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Introduction: We propose a hybrid methodology to evaluate the alignment
between structural communities inferred from interaction networks and the
linguistic coherence of users’ textual production in online social networks.
Understanding whether community structure reflects language use allows for
a more nuanced validation of Community Detection Algorithms (CDAs) beyond
assuming their outputs as ground truth.

Methods: Using Twitter data on climate change discussions, we compare
several CDAs by training Natural Language Processing Classification Algorithms
(NLPCA), such as BERTweet-based models, on the communities they generate.
Classification accuracy serves as a proxy for the semantic coherence of CDA-
induced groups. This comparative scoring approach offers a self-consistent
framework for evaluating CDA performance without requiring manually
annotated labels. We also introduce a coverage—precision trade-off metric to
assess community-level performance.

Results: Our results show that the best CDA/NLPCA combinations predict a
user's community with over 85% accuracy using only three short sentences. This
demonstrates a strong alignment between structural and linguistic patterns in
online discourse.

Discussion: Our framework enables scoring CDAs based on semantic
predictability and allows prediction of community membership from minimal
textual input. It offers practical benefits, such as providing proxy labels for low-
supervision NLP tasks, and is adaptable to other social platforms. Limitations
include potential noise in CDA-generated labels but the approach offers a
generalizable method for evaluating CDA performance and the coherence of
online social groups.

KEYWORDS

community detection, natural language processing, social network, classification
validation, social community, training without labels

1 Introduction

Online social networks have become central to the formation and expression of social
identities. A growing literature investigates how individuals textual productions reflect
their group affiliations and personal traits (Golbeck et al., 2011; Gosling et al., 2011). At
the core of this inquiry is the assumption that group membership shapes both interaction
patterns and language use.

Sociological and psychological theories support this dual structure. Identity Theory
(Stryker, 1980; Stryker and Burke, 2000) posits that individuals align with groups
through shared self-categorizations, while Bond Attachment Theory (Lawler et al., 2009)
emphasizes group cohesion through repeated social interactions. Discourse theories (Gee,
1999; Wortham, 2001) highlight how linguistic practices signal social belonging.
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In computational social science, these perspectives are modeled
through networks of social interactions (e.g., retweets, replies) and
textual data (e.g., tweets). Graph-based representations of social
systems allow researchers to infer higher-order structures using
Community Detection Algorithms (CDA). These communities,
defined as subgraphs with dense internal links—are widely used
to represent latent social groupings. Yet, the relationship between
structurally inferred communities and the semantic coherence of
their members’ textual output remains underexplored.

Previous work has attempted to integrate text into Community
Detection through hybrid models. Topic modeling techniques like
LDA (Blei et al, 2003), embedding-based approaches (Mikolov
et al,, 2013), and BERTopic (Grootendorst, 2022) capture textual
similarity to infer Community Structure. Conversely, some studies
use linguistic metadata to refine structural clustering (Yang and
Leskovec, 2015; Glavas and Vulic, 2019; Ribeiro and et al.,
2021). While these approaches implicitly assume alignment
between language and network structure, they rarely validate the
correspondence explicitly.

In this study, we address this gap by proposing a methodology
to evaluate the semantic coherence of CDA-derived communities
using supervised NLP classification. Rather than treating CDA
outputs as definitive, we use the classification accuracy of an
NLPCA trained on each CDAs labels as a comparative measure
of community coherence. The key idea is that if a CDA
yields communities aligned with shared linguistic identity, then
users texts should predict their community membership with
high accuracy.

This comparative scoring approach offers a self-consistent
framework for evaluating Community Detection performance
without relying on externally annotated ground-truth labels. By
testing whether linguistic content aligns with structurally inferred
communities, we can assess the internal consistency of each CDA in
capturing socially meaningful groups. We do not claim CDA labels
represent absolute ground truth. Instead, our NLPCA performance
metric reflects the degree of alignment between structural and
discursive group formation. This allows us to rank CDAs according
to how well they capture socially meaningful communities.

We apply this methodology to a Twitter dataset centered
on climate change discourse. We compare the output of several
CDAs, including Louvain, Infomap, and BEC, by training ensemble
NLP classifiers on users tweets labeled by each CDA. The best-
performing combinations achieve over 85% classification accuracy
using only three short sentences from a random user.

A second key contribution of our analysis is to demonstrate that
textual-based classification alone can be used to reconstruct social
group membership with high fidelity, once trained on interaction-
based communities. Unlike previous studies (Frank et al., 2018;
Van Hee et al., 2018; Schwartz et al., 2013; Ferrara et al., 2014;
Le Mens and Vedres, 2019), which apply NLPCA independently
of social graph structure, we fine-tune classifiers on communities
produced by CDA. This reveals not only which CDAs yield more
linguistically coherent groupings, but also provides a tool for
inferring user community membership solely from their language.

