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In recent years, numerous advanced image segmentation algorithms have been
employed in the analysis of meibomian glands (MG). However, their clinical utility
remains limited due to insufficient integration with the diagnostic and grading
processes of meibomian gland dysfunction (MGD). To bridge this gap, the present
study leverages three state-of-the-art deep learning models—DeeplLabV3+,
U-Net, and U-Net++—to segment infrared MG images and extract quantitative
features for MGD diagnosis and severity assessment. A comprehensive set of
morphological (e.g., gland area, width, length, and distortion) and distributional
(e.g., gland density, count, inter-gland distance, disorder degree, and loss ratio)
indicators were derived from the segmentation outcomes. Spearman correlation
analysis revealed significant positive associations between most indicators and MGD
severity (correlation coefficients ranging from 0.26 to 0.58; p < 0.001), indicating
their potential diagnostic value. Furthermore, Box plot analysis highlighted clear
distribution differences in the majority of indicators across all grades, with medians
shifting progressively, interquartile ranges widening, and an increase in outliers,
reflecting morphological changes associated with disease progression. Logistic
regression models trained on these quantitative features yielded area under the
receiver operating characteristic curve (AUC) values of 0.89 + 0.02, 0.76 + 0.03,
0.85 4+ 0.02, and 0.94 + 0.01 for MGD grades 0, 1, 2, and 3, respectively. The
models demonstrated strong classification performance, with micro-average and
macro-average AUCs of 0.87 + 0.02 and 0.86 + 0.03, respectively. Model stability
and generalizability were validated through 5-fold cross-validation. Collectively,
these findings underscore the clinical relevance and robustness of deep learning-
assisted quantitative analysis for the objective diagnosis and grading of MGD,
offering a promising framework for automated medical image interpretation in
ophthalmology.
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1 Introduction

Meibomian gland dysfunction (MGD) is a common ophthalmic
disease and one of the main causes of dry eye disease (DED). Its
incidence rate can be as high as 50% globally, and it is particularly
more prevalent among the female sex and older age (Stapleton et al.,
2017). From a medical perspective, the pathological basis of MGD
contains the complex interaction of structural changes in the gland,
weakened secretion function, and inflammatory responses, leading to
excessive tear evaporation and the aggravation of dry eye symptoms
(Ban et al., 2013; Baudouin et al., 2016).

In order to achieve an accurate assessment to the severity of MGD,
researchers and clinicians are increasingly relying on image analysis
techniques such as infrared meibography and image segmentation to
establish an objective and reproducible method (Tomlinson et al.,
2011). Artificial intelligence (AI) technologies have demonstrated
significant potential in the diagnosis of ophthalmic diseases. By
integrating multi-source evidence, such as infrared MG imaging and
clinical data, the accuracy and repeatability of MGD diagnosis have
been significantly improved (Wang et al., 2024). Al applications based
on mobile health platforms have promoted the early screening and
dynamic monitoring of MGD (Wang et al., 2025b). Additionally,
explainable AT has supported the automated diagnosis of ophthalmic
diseases like MGD by optimizing model robustness (Wang et al.,
2023a). Subjective symptom assessment and tear break-up time
measurement as traditional medical diagnostic methods, are limited
by the experience of clinicians and the temporary situation feedback,
hardly to meet the requirements of precision medicine for objective
and quantitative indicators (Wolffsohn et al., 2017). The early analysis
and diagnosed methods of MG mainly relied on semi-automatic or
manual segmentation (Koh et al., 2012), which had significant
limitations. This method not only consumes a great deal of time but
also leads to a waste of labor, and the segmentation effect was highly
dependent on the image quality, making it challenging to meet the
requirements of objective and reproducible diagnosis.

The rapid development of algorithmic technologies has brought
new opportunities to this field, particularly the widespread application
of deep learning in medical image segmentation. Deep learning
models such as U-Net and DeepLab have demonstrated excellent
performance in image segmentation tasks (Chen et al, 2018b;
Ronneberger et al., 2015). By automatically identifying complex
structures in images, they provide a feasible solution for the
quantitative analysis of MG morphology and function (Lundervold
and Lundervold, 2019). The analysis method of MG quantitative
indicators based on image segmentation has overcome the subjectivity
and inefficiency of manual operations, significantly improving the
repeatability and consistency of MG assessment, and providing an
objective basis for the early diagnosis and dynamic monitoring of
MGD (Setu et al., 2021). The interdisciplinary innovation of this study
is expected not only to enhance the efficiency of ophthalmic clinical
diagnosis but also to provide technical references for automated
analysis in other medical imaging fields.

