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multi-level platform for visual
question answering in diabetic
retinopathy for individuals with
disabilities
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Individuals with visual disabilities possess impairments that affect their ability
to perceive visual information, ranging from partial to complete vision loss.
Visual disabilities affect about 2.2 billion people globally. In this paper, we
introduce a new multi-level Visual Questioning Answering (VQA) framework for
visually disabled people that leverages the strengths of various VQA models
of the multi-level components to enhance system performance. The model
relies on a bi-level architecture that employs two distinct layers. In the first
level, the model classifies the question type. This classification guides the visual
question to the appropriate component model in the second level. This bi-level
architecture incorporates a switch function that enables the system to select
the optimal VQA model for each specific question, hence enhancing overall
accuracy. The experimental findings indicate that the multi-level VQA technique
is significantly effective. The bi-level VQA model enhances the overall accuracy
over the state-of-the-art from 87.41% to 88.41%. This finding suggests the use of
multiple levels with different models can boost the VQA systems’ performance.
This research presents a promising direction for developing advanced, multi-
level VQA systems. Future work may explore optimizing and experimenting with
various model levels to enhance performance further.

KEYWORDS

disability-aware VQA, ELECTRA, Med-VQA, medical visual question answering,
multi-level VQA, question answering, SWIN, vision-language models

1 Introduction

Visual disabilities affect millions of people worldwide, posing a major global concern.
These impairments severely restrict access to visual information and limit participation
in many daily activities (Gurari et al., 2018). The World Health Organization (WHO)
reports that more than 2.2 billion individuals worldwide experience some form of visual
impairment or blindness, with many cases arising from preventable or treatable conditions
such as diabetic retinopathy (DR) (Organization, 2019).

The standard practice for diagnosing and assessing DR involves ophthalmologists
manually analyzing fundus images to determine disease severity. However, this method is
time-intensive, error-prone, and highly subjective. The global shortage of ophthalmologists
further exacerbates these challenges (Abràmoff et al., 2018).
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These limitations hinder timely and accurate diagnosis,
especially as the prevalence of DR continues to rise. Recent deep
learning developments show promise in automating DR detection
and grading, offering potential solutions to these challenges.
However, these methods face practical limitations, including
data scarcity, difficulty generalizing to real-world scenarios, and
suboptimal performance in handling complex diagnostic questions
(Jagan Mohan et al., 2022). Advancements in assistive technologies
powered by artificial intelligence (AI) promise to transform
lives, enhance independence, and elevate the quality of life for
these individuals (de Freitas et al., 2022). Recent deep learning
developments To bridge this gap, Visual Question Answering
(VQA) has emerged as a promising development capable of
extracting meaningful insights by answering user-defined questions
based on image content (Lin et al., 2023). In the medical domain,
Medical Visual Question Answering (Med-VQA) has recently
become a potential solution (Lin et al., 2023). Med-VQA combines
advancements from Computer Vision (CV) and Natural Language
Processing (NLP) to answer complex medical questions using
images like fundus images, CT scans, and X-rays (Lin et al., 2023;
Gu et al., 2024).

Integrating text with image data, Med-VQA offers several
advantages. It facilitates expedited and accurate diagnoses for
physicians. It also alleviates their workload by delivering immediate
responses to common inquiries and provides medical students with
a valuable study resource.

Additionally, Med-VQA empowers patients by providing
access to information regarding their ailments using
straightforward question-and-answer interfaces (Al-Hadhrami
et al., 2023). The Med-VQA area is nascent and has numerous
constraints, notably the lack of high-quality labeled data (Gu
et al., 2024). Presently accessible datasets such as VQA-RAD
(Zhu et al., 2016), SLAKE (Liu et al., 2021), VQA-Med (Abacha
et al., 2019, 2020), and DME (Tascon-Morales et al., 2022) serve
as foundational references. Nonetheless, numerous efforts are
inadequate due to insufficient question diversity, limited data
volumes, and, in certain instances, the lack of clinical validation,
hindering the development of robust and generalizable models.

In the context of available Med-VQA datasets, this study
tackles the challenge of the data limitation by fine-tuning
models on comprehensive datasets that encompass various types
and modalities of questions (Zhang et al., 2023). By utilizing
all available data and focusing on specific question types or
classes during the fine-tuning process, the proposed methodology
mitigates issues related to model generalization and overfitting.
The hierarchical model structure introduced in this research
outperforms conventional methods by categorizing visual question
types according to image, text, or combined image-text. This
distinctive classification methodology that highlights the image and
text modalities differs this work from the existing literature and
introduces a new direction for improved VQA performance.

In the context of VQA, Al-Hadhrami et al. (2023) demonstrated
that models fine-tuned using various hyperparameters perform
best for different question types or response classes. This
finding highlights the importance of models being designed for
given question classes, the next fundamental step toward the
enhancement of the effectiveness and efficiency of the models for

VQA. Based on this finding, this work highlights the importance for
models being flexible and adaptive for handling multiple question
types dynamically, eventually enhancing the performance and
delivering more accurate responses for real-world applications.

State-of-the-art (SOTA) methods often incorporate several
advanced techniques. These include joint embedding (Ren et al.,
2015; Antol et al., 2015; Malinowski et al., 2015), attention
mechanisms (Jiang et al., 2015; Chen et al., 2015; Ilievski et al., 2016;
Andreas et al., 2016b; Song et al., 2022), compositional reasoning
(Andreas et al., 2016a,b; Xiong et al., 2016; Kumar et al., 2016;
Noh and Han, 2016; Gao et al., 2019), and knowledge-enhanced
approaches (Wang et al., 2015, 2017; Wu et al., 2016; Zhu et al.,
2016).

More recently, most models have attempted to employ
attention mechanisms for mapping text and image features together
(Peng et al., 2018; Lu et al., 2016; Chen et al., 2015; Shi et al.,
2018). Moreover, pre-trained visual-language (V + L) models
such as visualBERT (Li et al., 2019a), UNITER (Chen et al.,
2020b), VilBERT (Lu et al., 2019), and CLIP (Radford et al., 2021)
demonstrated their ability for increased performance. Additionally,
researchers also began using image captioning to provide models
with increased text context for understanding complex medical
queries (Cong et al., 2022). However, despite these advancements,
the available models fail to easily deal with the diversity of the
type of questions encountered during real-life medical scenarios.
This lack of adaptability limits their utility and points toward the
need for novel approaches for the unique Med-VQA concerns. This
paper addresses the limitations of existing Med-VQA approaches
by introducing a new architecture that improves flexibility and
accuracy in answering medical questions. Unlike conventional
models, our approach hierarchically categorizes questions based
on their dependence on image, text, or mixed modalities. This
classification allows for the fine-tuning of models for each form
of the question independently, eliminating the generalization and
overfitting issues. Besides, by using the switch function for adaptive
best-fitting model selection for each form of the question, the
solution is extremely flexible and adjustable, providing much
improved performance and accuracy.

The key contributions of this study are listed as follows:

• This study introduces a novel multi-level VQA framework
designed to handle diverse medical question types by
categorizing them hierarchically based on their reliance on
image, text, or combined modalities.