The objective of this study is thus twofold: first, to offer
a scoring method that enables comparison between different
CDAs based on their linguistic coherence; and second, to
provide a pipeline for predicting community affiliation from
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text. Our approach integrates unsupervised Community Detection
and supervised language classification into a unified validation
framework. The key results show that this framework achieves high
predictive accuracy and discriminative power across competing
CDA models, using minimal text input. One limitation of the
current work is that, in order to ensure sufficient training data
per class, we reduce the number of communities to four dominant
groups plus one residual class aggregating the remaining users.
This reduces granularity but ensures model reliability. A second
limitation is that, if a new Community Structure emerges over
time, the training would need to be reperformed. However, this
is not a major constraint in contexts where new training data
is abundant, such as large-scale social platforms. Overall, our
findings underscore the methodological and theoretical merit of
combining structural and textual cues to define and validate online
social groups.

This paper is organized as follows. Section 2 introduces the
social network considered for this study, the CDA cases selected
to illustrate our analysis, as well as some fundamental concepts of
natural language processing. Section 3 describes the dataset and
experimental setup. Sections 4, 5 present the evaluation of CDAs
using NLPCA scoring. Section 6 discusses the broader implications
of our approach, Section 7 outlines the main limitations and future
work, and Section 8 concludes.

2 Communities in the Twitter social
network

2.1 Climate change related tweets

We used the data from the Climatoscope project (Chavalarias
et al., 2023) to extract the retweet network of online Twitter (now
“X”) discussions about climate change over the year 2022. The
Climatoscope project used Twitter’s track API, which allowed to
capture all tweets mentioning a given expression, collecting tweets
based on a list of several dozens of English and French keywords
related to climate change. This data collection was not exhaustive
but represents a sufficiently large and diverse sample of climate
change Twitter debates to understand the diversity of the social
groups involved in them. Over the year 2022, 57M tweets have been
collected, 32.1M of them being retweets.

We computed the retweet network, from 2022-07-01 until
2022-10-30, where the weight of an edge between two accounts
equals the maximum number of retweets in either direction. The
resulting network, weighted and undirected such that it can be
processed by most CDA, was made of roughly 226,000 nodes and
430,000 edges. To identify the English speaking communities, we
ran a standard Louvain Community Detection (Blondel et al.,
2008) on this graph. We removed loosely connected nodes with
degree strictly lower than 3, and kept the largest English-speaking
communities only, pro-climate, and denialist.

The resulting graph was made of 30,000 nodes and 362,000
links. On one hand, these included international organizations
(UN, COPX, UNICEE, NASA, etc.), climate activists (Greta
Thunberg, Greenpeace, etc.) and communities centered on US
Democrats: the left wing of the Democratic Party - around Bernie
Sanders and Alexandria Ocasio-Cortez - and the mainstream
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FIGURE 1
Visualization of climate change related tweets from 2022-07-01 until 2022-10-30, where colors represent different communities: cold/warm colors
correspond to pro-climate/denialist users respectively. In total there are 29,347 accounts (nodes) and 361,559 retweets (edges) among those

accounts.

Democratic party around Joe Biden, Kamala Harris and Barack
Obama. On the other hand, the denialist communities feature
Donald Trump’s supporters and “Make America Great Again”
(MAGA) Republicans, accompanied by other right-wing political
leaders such as those of the United Kingdom Independence Party,
and communities of influencer “experts” in climate science, who
have their own audience and are densely connected to each other.
It is in this latter denialist community that one finds accounts like
JunkScience (Steve Milloy) notoriously supported by the fossil fuel
industries such as the Heart Land Institute or the Competitive
Enterprise Institute. In Figure 1, we show the resulting network
using (Jacomy et al, 2014) for the spatial visualization. This
algorithm employs a force-directed layout that minimizes the
distance between nodes with strong connections and increases
the distance between nodes with weaker connections. Visually, we
observe the formation of two distinct clusters: on one hand, nodes
in cool colors for which central nodes correspond to pro-climate
users, on the other hand, nodes in warm colors where central nodes
correspond to climate change denialists. Colors are based on the
Louvain CDA (Blondel et al., 2008), which gives an initial overview
of the network structure.

Our network will be make publicly available, with user IDs
anonymized after referee reviews.

2.2 Community detection algorithms
In what follows, we demonstrate how NLPCA can serve as a

“ground-truth” reference for Community Structure, allowing us to
systematically evaluate the performance of different CDA methods.
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We illustrate this approach by comparing the results of three well-
known CDA, providing a clear assessment of their alignment with
textual based classification of social groups.

