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In recent years, numerous advanced image segmentation algorithms have been 
employed in the analysis of meibomian glands (MG). However, their clinical utility 
remains limited due to insufficient integration with the diagnostic and grading 
processes of meibomian gland dysfunction (MGD). To bridge this gap, the present 
study leverages three state-of-the-art deep learning models—DeepLabV3+, 
U-Net, and U-Net++—to segment infrared MG images and extract quantitative 
features for MGD diagnosis and severity assessment. A comprehensive set of 
morphological (e.g., gland area, width, length, and distortion) and distributional 
(e.g., gland density, count, inter-gland distance, disorder degree, and loss ratio) 
indicators were derived from the segmentation outcomes. Spearman correlation 
analysis revealed significant positive associations between most indicators and MGD 
severity (correlation coefficients ranging from 0.26 to 0.58; p < 0.001), indicating 
their potential diagnostic value. Furthermore, Box plot analysis highlighted clear 
distribution differences in the majority of indicators across all grades, with medians 
shifting progressively, interquartile ranges widening, and an increase in outliers, 
reflecting morphological changes associated with disease progression. Logistic 
regression models trained on these quantitative features yielded area under the 
receiver operating characteristic curve (AUC) values of 0.89 ± 0.02, 0.76 ± 0.03, 
0.85 ± 0.02, and 0.94 ± 0.01 for MGD grades 0, 1, 2, and 3, respectively. The 
models demonstrated strong classification performance, with micro-average and 
macro-average AUCs of 0.87 ± 0.02 and 0.86 ± 0.03, respectively. Model stability 
and generalizability were validated through 5-fold cross-validation. Collectively, 
these findings underscore the clinical relevance and robustness of deep learning-
assisted quantitative analysis for the objective diagnosis and grading of MGD, 
offering a promising framework for automated medical image interpretation in 
ophthalmology.
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1 Introduction

Meibomian gland dysfunction (MGD) is a common ophthalmic 
disease and one of the main causes of dry eye disease (DED). Its 
incidence rate can be as high as 50% globally, and it is particularly 
more prevalent among the female sex and older age (Stapleton et al., 
2017). From a medical perspective, the pathological basis of MGD 
contains the complex interaction of structural changes in the gland, 
weakened secretion function, and inflammatory responses, leading to 
excessive tear evaporation and the aggravation of dry eye symptoms 
(Ban et al., 2013; Baudouin et al., 2016).

In order to achieve an accurate assessment to the severity of MGD, 
researchers and clinicians are increasingly relying on image analysis 
techniques such as infrared meibography and image segmentation to 
establish an objective and reproducible method (Tomlinson et al., 
2011). Artificial intelligence (AI) technologies have demonstrated 
significant potential in the diagnosis of ophthalmic diseases. By 
integrating multi-source evidence, such as infrared MG imaging and 
clinical data, the accuracy and repeatability of MGD diagnosis have 
been significantly improved (Wang et al., 2024). AI applications based 
on mobile health platforms have promoted the early screening and 
dynamic monitoring of MGD (Wang et  al., 2025b). Additionally, 
explainable AI has supported the automated diagnosis of ophthalmic 
diseases like MGD by optimizing model robustness (Wang et  al., 
2023a). Subjective symptom assessment and tear break-up time 
measurement as traditional medical diagnostic methods, are limited 
by the experience of clinicians and the temporary situation feedback, 
hardly to meet the requirements of precision medicine for objective 
and quantitative indicators (Wolffsohn et al., 2017). The early analysis 
and diagnosed methods of MG mainly relied on semi-automatic or 
manual segmentation (Koh et  al., 2012), which had significant 
limitations. This method not only consumes a great deal of time but 
also leads to a waste of labor, and the segmentation effect was highly 
dependent on the image quality, making it challenging to meet the 
requirements of objective and reproducible diagnosis.

The rapid development of algorithmic technologies has brought 
new opportunities to this field, particularly the widespread application 
of deep learning in medical image segmentation. Deep learning 
models such as U-Net and DeepLab have demonstrated excellent 
performance in image segmentation tasks (Chen et  al., 2018b; 
Ronneberger et  al., 2015). By automatically identifying complex 
structures in images, they provide a feasible solution for the 
quantitative analysis of MG morphology and function (Lundervold 
and Lundervold, 2019). The analysis method of MG quantitative 
indicators based on image segmentation has overcome the subjectivity 
and inefficiency of manual operations, significantly improving the 
repeatability and consistency of MG assessment, and providing an 
objective basis for the early diagnosis and dynamic monitoring of 
MGD (Setu et al., 2021). The interdisciplinary innovation of this study 
is expected not only to enhance the efficiency of ophthalmic clinical 
diagnosis but also to provide technical references for automated 
analysis in other medical imaging fields.

