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Background: Speech sound disorders (SSD) in children can significantly impact 
communication and development. Ultrasound tongue imaging (UTI) is a 
non-invasive method for visualising tongue motion during speech, offering a 
promising alternative for diagnosis and therapy. Deep learning (DL) techniques 
have shown great promise in automating the analysis of UTI data, although their 
clinical application for SSD remains underexplored.
Objective: This review aims to synthesise how DL has been utilised in UTI to 
support automated SSD detection, highlighting the advancement of techniques, 
key challenges, and future directions.
Methods: A comprehensive search of IEEE Xplore, PubMed, ScienceDirect, 
Scopus, Taylor & Francis, and arXiv identified studies from 2010 through 2025. 
Inclusion criteria focused on studies using DL to analyse UTI data with relevance 
to SSD classification, feature extraction, or speech assessment. Eleven studies 
met the criteria: three directly tackled disordered speech classification tasks, 
while four addressed supporting tasks like tongue contour segmentation and 
tongue motion modelling. Promising results were reported in each category, 
but limitations such as small datasets, inconsistent evaluation, and limited 
generalisability were common.
Results: DL models demonstrate effectiveness in analysing UTI for articulatory 
assessment and show early potential in identifying SSD-related patterns. The 
included studies collectively outline a developmental pipeline, from foundational 
pre-processing to phoneme-level classification in typically developing speakers, 
and finally to preliminary attempts at classifying speech errors in children with 
SSD. This progression illustrates significant technological advances; however, it 
also emphasises gaps such as the lack of large, disorder-focused datasets and 
the need for integrated end-to-end systems.
Conclusion: The field of DL-driven UTI assessment for speech disorders is 
developing. Current studies provide a strong technical foundation and proof-of-
concept for automatic SSD detection using ultrasound, but clinical translation 
remains limited. Future research should prioritise the creation of larger annotated 
UTI datasets of disordered speech, developing generalisable and interpretable 
models, and validating fully integrated DL-UTI pipelines in real-world speech 
therapy settings. With these advances, DL-based UTI systems have the potential 
to transform SSD diagnosis and treatment by providing objective, real-time 
articulatory feedback in a child-friendly manner.
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1 Introduction

Human speech enables complex communication, and challenges 
in articulating clear speech can negatively impact a child’s academic, 
social, and future employment prospects (McFaul et al., 2022). Speech 
sound disorders (SSD) are characterised by difficulty acquiring the 
spoken language’s phonemes, varying from minor issues with the 
articulation of one or two consonants to speech that is predominantly 
unintelligible. In many cases, SSDs have unidentified origins, such as 
cleft lip and palate, and may arise from particular challenges in other 
domains, including speech perception and motor production 
(McLeod and Baker, 2017). Untreated SSD can result in avoidance 
practices that damage social connections and restrict an individual’s 
ability to engage fully in social activities (McCormack et al., 2009). 
SSD affects a significant portion of the paediatric population, with 
over 25% of children in the UK exhibiting indications of speech-
related difficulties. Approximately 3–4% of these individuals 
encounter enduring challenges that may remain throughout 
adulthood (Wren et al., 2016). A delayed diagnosis or absence of early 
intervention may lead to permanent educational and social 
disadvantages (Shahin et al., 2015).

The present assessment and treatment of SSD depend heavily 
on expert perceptual judgments by speech-language therapists 
(SLTs). However, there is a global shortage of SLTs, and increasing 
caseloads limit the availability of individualised therapy. This 
shortage has spurred interest in technology-assisted options for 
diagnosis and treatment (Leinweber et  al., 2023). Several 

interactive programs have been developed for children with SSD, 
including Apraxia World (Wren et al., 2016), Tabby Talks (Shahin 
et al., 2015) Speech Training Assessment and Remediation (STAR) 
(Bunnell et al., 2000). These tools transform therapeutic activities 
into interactive games or offer automatic feedback for practising 
phonetic sounds. Although these applications can enhance 
children’s motivation and complement therapy, the majority 
concentrate on providing or prompting speech practice rather than 
conducting a thorough analysis of speech errors. Among the 
current systems, only a limited number employ automatic speech 
analysis to deliver feedback, and even those analyses exhibit 
restricted accuracy with disordered speech. The dependability of 
existing automated speech evaluation methods is inadequate for 
clinical use, underscoring the necessity for more 
robust methodologies.

Ultrasound tongue imaging (UTI) has emerged as a viable 
technique to improve the diagnosis and treatment of SSD. UTI 
employs a probe positioned beneath the chin to capture real-time 
midsagittal images of the tongue during speech, facilitating the 
imaging of tongue shape and motion without radiation or 
invasiveness (Cleland, 2021; Smith et al., 2023; Hu et al., 2023). 
UTI is safe, suitable for children, and comparatively portable, 
making it appealing for paediatric speech therapy. Figure  1 
illustrates a typical UTI, where the tongue surface appears as a 
bright arc against a darker background, with shadows produced by 
the hyoid bone and jaw. Clinicians and researchers have utilised 
UTI to deliver biofeedback in therapy and to investigate 

FIGURE 1

An ultrasound scan shows the tongue root and tip in the sagittal plane.
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articulation, especially in those with speech disorders like 
childhood apraxia or cleft palate, by examining tongue patterns 
that are not externally observable (Preston et al., 2017). Interpreting 
ultrasound images traditionally requires manual tracing of tongue 
contours or professional analysis, both of which are time-intensive 
and impractical for implementation in every therapy session.

