOD-AI, STARD-AI), and
prospective multicenter studies, is essential for clinical integration. This review
provides clear recommendations to enhance clinical translation of Al-based
ultrasound diagnostics.

KEYWORDS

systematic review, meta-analysis, artificial intelligence, ultrasound, ovarian cancer,
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1 Introduction

Ovarian cancer (OC) is the most lethal gynecological neoplasm
and the fifth leading cause of cancer-related mortality in women
(Dalmartello et al., 2022; Siegel et al., 2021). The incidence of OC
in the USA is estimated to be 10.2 cases, and the mortality rate is
6.0 deaths per 100,000 women per year, indicating approximately
1.1% lifetime risk for women (NIH, 2020). Despite advances in
diagnosis and treatment, the mortality rate has not shown a
significant decline over the past three decades, primarily due to the
challenges in early detection and limited therapeutic efficacy in
advanced-stage disease (Badgwell and Bast, 2007; Jacobs and
Menon, 2004; Bast et al., 2007; Torre et al., 2018). Currently, 70% of
OC cases are diagnosed at advanced stages, where five-year survival
drastically drops to 20%-30%, in contrast to 80%-95% survival
when detected at early stages (Bowtell et al., 2015). Therefore,
improving early-stage detection methods is critically important to
enhance patient outcomes.

Transvaginal ultrasound (T'VS), computed tomography (CT), and
magnetic resonance imaging (MRI) are the primary imaging
modalities for OC detection. TVS is particularly advantageous as a
non-invasive, cost-effective, accessible, and real-time imaging method,
allowing assessment of ovarian masses size, shape, and internal
structures (e.g., septa, solid tissue), aiding differentiation between
benign and malignant tumors. However, the limited resolution of TVS
may fail to detect small or early-stage tumors, and overlapping
anatomical structures, such as bowel loops or normal ovarian tissue,
complicate mass differentiation. Moreover, specific OC subtypes do
not exhibit significant morphological changes in early phases,
reducing sensitivity (Wu et al., 2018; Rosati et al., 2020).
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Despite these limitations, TVS remains indispensable in the initial
OC diagnosis due to accessibility and low cost. However, interpretation
often varies significantly with radiologist experience, resulting in
diagnostic inconsistencies and clinical errors (Baumler et al., 20205
Nebgen et al., 2019). These issues underscore the critical need for
standardized, objective, and automated diagnostic methods that
enhance accuracy and reduce inter-observer variability.

Artificial intelligence (AI) integration has significantly advanced
medical imaging diagnostics, improving tumor identification accuracy
and consistency. Convolutional neural networks (CNNs), a
sophisticated deep learning (DL) architecture, have demonstrated over
90% accuracy in extracting complex TVS image features and
classifying ovarian malignancy in several studies (Akazawa and
Hashimoto, 2021; Sone et al., 2021). Beyond accuracy, Al reduces
human interpretation errors and enables the analysis of large datasets
(Falana et al., 2023; Sahu and Shrivastava, 2023).

However, several challenges hinder the clinical translation of AI
in OC detection. Crucially, existing DL models suffer from inadequate
dataset representativeness, as most research uses datasets from single
institutions, leading to population biases. Al model performance
notably declines when tested on populations with different ethnic,
geographic, or technological characteristics (Noseworthy et al., 2020).
Additionally, heterogeneity in TVS image quality, formats, resolution,
and acquisition protocols across institutions further impairs AI model
reproducibility and generalizability (Raciti et al., 2023).

A significant barrier is the absence of robust prospective clinical
validation. Most Al algorithms have been validated retrospectively,
limiting insights into their real-time clinical applicability (Raciti et al.,
2023). Furthermore, lack of standardized annotation and segmentation
protocols significantly impacts AI model accuracy, with manual
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segmentation inconsistencies affecting performance by up to 20%
(Heinlein et al., 2024; Ho et al., 2022). The absence of international
consortia, standardized benchmarking, and sufficiently large, diverse,
open-access TVS image databases also restrict the comparative
evaluation and robust training of AI models. While initiatives like The
Cancer Imaging Archive (TCIA) have addressed similar needs in other
cancer areas, a parallel effort for OC is currently lacking (NIH, n.d.).

This systematic review and quantitative meta-analysis address
these critical knowledge gaps by evaluating the diagnostic performance
of Al models applied specifically to B-mode TVS images for early OC
detection. Through a comprehensive comparison of accuracy,
sensitivity, specificity, and area under the curve (AUC) across CNN,
classical machine learning algorithms, and transformer-based models,
the study assesses how methodological factors, such as segmentation
and dataset size, influence model performance. Clarifying these
factors is expected to enhance clinical practice directly by guiding the
development of robust, standardized Al tools capable of improving
early OC diagnosis, thereby increasing patient survival rates and
clinical outcomes.

2 Methodology

This study was designed and conducted following the PRISMA
2020 guidelines (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) (Liberati et al., 2009; Page et al., 2021) to ensure
transparency, reproducibility, and comprehensiveness in the
systematic review and meta-analysis (Supplementary Tables S1, S2).
The methodological protocol included a predefined search strategy,
explicit eligibility criteria, risk of bias assessment, and statistical
analysis of the extracted data. Specifically, the systematic review was
guided by the following research questions:

» What is the diagnostic accuracy (accuracy, sensitivity, specificity,
and AUC) of Al-based models for ovarian mass classification
using B-mode ultrasound?

o Which methodological
methodology (automatic vs. manual), dataset size, Al model

factors, such as segmentation
architecture, and risk of bias significantly influence the diagnostic

performance of Al models?

2.1 Search strategy

In January 2025, a comprehensive search was conducted in three
high-impact scientific databases: PubMed, IEEE Xplore, and Scopus.
The search strategy included the following terms combined using
Boolean operators: (“machine learning” OR “artificial intelligence” OR
“deep learning” OR “neural network”) AND (“ovarian cancer” OR
“ovarian tumor”) AND “ultrasound.” No language or publication type
restrictions were applied during the initial search.