The aim of this study is to develop a novel quantitative index 
extraction method based on segmentation results and explore its 
application value in the diagnosis of MGD. Specifically, DeepLabV3+, 
U-Net, and U-Net++ models will be used to process infrared MG 
images. Following the segmentation, a series of quantitative indicators, 
including innovative metrics such as gland area, density, width, 

distance between adjacent glands, degree of disorder, and loss ratio, as 
well as a novel principal component analysis-based approach for 
calculating gland length, width, and distortion to more accurately 
capture complex geometric features, will be calculated. The correlation 
of these indicators with MGD grade and their diagnostic efficacy will 
be systematically validated through Spearman correlation analysis, 
box plot visualization, and logistic regression models.

2 Related works

AI technologies have demonstrated remarkable potential in 
the field of ophthalmic disease diagnosis. In particular, significant 
breakthroughs have been achieved in the detection and grading 
of DED and ocular surface diseases. To comprehensively evaluate 
the function and morphology of MG, various clinical trials have 
been established. Currently, the assessment of gland secretion 
quality and expression is widely used as a key approach to 
evaluate MG function.

In clinical morphology, a study (Xiao et  al., 2019) analyzed 
meibomian glands (MG) using infrared imaging and evaluated the 
correlation between their morphological characteristics including 
gland loss, length, thickness, density, and distortion, and the severity 
of MGD. The results showed that gland distortion and gland loss were 
highly sensitive indicators for MGD, with the areas under the curve 
(AUC) reaching 0.96 and 0.98, respectively. Another research (Lin 
et al., 2020) introduces a new method to measure the distortion of 
MG, defined as the ratio of the actual gland length to its straight-line 
length minus 1. The results demonstrated that MGD patients had 
significantly higher distortion values (p < 0.05), and when using the 
distortion of the middle eight glands as the criterion for diagnosing 
obstructive MGD, both sensitivity and specificity reached 100%. 
However, a major limitation of these two methods is their reliance on 
manual measurement, which may lead to potential errors and 
reduce efficiency.

Different from previous studies, some research has quantitatively 
analyzed the morphology and function of MG through infrared 
images, which is used for the diagnosis and grading of MGD (Llorens-
Quintana et al., 2019; Deng et al., 2021). The algorithm proposed by 
Clara focuses on the upper eyelid and analyzes parameters such as 
length, width, and irregularity. It has been verified that this algorithm 
has lower variability and higher consistency compared with subjective 
assessment. Deng’s algorithm, on the other hand, analyzes the gland 
area ratio, diameter deformation index, tortuosity index, and signal 
index of the upper eyelid. When the combined parameters are used 
for diagnosing MGD, the AUC can reach 0.82, and the accuracy in 
grading is excellent. Both of these algorithms adopt image 
segmentation techniques, overcoming the limitations of subjective 
assessment and providing non-invasive and objective diagnostic tools 
for MGD, demonstrating the interdisciplinary potential of medical 
image analysis. However, relying on traditional image processing and 
segmentation techniques to analyze infrared images, both algorithms 
face limitations in segmentation accuracy when dealing with complex 
or irregular gland structures. Moreover, neither of them has overcome 
the deficiencies in analyzing the lower eyelid.

Furthermore, more and more scholars are using deep learning 
to analyze infrared MG images for the assessment of MGD, 
demonstrating the potential for automatic segmentation and 
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morphological assessment. A pre-trained U-Net model was 
employed (Setu et al., 2021) to process medical images, achieving 
a Dice coefficient of 84%. This approach quantified features such 
as the number, length, width, and tortuosity of glands in both 
upper and lower eyelids. A Conditional Generative Adversarial 
Network based model was utilized (Khan et al., 2021) for gland 
segmentation. Through adversarial learning between the 
generator and discriminator, the model generated a confidence 
map, achieving a Jaccard index of 0.664, an F1 score of 0.825, and 
high correlation with manual analysis results. Two AI techniques 
semantic segmentation and object detection were applied 
(Swiderska et al., 2023) to quantify MG features, including length, 
area, and curvature. TransUnet combined with data augmentation 
was proposed (Lai et  al., 2024) to enhance meibomian gland 
imaging analysis. By automatically calculating the proportion of 
white pixels in the MG and conjunctiva regions, an automatic 
meiboscore was achieved, which highly agreed with the judgment 
of professional physicians. Recent studies have enhanced the 
intelligence level of MGD diagnosis through contrastive learning 
augmented by knowledge graphs, integrating clinical feature cues 
(Han Wang et al., 2025). Prompt engineering has optimized the 
ability of AI models to recognize complex gland structures by 
designing clinically oriented prompts (Wang et  al., 2025a). 
Additionally, explainable AI has provided reliable support for 
automated MGD detection by improving data quality and model 
transparency (Wang et al., 2023b).

