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In recent years, China’s agricultural development has gradually shifted from digital
agriculture to smart agriculture. At the same time, with the participation of AIGC,
the decision-making system of smart agriculture is also facing numerous data
challenges. In this study, we employed a comprehensive quality improvement
approach to ad-dress these challenges. The methodology involves three phases:
(1) Detection and removal of data noise through advanced cleaning techniques
and preprocessing methods; (2) Unified data standards and formats to ensure
seamless integration across di-verse data sources; and (3) Strengthening agricultural
infrastructure to prevent data islands and promote equitable data distribution.
Our analysis reveals that data noise significantly impacts precision agriculture,
leading to biased decisions and resource wastage. Data fog, resulting from
heterogeneous data sources and weak inter-source correlations, complicates
decision-making processes. Additionally, data islands hinder data sharing and
integration, exacerbated by uneven data development across regions. Systematic
implementation of standardized quality control protocols is essential for enhancing
smart agricultural systems and ensuring sustainable development. This study offers
a novel perspective on enhancing data quality in AIGC-driven smart agriculture
by integrating the Juran quality improvement model.
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1 Introduction

In October 2024, the Ministry of Agriculture and Rural Affairs issued the “National Smart
Agriculture Action Plan (2024-2028)” (MARD, 2024), shifting Chinas agricultural
development from digital agriculture to smart agriculture. By generating text, images, audio,
and video content, Artificial Intelligence Generated Content (AIGC), combined with advanced
technologies like natural language processing, computer vision, and machine learning (Waleed
Khalid et al., 2024), can offer precision agriculture decision (Bongiovanni and Lowenberg-
Deboer, 2004) and verify compliance with good agricultural practices (GAP) criteria (De
Baerdemacker, 2013), thereby enhancing agricultural production efficiency and sustainability
(Ilcic et al., 2025).

However, AIGC also introduces complexities in data quality, posing challenges for smart
agriculture. To start with, problems such as algorithmic bias, unstable data sources, and lack
of model transparency can lead to data bias (Dehghani et al., 2024), creating data noise (Martin
etal., 2024). For instance, biased training data may result in misleading predictions about crop
growth or pest and disease outbreaks (Jabed and Azmi Murad, 2024). Furthermore, AIGC
exacerbates data fog, as integrating and interpreting data from diverse sources and formats
becomes complex. This complexity hinders agricultural producers’ ability to effectively use
data for decision-making (Ribeiro Junior et al., 2022). Additionally, AIGC can intensify data
islands, creating barriers to data sharing and integration between systems and departments,
and impeding data flow and analysis (Jakku et al., 2019). For example, a smart irrigation
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system may lack access to soil moisture data from the environmental
system, reducing irrigation efficiency (Morchid et al., 2024). While the
detrimental effects of data noise, fog, and islands on smart agriculture
are increasingly recognized, there remains a critical gap in
systematically addressing these intertwined data quality challenges
through a unified, process-oriented quality improvement framework
within the specific context of AIGC adoption.

Addressing these challenges is crucial for AIGC application in
smart agriculture. Quality loops, a conceptual model emphasizing
continuous improvement from a quality perspective (Tesfay, 2021),
was proposed as a lens to gain insights on data quality challenges in
the AIGC application of smart agriculture (See Figure 1). This study
explicitly focuses on analyzing and proposing solutions for three core
data quality challenges hindering AIGC-driven smart agriculture: data
noise (affecting accuracy and reliability), data fog (hindering
integration and interpretation), and data islands (impeding sharing
and flow). With the lens, this viewpoint analyzes the root causes of
these challenges, explains the potential issues from the perspective of
smart agriculture, and demonstrates their impact in the long term. By
deeply exploring data quality challenges in smart agriculture, this
viewpoint demonstrates typical data quality challenges in AIGC
applications in the view of smart agriculture. Insights could be valuable
for researchers, and practitioners, and inform future
technology applications.

The remainder of this paper is organized as follows. Section 2
analyzes data noise within the quality design phase. Section 3
examines data fog in the quality control phase. Section 4 discusses
data islands in the quality improvement phase. Section 5 synthesizes
the findings and provides targeted suggestions for mitigating these

challenges. Finally, Section 6 concludes the paper.