The initial computational method for analysing UTI in tongue 
motion tracking depended on conventional image processing 
(Stone, 2005). For example, EdgeTrak by Li et al. (2005) presented 
an active contour model for automatic frame-by-frame tracking of 
the tongue surface. This approach is effective when the tongue 
surface is identifiable, although it possesses significant limitations. 
EdgeTrak is deficient in advanced preprocessing capability and 
encounters difficulties with poor image quality or when the tongue 
surface is partially obscured. It is also incapable of handling 
extended video records without manual intervention, making it 
impractical for continuous speech or real-time use. Moreover, 
EdgeTrak’s foundational method can be computationally intensive, 
relying on iterative optimisation that is difficult to run in real time. 
These limitations indicate that although systems such as EdgeTrak 
demonstrated the viability of automatic tongue contour tracking, 
they did not entirely satisfy the requirements of interactive clinical 
applications (Tang et al., 2012).

Recent advancements in deep learning (DL), particularly 
convolutional neural networks (CNN), have facilitated automation 
in image segmentation (Ronneberger et al., 2015), motion tracking 
(Adžemović, 2025), and phoneme detection from UTI data. 
Nevertheless, the majority of these models are trained on data from 
typically developing speakers and concentrate on silent speech 
interfaces or language learning tasks rather than clinical SSD 
assessment. The variability in speaker anatomy, image quality, and 
dataset size continues to pose a significant obstacle to the 
generalisability of these systems. The publication of the UltraSuite 
corpus (Eshky et  al., 2018), which encompasses disturbed child 
speech data, represents a significant advancement; yet, 
comprehensive assessments of DL methodologies in this clinical 
setting are still limited.

While a recent review by Xia et al. (2024) surveyed machine-
learning techniques for UTI more broadly, there remains a need for a 
focused synthesis on DL methods that target clinically meaningful 
error detection and assessment, and on how close these approaches 
are to practical use in speech-language pathology.

For clinicians, DL–UTI systems can turn ultrasound videos into 
usable measures: flagging likely misarticulations, providing real-
time visual feedback during therapy, and producing simple progress 
graphs across sessions. This can reduce subjectivity, focus practice 
on the most informative targets, and save time by rapidly screening 
many patients. These tools are designed to support, not replace, 
clinical judgement; outputs should be interpretable and integrated 
into routine workflows, with the clinician retaining final decision-
making. This systematic review evaluates current research at the 
intersection of UTI and DL for SSD, tracing the field’s progression 
from foundational techniques, such as segmentation and motion 
modelling, to phoneme/gesture classification in typically developing 
(TD) speech, and early studies targeting direct error detection in 
disordered speech. We address three research questions: (1) How 
have DL models been applied to UTI to aid the detection or 
assessment of SSD? (2) What technical and clinical challenges have 

emerged, and how are they being addressed? (3) What advances are 
needed to reach clinically viable, automated UTI-based assessment 
and therapy support for SSD?

To complement the scope and research questions outlined above, 
Figure 2 provides a high-level overview of how DL can be applied to 
UTI for SSD assessment, from acquisition and preprocessing through 
task-specific modelling to clinician-in-the-loop feedback.

The remainder of this article is structured as follows. Section 2 
outlines the literature search strategy, inclusion criteria, and data 
extraction process (following PRISMA guidelines). Section 3 describes 
the included studies, organised by their contributions to a envisioned 
DL-based pipeline for SSD detection. Section 4 interprets and 
discusses the findings in context, including challenges and future 
research directions for advancing the field. Section 5 concludes the 
review by summarising the insights and translational implications, 
emphasising how the field can progress toward reliable, automated 
SSD detection using UTI and DL.

2 Methods

2.1 Aim and research questions

This comprehensive review analyses the application of DL 
approaches to UTI for tasks related to the detection and assessment of 
speech sound disorders. We place particular emphasis on the clinical 
relevance of these approaches and their potential for integration into 
speech-language pathology workflows. The review was guided by 
three primary research questions:

	•	 RQ1: How have DL models been utilised in UTIs to support the 
detection of speech sound disorders?

	•	 RQ2: What are the primary technical and clinical challenges that 
restrict the current applications of DL in ultrasound-based 
SSD detection?

	•	 RQ3: What future research is necessary to progress toward 
clinically viable, automated UTI-based diagnosis or therapy 
for SSD??

2.2 Screening

A comprehensive literature search was conducted; our search was 
restricted to English-language publications across six databases: IEEE 
Xplore, PubMed, ScienceDirect, Scopus, Taylor & Francis Online, and 
arXiv. While arXiv was included to partially mitigate publication bias, 
we did not systematically search other grey literature sources, and 
we did not translate non-English reports. These choices may introduce 
language and database coverage bias and could underrepresent null or 
negative findings.

The initial search was performed in 2022 and was updated 
periodically through August 2025 to capture the most recent 
developments in this evolving field. Search queries combined keywords 
related to speech disorders, UTI and DL. For example, we  used 
Boolean strings such as: “speech sound disorder” AND “ultrasound 
tongue imaging” AND (deep learning OR neural network), “phoneme 
classification” AND (ultrasound OR tongue) AND (CNN OR LSTM),” 
“articulatory disorder” AND “ultrasound” AND “machine learning.”
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We also included synonymous terms and variations such as 
“speech impairment,” “convolutional,” and “articulation disorder.” the 
results to English-language.

After removing duplicate records, we  found 112 unique 
publications. We  performed an initial screening of titles and 
abstracts to exclude irrelevant papers. At this stage, 42 records were 
excluded because they did not relate to both ultrasound and 
DL. We retrieved the full text of the remaining 11 articles for detailed 
evaluation. Each article was assessed against the inclusion criteria 
described below.

2.3 Inclusion and exclusion criteria

Studies were included in the final review if they met all of the 
criteria summarised in Table 1.

2.4 Data extraction and classification

Following PRISMA guidelines, we  documented the study 
selection process in a flow diagram, as shown in Figure 3. For each of 
the eleven included studies, we extracted key data points: the study’s 
title and year, the used DL model, the task, the input data type, the 
dataset, evaluation metrics, and any information regarding the study’s 
relevance to SSD diagnosing.