3 Materials and methods

3.1 Materials

The data of this study on MGD analysis collected from multiple 
sources. The public data MGD-1 K (Saha et al., 2022) contains 1,000 
infrared images of MG captured by the Lipi View II Ocular Surface 
Interferometer (LV II). The in-house data consists of a total of 265 
anonymous clinical infrared MG images of eyelids, which were randomly 
collected from the database of the Oculus Keratograph 5 M (K5M; Oculus 
GmbH, Wetzlar, Germany) at Zhuhai People’s Hospital (The Affiliated 
Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical 
College of Jinan University). These datasets were annotated for glands, 
eyelids, and MGD grade under the direct supervision of three MGD 
experts and specialized ophthalmologists. As shown in Figure 1, both the 
original infrared MG images and their corresponding annotated glands 
images are presented, clearly demonstrating the annotation quality of the 
datasets and the structural details of the MG. The grading of MGD adopts 
the criteria recommended by TFOS DEWS II (Craig et al., 2017), and 
comprehensive grading evaluation is carried out based on the severity of 
MGD and the morphological characteristics of MG. Specifically, the 
grading system evaluates gland morphology including architectural 
shape, structural variations such as tortuosity and curvature patterns, and 
gland loss severity which directly reflects MGD progression. 
Quantification of gland loss ratio serves as the fundamental morphological 
metric for assessment.

FIGURE 1

Case of original infrared meibography and their corresponding annotated images.
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From a combined collection of 1,265 fully annotated infrared MG 
images derived from two datasets, we proportionally allocated 300 
images to constitute the test set based on the original datasets ratio, 
which will be utilized for model performance evaluation and MGD 
grading. The remaining 965 images were partitioned into training and 
validation sets at an 8:2 ratio while maintaining the source data 
distribution, designated for deep learning model training and 
validation respectively, thereby ensuring all data partitions preserve 
equilibrium in original data representation. Because of the inconsistent 
sizes of the images in the data, all images are uniformly resized to 
1,280 × 640 pixels, with no rotation, flipping, or other image 
preprocessing methods applied to preserve original information, 
reduce information loss, and lower computational costs. All 
experiments were conducted using PyTorch 2.6.0 and Python 3.12.9 
on a computing platform equipped with four NVIDIA A100-PCIe 
40GB GPUs running Ubuntu 20.04.

3.2 Model architecture

In this study, DeepLabV3+, U-Net, and U-Net++ were selected as 
image segmentation models due to their established efficacy and 
complementary strengths in medical image segmentation, particularly 
for processing complex anatomical structures like MG. It should 
be  noted that the exclusion of other advanced medical image 
segmentation models was a deliberate choice aligned with the core 
objective of this research, which is to explore efficient solutions 
specifically tailored to the segmentation of infrared MG images, rather 
than to conduct a systematic comparison of all mainstream models. 
These models were chosen to systematically evaluate their 
performance in infrared MG image segmentation, leveraging their 
distinct architectural advantages, without modifications to their 
architectures. All models were trained using cross-entropy loss as the 
loss function and the Adam optimizer with a learning rate of 0.001 to 
ensure fairness and consistency in comparison results.

DeepLabV3 + is a deep convolutional neural network based on 
the encoder-decoder architecture. It ingeniously integrates atrous 
convolution and atrous spatial pyramid pooling (ASPP), effectively 
capturing multi-scale contextual information and thereby generating 
high-resolution segmentation masks (Chen et al., 2018a). As a classic 
encoder-decoder structure, U-Net retains multi-scale features through 
skip connections and is widely applied to various image segmentation 
tasks, especially demonstrating outstanding capabilities in the field of 

medical image segmentation (Ronneberger et al., 2015). U-Net++ is 
an improvement on U-Net. It introduces more complex skip 
connections and nested structures, significantly enhancing the fusion 
effect of features at different levels, making it perform particularly well 
in image segmentation tasks dealing with complex boundaries or fine 
structures (Zhou et al., 2018).