The aim of this study is to develop a novel quantitative index
extraction method based on segmentation results and explore its
application value in the diagnosis of MGD. Specifically, DeepLabV3+,
U-Net, and U-Net++ models will be used to process infrared MG
images. Following the segmentation, a series of quantitative indicators,
including innovative metrics such as gland area, density, width,
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distance between adjacent glands, degree of disorder, and loss ratio, as
well as a novel principal component analysis-based approach for
calculating gland length, width, and distortion to more accurately
capture complex geometric features, will be calculated. The correlation
of these indicators with MGD grade and their diagnostic efficacy will
be systematically validated through Spearman correlation analysis,
box plot visualization, and logistic regression models.

2 Related works

AT technologies have demonstrated remarkable potential in
the field of ophthalmic disease diagnosis. In particular, significant
breakthroughs have been achieved in the detection and grading
of DED and ocular surface diseases. To comprehensively evaluate
the function and morphology of MG, various clinical trials have
been established. Currently, the assessment of gland secretion
quality and expression is widely used as a key approach to
evaluate MG function.

In clinical morphology, a study (Xiao et al, 2019) analyzed
meibomian glands (MG) using infrared imaging and evaluated the
correlation between their morphological characteristics including
gland loss, length, thickness, density, and distortion, and the severity
of MGD. The results showed that gland distortion and gland loss were
highly sensitive indicators for MGD, with the areas under the curve
(AUC) reaching 0.96 and 0.98, respectively. Another research (Lin
et al., 2020) introduces a new method to measure the distortion of
MG, defined as the ratio of the actual gland length to its straight-line
length minus 1. The results demonstrated that MGD patients had
significantly higher distortion values (p < 0.05), and when using the
distortion of the middle eight glands as the criterion for diagnosing
obstructive MGD, both sensitivity and specificity reached 100%.
However, a major limitation of these two methods is their reliance on
manual measurement, which may lead to potential errors and
reduce efficiency.

Different from previous studies, some research has quantitatively
analyzed the morphology and function of MG through infrared
images, which is used for the diagnosis and grading of MGD (Llorens-
Quintana et al., 2019; Deng et al., 2021). The algorithm proposed by
Clara focuses on the upper eyelid and analyzes parameters such as
length, width, and irregularity. It has been verified that this algorithm
has lower variability and higher consistency compared with subjective
assessment. Deng’s algorithm, on the other hand, analyzes the gland
area ratio, diameter deformation index, tortuosity index, and signal
index of the upper eyelid. When the combined parameters are used
for diagnosing MGD, the AUC can reach 0.82, and the accuracy in
grading is excellent. Both of these algorithms adopt image
segmentation techniques, overcoming the limitations of subjective
assessment and providing non-invasive and objective diagnostic tools
for MGD, demonstrating the interdisciplinary potential of medical
image analysis. However, relying on traditional image processing and
segmentation techniques to analyze infrared images, both algorithms
face limitations in segmentation accuracy when dealing with complex
or irregular gland structures. Moreover, neither of them has overcome
the deficiencies in analyzing the lower eyelid.

Furthermore, more and more scholars are using deep learning
to analyze infrared MG images for the assessment of MGD,
demonstrating the potential for automatic segmentation and
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morphological assessment. A pre-trained U-Net model was
employed (Setu et al., 2021) to process medical images, achieving
a Dice coefficient of 84%. This approach quantified features such
as the number, length, width, and tortuosity of glands in both
upper and lower eyelids. A Conditional Generative Adversarial
Network based model was utilized (Khan et al., 2021) for gland
segmentation. Through adversarial learning between the
generator and discriminator, the model generated a confidence
map, achieving a Jaccard index of 0.664, an F1 score of 0.825, and
high correlation with manual analysis results. Two AT techniques
semantic segmentation and object detection were applied
(Swiderska et al., 2023) to quantify MG features, including length,
area, and curvature. TransUnet combined with data augmentation
was proposed (Lai et al., 2024) to enhance meibomian gland
imaging analysis. By automatically calculating the proportion of
white pixels in the MG and conjunctiva regions, an automatic
meiboscore was achieved, which highly agreed with the judgment
of professional physicians. Recent studies have enhanced the
intelligence level of MGD diagnosis through contrastive learning
augmented by knowledge graphs, integrating clinical feature cues
(Han Wang et al., 2025). Prompt engineering has optimized the
ability of AI models to recognize complex gland structures by
designing clinically oriented prompts (Wang et al., 2025a).
Additionally, explainable AI has provided reliable support for
automated MGD detection by improving data quality and model
transparency (Wang et al., 2023b).