2.2.1 The Louvain algorithm

The Louvain CDA is a method to extract non-overlapping
communities from large networks (Blondel et al., 2008). It runs in
time O [n-log n] where n is the number of nodes in the network. In
the Louvain method, small communities are found by optimizing
modularity locally on all nodes, then each small community is
grouped into one node and the first step is repeated, where the
modularity is the difference between the number of edges between
nodes in a community and the expected number of such edges
in a random graph with the same degree sequence (Newman and
Girvan, 2004). It is defined as a value in the range [—1/2, 1],

m in, out

szﬂ_w_ (1)

Here wij; is the total weight of links starting and ending in module
out
i

and w the total weight of all links in the network. To estimate the

i, w™ and w™ the total in- and out-weight of links in module i,
Community Structure in a network, Equation 1 is maximized over
all possible assignments of nodes into any number m of modules. In
Lambiotte et al. (2014), a stability criterion of a network partition
is introduced, a measure of its quality defined in terms of the
statistical properties of a dynamical process taking place on the
graph. The time-scale of the process acts as an intrinsic parameter
that uncovers Community Structures at different resolutions. This
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method has been applied to find multi-scale partitions in the

« »

Louvain algorithm with a scale that we refer as “c” in what follows.

2.2.2 BEC

Gaume et al. (2024) propose a clustering method based on the
optimization of the precision and recall (F-score) of a clustering
relative to its ability to classify the edges of a network into clusters.
It runs as an agglomeration process that reviews each edge of
a network only once and merges the clusters of their nodes if
this operation does not decrease the F-score. Hence there is a
natural scale that is introduced, s which corresponds to the trade-
off between precision and recall. It runs in time ~ O [|E|] where |E|
is the number of edges in the network.

2.2.3 Infomap

Infomap reveals Community Structure in weighted and
directed networks. The method decomposes a network into
modules by optimally compressing a description of information
flows on the network (Rosvall and Bergstrom, 2008). It is a two-
level description that allows to describe the path of a random
walk visiting nodes, using fewer bits than a one-level description.
Basically when a walk is within a module (cluster of nodes), it
spends long periods of time there. To optimize the compression,
Infomap uses the map equation L(M) which gives the average
number of bits per step that it takes to describe an infinite random
walk on a network partitioned according to M:

L(M) = g~ H(Q) + Y _ ph H(P) 2

i=1

where M is a module partition among m modules. The first term
corresponds to the entropy of the movements between modules
and the second is the entropy of movements within modules.
Each entropy is weighted, with g~ being the probability that the
random walk switches modules on any given step and p"o the
fraction of intra-module movements occurring in module i, plus
the probability of exiting module i such that ) " | p’b =14+4gn.

The running time of Infomap depends on several factors,
including the size of the network (number of nodes and edges) and
the structure of the network (such as the density and distribution
of edges).

2.3 Assigning tweets to categories

2.3.1 Natural language processing

Natural Language Processing is one of the key pillars of
artificial intelligence that enable to understand, interpret, and
generate human language in an automated way. NLP algorithms
are designed to understand and interpret the meaning of text data
by mapping text into high dimensional mathematical vectors (this
mapping is refereed as the embedding). If two vectors are close
to one another in this space, it means that the two words or
sentences are closely related. In the state of the art of NLP, this
mapping relies on machine learning algorithms (see Achitouv etal.,
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2023 for a summary of the NLP techniques over the last decade),
including transformer models (Vaswani et al., 2017), to better learn
latent semantic links between words in a sentence. Bidirectional
Encoder Representations from Transformers (BERT), is a natural
language processing method based on the transformer architecture
(Devlin et al., 2018). It represents a significant advancement in
the field of language understanding and has been widely adopted
for various language-related tasks as it is designed to capture
contextual information from both the left and right context of
words in a sentence. BERT can be fine-tuned for specific tasks,
such as sentiment analysis, question answering, or named entity
recognition. This fine-tuning process adapts the model to more
specialized tasks and datasets. For this analysis we use the freely
available BERTweet model (Nguyen et al., 2020) which is a fine-
tuned model of BERT trained using a large corpus of tweets. Thus,
we use BERTweet applied to our textual data, which generates
high-dimensional representations of tweets that effectively capture
Twitter-specific linguistic patterns, including hashtags, mentions,
and emoticons. These embeddings serve as the input for our
classification task.