• The proposed VQA system employs a bi-level architecture
where the first-level classifies the input question type. The
second level utilizes specialized component models for each
question type, improving accuracy by dynamically selecting
the most suitable model using a switch function.

• The bi-level model is constructed using components selected
from the best-performing state-of-the-art models on diabetic
retinopathy. This design demonstrates how the proposed
approach can enhance their performance within a unified
framework. Those models are the ELECTRA-SWIN and
two GS-ELECTRA-SWIN models with different hyper-
parameters.
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The subsequent sections of the paper are structured
as follows: Section 2 presents the existing literature and
methodologies for Med-VQA, highlighting current limitations
and research gaps. Section 3 details the proposed hierarchical
Med-VQA framework, encompassing its architecture and
implementation. Section 4 presents the experimental results
and discusses the performance improvements achieved by the
proposed method. Finally, Section 5 presents with principal
findings, implications, and recommendations for future
research endeavors.

2 Related works

VQA systems generally consist of four essential elements:
vision featurization, text featurization, fusion models, and answer
classification or generation. These elements collectively enable the
effective processing of image-based queries.

2.1 Vision Featurization

In the domain of VQA, vision featurization is a fundamental
component of the multimodal architecture. Its primary role is
to extract essential visual information from images. Representing
an image as a numerical vector–known as image featurization—
involves applying various techniques. These techniques include
the scale-invariant feature transform (SIFT) (Lowe, 1999), simple
RGB vectors, histogram of oriented gradients (HOG) (Dalal and
Triggs, 2005), Haar transform (Lienhart and Maydt, 2002), and
deep learning methodologies.

Deep learning approaches, particularly Convolutional
Neural Networks (CNNs), play a pivotal role in visual feature
extraction by leveraging neural networks to learn essential
visual features. Deep learning can involve training models
from scratch, which requires large datasets. Alternatively,
transfer learning techniques yield strong performance even with
limited data. Given the constraints of medical VQA datasets,
researchers often resort to leveraging pre-trained models to
enhance performance.

Widely used pre-trained models include AlexNet (Krizhevsky
et al., 2017), VGGNet (Simonyan and Zisserman, 2015; Zhang
et al., 2019; Abacha et al., 2018; Verma and Ramachandran, 2020a;
Bounaama and Abderrahim, 2019), GoogLeNet (Szegedy et al.,
2015), ResNet (He et al., 2016; Fukui et al., 2016; Kim et al., 2017;
Ben-Younes et al., 2017; Huang et al., 2023; Tascon-Morales et al.,
2022, 2023; Haridas et al., 2022), and DenseNet-121 (Kovaleva
et al., 2020). These architectures have shown strong effectiveness
in extracting image features.

In addition, ensemble models—combinations of multiple
neural networks—have gained traction in vision feature extraction
within VQA systems. By aggregating outputs, ensembles can
outperform individual models. This potential has motivated
researchers to explore their utility in enhancing vision feature
extraction (Liao et al., 2020; Do et al., 2021; Gong et al., 2021; Wang
et al., 2022a,b).

2.2 Text featurization in visual question
answering

Text featurization, Like vision featurization, is crucial in
converting questions into numeric vectors and facilitating
mathematical computations in VQA systems. The selection of an
appropriate text embedding method often involves an iterative
process (Manmadhan and Kovoor, 2020). Various text embedding
techniques employed in SOTA models significantly influence the
multi-modal nature of VQA systems.

Among the prevalent text embedding methods used in question
modeling, Long Short-Term Memory (LSTM) (He et al., 2020b;
Kovaleva et al., 2020; He et al., 2020a; Tascon-Morales et al., 2022,
2023; Wang et al., 2022a,b), Gated Recurrent Units (GRU) (He
et al., 2020b,a), Recurrent Neural Networks (RNNs) (Allaouzi et al.,
2018; Abacha et al., 2018; Zhou et al., 2018b; Talafha and Al-
Ayyoub, 2018), Faster-RNN (He et al., 2020b,a), and the encoder-
decoder approach (Vu et al., 2020; Fukui et al., 2016; Kim et al.,
2017; Ben-Younes et al., 2017; Verma and Ramachandran, 2020b;
Kiros et al., 2015) are widely utilized.

Moreover, pre-trained models like Generalized Auto-
regressive Pre-training for Language Understanding (XLNet)
(Yang et al., 2019) and Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019; Verma and
Ramachandran, 2020b; Huang et al., 2023; Haridas et al., 2022) have
gained prominence in text featurization within VQA frameworks.
Notably, specific models opt to bypass explicit text featurization,
treating the problem as an image classification task (Gong et al.,
2021; Eslami et al., 2021; Schilling et al., 2021). This enhanced
description of text featurization in VQA systems emphasizes the
diverse range of methods and pre-trained models used to transform
textual queries into numerical representations, thereby enhancing
the model’s overall performance and multimodal capabilities.

2.3 Fusion in visual question answering
systems

The fusion step in VQA systems involves the integration
of independently extracted text and image features. This fusion
process serves as a pivotal stage in VQA pipelines. Manmadhan
and Kovoor (2020) have categorized fusion into three main
categories: baseline fusion models, joint attention models, and end-
to-end neural network models. Baseline fusion models encompass
a variety of fusion techniques, such as element-wise addition
(Antol et al., 2015), element-wise multiplication, and concatenation
(Zhou et al., 2018a). They also include combinations of these
methods (Malinowski et al., 2017) and hybrid approaches involving
polynomial functions.

End-to-end neural network models are instrumental in
seamlessly merging image and text features. Noteworthy methods
include neural module networks (NMNs) (Andreas et al., 2016b),
multi-modal approaches like MCB (Fukui et al., 2016), and
dynamic parameter prediction networks (DPPNs) (Noh et al.,
2016). Other approaches include multi-modal residual networks
(MRNs) (Kim et al., 2016), cross-modal multistep fusion (CMF)
networks (Mingrui et al., 2018), and basic MCB models enhanced
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with deep attention neural tensor network (DA-NTN) modules
(Bai et al., 2018). Additional methods employ MLPs (Narasimhan
and Schwing, 2018) and encoder-decoder techniques (Chen et al.,
2020a; Li et al., 2019b).

Joint attention models include the word-to-region attention
network (WRAN) (Peng et al., 2018), co-attention mechanisms
(Lu et al., 2016), question-guided attention maps (QAM) (Chen
et al., 2015), and question type-guided attention (QTA) (Shi et al.,
2018). These approaches are designed to capture nuanced semantic
relationships between text and image attentions (Manmadhan and
Kovoor, 2020).

In addition to traditional neural network methods like LSTM
and encoder-decoder architectures, Verma and Ramachandran
(Verma and Ramachandran, 2020b) have introduced a multi-
model approach incorporating encoder-decoder, LSTM, and GloVe
embeddings. Moreover, integrating vision-language pre-trained
models, as seen in Haridas et al. (2022), further enriches the
fusion process within VQA systems. Recent improvements in
VQA show that most methods integrate vision and text processing
to enhance accuracy. Vision featurization now relies on CNNs
for detailed feature extraction, while text featurization employs
models such as LSTMs and BERT for efficient question encoding.
Advanced fusion techniques, especially attention-based networks,
refine image-text alignment and push VQA toward higher levels
of cross-modal understanding and performance. Recent work
by Tascon-Morales et al. (2023) benchmarked transformer-based
VQA models on datasets like VQA-RAD and PathVQA. This
revealed problems with dataset bias and generalization. Other
models, such as ViLT, VisualBERT, and GLoRIA, perform well
due to vision-language pretraining and attention-based fusion.
Unlike these flat architectures, our approach introduces a bi-level
structure with question-type routing to improve specialization and
robustness.