Thereby, DeepLabV3 + outperformed in capturing global features 
and preserving contextual integrity, U-Net++ offered enhanced 
capability in detailing local features, and U-Net maintained stable 
results with relatively lower computational complexity. Figure  2 
illustrates the structural differences and design philosophies among 
the three models.

3.3 Evaluate metrics

To evaluate the performance of the model on new data, metrics 
such as Precision, Intersection over Union (IoU), F1 score and Recall 
were used for the assessment on the test set, equations are shown in 
the Equations 1–4, where TP, TN, FP, and FN represent True Positives, 
True Negatives, False Positives, and False Negatives.
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3.4 Quantitative indicators measurement

We calculated the following indicators: gland width, gland length, 
gland distortion, gland number, gland area, density, loss ratio, nearest 
distance between adjacent glands, and degree of disorder as the 
morphological and distribution characteristics of the MG. The 

FIGURE 2

Architecture of three image segmentation algorithms, (A) DeepLabV3+ (Chen et al., 2018a), (B) U-Net (Ronneberger et al., 2015), (C) U-Net++ (Zhou 
et al., 2018).
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calculations were performed through image processing and contour 
analysis based on the gland images and the tarsus region images. 
Apply a morphological opening operation once using a 3 × 3 elliptical 
kernel to remove noise. Detect the contours and filter out those with 
an area of less than 10 pixels or with fewer than 4 points. Sort the 
contours from left to right according to the abscissa axis of their center 
of mass to ensure a consistent analysis order.

The number of glands directly reflects the remaining quantity of 
glands, and a decrease in number is a core feature of MGD. Glands are 
sorted from left to right by abscissa and marked one by one for 
quantitative counting.

Gland area represents the actual coverage of glands. A reduction 
in area indicates gland atrophy or loss, which is directly linked to 
decreased tear film stability. It is calculated by summing the areas of 
the outer boundaries of each gland, as shown by the yellow region in 
Figure 3. Gland density is calculated by dividing the total MG area by 
the tarsal region area, reflecting the abundance of glands per unit area. 
A decrease in density is a macroscopic manifestation of gland 
degeneration. Loss ratio refers to the proportion of missing gland area 
relative to the total tarsal area. It is calculated by subtracting the sum 
of all gland areas from the tarsal contour area and then dividing by the 
tarsal contour area. This index quantitatively evaluates the degree of 
gland loss by comparing the gland area with the entire tarsal area, 
serving as a core parameter for MGD diagnosis and treatment 
efficacy assessment.

To calculate the length, width, and distortion of the gland, we have 
developed a novel computational framework that integrates Principal 
Component Analysis (PCA) with equidistant sampling, enabling 
systematic characterization of glandular morphology. As presented in 
Figure 4, this framework first extracts the gland’s principal direction 
via PCA and projects contour points to generate 50 equidistant 
sampling points. Gland width is computed as the average distance 
between intersection points of 50 perpendicular lines to the principal 
direction and the contour, while length is determined by summing 
Euclidean distances between midpoints of equidistant line segments. 
The distortion of the gland is represented by the discrete curvature of 
the length segments. We calculate the included angles based on three 
adjacent points and weight the distances of adjacent segments. The 
average curvature of all middle line points is taken as the distortion 
degree of the gland. Medically, gland width reflects changes in gland 

crosswise area, with reduced width commonly seen in gland atrophy 
or obstruction; gland length indicates the longitudinal extension of 
the gland, and shortened length may be  associated with gland 
degeneration; gland distortion quantifies the regularity of gland 
morphology, and increased distortion indicates structural damage to 
the glands, which is positively correlated with the severity of MGD.

Another key innovation in our quantitative analysis lies in the 
development of two novel spatial distribution metrics is the nearest 
distance between adjacent glands and the degree of disorder, as 
illustrated in Figure 4D. After sorting the centroids of the glands, the 
Euclidean distance between the contour points of adjacent glands is 
calculated. The red lines indicate the nearest distance between adjacent 
glands, which help evaluate how glands are distributed in space. A 
larger distance between adjacent glands suggests that glands are more 
scattered, indirectly reflecting gland density. The degree of disorder is 
reflected by the standard deviation of the nearest distances between 
adjacent glands. A stronger disorder in distribution indicates a closer 
correlation with the gland damage pattern caused by MGD.