2.3.2 The classification algorithms

In order to classify the tweets into categories (selected
communities), the BERTtweet embeddings are passed as input
to four supervised classification algorithms, each selected for its
complementary strengths in text classification:

e (a) Linear Classifiers with Stochastic Gradient Descent
(SGD) (Bottou, 2010): Efficient for high-dimensional data and
effective for linearly separable features.

e b) Support Vector Classification (SVC) (Cortes and Vapnik,
1995): Maximizes the decision boundary for improved
generalization.

e (c) Multi-layer Perceptron Classifier (MLPC) (Rumelhart
et al, 1986): A feedforward neural network that learns
nonlinear feature interactions, using ReLU activation to
introduce non-linearity and improve convergence stability.
We use a small hidden layer structure (5,2) to balance
expressiveness and computational efficiency.

o (d) Random Forest Classifier (RFC) (Breiman, 2001): A robust
ensemble of decision trees that mitigates overfitting and
improves classification robustness.

2.3.3 The weighted ensemble model

Rather than relying on a single classifier, we use an ensemble
approach to combine predictions from all four models, reducing
variance and improving overall accuracy. Each model is assigned
a weight based on its performance during validation: SGD &
1). RFC is weighted
higher (w; = 2) due to its strong individual performance. MLPC

SVC contribute equally (w, = 1L,w, =
receives the highest weight (w, = 3) as it captures complex
nonlinear relationships effectively. The final prediction for each
tweet is determined by a majority vote, where the category with
the highest weighted count is assigned as the classification result.
This hybrid approach allows us to assess how well different
classification techniques align with Community Structures inferred
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from interaction-based clustering, providing a robust evaluation of
textual coherence within social groups.

3 Methodology

In what follows every node is a user and every weighted edge
corresponds to the number of tweets user i has re-tweeted from user
j. For every CDA under review, we convert the directed network to
an undirected graph and proceed as follows:

3.1 Step 1: attribution of a CDA categories

We run the CDA on the network resulting in N Community
Structures that we map to Noy < N. To do so we keep the
first No,s — 1 communities with the largest number of users and
we assign all other users to community i = N,. This first step
is essential for two reasons. First, the classification algorithms
require a minimum size for the training set to perform accurate
classification. When there are not enough user in a community, the
number of tweets is too low. Second, depending on the parameters
of the CDA, we generally have a number of communities that
varies from a few hundreds to a few thousands (the limit being
the number of nodes). These large numbers are not what a human
interpretation of the community can handle if one is interested
in classifying opinions of users. For instance in the climate tweets
some communities can be climate denialists, pro-climate activists,
pro-climate scientists, denialists advocating for fuel energy, etc.
Larger numbers of communities with only a couple of users each
are not particularly interesting to understand group dynamics.
Hence the last category i = Ncut is a “catch-all term” one and
is not used later on to evaluate the accuracy of the predictions.
Importantly, this reduction to N, categories is applied uniformly
across all CDA outputs, ensuring that all algorithms are evaluated
under the same classification constraints. This design enables a
fair and controlled comparison of their semantic coherence while
maintaining sufficient data per class for reliable training.

3.2 Step 2: splitting users into training,
testing lists

For each user we have its category attribution from the CDA.
In order to run a ML classification on tweets, we split users into
training and testing sets. For the training data we consider a fraction
of users that corresponds to the most influential people. All the
others are assigned to the testing set. This is motivated by (a) the
fact that we don’t need CDA to identify the most famous users
(anchors) in a social network and (b) anchor tweets are often
retweeted by many users, hence performing a ML classification
on these tweets can help us find the community a random user
belongs to. To select the most influential users, we could use a few
metrics (page-rank, eigenvector centrality, degree centrality, etc.)
or select by hand users that we believe have representative ideas.
In what follows we consider influential people as users with an
eigencentrality greater than 0.75-quantile, which is a measure of the
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FIGURE 2
Histogram of user eigencentrality in our network. The vertical line
corresponds to the 0.75-quantile, which corresponds to the cut
between anchors and tested users.

influence of a node in a connected network (Shaw, 1954; Bottou,
2010).

Figure 2 displays the histogram of user eigencentrality. In social
networks, power-law distributions are often associated with degree
distributions, where a few nodes (users) have significantly more
connections than others. However, eigenvector centrality takes into
account not just the number of connections but also the importance
of those connections. The vertical line corresponds to the 0.75-
quantile. Users on the right-hand side are selected as anchors
for training and users on the left-hand side are used to perform
the testing.

We end up with 7,330 users (out of 29,000) for the anchors
(training set) and the other users are assigned to the testing set.
At the end we obtain 1,467,399 tweets from the anchors (for the
training set) and 1,948,232 tweets from the other users (for the
testing set)." Then we select every tweet of all anchors flagged into
i € [1, Ngy] categories in our training sets such that every tweet has
a category associated to it, given by the category of the anchor who
emitted it (identified in Step 1 above).