3 Proposed method

A multi-level VQA system is a VQA that has multiple levels,
each with several VQAs to handle particular questions or answers.
This section highlights the methodology for the multi-level VQA
system, encompassing problem specification, an outline of the
proposed approach, a description of its elements, and subsequent
model training strategies.

This section delineates the methodology for the multi-level
VQA system, including problem specification, an overview of
the proposed approach, a description of its components, and
subsequent model training procedures.

3.1 The proposed method overview

From the VQA models presented by Al-Hadhrami et al.
(2023), we found that the models with various hyper-parameters
outperform each other in different question types or particular
answers. Therefore, designing models focusing on appropriate
question types or classes has become increasingly crucial to
enhancing the performance and effectiveness of VQA models. The
flexibility of this approach allows for the customization of models

to fit specific question types, leading to improved performance and
more accurate answers. The existing Med-VQA datasets, several
methods exist to handle the data and fine-tune the models on these
datasets. For example, the dataset with multi-modality images and
the dataset with different question types. Since limited data is one
gap in the Med-VQA, splitting the data into sub-data can affect the
model generalization and lead to overfitting. Therefore, using all
data to fine-tune the model by focusing only on particular question
types or classes could help to overcome those issues. In SOTA,
a hierarchical model is proposed by splitting the data based on
the image modality using image modality recognition or question
type, such as open and closed, based on text only. Visual question
types can be classified based on image, text, or both. The first two
question type classifications are used in the literature, while we
proposed utilizing the last method. In this paper, the multi-level
VQA model is a hierarchical model composed of multiple levels
of VQAs, each addressing specific aspects of the question. The
predicted answer could be gained from the different model levels
or the last one. For instance, one level may handle image-related
inquiries, the next level focuses on question types, and the final
level addresses the primary visual question. The investigation of the
multi-level VQA model aims to improve overall performance. This
study employs a Bi-level VQA model. Figure 1 shows the overall
multi-level VQA method structure. Each level contains two or more
VQA except the first-level, which includes one or more VQA. In
this study, the first-level only has a single VQA. A single or multiple
switch function separates the levels from each other. Algorithm 1
shows the procedure of the multi-level VQA framework.

3.1.1 Problem specification and formulation
Med-VQA attempts to accurately predict the correct answers

based on a combination of medical images and text questions. The
task requires generating a brief and accurate textual answer from
the input pair comprising a medical image I and a question Q. This
process is mathematically expressed as in Equation 1:

A = VQA(I, Q, �) (1)

where I is the input image, Q is the question, A is the predicted
answer, and � represents the model parameters.

In multi-level VQA (MVQA), both I and Q are processed by
several models Mk, where k <= n, n is the levels number. Each
level i has j models, where j > 0. Therefore, Mij denotes to the
model j in the level i. Those levels are separated by switch function
Si, where i is the level that precedes it. So, the intermediate answers
at each level given by in Equation (2):

aij = Mij(I, Q) (2)

where aij is the answer of the models j in the level i.
and the decision to proceed to the next level is given by in

Equation (3):

Di−1 =
{

0 if no extra level and final answer is detected

1 if routing to the next M(ij)
(3)
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FIGURE 1

Overall structure of the multi-level VQA framework. The system is composed of n levels, each containing multiple models. The input image and
question are first processed at first-level, and the switch function routes them to the appropriate model in the next level. The final answer is
produced by one of the models, depending on the routing decisions across levels.

Require: Image I, Question Q, Set of Levels
L = {L1,L2,...,Ln}

Ensure: Answer A
1: Initialize current_level ← 1
2: i ← 1 {i is the level number}
3: j ← 1 {j is the model number}
4: aij ← model(I,Q) {aij is the answer of the model j

in the level i}
5: while current_level ≤ n do
6: models ← LNext_level {Retrieve models in current

level}
7: selected_modelij ←

SwitchFunction(I,Q,models,aij) {Select the
most suitable model}

8: aij ← selected_model(I,Q) {Answer from
selected model}

9: {Intermediate answer is used only by switch
function and not passed to next level}

10: if aij is final answer then
11: A ← aij
12: return A
13: end if
14: current_level ← current_level+ 1
15: end while
16: A ← aij
17: return A

Algorithm 1. Multilevel VQA system.

The final answer is given by in Equation (4):

A = Mij(I, Q) (4)

where Di−1 = 0.

3.1.2 Bi-Level VQA
Our proposed model is designed to enhance accuracy and

efficiency by leveraging a hierarchical structure consisting of two
distinct levels. The first-level serves as a classification system,
which identifies the type of input question and produces specific
information to guide subsequent processing. A switch function
uses this information to route the visual question to the suitable
VQA model in the second level to predict the answer. The first-
level employs the GS-ELECTRA-SWIN VQA model as shown in
Figure 2, known for its efficiency in question types classification, as
discussed by Al-Hadhrami et al. (2023).

The second level can include differently designed models,
where each model fits well for one or more question types, or
the same model but fine-tuned with different hyper-parameters
to be suitable for such a question type. The second level used
the ELECTRA-SWIN and GS-ELECTRA-SWIN VQA models, as
presented in Figure 3. The explanation of each transformer is given
below.

• ELECTRA-SWIN The proposed VQA model combines
ELECTRA and Swin Transformers to extract text and visual
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FIGURE 2

Overall structure of the first-level in the multi-level VQA framework. The model predicts the question type but does not provide the final answer.

FIGURE 3

The Overall second-level structure of the multi-level VQA technique. Second-level structure: the first-level predicts the question type; the switch
routes the question to the specialized model for that type, which directly outputs the final answer.

features. The ELECTRA model is implemented to extract
informative text features from the input question, while the
Swin Transformer captures salient visual features from the
corresponding image. The extracted text and visual features
are subsequently combined and normalized to ensure they
are on a similar scale. Finally, the normalized, concatenated
features are passed to a MLP network, which classifies
the answer based on the integrated information from both
modalities. The general structure of the ELECTRA-SWIN
model is shown in Figure 4. Algorithms 2 and 3 show the
ELECTRA and SWIN features extraction respectively.

The essential advantage of this architecture is its ability to
leverage the robust feature extraction capabilities of ELECTRA

and Swin Transformer, which have demonstrated SOTA
performance on various NLP and computer-vision tasks. By
fusing the text and visual features and passing them through
an MLP, the model can effectively analyze the input image
and the question to determine the accurate answer. This
method offers an adaptable and scalable way to handle various
possible answer choices, making it well-suited for diverse VQA
scenarios.

• GS-ELECTRA-SWIN The ELECTRA-SWIN model is
produced from the optimal selection criterion (Al-Hadhrami
et al., 2023), which selects the model exhibiting the highest
validation accuracy throughout the training. It can be
mathematically written as follow in Equation (5):
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FIGURE 4

Overall structure of the ELECTRA-SWIN model. The input question is encoded using the ELECTRA discriminator, while the image is processed
through the Swin Transformer. The resulting textual and visual feature representations are normalized, concatenated, and passed through an MLP to
generate the final answer.