2.2 Eligibility criteria
The following inclusion and exclusion criteria were explicitly

defined to ensure transparency and reproducibility in the systematic
selection of studies (see Table 1).
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Studies meeting all inclusion criteria and none of the exclusion
criteria were eligible for inclusion in this systematic review and
meta-analysis.

2.3 Study selection process

Two independent reviewers (IGA and FVF) initially evaluated the
title and abstract of each article identified through the database search,
applying the inclusion and exclusion criteria explicitly defined in
Section 2.2. This preliminary assessment allowed for the exclusion of
clearly irrelevant or ineligible studies. In cases of discrepancies during
this initial stage, a third reviewer (EDB) was consulted to reach
consensus. Subsequently, the full texts of the preselected articles were
reviewed again by both reviewers (IGA and FVF) to confirm their
definitive eligibility for inclusion in the quantitative analysis.

2.4 Data extraction

The following variables were extracted from each study: author,
year, type of segmentation, model architecture, model name, image
dataset size, type of ovarian masses, number of classes, and
performance metrics (accuracy, sensitivity, specificity, and AUC). For
studies reporting multiple models, the one with the best overall
performance was selected to avoid data duplication. The information
was systematized into a structured database for subsequent
statistical analysis.

2.5 Risk of bias assessment
The methodological quality of the included studies was assessed
using the PROBAST tool (Prediction model Risk of Bias Assessment

Tool) (Wolff et al., 2019), which evaluates the risk of bias and
applicability in studies that develop or validate prediction models.

TABLE 1 Inclusion and exclusion criteria for study selection.

Inclusion criteria Exclusion criteria

Original research articles evaluating AI

models

Studies utilizing 2D B-mode
transvaginal ultrasound (TVS) images
Studies involving the detection or
classification of ovarian cancer in
humans

Studies reporting at least one
performance metric (accuracy,
sensitivity, speciﬁcity, or AUC)

Studies based on real patient data

Full-text articles published in English

or Spanish

Studies published up to December 2024

Systematic reviews, meta—analyses,
letters to the editor, or abstracts from
conferences

Studies employing imaging modalities
other than ultrasound (e.g., CT, MRI)
Studies exclusively focused on
serological biomarkers, genomic

analyses, or animal models

Studies without accessible full text or
not reporting any relevant performance

metric

Purely theoretical studies without

clinical validation

Studies published in languages other
than English or Spanish

Studies published after December 2024

frontiersin.org


https://doi.org/10.3389/frai.2025.1649746
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Garcia-Atutxa et al.

PROBAST comprises 20 items grouped into four domains: (i)
participant selection, (ii) predictors, (iii) outcomes, and (iv) statistical
analysis. Two reviewers (IGA and FVF) independently performed this
evaluation. Discrepancies were resolved by consensus. A detailed
assessment of the 20 PROBAST items for each study and domain-
specific classifications is included as Supplementary Tables S3, S4.

2.6 Statistical analysis

2.6.1 Descriptive statistics and distribution
assessment

Descriptive statistics were calculated for performance metrics,
including accuracy, sensitivity, specificity, and AUC, and are reported
as means, standard deviations, and ranges. The Shapiro-Wilk test was
used to assess the normality of distributions, while Levene’s test was
applied to evaluate the homogeneity of variances.

Because Fl-score was rarely reported and often lacked the
underlying confusion matrix, we did not meta-analyze F1. For
interpretability, accuracy, sensitivity, specificity, and AUC remained
our primary endpoints.

2.6.2 Comparison between segmentation
methods (automatic vs. manual)

Given the presence of non-normal distributions and limited
subgroup sizes, non-parametric tests were prioritized to enhance
statistical validity. Specifically, a Mann-Whitney U test was used to
between  automatic and  manual

compare accuracy

segmentation strategies.

2.6.3 Comparison across Al model architectures

Differences in accuracy across Al architecture categories (e.g.,
CNN, ML, ANN) were assessed using a Kruskal-Wallis H test.
Additionally, performance variation between DL models (e.g., CNNs)
and classical machine learning approaches was evaluated using
one-way analysis of variance (ANOVA).

2.6.4 Correlation between dataset size and
diagnostic performance

The relationship between dataset size and diagnostic performance
was explored using Pearson’s correlation, excluding studies with more
than 5,000 images to mitigate the influence of extreme values.

2.6.5 Meta-regression analysis of methodological
factors

A meta-regression analysis was performed using ordinary least
squares (OLS) modeling to investigate the combined influence of
methodological variables on diagnostic performance. Accuracy was
modeled as the dependent variable, and key predictors included
dataset size, segmentation type (automatic vs. manual), model
architecture (CNN vs. other), and risk of bias (high vs. low). The
regression included 26 studies with complete data and demonstrated
that segmentation type was a significant predictor of accuracy
(# =0.0656, p = 0.007), while the other covariates did not reach
statistical significance. The model explained approximately 32% of
the variance in accuracy (adjusted R*=0.32), supporting the
relevance of segmentation quality as a determinant of Al
model performance.
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2.6.6 Subgroup and sensitivity analyses

Subgroup analyses were conducted based on risk of bias
(assessed by PROBAST), and a sensitivity analysis was performed by
excluding studies rated as high risk to determine the robustness
of findings.

2.6.7 Software and reproducibility

All statistical analyses were conducted using Python (v3.12),
leveraging the pandas, numpy, scipy, statsmodels, matplotlib, and
seaborn libraries. Complete analysis code and data visualizations are
available upon request.

All figures include concise alternative text in the captions, and a
separate Supplementary material provides long textual descriptions.

3 Results

The systematic search in the PubMed, IEEE Xplore, and Scopus
databases yielded 823 studies. After removing 58 duplicates, 765 titles
and abstracts were screened. Of these, 686 were excluded for not
meeting the inclusion criteria, resulting in 79 articles for full-text
review. Finally, 44 studies were included in the quantitative analysis
(Figure 1).