Note that this setup differs from a standard random training-
test split, as it deliberately introduces a distributional shift between
training and testing data. Rather than measuring in-distribution
accuracy, our approach evaluates the models ability to generalize
from highly influential users to the broader network, making it
more akin to a transfer-learning framework. This distinction is
important, as it aligns with our goal of leveraging well-defined
community representatives to infer the likely community of less
prominent users based on their textual production.

1 We note that the total number of anchors does not impact our analysis
when this number is divided by at least 3 times. The only issue in reducing
the number of anchors is that we obtained sometimes a smaller amount
of tweets than our threshold for training a given category of a given CDA.
This is particularly true when the number of communities is greater than a

few thousand.
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3.3 Step 3: performing a NLPCA
classification training

For each CDA model we consider, we perform supervised
NLPCA classification training (on each classification algorithm).
We then apply the weighted ensemble model to the testing tweets
to determine their textual category, which, in principle, should
match the CDA category—assuming the entangled nature of the
dynamical interactions of social network communities and their
textual production. To recall, we use this assumption as a new
metric for scoring the CDA algorithms.

In order to have unbiased training and testing datasets, given
a CDA we select a fixed number of tweets per category;: Ni ..
for i € [I,N.y]. For instance, we find that for No; = 5, we
have obtained a convergence of the accuracy of the classification
for N;min
i. We also select the same number of testing tweets for each

= 25,000 tweets for the training sample of category

category. Then we run the NLP classification algorithms described
previously.

3.4 Step 4: evaluation of CDA performance

The final step is to evaluate each CDA classification of
a user based on its agreement with the NLPCA. For each
tested tweet we have both the category of the CDA and
the category of the NLPCA. Each tweet is associated with
so we can reconstruct the NLPCA classification of
the user using the k-tweets this user made in the testing
set, with k€ [I,N] and N is an integer. His category i
corresponds to the maximum count of his tweet flagged as i
by NLPCA.

a user,

4 Global results

4.1 Can we precisely classify a random
user?

If one is interested in classifying a random user, the precision
of the CDA needs to be privileged. In Figure 3 top panel we display
the accuracy of the CDA based solely on the agreement with the
NLPCA. Using the testing dataset with 25,000 x N¢,; —1 = 100, 000
tweets we show on the left panel, for all CDA, the fraction of users
that agrees with the NLPCA. The error bar corresponds to 1-sigma
statistical deviation computed from a Jackknife resampling while
the vertical dotted line corresponds to the average agreement using
all CDA, here it is 85% agreement. We note that randomly assigning
a category to each tweet would result in an expected agreement of
1/4, given our balanced testing set for each CDA.

From this figure, we deduce that the best re-scaled modularity
parameters for the Louvain correspond to ¢ < 0.025 while the
optimal parameter for the BEC is b < 7. For these parameters
the CDA classifications agree with the NLPCA at a precision
> 90%, remarkably.

On the lower panel of Figure 3, we display the fraction of user
where the NLPCA agrees with the CDA as a function of the number
of tweets made by users in the testing set. The binning of tweets
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fraction where NLPCA=CDA
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FIGURE 3
CDA accuracy based on its agreement with the NLPCA. L.
corresponds to Louvain with parameter ¢, Bs corresponds to BEC
with parameter s and IM to Informap. Top panel: fraction of users
where the NLPCA agrees with CDA regardless of the number of
tweets. The error bars are 1-sigma deviation computed by Jackknife
resampling. The vertical dotted line corresponds to the mean of the
accuracy for all CDA we consider. Lower panel: fraction of user
where the NLPCA agree with CDA as function of the number of
tweet a user made in the testing set.

number is logarithmic. The first bin corresponds to [1,3] tweets,
second to a number between [4,10], third to [11,31], and then
> 32 tweets. As expected, it is more challenging to classify a user
based on a few tweets compared to a larger number of tweets.
However it is still quite impressive to see an agreement at ~ 85%
for several CDA, considering that [1,3] tweets can characterize
a randomly selected user. Then we observe that the agreement
increases with the number of tweets. The decrease of some curves is
not statistically significant as the number of users who posted more
than 15 tweets reduces to less than 10 in some cases. Poisson errors
are displayed in light gray on the figure.
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FIGURE 4

Lower panel: number of communities found by the CDA

Top panel: Precision (percentage of agreement between CDA and
NLPCA categorization), Coverage (percentage of users covered by

our 4 selected categories), and F-score (weighted score between
precision and coverage).

users, to most of them. This is what we refer to as the coverage
(black curve) in the top panel of Figure 4. This coverage can be
compared with the precision we previously considered (percentage
of agreement between CDA and NLPCA in the classification
of test set users). As one can expect, when the coverage is
low, the precision is high because the textual production within
small communities is not diverse. The precision decreases as the
coverage increases, until a minimum is reached. Then we see
the opposite trend for Louvain and BEC: precision and coverage
increase together.