Require: Input text X, pre-trained ELECTRA-Base model
M

Ensure: Output feature vector F ∈ R
D

1: Tokenize input text and add special tokens for
classification: T = [CLS]+ X + [SEP]

2: Convert tokens to their corresponding token IDs:
I = tokenizer(T)

3: Pass input token IDs through the pre-trained
ELECTRA-Base model to derive the final hidden state:
H = M(I)

4: Extract the final hidden-state of the special [CLS]
token as the output feature vector: F = H1,:, where
H1,: denotes the first row of the hidden state matrix
H

5: Return Output feature vector F

Algorithm 2. Feature extraction from ELECTRA-Base transformer.

f (x, argmaxiValAcc(θi)) (5)

The GS-ELECTRA-SWIN model integrates the greedy
soup technique with the ELECTRA-SWIN model. The final
model is chosen according to the models generated during
the training phase, significantly impacting the average of
all notable validation accuracies of fine-tuned models. The
mathematical formulation of the model is as:

Require: Input image X ∈ R
H×W×C, pre-trained SWIN-Base

model M
Ensure: Output feature vector F ∈ R

D

1: Normalize input image: X′ = X−μ
σ

2: Pad input image to a multiple of the patch size:
X′′ = ZeroPad(X′,P)

3: Split input image into non-overlapping patches of
size P: Xi = X′′[pi], where pi denotes the coordinates
of the i-th patch

4: Embed each patch using a learnable embedding layer:
Ei = Wemb(Xi), where Wemb is a learnable weight matrix

5: Add positional embeddings to each patch embedding:
Ei = Ei + Pi, where Pi is a learnable positional
embedding

6: Pass input patches through the pre-trained SWIN-Base
model to obtain the final hidden state: H = M(E)

7: Apply a global average pooling function to the
hidden state to obtain the output feature vector:
F = 1

N
∑N

i=1 Hi, where N is the total number of patches
8: Return Output feature vector F

Algorithm 3. Feature extraction from SWIN-Base transformer.

Let M = {m1, m2, . . . , mn} and θ = {θ1, θ2, . . . , θn}
represent the number of models and their corresponding
parameters, accordingly. Additionally, consider
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FIGURE 5

Overall structure of the GS-ELECTRA-SWIN model. Three independently trained ELECTRA-SWIN models, each with different training epochs, are
combined using the greedy-soup technique to produce the final ensemble model.

θ − SoupIngredients = {θ1, θ2, . . . , θk} and Mk =
{mk1, mk2, . . . , mkk} as the set of selected parameters or
the soup ingredients of the models under evaluation.
At each validation computation step i, model mi is
included if its validation accuracy satisfies the condition
valAcc(mi∪mkk) > min(mkk). The models in Mk are arranged
in decreasing order based on their valAcc scores. Among the
models in Mk and their corresponding θ − SoupIngredients
parameters, a model is selected for fusion if, for each step from
i to k, the validation accuracy valAcc(sgi−1 ∪ {θi}) exceeds
valAcc(θ − SoupIngredientsi−1). Let θ − SoupIngredientsi
denote the set of j selected models. The final model parameters
θ ′ are computed as the average of the parameters of the chosen
θ − SoupIngredients models, calculated as in Equation (6):

θ ′ = 1
j

j∑
i=1

θi (6)

The presented model depends on the top three leading
models (k = 3), with validation evaluated at midway

and at the end of each epoch. Algorithm 5 details the
greedy soup algorithm for fusing three models with varying
hyperparameters. Figure 5 illustrates the overarching greedy
soup framework for merging three models.

• Switch function The switch function is tasked with
determining whether to switch the input question and image
to the appropriate model in the subsequent stage or to provide
the final answer to the visual question. Equations 3, 4 outline
the mathematical process involved in making this decision.
Algorithm 4 shows the switch function procedure.

3.2 Training using greedy soup technique

The proposed multi-level VQA model employs pre-trained
models for both textual and visual feature extraction. These models
are fine-tuned using the designed Med-VQA dataset to adapt to the
specific requirements of medical question-answering. To improve
the generalization and performance of the model, the greedy
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Require: Image I, Question Q
Ensure: Final Answer A
1: a1 ← GS-ELECTRA-SWIN(I,Q) {Level 1 prediction}
2: decision ← SwitchFunction(a1) {Determine next

action}
3: if decision == final then
4: A ← a1
5: return A
6: else if decision == route_to_model1 then
7: A ← ELECTRA-SWIN(I,Q) {Level 2 - Model 1}
8: else if decision == route_to_model2 then
9: A ← GS-ELECTRA-SWIN(I,Q) {Level 2 - Model 2}
10: else
11: A ← GS-ELECTRA-SWIN(I,Q) {Level 2 - Model

3. Model 3 has different hyperparameters from
Model.}

12: end if
13: return A

Algorithm 4. Bi-level VQA with switch function.

soup method is applied for fine-tuning parameters. This technique
integrates several fine-tuned models by fusing their parameters,
thus providing a general and efficient configuration.

During the training process, the model undergoes multiple
rounds of fine-tuning, and validation accuracy is calculated at
each stage. The final parameters are derived by averaging the
weights of the best k models, selected according to their validation
performance. This fusion technique significantly improves the
generalization capability of the model, minimizing overfitting
and enhancing performance. For this research, the final model
is generated using the top three fine-tuned configurations, with
different hyperparameters, integrated through the greedy soup
technique. This process is illustrated in the pseudocode (Figure 6),
Algorithm 5 and depicted in the flowchart in Figure 5.

Let �1, �2, and �3 denote the parameters of the visual, textual,
and MLP components, respectively, while k denotes the number
of models used for parameter fusion. The parameter �

(j)
i refers

to the parameters of the jth model in the ith component. The
combined parameter � for the final model is calculated as follows
in Equation 7:

FIGURE 6

The Pseudo code of the greedy-soup ensemble technique, where the final model weights are generated based on the three most significant model
weights regarding the validation accuracy.
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Require: M = {θ1, θ2, . . ., θN}: List of model checkpoints,
Dval: Validation dataset,
Acc(θ,Dval): Accuracy function

Ensure: θsoup: Final averaged model
1: Sort M by descending accuracy:
2: Acc(θ1,Dval) ≥ Acc(θ2,Dval) ≥ · · · ≥ Acc(θN,Dval)
3: Initialize soup set: S ← {θ1}
4: Initialize soup model: θsoup ← θ1

5: for i = 2 to N do
6: Compute temporary average:

θ ′ ← 1
|S| + 1

(∑
θ∈S

θ + θi

)

7: if Acc(θ ′,Dval) ≥ Acc(θsoup,Dval) then
8: S ← S ∪ {θi}
9: θsoup ← θ ′

10: end if
11: end for
12: return θsoup

Algorithm 5. Greedy soup for model ensembling

�(1) = {�(1)
1 , �(1)

2 , �(1)
3 },

�(2) = {�(2)
1 , �(2)

2 , �(2)
3 },

�(3) = {�(3)
1 , �(3)

2 , �(3)
3 },

...