3.5 Statistical analysis

The Spearman’s correlation analysis method was adopted to 
explore the correlation between the indicators of MG and the MGD 
grade. By drawing the scatter plot of Spearman’s correlation, the 
strength of the association between each parameter indicator and the 
grade was analyzed. Among them, the correlation with a p-value less 
than 0.001 was statistically significant, indicating that these indicators 
may play an important role in the evaluation of MGD grade.

In addition, box plot visualization was used to analyze the 
distribution of parameter indicators in the classification of MG after 
segmentation, covering nine key indicators such as total gland area 
and gland loss ratio, to clearly present the data features across different 
grades. To better highlight the differences between groups at various 
grades for the parameter indicators extracted after segmentation, this 
method compared the data distributions of grades 0, 1, 2, and 3, 
revealing that changes in MG classification grades may be closely 
related to variations in parameter indicators. These variations were 
clearly shown through differences in the medians and interquartile 
ranges across the grades.

To evaluate the performance of the vs. of MG under different 
MGD grade, in this study, a logistic regression model was used, and 
the data was divided into a training set and a test set at a ratio of 8:2 
to construct a multi-class classification model. By calculating ROC 
and AUC, the predictive performance of the indicators of MG under 
different grade was compared, and the robustness of performance 
evaluation was enhanced through 5-fold cross-validation. It shows 
that the indicators of MG have good predictive ability in distinguishing 
different grade, providing a reliable basis for the evaluation of 
MG function.

4 Results

4.1 Segmentation result

Three models were systematically evaluated the performance for 
MG segmentation tasks using test data. As shown in Figure  5, 

FIGURE 3

Examples of measurement of the area, density and loss ratio of the 
glands: the red area represents the gland area, gland density is 
calculated as the red area divided by the area enclosed by the green 
lines, The gland loss ratio is computed as the quotient of (the area 
bounded by the green contours minus the red contours) divided by 
the area bounded by the green contours.
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comparative cases between the segmentation results of these models 
after 100 epochs of training and manually annotated images on the 
test set are presented. The experimental results indicate that all three 
models can effectively identify MG structures, but significant 
differences exist in their ability to handle details. Specifically, U-Net 
demonstrates higher precision in segmenting complex gland edges 
and fine structures, particularly in the segmentation of lower eyelid 
images, where its results are closer to the manually annotated true 
value images. In contrast, DeepLabV3 + and U-Net++ exhibit less 
ideal segmentation performance when dealing with complex gland 
structures, with certain gaps in capturing edge details and 
tiny structures.

Table  1 summarizes the performance of three models 
DeepLabV3+, U-Net++, and U-Net in MG and eyelid segmentation 
tasks, with evaluation metrics including Precision, IoU, F1 score, and 
Recall. The experimental results show that U-Net demonstrates 
significant advantages in MG segmentation. Its IoU index reaches 
0.72, higher than 0.70 for both DeepLabV3 + and U-Net++, indicating 
that U-Net has higher accuracy in handling overlapping segmentation 
regions. In terms of F1 score, U-Net also performs excellently at 0.82, 
while DeepLabV3 + and U-Net++ both achieve 0.81, suggesting that 
U-Net has better stability in balancing precision and recall.

In contrast, according to Table 1, the three models exhibit minimal 
performance differences in eyelid segmentation, with IoU values 
ranging from 0.93 to 0.94. This indicates that eyelid region 
segmentation is relatively less challenging, with insignificant 
differences between models. These findings further validate that the 
complexity of MG structures significantly impacts model 
segmentation accuracy, while the relatively regular structure of the 

eyelid region enables all models to achieve satisfactory 
segmentation results.

4.2 Quantitative indicators and statistical 
analysis

To explore the relationship between the morphological and 
distribution characteristics of MG and the severity of MGD, the 
Spearman correlation analysis was used to evaluate the correlation 
between the MG indicators obtained by algorithm segmentation 
outputs of the U-Net model with the best performance (IoU of 0.72 
and F1 score of 0.82), and MGD grade. As shown in Figure 6, the 
figure display the scatter distributions of various quantitative 
indicators (including gland area, number, density, width, length, 
distance between adjacent glands, degree of disorder, distortion, and 
loss ratio) and MGD grade. The results showed that gland area, 
density, length, width, distortion, distance between adjacent glands, 
disorder degree, and loss ratio were significantly correlated with MGD 
grade, Spearman correlation coefficients ranged from 0.26 to 0.58 
(p < 0.001), indicating that these indicators change significantly with 
the MGD severity and have strong correlations. In contrast, gland 
number (r = 0.08, p = 0.15) showed weak correlations with MGD 
grade, suggesting that may have limited diagnostic value in 
MGD grading.