For instance, if one is interested in categorizing 80% of users
with a precision of 90% then we see that the best option is to use
Louvain with parameter ¢ > 8.

For group analysis in social science, the coverage of the users

is most certainly of primary importance hence a good and natural
score to use is the F-score,

Fg = (1 _HgZ)ﬁ

B2P + R (3)

where R is the recall, here corresponding to the coverage, P
the precision, and S is a real factor chosen such that the recall is
considered B times as important as the precision. In Figure 4 top
panel we display the F-score function weighting the coverage at 0.1,
0.25, and 0.75. In such a case it is clear that the best performing
CDA corresponds to the Louvain, with a best re-scaled modularity
parameter ¢ > 8, while the optimal scale s for BEC is > 40
(maximum of all F-scores).

The number of categories identified by the CDA is also
something interesting to consider. In Figure 4 lower panel we see
that the number of communities decreases when the coverage
increases. Interestingly, there is a case where BEC, Infomap and
Louvain have approximately the same number of communities:
(BZ; IM; L%V, For this triplet, the Coverage is (15%; 33%; 3%)
while the Precision is (83%; 78%; 94%). This means that for
Infomap we have a bigger clusters than for the Louvain, BEC

being in between. Another interesting triplet is (B7; IM; L?) for
which the F-score with weight 0.1 is similar and about ~ 80%.
Finally, for (B!®; IM; L%) the coverage is the same but the precision
(73%; 78%; 82%) shows that Louvain provides a better choice.

4.2 Precision vs. coverage: can we
categorize most users?

A key point to address in the CDA is the number of users
covered by our selected categories. Indeed, when the percentage of
users in our selected categories is low, one might doubt the utility
of communities toward understanding the opinion of most users.

In Figure 4 lower panel we show the number of identified
communities per CDA. Depending on the algorithm and on the
parameters (if any), the number of communities can change by an
order of magnitude. Hence the 4 selected (biggest) communities for
each algorithm range from a few per cent of the total number of
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4.3 A Pseudo-Entropy measure of the
NLPCA

Interestingly we may characterize the average number of
distinct NLPCA categories for a user based on all his tweets. For
instance if a user made 10 tweets, the NLPCA can assigns the
10 tweets to his CDA category, e.g. category 1, but it can also
assign 5 tweets to category 1, 2 tweets to category 2 and 3, and 1
tweet to category 4. This provides a measure of the entropy of the
categorization that we test for all CDA. If the entropy is null then it
means that the NLP categorization of a user is without a doubt in
the CDA category.

In Figure 5 we display on the top panel the average of this
entropy over all tested users as a function of their number of tweets.
The more tweets a user has posted, the more likely it becomes
for the NLPCA to assign a tweet to a different category than his
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correlation between the entropy measure and the number of tweets
(top panel) and the classification agreement with NLPCA (lower
panel).

CDA category. So for a fixed number of tweets we can compare the
entropy of the different CDA. On the lower panel we display the
fraction of users where the NLPCA categorization agrees with the
CDA, as a function of this entropy measure.

Interestingly, the Louvain algorithm is the CDA algorithm that
leads to the more stable NLPCA (users are assigned to a fewer
number of categories) compared to the BEC CDA, while Infomap
lies in the middle. This could be interpreted as a more subtle
Community Structure in the BEC, where users are not necessarily
central in their own community. This intuition is also confirmed by
the coverage of users the CDA find. For BEC, the entropy is clearly
related to the coverage of users: the entropy decreases as coverage
increases. For the Louvain, this entropy is stable for ¢ > 8, similar
to what we find for the coverage in Figure 4, while it increases when
the coverage < 80% which corresponds to ¢ < 8.

Again, for the triplets case we previously considered with a
similar number of communities (B; IM; L), (B7; IM; L?) where
we have a similar F-score and (B!°; IM; L%°) where the coverage
is the same, we observe that the entropy among these CDA is
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significantly different, suggesting different community properties
for each CDA.

Finally, we have checked that the wrongly assigned users do
not show distinguishable global properties on the network. For
each CDA, we compare the distribution of the vector centrality of
the wrongly assigned users to the distribution of all users without
finding significant deviations. This is also true when comparing the
CDA among them because the test set of users is mostly the same
for all CDA. Among the two best performing CDA: B® and L1° we
find the 15% and the 12% of wrongly assigned users in both CDA
(respectively), are about half the same users. This category of users
are either “indecisive” or easily influenced, and can be an interesting
social group to study in their own right.