The studies cover a period up to December 2024. Collectively,
they analyzed over 650,000 B-mode TVS images for ovarian mass
classification using various AI models. Most studies (n = 27; 61.4%)
used automatic segmentation, while the remainder (n = 17; 38.6%)
employed manual segmentation. The predominant architectures were
CNNeg, followed by classical ML algorithms, conventional artificial
neural networks (ANNSs), and transformer-based architectures that
have emerged in recent years (Table 2).

3.1 Overall performance of Al models

The analysis of the 44 included studies revealed the high average
diagnostic performance of Al models applied to B-mode TVS images
for OC detection. The mean accuracy was 92.3% * 5.8, with mean
sensitivity and specificity of 91.6% + 7.2 and 90.1% =* 8.1, respectively.
AUC values were reported in only 23 studies, with a mean of
0.93 + 0.04, reflecting strong overall discriminative capacity. However,
the partial availability of AUC reporting may indicate a potential
reporting bias that limits the robustness of comparative analysis across
all models. Beyond AUC’s limited reporting (23/44 studies), F1-score
was scarcely available across the corpus. This pattern likely reflects
historical reliance on accuracy/sensitivity/specificity in ultrasound Al,
frequent absence of continuous model scores (hindering AUC), and
the lack of confusion matrices or class-wise results needed for F1. In
addition, F1 is sometimes reported as Dice in segmentation studies;
because our review targets classification performance, segmentation-
specific Dice metrics were not pooled, which might also contribute to
the perceived under-reporting of F1.

Figure 2 provides a comparative overview of the four main
performance metrics for the 10 top-performing models. This
visualization highlights how specific models exhibit strong accuracy
yet relatively lower specificity, an observation with important clinical
implications ~ when rates in

considering  false-positive

diagnostic triage.
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FIGURE 1
44 studies were included in the final quantitative analysis.

PRISMA flow diagram of our study. The figure illustrates the study selection process following PRISMA 2020 guidelines. A total of 823 records were
identified through three databases (PubMed, IEEE Xplore, and Scopus). After removing 58 duplicates, 765 titles and abstracts were screened, excluding
686 studies that did not meet the eligibility criteria. Seventy-nine full-text articles were assessed for inclusion, of which 35 were excluded for using
non-ultrasound imaging modalities (e.g., CT or MRI), focusing exclusively on segmentation methods, or lacking histopathological validation. Ultimately,

»| -Histopathological studies
-Studies exclusively on image
segmentation

Several models, including those based on OCD-FCNN,
probabilistic neural networks (PNN), and ResNet-34, reported peak
performance values exceeding 95%. However, many of these models
were trained and tested on small or non-external datasets, lacked
proper cross-validation, or relied exclusively on internal test sets. Such
methodological limitations increase the likelihood of overfitting and
restrict the generalizability of reported outcomes. None of the highest-
performing models reported prospective validation or integration into
clinical workflows, which remains essential for evaluating real-
world applicability.

To assess whether methodological design influenced diagnostic
performance, non-parametric tests were conducted using accuracy as
the outcome variable. A Mann-Whitney U-test revealed a statistically
significant difference in accuracy between models using automatic
versus manual segmentation (U = 234.0, p = 0.007), favoring automatic
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methods. This finding suggests that automated segmentation enhances
standardization and reduces variability across studies.

Conversely, a Kruskal-Wallis test comparing performance across
Al architectures (e.g., CNN, ML, ANN) did not identify statistically
significant differences (H = 6.53, p = 0.258), indicating that no specific
architectural family demonstrated superior accuracy within the
current dataset. Nevertheless, visual inspection using violin plots
(Figure 3) showed a moderately higher central tendency and reduced
the variance in accuracy among CNN-based models compared to
classical machine learning (ML) approaches. While this pattern may
reflect the architectural strengths of CNNs in capturing spatial
hierarchies within medical images (Litjens et al., 2017), it should
be interpreted cautiously. CNN-based models were more frequently
applied in recent studies, which may also have benefited from
advances in data augmentation, automatic segmentation, and
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TABLE 2 List of the 44 articles analyzed.