To synthesise the contributions of these diverse studies, 
we organised them into three broad categories according to their role in 
an envisioned end-to-end pipeline for automated SSD detection:

	 1	 Direct SSD detection: studies that explicitly target the 
classification of speech sound disorder.

	 2	 Technical foundations: studies that develop core components 
required for automated analysis, such as tongue segmentation 

FIGURE 2

Overview of DL for UTI in SSD assessment.

TABLE 1  Inclusion and exclusion criteria.

No. Inclusion criteria Exclusion criteria

1 Applied a DL method to UTI data. Focused exclusively on acoustic or other non-UTI modalities.

2 Addressed speech-related tasks such as classification, contour extraction, or motion tracking. Used only traditional (non-DL) image processing techniques.

3 Involved human subjects (typically developing children or children with SSD). Used ultrasound for non-speech purposes.

4 Published in English from 2010–2025, in a peer-reviewed venue.
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or tongue motion prediction, which support the overall 
purpose of SSD detection.

	 3	 Clinical context: studies that explore the use of UTI in real 
clinical settings or provide insight into how UTI-based 
feedback can be used in therapy for SSD.

This classification presents a framework for determining how each 
study adds to the overarching goal of establishing a fully automated 
and therapeutically usable system. It also helps to illustrate 
development by highlighting the path from basic technological 
advancements to direct applications and, finally, implementation 
considerations. Table 2 provides an overview of the included studies 
categorised by contribution type, summarising their methods, data, 
and findings regarding SSD.

3 Results

3.1 Corpora and datasets used in the 
included studies

A central limitation across the reviewed literature is the scarcity 
of large, well-annotated pediatric UTI datasets, especially for 
disordered speech. To make the landscape clear, Table 3 summarises 
the key corpora and datasets encountered in the included studies, 
and Table 4 maps each study to the dataset(s) it used. As shown, 
most classification studies rely on UltraSuite-UXTD (typically 
developing children), whereas resources featuring speech sound 
disorders (e.g., UltraSuite-UXSSD and UPX) are much smaller, 

narrower in error coverage, or require additional expert labelling per 
study. This imbalance motivates the recent adoption of self-
supervised pretraining and class-imbalance handling (e.g., focal loss, 
hard-sample mining) to reduce annotation burden and 
improve robustness.

3.2 Overview of included studies

This review comprised a total of eleven studies in total. Despite 
their limited number, these studies represent the initial attempts to 
integrate DL and UTI to address speech production analysis and 
disorder diagnosis in children. Six investigations focused on direct 
SSD detection or associated phoneme categorisation, four on technical 
foundations, and one on the clinical use of UTI for disordered speech 
therapy. All included research utilised data from paediatric speakers, 
highlighting SSD’s paediatric focus; however, due to insufficient 
abnormal speech data, several studies substituted typically developing 
children as a replacement.

The research collectively represents elements of a potential 
end-to-end system, with some focusing on extracting usable features 
from raw ultrasound data and others attempting to classify those 
features into clinically significant outcomes. CNNs were the 
predominant architecture, often adapted for specific tasks. Two studies 
used recurrent or sequence models in conjunction with CNNs to 
handle the temporal dynamics of speech. The UltraSuite corpora and 
smaller lab-collected datasets are frequently utilised for specific tasks 
such as silent speech or tongue contour tracking. Due to the limited 
availability of accessible datasets, most studies have employed data 

FIGURE 3

PRISMA flow diagram of the study selection process.
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augmentation or transfer learning to enhance performance, although 
model generalisability remains to pose a barrier, as elaborated below.

All studies presented various assessment metrics, often 
accuracy for classification tasks or Dice score/IoU for segmentation 
tasks, to illustrate feasibility. Direct comparisons between studies 
are problematic due to variations in tasks and datasets. The 
classification-focused studies achieved accuracy rates between 75 

and 95% for their designed objectives, whilst the segmentation 
studies earned contour agreement scores ranging from the 
mid-80s to mid-90s, suggesting applicability in clinical settings. 
The singular clinical-focused investigation did not present 
quantitative metrics due to its observational nature. The 
subsequent subsections include a narrative synthesis of the 
findings from these investigations, arranged according to their 

TABLE 2  Summary of included studies categorised by contribution type.

Study 
(Year)

DL method Dataset Input type Task Metric Technical 
strengths

Clinical 
relevance

Ribeiro et al. 

(2021)
CNN

SSD + Typically 

developing (TD)

(UltraSuite)

Raw UTI + audio

Speech 

classification 

(SSD)

Accuracy, 

precision, recall, 

F1

End-to-end from 

raw image to error 

class

High – directly 

targets SSD 

classification

Ani et al. 

(2024)
FusionNet (CNN) TD (UltraSuite)

Raw UTI + texture 

features

Phonetic segment 

classification

Accuracy, 

precision, recall, 

F1

Spatiotemporal 

modelling, feature 

fusion

Medium – 

phoneme 

discrimination 

support

Ribeiro et al. 

(2019)
CNN + DNN TD (UltraSuite) Raw UTI

Speaker-

independent 

phoneme 

classification

Accuracy

Masked modelling 

for speaker 

generalisation

Medium – 

foundational 

speaker-

independent 

modelling

Xu et al. 

(2024)

Masked Modelling 

+ Hard Sample 

Mining

TD

(UltraSuite)
Raw UTI

Phonetic segment 

classification
Accuracy

Self-supervised 

learning

Medium – 

enhances the 

scalability of 

phoneme classifiers

You et al. 

(2023)

Spatio-temporal 

masked 

autoencoder+ 

Token Shift 

Module

UltraSuite- UXTD Raw UTI
Phonetic segment 

classification
Accuracy

Label-efficient SSL 

via mask modelling

Improves 

articulatory 

discrimination 

from raw UTI; a 

foundational step 

toward automated 

SSD screening

Dan et al. 