10.3389/frai.2025.1642361

3 Materials and methods

3.1 Materials

The data of this study on MGD analysis collected from multiple
sources. The public data MGD-1 K (Saha et al., 2022) contains 1,000
infrared images of MG captured by the Lipi View II Ocular Surface
Interferometer (LV II). The in-house data consists of a total of 265
anonymous clinical infrared MG images of eyelids, which were randomly
collected from the database of the Oculus Keratograph 5 M (K5M; Oculus
GmbH, Wetzlar, Germany) at Zhuhai People’s Hospital (The Affiliated
Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical
College of Jinan University). These datasets were annotated for glands,
eyelids, and MGD grade under the direct supervision of three MGD
experts and specialized ophthalmologists. As shown in Figure 1, both the
original infrared MG images and their corresponding annotated glands
images are presented, clearly demonstrating the annotation quality of the
datasets and the structural details of the MG. The grading of MGD adopts
the criteria recommended by TFOS DEWS 1I (Craig et al., 2017), and
comprehensive grading evaluation is carried out based on the severity of
MGD and the morphological characteristics of MG. Specifically, the
grading system evaluates gland morphology including architectural
shape, structural variations such as tortuosity and curvature patterns, and
gland loss severity which directly reflects MGD progression.
Quantification of gland loss ratio serves as the fundamental morphological
metric for assessment.

Captured by LV 11

Captured by KSM

FIGURE 1

Case of original infrared meibography and their corresponding annotated images.

Ground truth image
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From a combined collection of 1,265 fully annotated infrared MG
images derived from two datasets, we proportionally allocated 300
images to constitute the test set based on the original datasets ratio,
which will be utilized for model performance evaluation and MGD
grading. The remaining 965 images were partitioned into training and
validation sets at an 8:2 ratio while maintaining the source data
distribution, designated for deep learning model training and
validation respectively, thereby ensuring all data partitions preserve
equilibrium in original data representation. Because of the inconsistent
sizes of the images in the data, all images are uniformly resized to
1,280 x 640 pixels, with no rotation, flipping, or other image
preprocessing methods applied to preserve original information,
reduce information loss, and lower computational costs. All
experiments were conducted using PyTorch 2.6.0 and Python 3.12.9
on a computing platform equipped with four NVIDIA A100-PCle
40GB GPUs running Ubuntu 20.04.

3.2 Model architecture

In this study, DeepLabV3+, U-Net, and U-Net++ were selected as
image segmentation models due to their established efficacy and
complementary strengths in medical image segmentation, particularly
for processing complex anatomical structures like MG. It should
be noted that the exclusion of other advanced medical image
segmentation models was a deliberate choice aligned with the core
objective of this research, which is to explore efficient solutions
specifically tailored to the segmentation of infrared MG images, rather
than to conduct a systematic comparison of all mainstream models.
These models were chosen to systematically evaluate their
performance in infrared MG image segmentation, leveraging their
distinct architectural advantages, without modifications to their
architectures. All models were trained using cross-entropy loss as the
loss function and the Adam optimizer with a learning rate of 0.001 to
ensure fairness and consistency in comparison results.

DeepLabV3 + is a deep convolutional neural network based on
the encoder-decoder architecture. It ingeniously integrates atrous
convolution and atrous spatial pyramid pooling (ASPP), effectively
capturing multi-scale contextual information and thereby generating
high-resolution segmentation masks (Chen et al., 2018a). As a classic
encoder-decoder structure, U-Net retains multi-scale features through
skip connections and is widely applied to various image segmentation
tasks, especially demonstrating outstanding capabilities in the field of

10.3389/frai.2025.1642361

medical image segmentation (Ronneberger et al., 2015). U-Net++ is
an improvement on U-Net. It introduces more complex skip
connections and nested structures, significantly enhancing the fusion
effect of features at different levels, making it perform particularly well
in image segmentation tasks dealing with complex boundaries or fine
structures (Zhou et al., 2018).