Id References Segmentation = Algorithm Artificial Size of = Type of Classes Accuracy  Sensitivity Specificity Risk of
architecture  intelligence @ dataset masses bias
model
1 Ravishankar et al. (2023) 2023 Automatic CNN OCD-FCNN 440 Cysts 8 0.984 0.97 - - High
2 Lietal. (2022) 2022 Automatic CNN LKResNet-18 5,714 Tumors 3 0.9145 0.918 0.918 - Low
3 Fan et al. (2023) 2023 Automatic CNN Ocys-Net 750 Cysts 3 0.955 - - 0.885 Unclear
4 Al-karawi et al. (2021) 2021 Manual ML SVM 242 Tumors 3 0.8058 0.8104 0.8022 - Low
5 Patil et al. (2024) 2024 Automatic ML RF 187 Tumors 3 0.86 - - - Unclear
6 Kiruthika et al. (2023) 2023 Automatic ML SVM 630 Tumors 3 0.965 0.96 0.955 - Low
7 Wang et al. (2021) 2021 Manual CNN ResNet-34 279 Tumors 3 0.914 0.914 0.914 0.963 Low
8 Shih-Tien et al. (2022) 2022 Automatic ML EL 1896 Tumors 2 0.9215 0.9137 0.9292 - Low
9 Meijing et al. (2023) 2023 Manual CNN ResNext50 1,142 Cysts 7 0.952 0.895 0.992 0.997 Low
10 Chen et al. (2022) 2022 Manual CNN ResNet-18 422 Tumors 2 - 0.92 0.85 0.93 Low
11 Gao et al. (2022) 2022 Automatic CNN DenseNet-121 575,930 Tumors 2 0.888 0.789 0.932 0911 Low
12 Xiang et al. (2024) 2024 Automatic ML EL 3,972 Tumors 2 0.876 0.973 0.741 0.97 Low
13 Du et al. (2024) 2024 Manual ANN DLRN 849 Tumors 2 0.871 0.733 0.880 0.928 Unclear
14 Miao et al. (2024) 2024 Automatic CNN ConvNeXt 575 Cysts 2 0.90 0.90 - 0.90 Unclear
15 Alwan et al. (2023) 2023 Automatic CNN CNN 196 Tumors 2 0.9897 - - - High
16 Martinez-Mas et al. (2019) 2019 Manual ML SVM 187 Tumors 2 0.8770 0.91 0.83 0.8740 Unclear
17 Acharya et al. (2014) 2014 Automatic ANN PNN 2,600 Tumors 2 0.9981 0.9992 0.9969 - High
18 Hussein et al. (2020) 2020 Automatic FDA Viola-Jones 125 Tumors 2 0.9484 0.9696 0.9032 - Unclear
19 Hussein et al. (2022) 2021 Automatic ANN ANN 250 Tumors 2 0.9587 0.9701 0.9333 - Unclear
20 Acharya et al. (2014) 2014 Automatic ANN PNN 2,600 Tumors 2 1.00 1.00 1.00 - High
21 Jeevitha and Priya (2022) 2022 Automatic ML SVM 100 Cysts 3 0.985 0.940 - - Unclear
22 Wang et al. (2024) 2024 Manual CNN ResNet-50 1,054 Tumors 2 0.9476 0.9428 0.9500 0.984 Low
23 Narmatha et al. (2023) 2023 Automatic RNN Deep 478 Cysts 7 0.96 0.96 - - Unclear
Q-Network
24 Yuyeon et al. (2022) 2022 Automatic CNN DenseNet161 1,613 Cysts 5 0.9012 0.8667 0.9185 0.9406 Low
25 Pham and Le (2024) 2024 Automatic CNN YOLOvV8 1,469 Tumors 8 0.9126 0.8330 - - Low
26 Kongara et al. (2024) 2024 Automatic CNN CNN 3,280 Cysts 2 0.9918 - - - Unclear
27 Lietal. (2024) 2024 Automatic CNN PMFFNet 1,469 Cysts 7 0.9724 0.9855 - - Low
28 Miao et al. (2023) 2023 Automatic CNN ResNet-34 1,130 Tumors 2 - 0.97 0.93 0.95 Low
(Continued)
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TABLE 2 (Continued)

Id References Segmentation = Algorithm Artificial Size of = Type of Classes Accuracy  Sensitivity Specificity Risk of
architecture  intelligence @ dataset masses bias
model
29 Moro et al. (2024) 2024 Manual ML RF 775 Tumors 2 - 0.99 0.64 0.88 Low
30 Chiappa et al. (2021) 2020 Manual CNN CNN 241 Cysts 3 0.83 0.78 0.85 0.88 Low
31 Xi et al. (2023) 2023 Automatic CNN DenseNet 1,103 Tumors 2 0.964 0.997 0.952 0.973 Low
32 Stefan et al. (2021) 2021 Automatic ML KNN 123 Tumors 2 - 0.9048 0.931 0.951 Unclear
33 Christiansen et al. (2021) 2021 Manual ML EL 3,077 Tumors 2 - 0.971 0.937 0.958 Low
34 Aramendia-Vidaurreta 2015 Manual ANN MLP 145 Tumors 2 0.9878 0.9850 0.9890 0.997 Unclear
etal. (2015)
35 Liu et al. (2024) 2024 Manual CNN ResNet-101 1,080 Tumors 2 0.849 0.930 0.817 0.935 Low
36 Liu et al. (2024) 2024 Manual ML LR 407 Cysts 2 0.948 0.955 0.942 0.981 Low
37 Du et al. (2024) 2024 Manual CNN ResNet-50 849 Tumors 3 0.8003 0.7515 - 0.85 Low
38 Tang et al. (2022) 2022 Manual ML LR 206 Tumors 2 - - - 0.886 Low
39 Acharya et al. (2018) 2018 Manual ML RF 469 Tumors 2 0.8060 0.8140 0.7630 - High
40 Sha (2024) 2024 Automatic CNN AdaResU-Net 700 Tumors 2 0.9887 0.9850 0.9960 - High
41 Xie et al. (2024) 2024 Automatic CNN YOLOvS 1,619 Tumors 2 0.935 0.905 0.935 0.930 Low
42 Giourga et al. (2024) 2024 Automatic ML EL 3,510 Cysts 2 0.909 0.965 0.881 0.922 Low
43 He et al. (2024) 2024 Manual TBM Swin 7,639 Tumors 2 - 0.872 0.943 0.920 Low
transformer
44 Dai et al. (2024) 2024 Automatic TBM Pyramid visual 6,938 Tumors 3 0.873 0.878 0.869 0.941 Low
transformer

AUC, area under the curve; CNN, convolutional neural network; FCNN, fuzzy rule-based convolutional neural network; ML, machine learning; SVM, support vector machine: RF, random forest; EL, ensemble learning; ANN, artificial neural network; DLRN, deep

learning radiomics nomogram; PNN, probabilistic neural network; FDA, face detection algorithm; RNN, recurrent neural network; KNN, K-nearest neighbor; MLP, multilayer perceptron networks; LR, logistic regression; TBM, transformer-based models.
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Top 10 Al models (comparison of accuracy, sensitivity, specificity, and AUC). This figure compares performance metrics (accuracy, sensitivity,
specificity, and AUC) of the 10 highest-performing Al models identified in the review. Generally high accuracy is observed across models, but some
exhibit trade-offs between sensitivity and specificity. This variability highlights the importance of selecting models not only with high overall accuracy
but also clinically meaningful balance to minimize diagnostic errors, particularly false positives and false negatives.
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preprocessing pipelines. Therefore, the observed trend could
be confounded by methodological improvements rather than an
inherent advantage of architecture.