(2025)

Spatio-temporal 

masked 

autoencoder+ 

Token Shift 

Module

UltraSuite- UXTD Raw UTI
Phonetic segment 

classification
Accuracy

Captures cross-

frame dynamics via 

token shifting

Higher robustness 

for UTI 

classification; 

strengthens 

pipeline 

components needed 

for reliable SSD 

tools

Mozaffari and 

Lee (2019)

U-Net variant 

(BowNet)
Ottawa UTI Corpus UTI Images

Tongue contour 

segmentation
Dice

Dilated CNNs for 

robust segmentation

Medium – real-

time segmentation

Li et al. (2022) wUNet (VGG-16) NS, TJU, TIMIT UTI
Tongue contour 

extraction

Intersection over 

Union (IoU)

Multi-dataset 

training, speaker-

agnostic

Medium – 

segmentation 

across setups

Mukai et al. 

(2022)

U-Net-based 

contour point 

extraction

Institutional UTI UTI frames
Tongue surface 

extraction
Accuracy

Quantifies impact of 

annotation design 

on learning

Supports efficient 

3D tongue model 

construction

Zhao et al. 

(2019)
ConvLSTM

Silent Speech 

Dataset

UTI Video 

Sequence

Tongue motion 

prediction

Mean squared 

error (MSE)

Temporal dynamics 

captured

Low–indirect 

application to SSD

Cleland 

(2023)
N/A (Descriptive) Clinical Case Series UTI in Therapy

Qualitative 

evaluation of UTI 

use

Qualitative 

Insights

Real-world 

feasibility context

Highly informed 

design and 

deployment
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placement in the proposed pipeline from ultrasound data to 
clinical outcomes.

3.3 DL applications in UTI for speech: from 
segmentation to disorder classification

3.3.1 Automated classification of speech sounds 
and errors in children

A core motivation for applying DL to UTI is to automate the 
evaluation of whether a child produces a speech sound correctly or 
inappropriately, thereby supporting SSD diagnosis and therapy. In our 
review, six of the research analyses focused specifically on speech 

segment classification, proving that UTI can distinguish speech sounds 
and detect misarticulations.

For instance, Ribeiro et  al. (2021) made significant efforts to 
identify SSDs utilising UTI. This study examined the application of 
UTI for the automated detection of speech articulation errors, 
concentrating on clinically relevant errors such as velar fronting and 
rhotic sound abnormalities in Scottish English-speaking children. To 
improve the system’s adaptability, it was trained using a combination 
of in-domain child speech data from the UltraSuite UXTD dataset and 
out-of-domain adult data from the TaL corpus. The evaluation of 
model performance utilised both typically developing and atypical 
speech samples. Experienced SLTs provided ground truth annotation 
evaluations based on synchronised ultrasound and audio recordings. 

TABLE 3  Datasets used or referenced by the included studies.

Dataset Population N participants Mean 
age

Language Modality Typical use 
in reviewed 
papers

Availability

UltraSuite-

UXTD
TD children 58 ~9y 3 m

Scottish English; 

clinic/school tasks
UTI + audio

4-way phoneme/

gesture 

classification; 

pretraining

Public (UltraSuite)

UltraSuite-

UXSSD
SSD children 8 ~7y 7 m Scottish English UTI + audio Error detection Public (UltraSuite)

UltraSuite-UPX
Therapy (cleft palate 

± cleft lip / SSD)
20 ~8y 4 m Therapy sessions UTI + audio Clinical/therapy Public (UltraSuite)

Ottawa UTI 

Corpus
Mixed/TD (local) n/a n/a Research lab UTI

Tongue contour 

segmentation
Local / not public

NS, TJU, 

TIMIT-UTI
Mixed (lab) n/a n/a Research lab UTI

Tongue contour 

extraction
Local / not public

Silent Speech 

(WSJ0-derived; 

TJU)

Adults (lab) n/a n/a
Silent-speech 

interface
UTI video

Frame prediction 

/ motion 

modelling

Local / not public

Institutional 

coronal UTI 

(Mukai et al., 

2022)

Children (therapy-

oriented)
19 cross-sections n/a Vowels UTI

Tongue surface 

extraction for 3D 

modelling

Local / not public

TABLE 4  Mapping from included studies to dataset(s).

Study Task Dataset(s) used Population

Ribeiro et al. (2021) Error detection UXTD (+ external adult TaL) Children (TD + SSD)

Ani et al. (2024) 4-way phoneme classification UXTD TD children

Ribeiro et al. (2019) Speaker-independent phoneme classification UXTD TD children

Xu et al. (2024) Masked modelling + hard-sample mining UXTD TD children

You et al. (2023) Self-supervised ViT; 4-way classification UXTD TD children

Dan et al. (2025) Spatio-temporal masked modelling UXTD TD children

Mozaffari and Lee (2019) Tongue contour segmentation Ottawa UTI Corpus, Seeing Speech Mixed

Li et al. (2022) wUNet segmentation NS, TJU, TIMIT-UTI Mixed

Zhao et al. (2019) Motion prediction Silent-speech (WSJ0/TJU) Adults

Cleland (2023) Clinical/therapy context Clinical case series Children

Mukai et al. (2022) Segmentation for 3D modelling Institutional coronal UTI Children
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There was significant inter-rater agreement in identifying velar 
fronting errors, but reduced consistency for rhotic errors.

The classification model, implemented as a CNN, utilised both 
ultrasound frames and corresponding audio features as input, with 
ultrasound data contributing significantly to the detection of place-of-
articulation errors such as velar fronting. The algorithm achieved a 
maximum accuracy of 86.9% in classifying phonetic segments in 
typically developing child speech and accurately identified 86.6% of 
the velar fronting errors annotated by experts. Significantly, 73.2% of 
the errors detected by the system aligned with expert judgments, 
showing reasonably high precision. The findings on the detection 
of/r/−sound errors were less conclusive, most possibly due to poor 
inter-annotator agreement on those errors, suggesting the need for a 
more robust or objective annotation process for specific error types. 
Overall, this study demonstrates that UTI, when paired with DL, can 
be an effective technique for augmenting clinical speech evaluations. 
It demonstrated the viability of automatic detection of some speech 
errors, paving the way for the incorporation of automated error 
detection systems into speech treatment process, such as tracking 
intervention results in children with SSD.