2 Data noise in the quality design
phase

Noise is an unavoidable problem, which affects the data collection
and data preparation processes in Data Mining applications, where

10.3389/frai.2025.1640805

errors commonly occur (Garcia et al., 2015). Data noise, which
encompasses errors and interference within datasets, poses a
significant challenge in the domain of smart agriculture, particularly
with the integration of AIGC (Martin et al., 2024). Sensor faults,
including those due to equipment limitations and wear from extended
use, can introduce errors during data acquisition (Li et al., 2020).
Additionally, environmental fluctuations such as temperature,
humidity, and wind, can impact sensor readings and amplify data
noise (Cai et al., 2018). Data transmission from acquisition to storage
points may also be compromised by network constraints and signal
degradation, leading to data corruption or loss (Brinkmann et al.,
2009). Human errors during data entry and processing, especially in
manual operations (Paul and Lars, 2003), are also significant sources
of data noise and are inherently challenging to eliminate.

The presence of data noise is a common problem that produces
several negative consequences in smart agriculture. It can result in
biased agricultural decisions, particularly within precision agriculture
technologies (Tey and Brindal, 2012), such as irrigation, fertilization,
and pest management. Biased agricultural decisions may lead to
resource wastage, including excessive water use and pesticide
application, which hinder agriculture sustainability (Bongiovanni and
Lowenberg-Deboer, 2004). Moreover, data noise can impair the
precise assessment of compliance with GAP, which impacts the quality
of agricultural production. It can also lead to increased maintenance
and calibration expenses, as well as financial losses due to flawed
decision-making. Consequently, data noise is a critical issue in smart
agriculture, influenced by multiple factors and exerting a broad impact
on agricultural operations.

A high-quality dataset is one that accurately represents real-world
phenomena, is comprehensive, and is free from biases (Gong et al.,
2023). In the AIGC context, addressing data noise has become an
essential component of smart agriculture. The performance of smart
agriculture will heavily depend on the quality of the dataset, but also
on the robustness against the noise. To enhance the efficiency and
effectiveness of smart agriculture, a thorough diagnostic of the sources
of data noise and the implementation of cleaning methods are
imperative (Xiong et al., 2006). This necessitates comprehensive

Quality control
(Data Fog)

Quality
improvement
(Data islands)

®System incompatibility leads to silos
®Organizational barriers to data sharing
®Lack of standards limits application

Quality design
(Data noise )

®Difficulty in integrating data in various formats
®Weak correlation analysis is complicated
®Delayed decision support

7

®Noise from equipment and environment
®Noise leads to poor decision making
®Damage to crop health assessment

7

FIGURE 1
AIGC generated data quality improvement roadmap in Smart Agriculture.
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consideration of data quality control and optimization during the
design, deployment, and upkeep of AIGC technology, ensuring that
smart agriculture systems can built on accurate and dependable data,
thereby facilitating precision agriculture.

3 Data fog in the quality control phase

Data fog is caused by the complexity of heterogeneous data from
multiple sources and the ambiguity of the relationship between data
(Kumari et al.,, 2019). In the context of AIGC technology, this issue has
become even more prominent. While AIGC technology offers
volumes of data with a wide variety that can be captured, analyzed,
and used for decision-making, it also adds the heterogeneity and
complexity of data. In smart agriculture, data from different sources,
such as sensors and robots (Wolfert et al., 2017), can become
misguided in data fog if not effectively integrated, affecting the
accuracy of information and the timeliness of decisions.

Data fog arises from several key issues. Data in smart agriculture
comes from a variety of devices of various stakeholders. These data
sets often have different formats and standards, making their
integration and analysis complicated (Cheng et al., 2024). Second, the
correlation between different data sources is quite weak, and the lack
of standardized protocols to correlate these datasets exacerbates the
difficulty of integration (Bimonte et al., 2024). Finally, existing data
processing technologies may not be sufficient to handle large, multi-
source, heterogeneous data, thus limiting the utilization of data (Hazra
etal, 2023). The quality and usefulness of data integration depend on
the existence and adoption of standards, shared formats, and
mechanisms (Lapatas et al., 2015). These problems not only increase
the complexity of data processing but also hinder the application of
data in systematic decision-making, affecting the precision and
accuracy of agricultural production.