5 Social analysis of the communities
for the CDA in the light of NLP

We now turn to a more refined analysis of the CDA categories
by flagging influential users that belong to them. Those are the
users from the training set that are public figures, or represent
political parties, media, or are influencers. We also report a few
users that have tens to hundreds of thousands of followers with a
strong view on climate change. Among the pro-climate users we
have CleanAirMoms 37,000 followers, a community of “moms and
dads who are uniting for clean air and our kids’ health”; wipBLUE,
12,000 followers, and a “grassroots GOTV organization dedicated
to electing Democrats.” Among the American denialists we select
MattHyAmerica, 100,000 followers defined as “America First -
Patriot”; Catturd, 2.5M followers, a MAGA influencer; DrEliDavid,
620,000 followers, entrepreneurs; for the Australian denialists:
AlexandraMarshall 77,300 followers, writer/artist; PeterDClarck,
37,000 followers, journalist advocating for carbon emission. In the
Canadian denialists we have: GasPriceWizard, 54,000 followers,
a former liberal MP; Sunlorrie, 108,000 followers, journalist;
TheRealKeean, 300,000 followers, a journalist.

5.1 Community structures for the same
coverage

Infomap does not provide a scale parameter, the four biggest
communities cover 32.5% of all users. These communities, as
displayed in Figure 6, are easy to interpret. The largest (14.8%)
corresponds to pro-climate activists, scientist and media. The
second (8.1%) corresponds to climate denialists that focus on
denying that CO, and fossil fuel are the cause of climate change.
The third (5.5%) corresponds to Democrats and some mainstream
media, while the fourth (4.1%) corresponds to communities around
MAGA influencers for whom climate change is a“hoax” or a“cult.”

We can compare these communities to what Louvain and BEC
provide for about the same coverage (for ¢ = 0.5 and s = 15,
respectively). Interestingly, they differ in the way they categorize
the top influencers. On the denialist side, Infomap, and BEC tend to
agree on the cluster of clear MAGA supporter and on another more
dedicated to “experts” and lobbies, while Louvain places some big
influencer from the lobbies cluster into the MAGA cluster.
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FIGURE 6

Infommap Community Structures for the selected users. Yellow boxes correspond to one of our four categories while the gray box correspond to the
catch-all-term category. The percentage in each box corresponds to the fraction of all users in each of the category.

The situation is different for the pro-climate communities.
Here, Infomap and Louvain agree to make a environmental
NGO/activits cluster and another with Democrat leaders such as
Biden, Obama, Hilary Clinton, and Bernie Sanders, while BEC
includes Bernie Sanders in the environmental NGO/activits cluster.
Both clustering make sense but we might argue that from the point
of view of the climate debate, Bernie Sanders was indeed closer
to NGO/activits than the mainstream Democrats in his public
statements, which is reflected in the BEC clustering.

From a narrative perspective, the precision provides a measure
of how homogeneous the textual content of these communities is.
For the same coverage, the Louvain provides the best precision
(~ 82%), followed by Infomap (~ 78%) and BEC (~ 73%).

5.2 Community structure evolution for
different parameters

The analysis of the evolution of Community Structures as a
function of the scale parameters s for BEC (Figure 7) and ¢ for
Louvain (Figure 8) provides more insight into these differences.
Similarly to the coverage evolution, for small values of s or ¢ we
have many small communities, and hence most users belong to the
catch-all-term category (displayed in gray). As the values of these
parameters increase, the number of communities decreases and the
fraction of users in our four categories increases. For our selection
of users we observed that they merge into only two groups at high
scales: s > 60 and ¢ > 8, for BEC and Louvain respectively (the
other two categories do not contain our selected influencers). These
two groups are the same for the two CDA and can be interpreted
as climate denialists and pro-climates. In these cases, the coverage
> 85% and the precision > 85% for the two CDA becomes similar.

Interestingly, BEC identifies well the four categories of opinion
among the top four communities even for low scale resolution
(community sizes < 1%) and integrates more actors as the scale
is increased, Louvain focuses on peripheral communities and
important ones appear only for medium scales (community sizes
2% — 15%). This is not surprising because optimizing modularity
leads to merging small communities into larger ones, even when
those small communities are well defined and weakly connected
to one another (Kumpula et al., 2007). Thus, we only see the four
categories (given our selected users), when ¢ = 0.1. Moreover,
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it seems that BEC faithfully reflects the structure of positions on
climate, with an initial integration of Bernie Sanders’ current into
the community of pro-climate activists, followed by a merger of all
pro-climates into a single community for high values of s.