Building on a similar technique but in typically developing 
speakers, Ani et al. (2024) focused on phoneme classification using 
UTI in developing children’s speech disorders. This study proposes a 
DL framework for the automatic classification of phonetic segments 
in child speech using raw ultrasound images. The method integrates 
visual and textual features obtained from the ultrasound. The aim was 
to enhance speaker-independent classification performance, which is 
generally challenging due to anatomical and speech variability.

Data were collected from the UltraSuite UXTD dataset, 
comprising UTI recordings from nine typically developing children. 
The study focused on utterances containing isolated words or 
non-words, categorising sounds into four principal phonetic classes 
based on place of articulation: (1) bilabial/labiodental, (2) dental/
alveolar/postalveolar, (3) velar, and (4) the alveolar approximant (/r/). 
To generate texture information from the UTIs, the authors extracted 
features using the Local Binary Patterns (LBP) operator, which 
identifies local texture patterns and is extensively utilised in 
image analysis.

Several classification models were assessed, including a standard 
CNN, deep feed-forward neural networks (DNNs), and transfer 
learning using pre-trained image models (ResNet-50 and 
Inception-V3). Furthermore, Ani et al. (2024) proposed a novel dual-
stream design named FusionNet. FusionNet has two parallel streams: 
one CNN-based stream processes the raw ultrasound image for shape-
based features, while the other employs a fully-connected network to 
extract LBP texture features; these streams are subsequently integrated 
and jointly optimised to produce the final classification. The models 
were trained and evaluated under three conditions: speaker-
dependent, where training and testing occurred on the same child, a 
multi-speaker scenario, involving training on many children and 
testing on a separate subset of those children; and speaker-
independent, which entailed training on a group of children and 
testing on an entirely unseen child.

Experimental results indicated that FusionNet outperformed all 
other models. Specifically, FusionNet achieved a precision of 
91.88% in the speaker-dependent scenario, 92.12% in the multi-
speaker scenario, and 82.32% in the speaker-independent scenario. 
These findings demonstrate how combining complementary visual 

and texture characteristics can enhance the robustness and 
generalisability of UTI-based speech classification. The performance 
decrease in the speaker-independent scenario to approximately 
82% indicates the challenge of generalising to new speakers. This 
study demonstrates that multi-modal learning has significant 
potential for improving UTI speech classification. This study 
focused on typically developing speech and phoneme classes; 
nevertheless, the developed methodology could be utilised in the 
future to classify specific speech error types, thereby enhancing SSD 
assessment tools.

Ribeiro et  al. (2019) also contributed by investigating the 
challenges of speaker-independent phonetic segment classification 
using raw UTI from child speech. This study aimed to achieve the 
same objective as Ani et al. (2024) which was to improve generalisation 
across speakers. The authors developed a four-class classification task 
based on the place of articulation, utilising the UltraSuite UXTD 
dataset. The preprocessing methods were a notable aspect; they 
experimented with raw image normalisation and dimensionality 
reduction techniques, including principal component analysis (PCA) 
and the 2D discrete cosine transform (2D-DCT) on the ultrasound 
frames. These approaches aimed to reduce input size and eliminate 
certain speaker-specific characteristics, enabling the network to focus 
on essential features. They evaluated classification models, including 
feed-forward DNNs and CNNs, based on various input representations.

A key innovation was the utilisation of a speaker mean image, 
which accurately computes the average ultrasound frame for each 
speaker, captures that speaker’s typical tongue posture/background 
and provides that as an additional input channel to the CNN. The idea 
is that the network will learn to utilise this as a reference to normalise 
speaker-specific differences.

The results showed that in the absence of speaker adaptation, 
models performed significantly worse on unseen speakers. The CNN 
on raw images achieved approximately 67.0% accuracy in speaker-
independent conditions, while in multi-speaker training, it reached 
~74.8%. Interestingly, incorporating the speaker’s mean image as input 
improved performance, and using DCT-transformed inputs also gave 
competitive results, especially when training data were scarce. 
PCA-based input consistently underperformed the others in this 
context. Furthermore, Ribeiro et al. found that performing a small 
amount of speaker-specific modification significantly improved 
speaker-independent accuracy.

Overall, the findings highlight the challenges of generalising 
across unseen speakers in UTI-based speech classification, which is 
an important consideration for clinical use. They also demonstrate the 
effectiveness of speaker normalisation approaches and minimum 
adaptation in improving robustness. This study provides important 
foundational insights for developing models capable of handling the 
broad anatomical and speech variability observed in children, 
particularly those with SSD.

A notable advancement of the masked modelling paradigm was 
presented by Xu et al. (2024) and You et al. (2023). This study proposed 
a self-supervised learning framework to classify phonetic segments 
from raw UTI data to improve performance in low-data scenarios. 
Their approach employed masked image modelling and hard sample 
mining rather than requiring significant labelled data. The objective 
was to train a model to reconstruct missing parts of the ultrasound 
image so that it learns robust features of tongue shapes without 
needing labels. After this pre-training, the model is fine-tuned for 
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phoneme classification. They employed a hard sample mining strategy 
where difficult frames, those near phoneme boundaries, which are 
often misclassified, were enhanced to enhance the model’s ability to 
manage challenging frames during training.

Evaluated on the UltraSuite typical developing dataset, their 
model achieved phoneme classification accuracies of over 85%, 
representing a significant improvement over many prior results, 
especially in scenarios with limited annotated data. This study 
underscores the scalability of DL models with minimal supervision, a 
key consideration for clinical translation where large, labelled datasets 
of disordered speech are scarce. By leveraging unlabelled data, the 
approach by Xu et al. (2024) strengthens the case for self-supervised 
learning as a path toward robust, annotation-efficient articulatory 
models. This method could help future SSD detection systems train 
on a wealth of unlabelled ultrasound data to improve their feature 
extraction, therefore requiring only a smaller size of labelled 
disordered data to achieve optimal performance.