It is also important to note that model performance was evaluated
exclusively using accuracy, as this was the most consistently reported
metric across studies. While this allowed for comparability, it may
limit interpretability in class-imbalanced settings, where metrics such
as AUC or F1-score are often more informative. Future studies should
prioritize the reporting of multiple complementary metrics to capture
diagnostic value more comprehensively.

These descriptive findings are further explored and formally
tested in the meta-regression presented in Section 3.4.

In summary, while reported performance metrics are generally
high, the absence of standardized validation protocols, partial
reporting of key metrics, lack of weighted or stratified analyses, and
underreporting of methodological variables (especially segmentation
and validation strategies) limit the interpretability and clinical
generalizability of the findings. Future studies should adopt
harmonized reporting guidelines (e.g., TRIPOD-AI, PROBAST-AI),
employ multicenter and external validation, and report performance
metrics in clinically meaningful terms to support reliable and
reproducible integration into diagnostic workflows.

3.2 Relationship between dataset size and
performance

The relationship between the number of images used to train Al
models and their diagnostic performance was evaluated using
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non-parametric correlation analysis. Although Pearson’s method was
initially considered, the Shapiro-Wilk test confirmed that dataset size
and performance metrics (accuracy, sensitivity, specificity) were not
normally distributed (p <0.001 for all), prompting the use of
Spearman’s rank correlation.

Studies with more than 5,000 images were excluded from this
analysis to reduce the risk of statistical distortion from highly
imbalanced sample sizes. While large-scale datasets (up to 575,000
images) have become increasingly common in AI development, such
volumes do not reflect typical clinical practice and may
disproportionately drive correlation estimates. The 5,000-image
threshold was selected to capture real-world data conditions better
while preserving inter-study variability. Descriptive analysis of the full
dataset showed that this threshold approximately corresponds to the
75th percentile of dataset sizes among included studies.

Spearman correlation coefficients between dataset size (<5,000)
and model performance metrics were weak and statistically
non-significant. Specifically, the correlation with accuracy was
p =0.080 (p = 0.653), with a 95% confidence interval of —0.27 to 0.41
and an R* of 0.006, suggesting that less than 1% of the variation in
accuracy could be explained by dataset size. For sensitivity, the
correlation was p=0.246 (p=0.154; 95% CI: —0.09 to 0.54;
R*=0.061), and for specificity, p = 0.183 (p = 0.350; 95% CI: —0.20 to
0.52; R*=0.034). Table 3 summarizes these results, including the
correlation coeficients, confidence intervals, and the proportion of
explained variance.

While these findings suggest that increasing dataset size within the
studied range does not systematically improve model performance, this
interpretation should be cautiously made. The exclusion of large
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Accuracy distribution by Al architecture: CNN vs. classical machine learning (ML). This figure illustrates that, although there is no statistically significant
difference between architectures (p = 0.258), CNN-based models tend to display higher median accuracy and reduced variability compared to
classical ML models. This result suggests a potential advantage of CNNss, likely due to their superior ability to capture complex features from medical
images, though methodological advances in recent studies may also contribute to this observed trend.

TABLE 3 Correlation between dataset size and performance metrics.

Performance Spearman p 95% CI R?
metric

Accuracy 0.080 [-0.27,0.41] 0.006
Sensitivity 0.246 [~0.09, 0.54] 0.061
Specificity 0.183 [~0.20, 0.52] 0.034

datasets may limit the generalizability of these findings, and potential
interaction effects, such as those involving the segmentation method,
risk of bias, or model architecture, were not examined in this univariate
analysis. These results are, however, consistent with the multivariable
meta-regression analysis presented in Section 4, in which dataset size
did not emerge as a significant independent predictor of accuracy.

One plausible explanation lies in the widespread adoption of data
augmentation strategies. Techniques such as image rotation, scaling,
contrast adjustment, and noise addition simulate data variability and
may reduce the dependency on raw volume. However, excessive use
of augmentation may also lead to redundancy or learning saturation,
where additional data no longer meaningfully improves generalization.

This interpretation is in line with prior literature. For instance,
Roberts et al. (2021) found that dataset size was not consistently
associated with performance in a comprehensive medical imaging Al
studies review. Instead, methodological rigor, validation strategy, and
data diversity were identified as stronger predictors of performance.
Furthermore, the risk of performance overestimation due to
augmented or homogeneous datasets remains a critical concern in
model evaluation.

Figure 4 presents scatterplots of accuracy, sensitivity, and
specificity versus dataset size (<5,000), each overlaid with a
non-parametric LOWESS regression line and 95% confidence bands.
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While substantial scatters are observed across all metrics, the absence
of clear or consistent directional trends underscores the importance
of factors beyond sample size, such as annotation quality and
experimental design in developing reliable diagnostic models.

3.3 Comparison between automatic and
manual segmentation

To evaluate the impact of segmentation strategy on the diagnostic
performance of AI models, performance metrics were compared
between studies that implemented automatic segmentation (n = 27)
and those that used manual segmentation (n = 17).

Models using automatic segmentation achieved a significantly
higher average accuracy (94.2% + 4.3) than manual segmentation
(88.2% £ 6.6, p=0.012). Sensitivity also favored automatic
segmentation (93.7% £ 5.6 vs. 88.6% + 8.3, p=0.042). Although
specificity was higher in the automatic group (92.5% * 6.0 vs.
87.3% + 9.5), the difference was not statistically significant (p = 0.084).
AUC values were nearly identical between both groups (p = 0.839).
Confidence intervals for these comparisons were not reported but are
recommended for future studies to enhance the interpretability and
reproducibility of statistical estimates.

Leveness test revealed a significantly more significant variance in
specificity within the manual segmentation group (p =0.045),
indicating less consistency. This is consistent with previous literature
findings, highlighting manual segmentation’s susceptibility to inter-
and intra-observer variability, particularly when standardized
annotation protocols or multiple expert raters are not employed (Taha
and Hanbury, 2015; Menze et al., 2015).