6 Discussion

The study of social networks has experienced significant
growth, leading to substantial advancements in understanding the
dynamics of social structures and interactions (Borgatti and Halgin,
2011; Lazer et al, 2009; Newman, 2003). When analyzing social
networks built upon social interactions, Community Detection
Algorithms (CDAs) play a central role: they reduce the complexity
of alarge interaction network into higher-order structures, allowing
us to study patterns at the community level.

Most CDAs identify communities based solely on network
structure—e.g., link density—without considering whether users
within a community share a coherent opinion or narrative.
In this work, we build on the assumption that users in the
same community often produce semantically related content. By
leveraging this connection, we develop a new scoring framework
to assess CDAs: rather than evaluating the Community Structure
based on structural features alone, we measure the internal
linguistic coherence of communities via a Natural Language
Processing Classification Algorithm (NLPCA).

This hybrid framework reveals meaningful insights. First, it
enables a fair comparison between different CDAs by scoring their
output in terms of semantic predictability. This is particularly
valuable given that most CDAs optimize different objective
functions and are difficult to compare directly. Second, it allows for
the identification of the most coherent Community Structure in a
specific domain, which can guide further analysis and applications.

Moreover, our framework uncovers interesting boundary
cases. By analyzing users who are misclassified by the NLPCA
relative to their CDA assignment, we can identify individuals
whose linguistic behavior diverges from their structural affiliation.
These users—potentially bridges between communities—represent
socially significant profiles for further study in the context of
opinion dynamics.

Finally, although the NLPCA is trained on CDA-generated
labels, its role is not merely to replicate those labels but to provide
a scoring function for evaluating semantic coherence. This design
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ensures internal consistency across CDAs, and if new communities
emerge in real-time applications, the model can be retrained using
the same pipeline, provided that sufficient data is available.

7 Limitations and future work

A first limitation of this study lies in the size of the label space.
To ensure that the supervised classifiers had enough data per class
to train effectively, we retained only the four largest communities
for each CDA and grouped the remaining users into a residual
“catch-all” class. While this approach ensures training reliability
and interpretability, it reduces granularity and excludes micro-
communities. Future work could extend this methodology to larger
label spaces, possibly by exploring few-shot or class-imbalance-
aware techniques.

A second limitation is the assumption that the Community
Structure remains fixed. In real-world dynamic social systems,
new communities may emerge over time. In such cases, our
methodology would require retraining the classifier on updated
CDA outputs. However, this is not a major concern in data-rich
environments such as large online platforms, where new training
data can be collected continuously. Also note that if the initial
CDA produces structurally incoherent or noisy communities, the
NLP-based scoring could also be unreliable, potentially leading
to misleading relative rankings. While our approach assumes a
minimal level of structural and semantic validity in the CDA
output, in the present case study this risk is not observed, as shown
in Section 5, where the detected communities are found to be
coherent and interpretable from a social science perspective.

Lastly, although our approach 1is not intended to
discover new communities, it could be extended in future
research to examine how semantically emergent subgroups
relate to existing structural partitions, or to study cases
of partial semantic overlap between structurally distinct
communities.

8 Conclusion

This study proposes a novel framework for scoring
Community Detection Algorithms by leveraging the coherence
of wusers textual production. By aligning network-based
and discourse-based representations of social groups, we
offer a method to score CDAs based on their semantic
predictability.

A second key contribution of our work is the demonstration
that NLP classifiers, once trained on CDA-labeled data, can
predict user community membership with high accuracy using
only a few sentences. This opens the door to lightweight,
language-based classification of users in social networks, enabling
applications ranging from opinion profiling to misinformation
detection.

In addition to scoring CDAs, our approach offers practical
benefits. For instance, a reliable CDA can serve as a proxy for
community labels in low-supervision NLP scenarios, allowing for
the fine-tuning of pre-trained models on unannotated data. This
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synergy between structure and content is particularly useful in
contexts where manual labeling is not feasible.

Finally, while Twitter/X provided a well-structured case study,
our method is highly adaptable to other online platforms. For
example, in decentralized social networks such as Mastodon, one
could apply this approach by analyzing the re-toot interaction
network in combination with the content of toots. Similarly,
Reddit discussion threads, Discord message networks, or Bluesky
social graphs provide alternative settings where our method can
be used to evaluate Community Structures and group narratives.
This adaptability ensures that the approach remains relevant
despite changes in social media ecosystems. While CDAs effectively
capture some social structures, to the best of our knowledge,
there is no generic method for assessing the nature of these social
structures in terms of cultural characteristics such as semantic
homogeneity. Our hybrid methodology, which combines network
topology with textual production in the digital space, provides
a general approach to scoring the differences among the CDAs
communities. This allows a more refined analysis of on-line social
groups.
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