A notable extension of the masked-modelling paradigm was 
introduced by You et  al. (2023), who framed phonetic segment 
recognition from raw midsagittal UTI as a self-supervised pretrain to 
the supervised fine-tune problem. Their approach pretrains a vision 
transformer (ViT) encoder by masked image modelling on a large 
amount of unlabelled UTI, encouraging the network to reconstruct 
withheld patches and thereby internalise robust articulatory structure 
without labels. The pretrained encoder is then fine-tuned for 4 
phoneme classification on UltraSuite-UXTD, evaluated across 
dependent, multi-speaker, independent, and adapted scenarios. 
Reported accuracies were 88.10, 84.82, 83.72, and 88.94%, respectively, 
amounting to an average +13.3% gain over a SimSiam baseline. In 
practical terms, this study highlights how self-supervised pretraining 
on unlabelled UTI can significantly decrease dependence on scarce 
annotations while enhancing robustness across speakers and sessions, 
an important step toward annotation-efficient pipelines in clinical 
SSD applications.

Building on this line of work, Dan et al. (2025) advance masked 
modelling into the spatio-temporal domain, arguing that reliable 
phonetic discrimination in UTI requires modelling frame-to-frame 
articulatory dynamics. They employ a ViT-based spatio-temporal 
masked autoencoder augmented with a token shift module to 
propagate information across adjacent frames during pretraining, 
followed by supervised fine-tuning for 4-way classification on 
UltraSuite-UXTD. The model achieves an accuracy of 90.32% for 
dependent, 86.45% for multi-speaker, 85.27% for independent, and 
90.11% for adapted accuracy, with performance remaining stable even 
at high masking ratios of ≈75%. By explicitly capturing temporal 
structure under limited labels, this study shows how motion-aware 
self-supervision can further enhance generalisation and label 
efficiency, narrowing the gap between research-grade UTI classifiers 
and clinically robust articulatory recognition needed for SSD 
screening and therapy support.

In summary, these six studies trace a clear trajectory: from clinical 
error detection (Ribeiro et al., 2021) through TD phoneme/gesture 
classification (Ani et al., 2024; Ribeiro et al., 2019) to annotation-
efficient self-supervised modelling (Xu, 2024; You et al., 2023; Dan 
et  al., 2025). CNN-based pipelines and their transformer-based 
extensions consistently separate UTI-encoded articulations, but 
generalisation to unseen speakers and error types with low annotation 
reliability remains an open challenge. Promising strategies include 

speaker normalisation/adaptation, multi-modal inputs (ultrasound + 
audio), and self-supervised pretraining that exploits large stores of 
unlabelled UTI, practical steps toward deployable, clinician-
supportive tools for SSD assessment and monitoring.

3.3.2 Foundational tools: tongue segmentation 
and motion modelling

Beyond classification, several studies have concentrated on 
foundational technical tasks that are essential for a fully automated 
analysis pipeline. Chief among these is tongue segmentation, the 
automatic identification of the tongue surface in each ultrasound 
frame and motion modelling, which captures dynamic tongue 
movement and has implications for silent speech interfaces and 
articulatory analysis.

Two of the reviewed studies addressed the longstanding challenge 
of automatic tongue contour extraction using DL. Accurate tongue 
segmentation is critical because it transforms raw ultrasound images 
into sequences of structured tongue shapes, which can then be further 
analysed or fed into classification models. Traditional methods like 
EdgeTrak often struggled with noise and often required manual 
correction, but DL offers a data-driven solution with improved 
generalisability and automation.

Mozaffari and Lee (2019) introduce BowNet and wBowNet, two 
novel deep CNN architectures designed for fully automatic and real-
time tongue contour extraction from UTI. Recognising the challenges 
posed by the noisy, low-contrast nature of UTI, the authors designed 
these models to capture both local and global contextual information 
through a combination of standard and dilated convolutions. The 
networks operate end-to-end, with an encoder-decoder structure 
inspired by UNet, and DeepLab v3, using a VGG-16 backbone. The 
wBowNet variant features a more deeply interwoven architecture to 
enhance feature resolution and context at multiple scales.

The models were trained and validated on two datasets, a local 
University of Ottawa UTI dataset and the publicly available Seeing 
Speech dataset. They employed both online and offline data 
augmentation to increase robustness. Notably, the authors also 
developed a Python-based annotation tool utilising B-spline 
interpolation to produce smooth ground truth contours from manual 
points, addressing inconsistencies in manual labels and ensuring high-
quality training data.

Extensive evaluations showed that both BowNet variants achieved 
robust and accurate segmentation. On cross-validation within and 
across datasets, wBowNet slightly outperformed BowNet, with mean 
Dice scores around 0.85 when evaluating tongue boundary overlap 
with ground truth. Under cross-dataset validation, performance 
understandably dropped but remained quite excellent, indicating 
some generalisation. Importantly, both models maintained real-time 
performance on a GPU, and their compact architecture meant they 
used less memory than a standard U-Net with similar accuracy. 
Overall, BowNet and wBowNet represent a significant advance in UTI 
segmentation, offering a scalable and relatively accessible tool for 
researchers and potentially for clinicians to automatically track tongue 
movements. This is an enabling technology by reliably extracts tongue 
contours from ultrasound, and subsequent classification of speech 
sounds or visual feedback in therapy becomes more feasible.

Building on similar concepts, Li et al. (2022) proposed wUnet, an 
enhanced CNN architecture tailored for tongue contour extraction, 
particularly in the context of silent speech recognition. wUNet extends 
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the U-Net framework by adding extra skip connections between 
encoding and decoding layers and by using a VGG-16 network to 
initialise the encoder. Additionally, it includes a multi-level feature 
fusion strategy to combine feature maps from different depths, 
presumably to better capture both low-level edge information and 
high-level shape information.