Although
segmentation details that precluded a stratified meta-analysis by

the primary studies reported heterogeneous
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architecture, a brief practical comparison is informative for clinical
implementation. U-Net remains the canonical encoder-decoder with
skip connections that performs well when lesion boundaries are
reasonably defined, and training data are limited. AdaResU-Net
augments U-Net with residual blocks and adaptive mechanisms that
enlarge the effective receptive field and stabilize gradient flow,
improving boundary delineation in speckle-rich ultrasound and in the
presence of heterogeneous echotexture. In practice, U-Net offers
simplicity and fast deployment; AdaResU-Net can yield crisper
contours and fewer leakage errors near cyst walls at the cost of extra
parameters. These architectural tradeoffs are likely to contribute to the
higher and less variable accuracy we observed with automated vs.
manual segmentation. Future primary studies should report
standardized segmentation metrics (e.g., Dice, surface distance)
alongside classification endpoints to enable formal architecture-
level synthesis.

Figure 5 presents comparative boxplots of accuracy, sensitivity,
specificity, and AUC by segmentation type. The distributions reveal
higher mean values for automatic segmentation across most metrics,
lower dispersion, and fewer outliers, especially for specificity and

10.3389/frai.2025.1649746

sensitivity. This visual trend suggests increased consistency, which
attributed the of
automated pipelines.

may be to standardization  benefits
Table 4 provides a detailed summary of methodological
characteristics and performance metrics stratified by segmentation
type. Studies using automatic segmentation not only performed better
on average but also used considerably larger datasets (mean = 22,941
vs. 1,121 images) and demonstrated lower standard deviation across
metrics such as accuracy (4% vs. 7%) and specificity (6% vs. 10%).
However, this interpretation should be approached with caution.
Although these
performance with automatic segmentation, the analysis did not

group-level comparisons suggest superior
control for potential confounders such as dataset size, model
architecture, training methodology, or publication year. Importantly,
these variables may co-vary with segmentation strategy, particularly
since automatic methods are more prevalent in recent, technically
advanced studies.

As shown in the meta-regression (Section 3.4), the segmentation
strategy remained a significant independent predictor of accuracy

even after adjusting for these covariates. Nevertheless, the unadjusted
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Non-parametric association between dataset size and model performance metrics (<5,000 images). Scatter plots depict the relationship between
dataset size and three key performance metrics: (A) accuracy, (B) sensitivity, and (C) specificity across studies with <5,000 training images. The red
lines represent LOWESS (locally weighted scatterplot smoothing) regression fits with 95% confidence bands. Although minor local variations are
observed, no clear or systematic trend indicates a significant improvement in these performance metrics with increasing dataset size within the
clinically relevant range analyzed. This finding suggests that methodological factors other than dataset size may have a greater influence on diagnostic
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Diagnostic performance metrics stratified by segmentation type (automatic vs. manual). Boxplots illustrate the distribution of (A) accuracy,

(B) sensitivity, (C) specificity, and (D) AUC across studies using either automatic or manual segmentation. Automatic segmentation models demonstrate
higher mean values and reduced dispersion for most metrics, particularly accuracy and specificity. The manual segmentation group shows greater
variability and outliers, suggesting less consistency. These visual differences align with the hypothesis that automated segmentation enhances
reproducibility and standardization; however, causal interpretation should be made cautiously due to potential confounding factors.

TABLE 4 Dataset size and performance by segmentation type.

Segmentation Size of dataset Size of Accuracy Accuracy (std) Sensitivity Sensitivity (std)
(mean) dataset (std) (mean) (mean)

Automatic 22940.63 110529.7 0.94 0.04 0.94 0.06

Manual 112135 1818.76 0.88 0.07 0.89 0.08

differences observed here might still reflect broader methodological
convergence rather than a causal advantage of automatic
segmentation per se.

Future studies should incorporate multivariable models,
harmonized annotation protocols, and prospective designs to clarify
the segmentation method’s isolated effect on AI model performance.
Moreover, reporting standards such as STARD-AI and TRIPOD-AI
should be adopted to ensure replicability and transparency in
performance evaluation across studies (Collins et al, 2021;
Sounderajah et al., 2021).

3.4 Meta-regression analysis of
methodological factors

To further explore the drivers of diagnostic performance, a meta-
regression was performed using accuracy as the dependent variable
and four predictors: dataset size, segmentation strategy (automatic vs.
manual), model architecture (CNN vs. other), and risk of bias (high
vs. low). The regression model included 26 studies with complete data
across all variables (Figure 6).

The overall model was statistically significant (F=3.98,
p =0.015), with an adjusted R of 0.32, indicating that the included
predictors could explain approximately 32% of the variance in
reported accuracy.

Among the covariates, segmentation strategy emerged as a
significant predictor: studies using automatic segmentation reported
on average, a 6.6 percentage point higher accuracy compared to
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those using manual segmentation (4 =0.0656, p = 0.007). This
aligns with previous findings suggesting that automated
preprocessing may reduce inter-observer variability and
improve reproducibility.

Other predictors, such as dataset size, CNN architecture, and risk
of bias, were not statistically significant at the conventional threshold
(p>0.050). However, the effect of high risk of bias approached
significance (8 = 0.0427, p = 0.096), suggesting a possible inflation of
performance estimates in studies with methodological limitations.

Notably, dataset size was not a significant predictor (p = 0.323),
corroborating earlier findings that performance does not linearly scale
with sample size within the studied range, possibly due to saturation
effects or compensatory use of data augmentation techniques.

These results reinforce the critical role of segmentation quality in
shaping model performance and highlight the need for more
standardized methodologies and transparent reporting in Al-based

diagnostic research.