This study utilized box plot analysis to examine the distribution 
of nine parameter indicators in segmented MG images, revealing a 
clear gradient change across the grades. Specifically, indicators such 
as gland loss ratio and gland density demonstrated particularly 

FIGURE 4

Examples of measurement of the length, width, distortion of the glands and the nearest distance between adjacent glands. (A) Eyelid annotated 
images, (B) line of principal direction and width, (C) line of width and length, (D) line of nearest distance between adjacent glands.
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prominent effects: the median gland loss ratio increased progressively 
from a lower value in the healthy group to a higher value in the severe 
group, with widening interquartile ranges and an increase in outliers, 
clearly reflecting the trend of gland degeneration due to worsening 
disease; conversely, gland density exhibited a decreasing pattern, with 
the median dropping from a higher value in the healthy group to a 
lower value in the severe group, and an expanded interquartile range 
indicating increased variability. The highly consistent distribution 
changes in these indicators provide strong evidence, supporting their 
potential for MGD in Figure 7.

Other indicators, such as total gland area and mean gland length, 
also showed a favorable gradient effect, with medians decreasing as 
the grade increased and interquartile ranges widening, highlighting 
morphological evidence of gland atrophy. Indicators like mean gland 
width, mean adjacent gland distance, mean gland distortion, and 
degree of gland disorder also displayed certain gradient changes, with 
medians showing a slight decreasing or increasing trend and 
interquartile ranges changing moderately, with fewer outliers, 
suggesting that while these indicators reflect some role in MGD 
progression, the effect is not highly pronounced. Only the gland 
number showed a relatively moderate distribution change, with 
minimal median fluctuation, no significant expansion of the 

interquartile range, and a relatively uniform distribution of outliers, 
possibly influenced by sample variability, indicating lower sensitivity 
in grade classification.

The box plots visually demonstrated inter group differences across 
grades, particularly the pronounced differences between the healthy 
group and the moderate to severe group, providing important 
morphological evidence for MGD detection. These findings reinforce 
the close relationship between MG classification grades and the 
variability of parameter indicators, especially between the healthy 
group and the moderate to severe group, where a significant reduction 
in total gland area, decreased gland density, narrowed mean gland 
width, shortened mean gland length, increased mean adjacent gland 
distance, elevated mean gland distortion, and a significant rise in 
gland loss ratio all reflect the worsening trend of disease severity. The 
difference in gland number remained consistently insignificant. In 
contrast, gland density and gland loss ratio emerged as promising 
potential markers for distinguishing healthy individuals from those 
with moderate to severe MGD.

Subsequently, a logistic regression model using MG indicators and 
MGD grade to further validate the predictive performance of these 
indicators across different grades. As shown in Figure  8, the area 
under the curve values of the indicators for grades 0, 1, 2, and 3 were 

FIGURE 5

Case of model performance on images from the test set.

TABLE 1  Performance of the MG segmentation method.

Metrics DeepLabV3+ U-Net++ U-Net

Gland Eyelid Gland Eyelid Gland Eyelid

Precision 0.82 0.96 0.83 0.96 0.84 0.97

Recall 0.83 0.97 0.84 0.96 0.85 0.97

IoU 0.70 0.93 0.70 0.93 0.72 0.94

F1 score 0.81 0.96 0.81 0.96 0.82 0.97
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FIGURE 6

Scatter plots of Spearman’s correlation between MG indicators and MGD grade.

FIGURE 7

Box plots of parameter indicators across meibomian gland grades.
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0.89 ± 0.02, 0.76 ± 0.03, 0.85 ± 0.02, and 0.94 ± 0.01, respectively. 
These results indicate that the indicators exhibit the strongest 
differential ability at higher severity levels (particularly grade 3), with 
the highest AUC for grade 3 MGD, demonstrating high sensitivity and 
specificity in diagnosing severe MGD.

Figure  9 shows the performance of micro-average 
(AUC = 0.87 ± 0.02) and macro-average (AUC = 0.86 ± 0.03), both of 
which significantly outperformed random guessing (AUC = 0.50). 
Combined with Figure 7, these results demonstrate that MG indicators 
exhibit excellent differential ability in multi-class prediction, 
particularly in distinguishing healthy individuals (grade 0) from 
moderate to severe MGD patients (grades 2–3). The robustness of the 
model was further validated through 5-fold cross-validation, 
providing a reliable quantitative basis for the automated diagnosis and 
grading of MGD.