Li et al. trained and evaluated wUNet on three datasets: the NS 
dataset, the TJU dataset, and the TIMIT UTI dataset. They 
compared wUNet against baseline models like a vanilla U-Net and 
UNet++. The results were impressive, wUNet outperformed both 
U-Net and UNet++ in segmentation accuracy. For example, on the 
NS dataset, wUNet achieved a peak IoU of 98.22% and a Dice 
coefficient of 94.47%, substantially higher than baseline models. It 
also showed lower sensitivity to image resolution differences and 
training data volume, indicating strong generalisability 
and efficiency.

These results affirm wUNet’s potential for real-time, high-
precision tongue tracking. High IoU (~98%) implies that the predicted 
tongue contours almost perfectly overlapped the manual contours, 
which is near-human performance. Its robustness across multiple 
datasets suggests it could handle different ultrasound machines or 
populations. While this study framed the work in the context of silent 
speech interfaces, the ability to accurately and automatically extract 
tongue contours has direct relevance for clinical tools as well, since 
those contours can be  used for visual biofeedback or as input to 
classification algorithms for error detection.

Mukai et  al. (2022) add a complementary perspective by 
examining how annotation design affects learning for tongue surface 
extraction aimed at 3D tongue modelling. Using an institutional 
dataset (19 coronal cross-sections; 264 base images expanded to 
~7,700 via augmentation; 44 test images), they compared teachers 
defined by sparse points versus splines and trained a U-Net-based 
contour-point extractor. With spline-based teachers, the model 
achieved 91.7% horizontal multiplicity, 4.1 px relative vertical error, 
and 81.8% subjective acceptability, with vowel-wise error profiling. 
This careful quantification shows that labelling protocol choices 
materially influence segmentation quality, offering practical guidance 
for building efficient training sets and for downstream editable 3D 
models of the tongue, directly relevant to clinical scenarios such as 
lateral misarticulation therapy planning.

A complementary technical advancement was proposed by Zhao 
et al. (2019) and Zhao et al. (2019), who investigated convolutional 
long short-term memory (ConvLSTM) networks for predicting 
tongue motion in unlabelled UTI sequences. Unlike the previous 
segmentation works that focus on static frame-by-frame analysis, this 
study addresses dynamic modelling. The task was to predict future 
ultrasound frames given a sequence of past frames. This was done in 
the context of a silent speech interface, but the approach is generally 
applicable to articulatory motion prediction. They trained a 
ConvLSTM model to predict the next few frames of a UTI video based 
on the preceding 8 frames. Two datasets were used, one derived from 
the WSJ0 speech corpus and another from TJU. Performance was 
assessed using metrics like MSE between predicted and actual frames, 
and a structural similarity metric (CW-SSIM) adapted to evaluate how 
well the motion was captured.

The ConvLSTM consistently outperformed a 3D-CNN baseline. 
It was also able to maintain reasonable accuracy for several frames. 
Notably, while ConvLSTM excelled at raw pixel prediction, when it 

came to directly predicting contours, a 3D CNN was slightly better for 
that specific task, suggesting the ConvLSTM might smooth out some 
high-frequency detail. Nonetheless, the ConvLSTM captured the 
temporal dynamics of tongue movement with high fidelity.

For clinical relevance, a model like this could be  used to 
anticipate articulatory movements or to detect anomalies in 
motion. It could also be  part of a system providing real-time 
feedback, for instance, predicting where the tongue should go next, 
to compare against where it does go in a child with apraxia. While 
Zhao et  al.’s application was silent speech, their approach 
underscores the value of sequence models in capturing 
coarticulation and speech dynamics, which are very relevant for 
assessing certain speech motor disorders.

In summary, these segmentation (Mozaffari and Lee, 2019; Li 
et al., 2022; Mukai et al., 2022) and motion-prediction (Zhao et al., 
2019) studies provide the building blocks for ultrasound-based speech 
analysis. Automatic, high-quality contouring reduces manual effort 
and converts UTI into structured articulatory representations; 
sequence models capture how these shapes evolve. Together they ease 
persistent barriers, speckle noise, labelling burden, and temporal 
complexity, and move the field toward a fully automated pipeline in 
which high-level articulatory information is extracted reliably and 
made available for downstream error detection, therapy monitoring, 
and clinician-facing biofeedback.

3.3.3 Clinical insights: ultrasound in practice for 
SSD therapy

While most of the included studies focus on algorithmic 
developments, one study by Cleland (2023) provides crucial clinical 
insights by examining the use of UTI in both research and therapeutic 
practice for individuals with cleft lip and palate (± cleft lip) is a 
condition often associated with compensatory articulatory strategies 
and persistent SSD, making it an important test case for 
ultrasound feedback.

Drawing on case examples, Cleland (2023) describes how UTI is 
used as a visual biofeedback tool to support articulation therapy post-
palate repair. One key insight from this case series is that UTI can 
reveal atypical tongue movements and covert contrast errors that are 
not apparent through audio-based assessment alone. For example, 
children with cleft-related SSDs may exhibit abnormal articulatory 
placements such as posterior or double articulations, which are often 
difficult to discern by ear but can be visualised and directly addressed 
in therapy with ultrasound. Real-time ultrasound images allow 
therapists to see where the tongue is making contact or forming 
constrictions, thus helping them guide the child to a more 
typical articulation.