3.5 Temporal analysis

The progression of Al architectures in the included studies reflects
a clear methodological shift over time. Temporal analysis of
architectural usage revealed a transition from traditional ML
techniques and ANNSs to DL approaches, particularly CNNs. Between
2014 and 2018, studies primarily employed ML methods such as
support vector machines (SVM), random forests (RF), and logistic
regression (LR), representing approximately 85% of the methodologies
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Meta-regression coefficients with 95% confidence intervals. This figure presents the coefficients resulting from the meta-regression analysis evaluating
the relative influence of various methodological factors on diagnostic accuracy. Only automatic segmentation demonstrated a statistically significant
effect on accuracy (p = 0.007), whereas other factors such as dataset size, architecture type (CNN vs. others), and risk of bias did not reach statistical
significance. This outcome emphasizes the critical importance of automated segmentation quality as a key determinant of Al model performance.
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used during this period. ANN-type architecture was also present,
constituting roughly 15% of studies, while no CNN-based models
were recorded before 2020.

Figure 7 presents a stacked bar chart showing the number of
studies using each architecture per year. CNNs emerged in 2020,
accounting for 20% of the methodologies that year, and showed a
marked increase in 2021, becoming the predominant architecture (65%
of studies) in 2022. This trend intensified through 2023 (72% of studies)
and 2024 (78% of studies), with CNNs accounting for more than half
of the models evaluated annually. Transformer-based architectures,
specifically Swin Transformer and Pyramid Vision Transformer,
appeared exclusively in 2024, accounting for approximately 10% of the
methodologies that year, indicating the beginning of a new phase of
exploration focused on models with advanced contextual attention
mechanisms and long-range feature integration.

This shift mirrors broader trends observed across diagnostic
imaging A, where deep architectures have largely replaced classical
ML techniques due to their ability to learn hierarchical features
directly from raw images without manual feature engineering (Litjens
et al., 2017; Esteva et al., 2019). However, this evolution may also
explain some of the performance differences observed in earlier
sections. For example, the predominance of CNNGs in recent years may
co-occur with advances in preprocessing, data augmentation, and
training infrastructure, confounding the interpretation of architecture-
based performance gains.

Notably, this trend may influence perceived model superiority, as
CNN-based studies often reflect newer methodological standards,
including automatic segmentation and more rigorous evaluation
protocols. These temporal patterns underscore the importance of
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accounting for publication year and technological maturity when
comparing performance across architectures or studies.

3.6 Heterogeneity and risk of bias analysis

To evaluate how methodological quality influences the reported
performance of AI models, the 44 included studies were classified
according to their overall risk of bias using the PROBAST tool. In
total, 26 studies were classified as low risk of bias, 12 as unclear risk,
and six as high risk (Figure 8). However, not all studies reported all
performance metrics, and the number of studies included varied
substantially by metric. This heterogeneity in reporting introduces
selection bias and impairs comparability.

Studies classified as high risk of bias showed markedly elevated
performance metrics, with a mean accuracy of 96.1% +7.6, a
sensitivity of 95.4% + 7.9, and a specificity of 93.9% * 11.7. However,
none of these studies reported areas under the curve (AUC) values,
precluding the complete evaluation of discriminative performance.
Moreover, the elevated standard deviation in specificity suggests
potential overfitting, likely arising from methodologically weak
practices such as internal validation without cross-validation, small
sample sizes, and operator-dependent manual segmentation (Wolff
etal,, 2019; Collins et al., 2021). These practices have been consistently
linked to inflated model performance in machine learning for medical
imaging (Kelly et al., 2019).

In contrast, low-risk studies showed more conservative but
consistent performance metrics, with lower dispersion and complete
reporting of AUC. Specifically, they reported an accuracy of
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This figure illustrates the temporal evolution in the use of different Al architectures from 2014 to 2024. A clear shift is observed from classical machine
learning techniques (ML and ANN) to deep learning models (CNN), particularly from 2021 onwards, with transformer-based models appearing more
recently (2024). This evolution reflects a continuous methodological transition toward increasingly sophisticated architectures capable of directly and
deeply extracting information from images. However, this shift may also coincide with general methodological improvements over time.
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Distribution of risk of bias across PROBAST domains and associated model performance metrics. (A) Distribution of the 44 included studies across the
four PROBAST domains (participants, predictors, outcomes, and analysis), categorized by overall risk of bias (low, unclear, and high). (B) Mean values of
accuracy, sensitivity, specificity, and AUC, stratified by overall risk of bias. Studies classified as high risk consistently report higher mean values for
accuracy, sensitivity, and specificity but exhibit greater variability and frequently lack AUC reporting, indicating potential methodological overfitting.
Studies with low risk exhibit more consistent and reliable performance metrics.

90.4% *+ 5.2 (n = 20), a sensitivity of 90.7% + 7.0 (n = 25), a specificity
of 89.1% + 8.2 (n = 22), and an AUC of 93.5% * 3.9 (n = 20). While
these results appear numerically inferior, the reduced variability and
broader metric completeness suggest higher methodological reliability
and clinical applicability.

The unclear-risk group, often the result of poor reporting rather
than clearly defined methodological shortcomings, yielded
intermediate metrics (accuracy: 93.6% =+ 5.0; sensitivity: 91.9% + 7.7;
specificity: 91.1% + 5.4; AUC: 92.2% + 4.6). However, the small and
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variable sample sizes for each metric (e.g., n=6 for specificity)
compromise interpretability and hinder statistical power.

A sensitivity analysis was conducted excluding high-risk studies,
which resulted in a notable reduction in extreme values (e.g., 100%
accuracy) and decreased overall dispersion, particularly in specificity.
However, this analysis was limited by the lack of formal statistical
testing (e.g., ANOVA or Kruskal-Wallis) to assess whether differences
between groups were statistically significant. Furthermore, no
regression adjustment was made for potential confounders such as
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dataset size or model complexity. These omissions limit the strength of
causal inferences between risk of bias and reported model performance.

The primary sources of methodological heterogeneity across
studies were identified as follows: (i) reliance on manual, operator-
dependent image segmentation; (ii) absence of cross-validation or
external validation; (iii) small sample sizes (<200 cases); and (iv) lack
of standardized metric reporting formats. These deficiencies were
most prevalent in high- and unclear-risk studies, consistent with prior
evidence from systematic reviews of machine learning in healthcare
(Sounderajah et al., 2021; Liu et al., 2019).