Thereby, DeepLabV3 + outperformed in capturing global features
and preserving contextual integrity, U-Net++ offered enhanced
capability in detailing local features, and U-Net maintained stable
results with relatively lower computational complexity. Figure 2
illustrates the structural differences and design philosophies among
the three models.

3.3 Evaluate metrics

To evaluate the performance of the model on new data, metrics
such as Precision, Intersection over Union (IoU), F1 score and Recall
were used for the assessment on the test set, equations are shown in
the Equations 1-4, where TP, TN, FP, and FN represent True Positives,
True Negatives, False Positives, and False Negatives.

- TP
Precision = ———— (1)
TP+ FP
TP
U=s——
TP+ FP+EN )
2%TP
Flscore=————"—"—090——— 3)
(2#TP+FP+FN)
TP
Recall=——
TP+ FN )

3.4 Quantitative indicators measurement

We calculated the following indicators: gland width, gland length,
gland distortion, gland number, gland area, density, loss ratio, nearest
distance between adjacent glands, and degree of disorder as the
morphological and distribution characteristics of the MG. The
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calculations were performed through image processing and contour
analysis based on the gland images and the tarsus region images.
Apply a morphological opening operation once using a 3 x 3 elliptical
kernel to remove noise. Detect the contours and filter out those with
an area of less than 10 pixels or with fewer than 4 points. Sort the
contours from left to right according to the abscissa axis of their center
of mass to ensure a consistent analysis order.

The number of glands directly reflects the remaining quantity of
glands, and a decrease in number is a core feature of MGD. Glands are
sorted from left to right by abscissa and marked one by one for
quantitative counting.

Gland area represents the actual coverage of glands. A reduction
in area indicates gland atrophy or loss, which is directly linked to
decreased tear film stability. It is calculated by summing the areas of
the outer boundaries of each gland, as shown by the yellow region in
Figure 3. Gland density is calculated by dividing the total MG area by
the tarsal region area, reflecting the abundance of glands per unit area.
A decrease in density is a macroscopic manifestation of gland
degeneration. Loss ratio refers to the proportion of missing gland area
relative to the total tarsal area. It is calculated by subtracting the sum
of all gland areas from the tarsal contour area and then dividing by the
tarsal contour area. This index quantitatively evaluates the degree of
gland loss by comparing the gland area with the entire tarsal area,
serving as a core parameter for MGD diagnosis and treatment
efficacy assessment.

To calculate the length, width, and distortion of the gland, we have
developed a novel computational framework that integrates Principal
Component Analysis (PCA) with equidistant sampling, enabling
systematic characterization of glandular morphology. As presented in
Figure 4, this framework first extracts the gland’s principal direction
via PCA and projects contour points to generate 50 equidistant
sampling points. Gland width is computed as the average distance
between intersection points of 50 perpendicular lines to the principal
direction and the contour, while length is determined by summing
Euclidean distances between midpoints of equidistant line segments.
The distortion of the gland is represented by the discrete curvature of
the length segments. We calculate the included angles based on three
adjacent points and weight the distances of adjacent segments. The
average curvature of all middle line points is taken as the distortion
degree of the gland. Medically, gland width reflects changes in gland

FIGURE 3

Examples of measurement of the area, density and loss ratio of the
glands: the red area represents the gland area, gland density is
calculated as the red area divided by the area enclosed by the green
lines, The gland loss ratio is computed as the quotient of (the area
bounded by the green contours minus the red contours) divided by
the area bounded by the green contours.
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crosswise area, with reduced width commonly seen in gland atrophy
or obstruction; gland length indicates the longitudinal extension of
the gland, and shortened length may be associated with gland
degeneration; gland distortion quantifies the regularity of gland
morphology, and increased distortion indicates structural damage to
the glands, which is positively correlated with the severity of MGD.
Another key innovation in our quantitative analysis lies in the
development of two novel spatial distribution metrics is the nearest
distance between adjacent glands and the degree of disorder, as
illustrated in Figure 4D. After sorting the centroids of the glands, the
Euclidean distance between the contour points of adjacent glands is
calculated. The red lines indicate the nearest distance between adjacent
glands, which help evaluate how glands are distributed in space. A
larger distance between adjacent glands suggests that glands are more
scattered, indirectly reflecting gland density. The degree of disorder is
reflected by the standard deviation of the nearest distances between
adjacent glands. A stronger disorder in distribution indicates a closer
correlation with the gland damage pattern caused by MGD.