�(k) = {�(k)
1 , �(k)

2 , �(k)
3 } (7)

The final fused parameters Theta are computed using the
following Equation 8:

� = 1
k

k∑
j=1

3∑
i=1

�
(j)
i . (8)

The combination of pre-trained backbones results in multiple
concatenated configurations, which are normalized and processed
through an MLP for final classification. These configurations are
fused using the greedy soup technique to enhance performance
and robustness, as demonstrated in Al-Hadhrami et al. (2023).
Figure 5 illustrates the overall structure of the model integrated
using the greedy soup method. Other configurations follow the
same structure, replacing the pre-trained models used for feature
extraction. This training strategy ensures that the final model
effectively handles diverse question types, leveraging hierarchical
VQA architecture and robust parameter fusion to deliver accurate
and reliable predictions in Med-VQA tasks.

3.3 Accessibility considerations and system
framework

This work proposes a multi-level Med-VQA framework
aimed at enhancing accessibility for visually impaired users.
The primary focus of the current study is on developing
and validating the underlying machine learning models and
architectural design, rather than delivering a fully integrated end-
user system. The proposed framework provides a modular and
extensible structure that demonstrates how various components–
such as question classification, visual feature extraction, and
answer generation—can be combined effectively. This modularity
enables potential integration with accessible platforms in the
future, including mobile and web applications that support
assistive technologies like screen readers, Braille displays, and
voice input/output systems. Accessibility considerations in the
framework are informed by established standards, including the
Web Content Accessibility Guidelines (WCAG) (W3C, 2023)
and ISO 9241 (International Organization for Standardization,
2008), which provide internationally recognized guidelines for
accessible system design. While the framework lays the technical
groundwork, actual integration into real-world accessible interfaces
and user-facing applications remains future work. Prior research
underscores the importance of tailored interface solutions for
visually impaired users. For example, Alhadhrami et al. (2015)
showed that adaptive interfaces coupled with multimodal feedback
significantly improve spatial awareness and usability. Similarly,
recent studies highlight the benefits of embedding VQA capabilities
into intelligent assistive devices such as wearable smart glasses
and voice-controlled platforms to enhance user autonomy (Ainary,
2025).

To ensure practical accessibility impact, future efforts will
include participatory evaluations with visually impaired individuals
and clinical professionals. These studies will assess task efficiency,
user satisfaction, and interaction quality through metrics such as
time-to-answer, error rates, and voice/haptic response accuracy.
Additionally, a prototype user interface featuring multimodal
interaction (voice and haptics) is planned to explore usability and
contextual adaptation further.

In summary, the presented framework serves as a foundational
architecture that outlines how Med-VQA components can be
systematically integrated to support accessibility. The subsequent
stages of research will focus on system integration, user-centered
design, and rigorous validation to translate this framework into
effective assistive technologies for visually impaired users. Figure 7
illustrates the DR VQR system framework architecture, which
allows visually impaired users to create personal accounts to store
their questions and answers. Additionally, the system can be
accessed both online and offline.

4 Evaluation protocol

4.1 Experimental environment
configuration

The models undergo training on a premium Google Colab
utilizing NVIDIA A100-SXM4-40 GB (Nvidia Corporation, Santa
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FIGURE 7

Framework architecture of the DR-VQR system. The user uploads a retinal image through the website or the iOS/Android application, formulates a
related question, and submits the request. The query is processed by the bi-level VQA model, which generates an answer. The result is then displayed
to the user via the mobile application or web interface.

Clara, CA, USA) with 80 GB RAM or an NVIDIA Tesla T4
with15GB and 25 GB or 51 GB RAM. The optimization function
utilizes AdamW with a learning rate of 1.0 × 10−3 and weight
decay of 0.9. A fixed random seed (seed = 42) was configured to
ensure deterministic behavior and reproducibility of the results.
Consequently, the outputs remain consistent across runs, resulting
in zero variance in the reported scores. While traditional statistical
significance tests rely on variability across multiple runs, in our
setup, reproducibility implies that even a small performance gain
(e.g., 0.1%) is meaningful and reliable under the same evaluation
conditions. More details about model configuration are listed in
Table A1 in the Appendix.

4.2 Assessment criteria

Model performance is evaluated based on the calculation
of metrics: precision, model accuracy, F1 score, recall (Powers,
2011), macro-average recall, macro-average precision, weighted
average precision, macro-average F1 score, weighted average F1
score, and weighted average recall (learn developers, 2024). The
performance metrics utilized to evaluate the model and compare
the findings with other state-of-the-art models are presented below.
The equation representing each metric is given below.

• Accuracy: This is determined using the formula shown below
Equation 9:

Accuracy = TN + TP
TN + TP + FN + FP

(9)

True positives (TP) refer to actual positive instances that are
correctly predicted by the model as positive. True Negatives
(TN) represent the negative instances accurately classified as
negative. False positives (FP) occur when negative instances
are incorrectly predicted as positive. Lastly, false negatives
(FN) denote positive instances that the model mistakenly
classifies as negative.

• Precision: measures the ratio of correctly predicted true
positive instances relative to the total predicted positive
instances. This metric is defined as in Equation 10:

Precision = TP
FP + TP

(10)

• Recall sensitivity: quantifies the proportion of correctly
predicted positive instances relative to the total actual positive
instances. This metric is measured by Equation 11:

Recall = TP
TP + FN

(11)

• F1-score: The F1-score assesses a model’s accuracy in
detecting positive instances by determining the harmonic
mean of precision and recall. It is computed as in Equation 12:

F1 = 2 × recall × precision
recall + precision

(12)

• Average macro accuracy: The macro average accuracy
assesses the model’s performance by calculating the accuracy
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of each class independently and after that averaging these
accuracies. The macro accuracy average formula is given in:
(13):

Macro Accuracy Average = 1
C

C∑
c=1

TPc

TPc + FPc
(13)

where C denotes the total number of classes, TPc is the number
of true positives for class c, and FPc is the number of false
positives for class c .

• Weighted average accuracy: calculates the average accuracy
for individual classes, considering the class frequencies in
the dataset to assign weights. The weighted average accuracy
equation is given by Equation 14:

Weighted average accuracy = nc × TPc

n
(14)

Where n is the total number of samples in the dataset and nc is
the number of samples belonging to class c. The TPc are as defined
above.

4.3 Dataset

In this study, the Diabetic Macular Edema (DME) (Tascon-
Morales et al., 2022) is used, which was automatically generated
from the Indian Diabetic Retinopathy Image Dataset (IDRiD)
(Porwal et al., 2018) and the e-Ophta dataset (Decenciere et al.,
2013). It comprises 13,470 question-answer pairs and 679 images,
divided into 433 images and 9,779 question-answer pairs for
training, 134 images and 2380 pairs for validation, and 112 images
and 1,311 pairs for testing.

The dataset includes questions regarding hard exudates, optic
discs, and the grading of exudates. The dataset includes a question
asking whether a hard exudate is present in the image or a specific
region of the image. If a hard exudate is present, the answer is
labeled as “Yes”; otherwise, it is labeled as “No”. The grading system
classifies hard exudates on the retina as follows: grade 0 indicates
no presence of hard exudates, grade 1 signifies hard exudates
located in the peripheral retina, and grade 2 denotes the presence of
hard macular exudates. Additionally, the dataset provides original
images along with masks that highlight specific regions of the
images, which must be utilized for pre-training. Table 1 presents
the distribution of classes in the training, validation, and testing
datasets.