5 Discussion

This study implements automated segmentation of MG infrared 
images based on deep learning algorithms, and carries out quantitative 
analysis on binary segmented images, providing an innovative 
solution for the diagnosis and grading of MGD. The experimental data 
of this study were collected by the Lipi View II ocular surface 
interferometer and the Oculus Keratograph 5 M (Oculus GmbH, 
Wetzlar, Germany). The technical characteristic differences between 
the two devices form the heterogeneity basis of the datasets, providing 
key support for verifying the adaptability of the algorithm under 
different imaging mechanisms. Experimental data show that 
compared with the DeepLabV3 + and U-Net++ models, U-Net 
demonstrates higher accuracy in MG image segmentation tasks, 
especially showing unique advantages in processing irregular gland 
structures. Advanced preprocessing techniques were not employed to 
maintain computational simplicity and experimental reproducibility.

The quantitative indicators derived from the segmentation results 
serve as critical metrics for the objective assessment of 

MGD. Parameters such as gland area, density, width, length, 
distortion, inter-gland distance, disorder degree, and gland loss ratio 
exhibited significant variation across different MGD severity levels, 
effectively capturing the pathological features associated with disease 
progression. Notably, the total number of glands did not demonstrate 
a significant correlation with MGD severity. This may be attributed to 
the fact that gland count remains relatively stable during the early or 
mild stages of MGD, whereas morphological and spatial distributional 
changes are more sensitive markers that better reflect the dynamic and 
progressive nature of the disorder.

The high differential ability of the logistic regression model 
further identifies the application value of the quantitative indices 
extracted from MG infrared image segmentation in the grading of 
MGD. The model demonstrated the strongest predictive efficacy in 
severe MGD (grade 3) cases, which may be attributed to the significant 
abnormalities in MG morphology and distribution in severe patients, 
enabling quantitative indices to more clearly distinguish between 
pathological and healthy states. In contrast, the model showed slightly 
lower predictive ability in mild MGD (grade 1) cases, likely due to the 
subtle glandular changes in mild MGD, which increase the diagnostic 
complexity based on quantitative indices.

In previous studies on quantitative indices of the MG, most have 
focused on traditional parameters such as gland count, length, width, 
and area, while some have involved relatively novel indices like 
distortion and density. The innovations and advantages of the index 
system in this study are mainly reflected in three aspects: first, it 
improves the calculation method of traditional morphological indices 
by creatively proposing a PCA approach to calculate gland length, 
width, and distortion. Compared with traditional manual 
measurement or simple geometric fitting, this method can more 
accurately capture the natural extension direction and morphological 
characteristics of glands, and particularly describe irregular gland 
structures such as curved or branched ones in a way that better 
conforms to real pathological morphology, reducing measurement 
deviations caused by morphological complexity; second, it fills the gap 
in quantifying spatial distribution characteristics. By introducing 
indices of adjacent gland distance and disorder degree, it realizes 

FIGURE 8

The ROC curve of the logistic regression for the diagnostic indicators 
of MGD grade.

FIGURE 9

The ROC curve of logistic regression for micro/macro-average 
performance of test set parameter indicators.

https://doi.org/10.3389/frai.2025.1642361
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al.� 10.3389/frai.2025.1642361

Frontiers in Artificial Intelligence 10 frontiersin.org

quantitative analysis of the spatial distribution characteristics of 
glands for the first time. Traditional studies have mostly focused on 
the morphology of individual glands, but this study found that the 
spatial arrangement patterns of glands are closely related to the 
progression of MGD. For example, patients with severe MGD often 
show clustered atrophy of glands, with significantly increased adjacent 
distances and disorder degrees. These characteristics, which cannot 
be reflected by simple morphological indices, provide a new diagnostic 
dimension for disease grading; third, it proposes a comprehensive 
pathological index. The newly constructed gland loss ratio, by 
quantifying the proportion of areas where glands have disappeared in 
the total gland distribution area, can simultaneously reflect multiple 
pathological changes such as gland atrophy and sparse distribution. It 
overcomes the limitation that traditional single indices can only 
describe local features, and more comprehensively reflects the overall 
degradation trend of glands during the course of MGD.