3.5 Statistical analysis

The Spearman’s correlation analysis method was adopted to
explore the correlation between the indicators of MG and the MGD
grade. By drawing the scatter plot of Spearmans correlation, the
strength of the association between each parameter indicator and the
grade was analyzed. Among them, the correlation with a p-value less
than 0.001 was statistically significant, indicating that these indicators
may play an important role in the evaluation of MGD grade.

In addition, box plot visualization was used to analyze the
distribution of parameter indicators in the classification of MG after
segmentation, covering nine key indicators such as total gland area
and gland loss ratio, to clearly present the data features across different
grades. To better highlight the differences between groups at various
grades for the parameter indicators extracted after segmentation, this
method compared the data distributions of grades 0, 1, 2, and 3,
revealing that changes in MG classification grades may be closely
related to variations in parameter indicators. These variations were
clearly shown through differences in the medians and interquartile
ranges across the grades.

To evaluate the performance of the vs. of MG under different
MGD grade, in this study, a logistic regression model was used, and
the data was divided into a training set and a test set at a ratio of 8:2
to construct a multi-class classification model. By calculating ROC
and AUG, the predictive performance of the indicators of MG under
different grade was compared, and the robustness of performance
evaluation was enhanced through 5-fold cross-validation. It shows
that the indicators of MG have good predictive ability in distinguishing
different grade, providing a reliable basis for the evaluation of
MG function.

4 Results
4.1 Segmentation result

Three models were systematically evaluated the performance for
MG segmentation tasks using test data. As shown in Figure 5,
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FIGURE 4

Examples of measurement of the length, width, distortion of the glands and the nearest distance between adjacent glands. (A) Eyelid annotated
images, (B) line of principal direction and width, (C) line of width and length, (D) line of nearest distance between adjacent glands.

(D)

comparative cases between the segmentation results of these models
after 100 epochs of training and manually annotated images on the
test set are presented. The experimental results indicate that all three
models can effectively identify MG structures, but significant
differences exist in their ability to handle details. Specifically, U-Net
demonstrates higher precision in segmenting complex gland edges
and fine structures, particularly in the segmentation of lower eyelid
images, where its results are closer to the manually annotated true
value images. In contrast, DeepLabV3 + and U-Net++ exhibit less
ideal segmentation performance when dealing with complex gland
structures, with certain gaps in capturing edge details and
tiny structures.

Table 1 summarizes the performance of three models
DeepLabV3+, U-Net++, and U-Net in MG and eyelid segmentation
tasks, with evaluation metrics including Precision, IoU, F1 score, and
Recall. The experimental results show that U-Net demonstrates
significant advantages in MG segmentation. Its IoU index reaches
0.72, higher than 0.70 for both DeepLabV3 + and U-Net++, indicating
that U-Net has higher accuracy in handling overlapping segmentation
regions. In terms of F1 score, U-Net also performs excellently at 0.82,
while DeepLabV3 + and U-Net++ both achieve 0.81, suggesting that
U-Net has better stability in balancing precision and recall.

In contrast, according to Table 1, the three models exhibit minimal
performance differences in eyelid segmentation, with IoU values
ranging from 0.93 to 0.94. This indicates that eyelid region
segmentation is relatively less challenging, with insignificant
differences between models. These findings further validate that the
structures model

complexity of MG significantly impacts

segmentation accuracy, while the relatively regular structure of the
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eyelid region enables all models to achieve satisfactory

segmentation results.