The DME dataset consists of four distinct types of questions,
each with different levels of complexity:

Whole: e.g., “Are there hard exudates in this image?”—requires
a binary decision at the image level.

Region: e.g., “Are there hard exudates in the region?”—focuses
on a predefined mask in the image and typically requires less
complex reasoning since the region is already localized.

Fovea: e.g., “Are there hard exudates in the fovea?”—requires
detection of exudates and precise spatial reasoning to determine
whether they fall within the foveal region.

Grade: e.g., “What is the diabetic macular edema grade for
this image?”—involves multi-class classification based on exudate
presence and location.

TABLE 1 Number of instances per answer for each part of the DME
dataset.

Set Yes No 0 1 2 Total

Train 4,713 4,639 166 41 220 9,779

Val 1,151 1,123 39 8 59 2,380

Test 530 650 49 15 67 1,311

Total 6,394 6,412 254 64 346 13,470

TABLE 2 Number of instances per question type for each part of the DME
dataset.

Question type Train Validation Test Total

Grade 427 106 131 664

Macula (Fovea) 427 106 131 664

Whole 427 106 131 664

Region 8,498 2,062 918 11,478

Total 9,779 2,380 1,311 13,470

While Region-type questions are the most frequent, Fovea
and Grade questions are the most complex. They first require
the system to detect the presence of hard exudates and then
localize them accurately relative to the foveal region. This question
complexity demands multi-step spatial understanding and is more
aligned with clinical decision-making processes. The differences in
question complexity provide a valuable framework for evaluating
the robustness and reasoning capabilities of VQA models. The
distribution of question types across each part of the dataset is
shown in Table 2.

The dataset includes retinal images captured under varied
conditions, such as differences in illumination, patient eye
positions, and inherent noise. This variability reflects realistic
clinical scenarios and adds robustness to the evaluation of the
proposed VQA framework. Figure 8 shows samples on dataset
images.

4.4 Test significance and impact of seed
setting

Randomness in machine learning experiments, such as weight
initialization and data shuffling, can lead to variability in model
performance. We used a fixed random seed during training and
evaluation to mitigate this. Setting a random seed enhances the
reproducibility of experiments and ensures that the reported results
are stable and not artifacts of random initialization.

To evaluate the impact of the random seed on initial weight
settings, we conducted five independent experiments using the base
model. All experiments shared the same architecture and training
configuration, differing only in the random seed used for weight
initialization. The selected seeds were chosen randomly: 10, 23,
42, 70, and 100. Table 3 reports the Accuracy obtained for each
seed. The accuracies ranged from 85.89% to 87.41%, with a mean
accuracy of 86.32% and a standard deviation of 0.62. We compared
these results against the state-of-the-art (SOTA) results reported
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FIGURE 8

Examples of dataset images captured under varying conditions, including differences in illumination, clarity, noise levels, size, and object positioning.

TABLE 3 Accuracy results for different random seeds compared to the
SOTA baseline of Tascon-Morales et al. (2022, 2023).

Seed Accuracy (%)

10 86.04

23 86.12

42 87.41

70 86.12

100 85.89

Mean 86.32 ± 0.62

p-value 0.0007

Tascon-Morales et al. (2022) 83.00

Tascon-Morales et al. (2023) 83.59 ± 0.69

by (Tascon-Morales et al., 2022, 2023), which achieved 83.00% and
83.69% accuracy, respectively.

Among the tested seeds, seed 42 achieved the highest
Accuracy (87.41%), and we adopted this setting for all subsequent
experiments, including the first-level classifier and the other
components in our framework.

To determine whether the improvements over Tascon-Morales
et al. (2023) are statistically significant, we performed a paired two-
tailed t-test using the accuracies of our five seed experiments and

the baseline of 83.69% (Tascon-Morales et al., 2023). The t-test
yielded a t-statistic of 9.49 and a p-value of 0.0007, indicating that
the performance improvement is statistically significant at the 0.01
level.

These results justify our choice of seed 42 for all subsequent
experiments, as it consistently provided the best initialization and
final Accuracy. Furthermore, the statistical test confirms that our
method achieves a significant improvement over previous works.

4.5 Result and analysis

Our proposed model employs a two-level system. The initial
level comprises a VQA model that inputs an image and a question
as input and outputs the question type. We fine-tuned the model
using the DME dataset, which contains four question types: grade,
whole, region, and fovea or macula.

During this stage, we fine-tuned the GS-SWIN-ELECTRA
model with a batch size of 32 and learning rate of 1.0×10−4.
Instead of answers, we replaced the classes with the question types.
Remarkably, the model quickly converged within the first epoch,
allowing us to train it just once. The model exhibited remarkable
performance, achieving 99.85% for all performance metrics.

These results arise from several characteristics of the dataset.
Firstly, the number of questions is relatively limited. Moreover,
question types such as grade and fovea are directly reflected in the
question text itself. In contrast, questions related to regions and
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TABLE 4 The result of the first-level model.

Answer Precision Recall F1-Score Instances
no.

Fovea 1.0000 0.9924 0.9962 131

Grade 1.0000 0.9924 0.9962 131

Region 0.9989 1.0000 0.9995 918

Whole 0.9924 1.0000 0.9962 131

Accuracy – – 0.9985 1,311

Macro Avg 0.9978 0.9962 0.9970 1,311

Weighted Avg 0.9985 0.9985 0.9985 1,311

FIGURE 9

Onfusion matrix of the question-type classification model, where
labels 0, 1, 2, and 3 correspond to whole, grade, fovea, and region,
respectively. The results show that the model correctly classifies
most question types, with the primary misclassification occurring
when region questions are predicted as grade.

wholes do not have distinct textual characteristics for classification.
Instead, the classification between these two question types relies
on the image provided, distinguishing between a whole image
and a specific region based on the applied mask. Table 4 presents
the model’s performance, while Figure 9 illustrates the model’s
confusion matrix.

Achieving high performance in the lower levels is critical
in our proposed multi-level framework, as these levels route
visual questions to the appropriate upper levels. In our case, the
first-level achieved 99.85% accuracy, which we attribute to the
abovementioned reasons. However, this may not generalize to all
problem domains. However, this high accuracy may not generalize
across different problem domains. This sensitivity to the first-level
performance highlights a potential limitation in our approach: the
overall system’s effectiveness depends on the performance of the
initial routing decisions.

We also recognize a limitation in our statistical methods
because we used a fixed random seed for all experiments.

TABLE 5 The result of the bi-level model.

Answer Precision Recall F1-Score Instances
no.

0 1.0000 0.7755 0.8736 49

1 0.4444 0.8000 0.5714 15

2 0.9242 0.9104 0.9173 67

No 0.8798 0.9231 0.9009 650

Yes 0.8996 0.8453 0.8716 530

Accuracy – – 0.8841 1,311

Macro Avg 0.8296 0.8509 0.8270 1,311

Weighted Avg 0.8896 0.8841 0.8851 1,311

This approach guarantees reproducibility, but it removes natural
variation and hinders the accurate estimation of variance or
significance. Therefore, the reported improvements, like the 1%
gain over SOTA baselines, should be viewed with caution. In future
work, we intend to include repeated runs with different seeds and
report confidence intervals to better evaluate performance stability
and significance.