While this study concentrated on the morphological and 
distributional characteristics of MG derived from image 
segmentation, it overlooked two critical assessment components. It 
did not integrate functional indicators essential for a comprehensive 
evaluation of MGD, such as gland secretion quality and expressible 
secretion ability, which could enhance diagnostic accuracy. 
Additionally, the assessment excluded MG orifice obstruction, a 
clinically significant feature in MGD pathophysiology. This omission 
arises from two key limitations: (1) infrared imaging technology and 
the current segmentation algorithms are optimized for structural 
analysis, making it challenging to detect functional or dynamic 
features like orifice obstruction, and (2) the study’s focus on 
structural metrics precluded the development of a holistic 
assessment system combining structural and functional insights. To 
address these gaps, future research will explore the integration of 
multi-modal imaging technologies or functional metrics, 
incorporating MG orifice obstruction as well as gland secretion 
quality and expressible secretion ability, to refine the assessment 
framework and improve the comprehensiveness of MGD severity 
evaluation, thereby strengthening support for early detection.

To address these gaps, future research will explore the integration of 
multi-modal imaging technologies and functional metrics, incorporating 
indicators such as MG orifice obstruction, gland secretion quality, and 
expressible secretion ability, to refine the assessment framework and 
enhance the comprehensiveness of MGD severity evaluation, thereby 
providing stronger support for early detection. Specific pathways to 
achieve this include, on one hand, expanding datasets to include multi-
modal sources, such as combining infrared meibography with dynamic 
imaging modalities, to capture functional data like meibum flow 
dynamics and orifice patency without invasive procedures. On the other 
hand, developing advanced algorithms to build on existing image 
segmentation frameworks, enabling simultaneous extraction of 
structural features and functional indicators.

Second, the combination of public MGD-1 K datasets and internal 
datasets enhances data diversity by accounting for real-world 
variations in imaging devices. However, the relatively small scale of 
the internal datasets may limit the reliability and generalizability of the 
findings, particularly in cases of imbalanced MGD grading 
distributions or diverse patient population characteristics. Expanding 
the internal datasets in future studies would enable further validation 
of model performance across varied clinical settings and reduce the 
risk of overfitting associated with heavy reliance on public benchmark 

data. To improve model adaptability across diverse infrared imaging 
sources, future work will explore domain adaptation techniques to 
align feature distributions from different devices and expand data 
augmentation to simulate device specific imaging variations. 
Integrating larger multisource infrared datasets will further enhance 
robustness and generalizability.

Third, the segmentation accuracy of classical image segmentation 
models for gland structures remains suboptimal, especially for 
low-quality images, where challenges in accurately capturing gland 
edges can lead to errors in calculating certain indices. Future efforts 
will involve the adoption of more advanced models to improve 
segmentation precision, meeting the demands of more accurate 
diagnostic applications.

6 Conclusion

This study explored a deep learning-based diagnostic and 
grading method for MG quantitative indicators, comparing the 
performance of DeepLabV3+, U-Net, and U-Net++ models in 
processing infrared MG images. Among them, U-Net 
demonstrated the best performance when evaluated based on 
segmentation accuracy, achieving an IoU of 0.72 and an F1 score 
of 0.82 for MG segmentation, particularly excelling at capturing 
complex gland edges and fine structures. Quantitative indicators 
extracted from segmentation results were significantly correlated 
with MGD grade (Spearman correlation coefficients ranging 
from 0.26 to 0.58, p < 0.001), indicating a close association with 
the severity of MGD. Box plot analysis intuitively revealed the 
clear gradient distribution changes of these indicators across 
different MGD grades, and this variation can be clearly reflected 
through the median separation degree, interquartile range 
overlap status, and outlier distribution characteristics of the 
parameters in each group, highlighting their diagnostic value. 
The logistic regression model showed excellent predictive 
performance, with AUC values of 0.89 ± 0.02, 0.76 ± 0.03, 
0.85 ± 0.02, and 0.94 ± 0.01 for grades 0, 1, 2, and 3, respectively. 
Micro-average and macro-average AUC reached 0.87 ± 0.02 and 
0.86 ± 0.03, with model robustness confirmed via 5-fold cross-
validation. These results demonstrate that the method 
significantly enhances the objectivity, efficiency, and 
reproducibility of MGD diagnosis and grading. The MG 
quantitative indicator method proposed in this study not only 
advances ophthalmic diagnostics but also lays a solid technical 
foundation for broader applications in the medical imaging field.
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