4.2 Quantitative indicators and statistical
analysis

To explore the relationship between the morphological and
distribution characteristics of MG and the severity of MGD, the
Spearman correlation analysis was used to evaluate the correlation
between the MG indicators obtained by algorithm segmentation
outputs of the U-Net model with the best performance (IoU of 0.72
and F1 score of 0.82), and MGD grade. As shown in Figure 6, the
figure display the scatter distributions of various quantitative
indicators (including gland area, number, density, width, length,
distance between adjacent glands, degree of disorder, distortion, and
loss ratio) and MGD grade. The results showed that gland area,
density, length, width, distortion, distance between adjacent glands,
disorder degree, and loss ratio were significantly correlated with MGD
grade, Spearman correlation coeflicients ranged from 0.26 to 0.58
(p < 0.001), indicating that these indicators change significantly with
the MGD severity and have strong correlations. In contrast, gland
number (r=0.08, p=0.15) showed weak correlations with MGD
grade, suggesting that may have limited diagnostic value in
MGD grading.

This study utilized box plot analysis to examine the distribution
of nine parameter indicators in segmented MG images, revealing a
clear gradient change across the grades. Specifically, indicators such
as gland loss ratio and gland density demonstrated particularly
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TABLE 1 Performance of the MG segmentation method.

Metrics DeeplLabV3+

Gland Eyelid
Precision 0.82 0.96 0.83 0.96 0.84 0.97
Recall 0.83 0.97 0.84 0.96 0.85 0.97
ToU 0.70 0.93 0.70 0.93 0.72 0.94
F1 score 0.81 0.96 0.81 0.96 0.82 0.97

prominent effects: the median gland loss ratio increased progressively
from a lower value in the healthy group to a higher value in the severe
group, with widening interquartile ranges and an increase in outliers,
clearly reflecting the trend of gland degeneration due to worsening
disease; conversely, gland density exhibited a decreasing pattern, with
the median dropping from a higher value in the healthy group to a
lower value in the severe group, and an expanded interquartile range
indicating increased variability. The highly consistent distribution
changes in these indicators provide strong evidence, supporting their
potential for MGD in Figure 7.

Other indicators, such as total gland area and mean gland length,
also showed a favorable gradient effect, with medians decreasing as
the grade increased and interquartile ranges widening, highlighting
morphological evidence of gland atrophy. Indicators like mean gland
width, mean adjacent gland distance, mean gland distortion, and
degree of gland disorder also displayed certain gradient changes, with
medians showing a slight decreasing or increasing trend and
interquartile ranges changing moderately, with fewer outliers,
suggesting that while these indicators reflect some role in MGD
progression, the effect is not highly pronounced. Only the gland
number showed a relatively moderate distribution change, with
minimal median fluctuation, no significant expansion of the
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interquartile range, and a relatively uniform distribution of outliers,
possibly influenced by sample variability, indicating lower sensitivity
in grade classification.

The box plots visually demonstrated inter group differences across
grades, particularly the pronounced differences between the healthy
group and the moderate to severe group, providing important
morphological evidence for MGD detection. These findings reinforce
the close relationship between MG classification grades and the
variability of parameter indicators, especially between the healthy
group and the moderate to severe group, where a significant reduction
in total gland area, decreased gland density, narrowed mean gland
width, shortened mean gland length, increased mean adjacent gland
distance, elevated mean gland distortion, and a significant rise in
gland loss ratio all reflect the worsening trend of disease severity. The
difference in gland number remained consistently insignificant. In
contrast, gland density and gland loss ratio emerged as promising
potential markers for distinguishing healthy individuals from those
with moderate to severe MGD.

Subsequently, a logistic regression model using MG indicators and
MGD grade to further validate the predictive performance of these
indicators across different grades. As shown in Figure 8, the area
under the curve values of the indicators for grades 0, 1, 2, and 3 were
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Scatter plots of Spearman’s correlation between MG indicators and MGD grade.
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Mean Per-Class ROC Curves (5-fold CV)

1.0

0.8

0.6

0.4

Sensitivity (%)

Meiboscore 0 (AUC = 0.85 + 0.04)

0.2 ,° —— Meiboscore 1 (AUC = 0.72 + 0.06)
8 N 4

4 Meiboscore 2 (AUC = 0.84 + 0.05)
e —— Meiboscore 3 (AUC = 0.93 + 0.10)
e -=-=- Random Guess (AUC = 0.50)
00 T T ) T
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity (%)

FIGURE 8
The ROC curve of the logistic regression for the diagnostic indicators
of MGD grade.

0.89 +0.02, 0.76 £ 0.03, 0.85 £ 0.02, and 0.94 £ 0.01, respectively.
These results indicate that the indicators exhibit the strongest
differential ability at higher severity levels (particularly grade 3), with
the highest AUC for grade 3 MGD, demonstrating high sensitivity and
specificity in diagnosing severe MGD.