Finally, this section would benefit from including confidence
intervals and formal effect size estimates to contextualize differences
across bias strata. Without these, claims about “superior” or “more
stable” performance remain largely descriptive and potentially misleading.

4 Discussion

The analyzed studies demonstrate generally high diagnostic
performance of AI models for classifying ovarian masses using
B-mode TVS. Most studies achieved AUC values ranging from 0.85
to 0.95, with sensitivity and specificity typically above 80% (Acharya
etal., 2018; Sadeghi et al., 2024). However, substantial heterogeneity
across studies suggests caution when interpreting pooled performance
metrics due to sample size, class balance, and data quality variations.

Automatic segmentation demonstrated statistically significant
accuracy and sensitivity superior to manual segmentation, likely due
to reduced observer variability (p = 0.007 and p = 0.042, respectively).
Although manual segmentation provides potentially optimal
delineation by experts, it is prone to operator-dependent biases.
Automatic segmentation offers reproducibility and scalability but
introduces errors if segmentation quality is suboptimal (Chiappa
et al,, 2021). Given these findings, future research should explicitly
compare different segmentation algorithms and validate them against
expert delineation standards to enhance clinical applicability.

Contrary to expectations, dataset size alone showed no clear
correlation with diagnostic performance within datasets <5,000
images. Small datasets sometimes reported exceptional accuracy,
likely due to extensive data augmentation strategies, while larger
datasets faced increased variability and complexity, offsetting potential
accuracy gains (Acharya et al, 2018; Liu et al, 2019). Thus,
methodological rigor, dataset diversity, and validation strategy appear
more influential than dataset volume alone.

Comparison among model architectures (classical ML, CNNs,
and Transformers) revealed no consistent superiority. Traditional ML
models and simple neural networks occasionally matched the
performance of sophisticated CNNs and Transformers (Acharya et al.,
2018). Although CNN-based models showed visually higher median
accuracy and reduced variance, no statistically significant differences
were observed across architectures (p = 0.258). Superior results often
correlated with modern methodological standards rather than
architectural innovation alone. Future research should directly
compare these architectures under standardized experimental
conditions to clarify intrinsic performance differences clearly.

The risk of bias significantly affected the result’s validity. Studies
with high or unclear bias frequently reported inflated performance
metrics with notable dispersion (e.g., specificity SD = 11.7%) due
to methodological weaknesses like internal-only validation, small
sample sizes, and lack of external validation (Sounderajah et al.,
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2021; Roberts et al., 2021). Such biases undermine clinical
generalizability, emphasizing the need for rigorous validation
standards (e.g., TRIPOD-AI, STARD-AI) and multicenter,
prospective validation.

Temporal analysis showed methodological evolution influencing
perceived performance gains. Despite less sophisticated techniques,
earlier studies occasionally reported superior outcomes due to less
rigorous validation methods, whereas recent studies employed
stricter evaluation, tempering observed performance improvements
(Sounderajah et al, 2021; Roberts et al., 2021). Therefore,
performance comparisons across time should account for these
evolving methodological contexts.

Recent advances emphasize the critical importance of precise
methodological design and targeted biological understanding. For
instance, Liu et al. (2024) highlighted how epitope-specific targeting
of HER2 significantly influences therapeutic outcomes in solid
tumors, illustrating the necessity of methodological precision in
clinical efficacy. Similarly, Ma et al. (2023) underscored the potential
benefits of integrating detailed molecular insights into advanced
diagnostics by showing how the glycolytic enzyme ENO1 modulates
choline phospholipid metabolism and tumor proliferation. Such
multidisciplinary integration may substantially improve cancer
characterization and patient outcomes.

Al currently demonstrates potential as an adjunctive diagnostic
tool rather than a standalone solution. Real-world applicability requires
rigorous external validations, standardized metric reporting (e.g.,
sensitivity, specificity, predictive values), and integration within clinical
workflows. Moreover, evaluating the clinical impact of Al particularly
for distinguishing borderline ovarian lesions, remains essential due to
their clinical complexity and diagnostic challenges (Roberts et al., 2021).

Given the limited reporting of comprehensive metrics like AUC
and F1-score, future studies should ensure the consistent inclusion of
these metrics to improve clinical interpretability and decision-making.

In conclusion, while AI models for ovarian mass classification via
TVS demonstrate promising diagnostic accuracy, significant
methodological limitations currently restrict their clinical translation.
Future research must prioritize external validation, robust
methodological standards, multidisciplinary integration, and
transparent, standardized reporting. Prospective, multicenter studies
remain crucial to fully validate these models’ clinical utility,
generalizability, and real-world applicability.

5 Conclusion

Al models applied to B-mode TVS images demonstrate strong
diagnostic performance for classifying ovarian masses, achieving high
sensitivity, specificity, and overall discriminative ability (AUC).
Automated segmentation significantly outperformed manual methods
in accuracy and sensitivity, likely due to enhanced standardization and
reduced inter-observer variability.

Nevertheless, these findings must be interpreted cautiously due to
considerable methodological heterogeneity, variations in dataset size
and quality, and significant risks of bias identified among several
studies. Additionally, no consistent superiority emerged among
different AI architectures (CNNs, classical ML, or Transformers),
suggesting that methodological rigor, validation procedures, and data
standardization may be more influential determinants of performance
than the specific model architecture itself.
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Future research should prioritize prospective, multicenter external
validation under realistic clinical conditions for reliable clinical
translation. Moreover, rigorous adherence to standardized reporting
guidelines (e.g., TRIPOD-AI, STARD-AI), comprehensive metric
reporting, including sensitivity, specificity, AUC, and F1-score, and
explicit evaluation of clinical utility, especially in distinguishing
borderline ovarian lesions, are essential.

In summary, while AT holds significant promise for OC diagnosis
using TVS, overcoming current methodological limitations through
robust validation and standardized methodological practices is
imperative for successful integration into clinical practice.
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