Moreover, our evaluation focused specifically on diabetic
retinopathy in the context of disability, using the only publicly
available dataset in this domain. We did not validate the framework
on other datasets. In future work, we will expand the dataset
to include more diverse DR cases and explore cross-lingual
generalization by applying the method to data in additional
languages.

Our current evaluation is limited to the DME-VQA dataset,
which may constrain the generalizability of our findings. While
this dataset is the only publicly available benchmark for diabetic
retinopathy visual question answering that focuses on accessibility,
future work will tackle this issue by doing cross-dataset evaluations
with resources like extending the DME-VQA dataset or new public
ones. Additionally, to measure real-world impact, we plan to
include usability testing with visually impaired users.

After generating a prediction at the first-level, the model passes
it through a switch function, which routes the visual question
to the appropriate model at the second level. The second level
comprises three models: SWIN-ELECTRA (with a batch size of 32
and a learning rate of 1.0×10−4), GS-SWIN-ELECTRA ( with a
batch size of 32 and a learning rate of 1.0×10−4) , and GS-SWIN-
ELECTRA (with a batch size of 16 and a learning rate of 1.0×10−4).
These models are specifically designed to handle different question
types: grade, whole, fovea, and region, respectively. Table 5 provides
insights into the performance of the bi-level model across various
evaluation metrics. To further visualize the prediction outcomes,
Figure 10 displays the confusion matrix, illustrating the predictions
for each answer.

To evaluate the effectiveness of our model, we analyze
its performance to that of its individual components. This
evaluation was conducted using several performance metrics,
including F1 score, recall, and precision for each answer, as
well as model accuracy, macro average precision, macro average
recall, macro average F1 score, weighted average precision,
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FIGURE 10

Confusion matrices for the SWIN-ELECTRA and GS-SWIN-ELECTRA models, where 1.0×10−4 denotes the learning rate, and 32 and 16 denote the
batch sizes. In the answer labels, “3” corresponds to No and “4” corresponds to Yes. The results clearly show that the bi-level model performs equal
to or better than its strongest component across most answers, with the exception of answer “0”, where the GS-SWIN-ELECTRA model achieves
superior performance, correctly identifying 41 cases.

weighted average recall, and weighted average F1-score. Tables 6,
7 present a comprehensive comparison of the proposed model
and its individual components across these evaluation metrics.
Furthermore, Figure 10 illustrates the confusion matrices,
highlighting how each model distributed its predicted answers.

The bi-level model consistently achieves higher accuracy for
each question type compared to its component models. We selected
the component models based on their superior performance in
those specific question types. This strategy allowed the bilevel
model to achieve the highest performance among the component
models and improve its overall accuracy. For each question
type, our proposed bi-level VQA model consistently achieves
the highest accuracy compared to its individual component
models, demonstrating its effectiveness and contributing to the
best overall performance across the dataset. In Table 8, we present

the performance comparison between the bi-level model and its
component models, providing an insightful overview of their
respective performances.

Our framework we introduced in this work is designed to
be modular and adaptable, enabling its application beyond the
DME-VQA dataset.

Its generalizability stems from its core design, which
emphasizes structured understanding and decomposition of
the problem domain. The framework can be adapted to various
medical imaging tasks or other vision-language problems by
analyzing the dataset and identifying distinct question types or
visual characteristics. The bi-level architecture offers flexible
integration of specialized models for distinct sub-tasks, enabling
its extension to new datasets with varying class or diagnostic
objectives distributions. Furthermore, this decomposition strategy
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TABLE 6 The result comparison per each answer for Bi-level model and its model components, where Model-1 is the SWIN-ELECTRA model with a 32
batch size and 1.0 × 10−4 learning rate, Model-2 is the GS-SWIN-ELECTRA model with 32 batch size and 1.0 × 10−4 learning rate, Model-3 is the
GS-SWIN-ELECTRA model with 16 batch size and 1.0 × 10−4 learning rate, and Model-4 is the Bi-level model with 32 batch size and 1.0 × 10−4 learning
rate

Metric Answer Model 1 Model 2 Model 3 Model 4 Samples#

Precision 0 1.000 0.9512 0.8913 1.0000 49

1 0.4444 0.4091 0.4000 0.4444 15

2 0.9242 0.8971 0.9077 0.9242 67

no 0.9029 0.9057 0.8703 0.8798 650

yes 0.7976 0.8354 0.8927 0.8996 530

Recall 0 0.7755 0.7959 0.8367 0.7755 49

1 0.8000 0.6000 0.5333 0.8000 15

2 0.9104 0.9104 0.8806 0.9104 67

no 0.8154 0.8569 0.9185 0.9231 650

yes 0.8925 0.8906 0.8321 0.8453 530

F1-score 0 0.8736 0.8667 0.8632 0.8736 49

1 0.5714 0.4865 0.4571 0.5714 15

2 0.9173 0.9037 0.8939 0.9173 67

no 0.8569 0.8806 0.8937 0.9009 650

yes 0.8424 0.8621 0.8613 0.8716 530

TABLE 7 The result comparison of Bi-level model and its model components.

Metric Model 1
Al-Hadhrami et al.

(2023)

Model 2
Al-Hadhrami et al.

(2023)

Model 3
Al-Hadhrami et al.

(2023)

Model 4

Macro avg Precision 0.8138 0.7997 0.7924 0.8296 ± 0.0189 p-value = 0.0017

Macro avg Recall 0.8388 0.8108 0.8002 0.8509 ± 0.0251 p-value = 0.0014

Macro avg F1-score 0.8123 0.7999 0.7939 0.8270 ± 0.0234 p-value = 0.0033

Weighted avg Precision 0.8598 0.8729 0.8767 0.8896 ± 0.0078 p-value = 0.0015

Weighted avg Recall 0.8497 0.8680 0.8741 0.8841 ± 0.0059 p-value = 0.0015

Weighted avg F1-score 0.8515 0.8693 0.8745 0.8851 ± 0.0067 p-value = 0.0017

Accuracy 0.8497 0.8680 0.8741 0.8841 ± 0.0059 p-value = 0.0015

Model 1 is the SWIN-ELECTRA model with 1.0 × 10−4 learning rate and 32 batch size (Al-Hadhrami et al., 2023). Model 2 is GS-SWIN-ELECTRA model with 1.0 × 10−4 learning rate and 32
batch size (Al-Hadhrami et al., 2023). Model 3 is the GS-SWIN-ELECTRA model with 1.0 × 10−4 learning rate and 16 batch size (Al-Hadhrami et al., 2023). Model 4 is the Bi-level model with
1.0 × 10−4 learning rate and 32 batch size.

TABLE 8 The result comparison of Bi-level model and its model components based on question types, where Model-1 is the SWIN-ELECTRA model with
1.0 × 10−4 learning rate and 32 batch size, Model 2 is GS-SWIN-ELECTRA model with 1.0 × 10−4 learning rate and 32 batch size, Model-3 is the
GS-SWIN-ELECTRA model with 1.0 × 10−4 learning rate and 16 batch size, Model 4 is the Bi-level model with 1.0 × 10−4 learning rate and 32 batch size.