Figure 9 shows the performance of micro-average
(AUC = 0.87 £ 0.02) and macro-average (AUC = 0.86 + 0.03), both of
which significantly outperformed random guessing (AUC = 0.50).
Combined with Figure 7, these results demonstrate that MG indicators
exhibit excellent differential ability in multi-class prediction,
particularly in distinguishing healthy individuals (grade 0) from
moderate to severe MGD patients (grades 2-3). The robustness of the
model was further validated through 5-fold cross-validation,
providing a reliable quantitative basis for the automated diagnosis and
grading of MGD.

5 Discussion

This study implements automated segmentation of MG infrared
images based on deep learning algorithms, and carries out quantitative
analysis on binary segmented images, providing an innovative
solution for the diagnosis and grading of MGD. The experimental data
of this study were collected by the Lipi View II ocular surface
interferometer and the Oculus Keratograph 5M (Oculus GmbH,
Wetzlar, Germany). The technical characteristic differences between
the two devices form the heterogeneity basis of the datasets, providing
key support for verifying the adaptability of the algorithm under
different imaging mechanisms. Experimental data show that
compared with the DeepLabV3 +and U-Net++ models, U-Net
demonstrates higher accuracy in MG image segmentation tasks,
especially showing unique advantages in processing irregular gland
structures. Advanced preprocessing techniques were not employed to
maintain computational simplicity and experimental reproducibility.

The quantitative indicators derived from the segmentation results
serve as critical metrics for the objective assessment of
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performance of test set parameter indicators.

MGD. Parameters such as gland area, density, width, length,
distortion, inter-gland distance, disorder degree, and gland loss ratio
exhibited significant variation across different MGD severity levels,
effectively capturing the pathological features associated with disease
progression. Notably, the total number of glands did not demonstrate
a significant correlation with MGD severity. This may be attributed to
the fact that gland count remains relatively stable during the early or
mild stages of MGD, whereas morphological and spatial distributional
changes are more sensitive markers that better reflect the dynamic and
progressive nature of the disorder.

The high differential ability of the logistic regression model
further identifies the application value of the quantitative indices
extracted from MG infrared image segmentation in the grading of
MGD. The model demonstrated the strongest predictive efficacy in
severe MGD (grade 3) cases, which may be attributed to the significant
abnormalities in MG morphology and distribution in severe patients,
enabling quantitative indices to more clearly distinguish between
pathological and healthy states. In contrast, the model showed slightly
lower predictive ability in mild MGD (grade 1) cases, likely due to the
subtle glandular changes in mild MGD, which increase the diagnostic
complexity based on quantitative indices.

In previous studies on quantitative indices of the MG, most have
focused on traditional parameters such as gland count, length, width,
and area, while some have involved relatively novel indices like
distortion and density. The innovations and advantages of the index
system in this study are mainly reflected in three aspects: first, it
improves the calculation method of traditional morphological indices
by creatively proposing a PCA approach to calculate gland length,
width, and distortion. Compared with traditional manual
measurement or simple geometric fitting, this method can more
accurately capture the natural extension direction and morphological
characteristics of glands, and particularly describe irregular gland
structures such as curved or branched ones in a way that better
conforms to real pathological morphology, reducing measurement
deviations caused by morphological complexity; second, it fills the gap
in quantifying spatial distribution characteristics. By introducing
indices of adjacent gland distance and disorder degree, it realizes
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quantitative analysis of the spatial distribution characteristics of
glands for the first time. Traditional studies have mostly focused on
the morphology of individual glands, but this study found that the
spatial arrangement patterns of glands are closely related to the
progression of MGD. For example, patients with severe MGD often
show clustered atrophy of glands, with significantly increased adjacent
distances and disorder degrees. These characteristics, which cannot
be reflected by simple morphological indices, provide a new diagnostic
dimension for disease grading; third, it proposes a comprehensive
pathological index. The newly constructed gland loss ratio, by
quantifying the proportion of areas where glands have disappeared in
the total gland distribution area, can simultaneously reflect multiple
pathological changes such as gland atrophy and sparse distribution. It
overcomes the limitation that traditional single indices can only
describe local features, and more comprehensively reflects the overall
degradation trend of glands during the course of MGD.