The impact of data fog on smart farming is multifaceted. Firstly,
the diverse formats and standards of agricultural data make integration
and analysis difficult (Leonelli et al., 2017), preventing stakeholders
from extracting valuable and intime information. Secondly, data fog
increases the difficulty of data processing, reduces efficiency, delays
the time for decision-makers to obtain accurate data support, and
affects the level of intelligence and precision of agricultural production.
In addition, data fog can lead to unsustainable production, as growers
may fail to adjust their agricultural practices based on real-time data
(Wolfert et al., 2017), thus failing to achieve the goals of precision
agriculture. Therefore, solving the problem of data fog and enhancing
data
smart agriculture.

integration and analysis capabilities are crucial to

4 Data islands in the quality
improvement phase

Data islands, a critical issue in smart agriculture, denote the
inability to connect and share data across disparate systems or
departments due to system incompatibilities, organizational barriers,
and the absence of uniform standards (Philipp and David, 2020;
Radauer et al., 2023). These impediments to information flow not only
obstruct data integration and analysis but also precipitate decision-
making errors and resource wastage. For instance, the isolation of
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agricultural enterprises’ sales and production data, resulting in a lack
of understanding of market demand by the production department,
leads to mismatched planting varieties and quantities, substantial
economic loss, and even food waste.

The main cause of data islands is the uneven development of
agricultural data. When data scarcity occurs, it weakens the
connections and further exacerbates data fragmentation (Jones et al.,
2017), ultimately leading to the formation of data islands. This
disparity in data development can exacerbate economic inequalities
among different regions (Wang, 2015), as farmers in less developed
areas may lack access to the advanced technologies and insights
available to those in more data-rich regions.

Without comprehensive data, it becomes challenging to make
informed decisions about systematic problems, such as pesticide
application (Pan et al, 2021). This can lead to inefficient use of
resources, increased costs, and potentially lower crop yields and
quality. This isolation of data island not only restricts the effectiveness
of individual farming operations but also hinders the overall
performance of smart agriculture on a broader scale, causing the
shortage of a barrel.

5 Discussion

The analysis presented in the preceding sections underscores the
profound impact of data noise, fog, and islands on the efficacy of
AIGC-driven smart agriculture. These challenges are not isolated: data
noise can obscure signals within individual datasets, complicating
integration (fog) and rendering shared data less reliable (exacerbating
island effects) (Anand et al., 2024). Data fog hinders the correlation of
information necessary to overcome silos (islands). Conversely, data
islands prevent access to diverse data sources needed to contextualize
and clean noisy data or resolve fog ambiguities (Mishra et al., 2023).
While existing research often tackles these issues individually, the
quality loop perspective adopted here reveals their interconnected
nature and the necessity for a holistic, phase-specific approach
spanning the entire data lifecycle—from design and acquisition
(noise), through integration and processing (fog), to sharing and
utilization (islands). Successfully mitigating these intertwined
challenges is paramount for realizing the full potential of AIGC in
enabling truly precise, efficient, and sustainable smart agricultural
systems (Martin et al., 2024).

6 Suggestion

The application of AIGC technology brings unprecedented
changes to agricultural production, enabling more intelligent and
data-driven decision-making processes. However, challenges such as
data noise, data fog, and data islands have gained increasing attention
from researchers, as they significantly affect the effectiveness of AIGC
implementations. For instance, studies by Gupta and Gupta (2019)
have highlighted the detrimental effects of data noise on prediction
accuracy, while Sadri et al. (2021) discussed the complexities
introduced by data fog in multi-source data environments.
Additionally, Sullivan et al. (2024) emphasized the barriers posed by
data islands to data sharing and collaborative agricultural
management. This viewpoint offers suggestions from a unique quality
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improvement perspective to analyze and mitigate these challenges,
providing a structured approach to enhance data reliability and
usability in smart agriculture.

To start with, in the “quality design” phase of the quality loop, it is
essential to detect and remove errors and inconsistencies due to an
imperfect data collection process by introducing data cleaning
techniques (Xiong et al., 2006) and data preprocessing approaches
(Garcia-Gil et al., 2019). At the same time, the expert knowledge base
could be combined to label and classify the data to improve the quality
and availability of the data (Alonso et al, 2012). Secondly, In the
“quality control” phase, unified data standards and format
specifications are established to ensure that data from different sources
can be effectively integrated. Standards and formats that fit various
devices and could be generalized and applied are currently urgent.
Finally, In the “quality improvement” phase, data islands shall
be prevented by strengthening agricultural digital infrastructure in a
balanced manner—such as through public-funded expansion of rural
broadband and IoT networks—and by promoting even distribution of
data resources via regional agricultural data platforms that integrate
and openly share key information like soil moisture, weather, and
market data. Meanwhile, it is crucial to strengthen data collaboration
among all stakeholders, including clarifying data ownership and
rights, while ensuring data security and compliance during the
sharing process.

In general, through the continuous improvement of the quality
loop, the challenges such as data noise, data fog, and data islands faced
by the application of AIGC technology in smart agriculture shall not
be ignored, the efficiency and accuracy of data processing shall
be emphasized and improved.
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