Model Overall Grade Whole Macula Region

SOTA 2022 Tascon-Morales et al. (2022) 83.49 80.69 84.96 87.18 83.16

SOTA 2023 Tascon-Morales et al. (2023) 83.59 ± 0.69 80.15 ± 0.95 86.22 ± 1.67 88.18 ± 1.07 82.62 ± 1.02

Model 1 84.97 84.73 90.84 85.29 83.22

Model 2 86.80 83.21 92.37 90.84 85.95

Model 3 87.41 82.44 88.55 87.02 88.02

Model 4 (proposed bi-level) 88.41± 0.0059 84.73 ± 0.0125 92.37 ± 0.0185 90.84 ± 0.0211 88.02 ± 0.0133

p-value= 0.0015 p-value: 1.66 × 10−8 p-value: 5.11 × 10−8 p-value: 7.80 × 10−8 p-value: 1.39 × 10−8

In addition, the model is compared with SOTA 2022 (Tascon-Morales et al., 2022) and SOTA 2023 (Tascon-Morales et al., 2023).
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FIGURE 11

Grad-CAM visualizations of the bi-level VQA model (accuracy: 88.41%), highlighting its ability to attend to critical retinal regions for diabetic
retinopathy classification. In correctly predicted cases (a, b), the model focuses on key features such as hard exudates, aligning with ground truth
labels. In misclassified cases (c–e), attention is diverted to irrelevant regions or image noise, occasionally leading to errors. Notably, in (e), the model
attends correctly to the lesion but interprets it as “No”. These visualizations demonstrate both the robustness of the model and areas needing
refinement to improve attention consistency.
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improves interpretability and reduces the learning complexity,
especially in scenarios with limited annotated data. The framework
enables more efficient learning by transforming a complex VQA
task into smaller, more focused subtasks, potentially improving
performance and generalization even when data is scarce.

Furthermore, we evaluated the model on a dataset that
incorporates real-world variability, including noise, inconsistent
illumination, and diverse imaging angles. This diversity contributes
to the robustness and reliability of the proposed system in clinically
realistic settings.

Figure 11 Grad-CAM shows visualizations of our bi-level VQA
model, which has an impressive accuracy of 88.41%, effectively
highlight the model’s ability to focus on critical regions in retinal
images for diabetic retinopathy classification. In the correctly
predicted cases, as shown in Figures 11a, b, the heatmaps show
strong attention to essential features such as hard axudates, aligning
with the ground truth labels. This finding demonstrates the model’s
capacity to identify and leverage key visual cues, further validating
its robustness in making accurate predictions. These visualizations
confirm that the model is consistently able to attend to relevant
areas of the image, supporting its high performance.

On the other hand, the incorrect predictions appear to stem
from the model focusing on irrelevant regions as shown in
Figure 11c. In the case where the model predicts “yes” incorrectly,
the heatmap shows attention to parts of the image that are not
relevant to the key features of diabetic retinopathy, suggesting
that the model might be misinterpreting image details. In the last
image (d), the error could be attributed to image noise, which may
have caused the model to focus on non-essential features, leading
to an incorrect classification. In (e), the attention is correctly
focused on the hard exudates, but it is interpreted as “no”. This
case requires further analysis and study, which we will address in
future work. These observations highlight areas for future work
to refine the model’s attention mechanism, improving its ability
to focus on the most relevant features and reducing the impact
of noise.

4.6 Ethical considerations for medical VQA

Ethical concerns in medical VQA include user privacy,
deployment implications, and potential biases. Privacy safeguards
are critical, as these systems handle sensitive patient data,
requiring compliance with frameworks like HIPAA and informed
consent protocols to protect autonomy and dignity (Majumder
and Guerrini, 2016; Adeniyi et al., 2024; De Lusignan et al.,
2015). Deployment strategies must prioritize equitable access,
addressing cost barriers to ensure the widespread availability of
these technologies (Adeniyi et al., 2024).

Algorithmic bias is another significant challenge, as it
can lead to inequitable outcomes across diverse populations.
Biases often arise from non-representative datasets or flawed
model development processes, exacerbating healthcare disparities.
Mitigation strategies include using diverse datasets, statistical
debiasing methods, and rigorous validation through clinical trials
(Smith et al., 2023; Cross et al., 2024). Addressing these ethical

considerations ensures medical VQA systems contribute positively
to society while minimizing risks.

5 Conclusion

Visual disabilities affect the ability of individuals to perceive and
interpret visual information, highlighting the need for advanced
solutions to solve these challenges. This paper introduces a
multi-level VQA technique that leverages multiple VQA models
for enhancing the VQA performance. We propose a bi-level,
designed to enhance VQA performance. The bi-level model
consists of two levels. The type of question is classified in
the first-level, and the visual question is answered in the
second level. The model employs a switch function to forward
the visual question to the proper component model according
to its question type. Through this multi-level VQA model,
we demonstrate the efficacy of incorporating different levels
and component models to enhance the accuracy of VQA
systems. We believe this approach represents a step forward in
making visual information more accessible to individuals with
visual impairments.

Looking ahead, future work will focus on optimizing the
number and structure of the levels to maximize performance.
Exploring additional hierarchical levels may improve accuracy by
enabling more fine-grained routing of visual questions. Moreover,
we aim to conduct usability and accessibility evaluations involving
users with visual impairments to validate the system’s practical
impact. Lastly, we plan to extend the framework to support
multilingual datasets and evaluate its generalizability across
diverse linguistic and demographic populations as new diabetic
retinopathy VQA datasets become available. In addition, we aim
to implement the full system and measure the user satisfication and
system usibility.
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Appendix

TABLE A1 Model configuration summary.

Component Configuration details

Model names fusion_mlp, hf_text, timm_image

hf_text Checkpoint: local://hf_text
Pooling Mode: cls
Max Text Length: 512
Tokenizer: hf_auto
Segment Num: 2
Insert SEP: true
Text Aug Detect Length: 10

timm_image Checkpoint: swin_base_patch4_window7_224
Mix Choice: all_logits
Transforms: resize_shorter_side, center_crop,
trivial_augment
Image Norm: imagenet
Max Images per Column: 2

fusion_mlp Weight: 0.1
Hidden Sizes: 128
Activation: leaky_relu
Drop Rate: 0.1
Normalization: layer_norm

Optimization Optimizer: AdamW
Learning Rate: 0.0001
Weight Decay: 0.001
LR Schedule: cosine_decay
Max Epochs: 10
Gradient Clipping: 1 (norm)
Loss Function: auto
Focal Loss γ : 2.0

LoRA Modules: query, value, q , v , k , o

Rank (r): 8
Alpha: 8

Environment GPUs: 1
Batch Size: 16 (8 per GPU)
Precision: 16-bit
Workers: 2
Strategy: auto_select_gpus

Backbone (electra) Architecture: ElectraForPreTraining
Hidden Size: 768
Layers: 12
Heads: 12
Dropout: 0.1
Activation: gelu
Vocab Size: 30522
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