While this study concentrated on the morphological and
of MG derived from
segmentation, it overlooked two critical assessment components. It

distributional characteristics image
did not integrate functional indicators essential for a comprehensive
evaluation of MGD, such as gland secretion quality and expressible
secretion ability, which could enhance diagnostic accuracy.
Additionally, the assessment excluded MG orifice obstruction, a
clinically significant feature in MGD pathophysiology. This omission
arises from two key limitations: (1) infrared imaging technology and
the current segmentation algorithms are optimized for structural
analysis, making it challenging to detect functional or dynamic
features like orifice obstruction, and (2) the study’s focus on
structural metrics precluded the development of a holistic
assessment system combining structural and functional insights. To
address these gaps, future research will explore the integration of
multi-modal imaging technologies or functional metrics,
incorporating MG orifice obstruction as well as gland secretion
quality and expressible secretion ability, to refine the assessment
framework and improve the comprehensiveness of MGD severity
evaluation, thereby strengthening support for early detection.

To address these gaps, future research will explore the integration of
multi-modal imaging technologies and functional metrics, incorporating
indicators such as MG orifice obstruction, gland secretion quality, and
expressible secretion ability, to refine the assessment framework and
enhance the comprehensiveness of MGD severity evaluation, thereby
providing stronger support for early detection. Specific pathways to
achieve this include, on one hand, expanding datasets to include multi-
modal sources, such as combining infrared meibography with dynamic
imaging modalities, to capture functional data like meibum flow
dynamics and orifice patency without invasive procedures. On the other
hand, developing advanced algorithms to build on existing image
segmentation frameworks, enabling simultaneous extraction of
structural features and functional indicators.

Second, the combination of public MGD-1 K datasets and internal
datasets enhances data diversity by accounting for real-world
variations in imaging devices. However, the relatively small scale of
the internal datasets may limit the reliability and generalizability of the
findings, particularly in cases of imbalanced MGD grading
distributions or diverse patient population characteristics. Expanding
the internal datasets in future studies would enable further validation
of model performance across varied clinical settings and reduce the
risk of overfitting associated with heavy reliance on public benchmark
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data. To improve model adaptability across diverse infrared imaging
sources, future work will explore domain adaptation techniques to
align feature distributions from different devices and expand data
augmentation to simulate device specific imaging variations.
Integrating larger multisource infrared datasets will further enhance
robustness and generalizability.

Third, the segmentation accuracy of classical image segmentation
models for gland structures remains suboptimal, especially for
low-quality images, where challenges in accurately capturing gland
edges can lead to errors in calculating certain indices. Future efforts
will involve the adoption of more advanced models to improve
segmentation precision, meeting the demands of more accurate
diagnostic applications.

6 Conclusion

This study explored a deep learning-based diagnostic and
grading method for MG quantitative indicators, comparing the
performance of DeepLabV3+, U-Net, and U-Net++ models in
infrared MG U-Net
demonstrated the best performance when evaluated based on

processing images. Among them,
segmentation accuracy, achieving an IoU of 0.72 and an F1 score
of 0.82 for MG segmentation, particularly excelling at capturing
complex gland edges and fine structures. Quantitative indicators
extracted from segmentation results were significantly correlated
with MGD grade (Spearman correlation coefficients ranging
from 0.26 to 0.58, p < 0.001), indicating a close association with
the severity of MGD. Box plot analysis intuitively revealed the
clear gradient distribution changes of these indicators across
different MGD grades, and this variation can be clearly reflected
through the median separation degree, interquartile range
overlap status, and outlier distribution characteristics of the
parameters in each group, highlighting their diagnostic value.
The logistic regression model showed excellent predictive
performance, with AUC values of 0.89 +0.02, 0.76 + 0.03,
0.85 + 0.02, and 0.94 + 0.01 for grades 0, 1, 2, and 3, respectively.
Micro-average and macro-average AUC reached 0.87 + 0.02 and
0.86 + 0.03, with model robustness confirmed via 5-fold cross-
These demonstrate that the method
significantly enhances the objectivity, efficiency, and
reproducibility of MGD diagnosis and grading. The MG
quantitative indicator method proposed in this study not only

validation. results

advances ophthalmic diagnostics but also lays a solid technical
foundation for broader applications in the medical imaging field.
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