Cleland reported that using UTI in therapy improved some 
children’s awareness of their tongue placement and helped in 
correcting misarticulations that had been resistant to change. 
However, the study also notes several limitations of the current clinical 
use of UTI. Interpretation of ultrasound images requires substantial 
expertise. Typically, a clinician must analyse the images in real-time 
and provide verbal guidance because the child cannot interpret the 
ultrasound screen by themselves. This is precisely where automation 
could provide significant support, for instance, a system that could 
automatically detect and highlight certain articulatory features in real 
time would offload some cognitive work from the clinician and 
provide more direct feedback to the patient.
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Another practical consideration mentioned is the need for 
specialised equipment and training. While UTI is non-invasive and 
child-friendly, not all clinics have ultrasound machines or clinicians 
trained to use them for speech therapy. Therefore, evidence from 
Cleland’s work helps identify what would make UTI more viable 
clinically. For example, simplified user interfaces, automated 
annotation, and perhaps some quantification of progress. Such 
features correspond to the technical developments that the other 
studies are working toward.

In conclusion, the reviewed studies together outline a path toward 
automated SSD detection and feedback using UTI. The initial step is 
ensuring the reliable extraction of articulatory data, like tongue 
contours from ultrasound images. This data can then be  used to 
classify speech sounds and detect articulatory errors. Ultimately, these 
tools must be embedded into clinical workflows to be truly useful. The 
results so far demonstrate high accuracy in controlled experiments 
and show strong clinical relevance, but they also highlight that the 
field is in its early stages, most models have been evaluated on limited 
datasets or in lab settings.

The next section explores how these foundational elements can 
be integrated into a coherent pipeline, the challenges that remain, and 
the research directions needed to bring this technology into everyday 
clinical practice.

4 Discussion

4.1 Toward an integrated DL pipeline for 
SSD detection

The literature collectively outlines a practical pipeline for 
automated detection of SSD with UTI and DL. No single study 
implements the entire pathway end-to-end, but the reviewed works 
provide complementary advances that illuminate the route to clinical 
integration. Figure 2 gives a high-level overview of the end-to-end 
system. Figure 4 illustrates representative outputs at each stage of the 
technical pipeline.

The pipeline typically begins with preprocessing and 
segmentation to isolate the tongue surface and reduce speckle/
artefacts. DL contour extractors such as BowNet/wBowNet (Mozaffari 
and Lee, 2019) and wUNet (Li et al., 2022) demonstrate accurate and 

robust tongue boundary extraction. Recent work by Mukai et  al. 
(2022) shows that annotation design (points vs. spline teachers) 
materially impacts segmentation quality for 3D tongue modelling, 
offering practical guidance for dataset curation. At the same time, 
several classification studies operate directly on raw UTI without 
explicit segmentation, indicating two viable architectural paths: 
segmentation-first when interpretable contours are needed, and raw 
end-to-end when throughput and label-efficiency dominate. In the 
second stage, the sequences of tongue shapes are analysed for 
phoneme classification or speech error detection. Foundational TD 
classification studies (Ribeiro et al., 2019; Ani et al., 2024) highlight 
both the promise of UTI-based articulatory cues and the challenge of 
generalising to unseen speakers, mitigated by speaker normalisation/
adaptation and multi-modal inputs of ultrasound and audio. 
Clinically targeted work (Ribeiro et  al., 2021) shows that UTI 
materially aids the detection of place-of-articulation errors of velar 
fronting, though reliability for/r/remains limited by annotator 
agreement, underscoring the need for objective targets/labels for 
certain error types.

A parallel, rapidly developing studies uses self-supervised masked 
modelling and Transformer encoders to improve label efficiency and 
cross-speaker robustness on raw UTI. Xu et al. (2024) demonstrated 
masked-image pretraining with hard-sample mining. You et al. (2023) 
pre-trained a ViT on unlabelled UTI and fine-tuned for 4-way 
phoneme classification, reporting +13.3% over a SimSiam baseline. 
Dan et al. (2025) extended masked modelling to the spatio-temporal 
domain with a Token-Shift module, achieving high accuracy while 
remaining stable at high masking ratios of ~75%. Collectively, these 
results indicate that SSL and Transformers are strong candidates for 
annotation-efficient pipelines that must generalise across children, 
sessions, and devices.

A parallel stream in the pipeline is motion modelling, which 
captures dynamic tongue behaviour relevant to motor-speech 
disorders. ConvLSTM-based predictors (Zhao et al., 2019) forecast 
future frames with high fidelity, suggesting uses in anticipatory 
feedback and trajectory consistency assessment, even if 3D-CNNs 
may retain an edge for sharp contour prediction. Integrating motion 
cues with static classifiers is a natural next step for nuanced 
SSD assessment.

The final stage involves translation of model outputs into clinically 
meaningful feedback or measures. This could include converting 

FIGURE 4

DL pipeline for SSD detection.
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detected phonemes or errors into summary reports for SLTs or 
providing real-time visual or auditory biofeedback to clients during 
therapy. This stage also encompasses user interface design, integration 
into clinical workflows, and ensuring the system can operate in real-
time during a therapy session.

Importantly, the pipeline framework underscores the tension 
between technical capability and clinical applicability. For example, a 
high-accuracy segmentation algorithm could be of limited use if it 
cannot run in real time or if its output is not interpretable by clinicians. 
Similarly, a phoneme classifier trained exclusively on typical speech 
may perform poorly when applied to disordered populations, where 
articulatory patterns diverge significantly. This reinforces the notion 
that technical development must be guided by clinical objectives, not 
merely optimised in a vacuum. To be useful, each stage of the pipeline 
must consider end-user requirements: speed, accuracy across diverse 
populations, and transparency.

Encouragingly, some studies already bridge multiple stages. 
Ribeiro et al. (2021), for instance, implicitly combined segmentation 
and classification to detect articulatory errors from raw UTI frames. 
Their work hints at an end-to-end approach where the system goes 
straight from ultrasound to an error decision. This type of integration 
is promising and demonstrates the feasibility of building more 
comprehensive systems.

Overall, the reviewed literature demonstrates solid progress in the 
early stages of the pipeline and emerging work on dynamic modelling. 
There has been limited exploration of the final integration stage, with 
Cleland (Cleland, 2023) being an initial foray into that. Current 
systems remain largely task-specific, trained on constrained datasets, 
and rarely validated in real-world clinical environments. Future 
research must focus on bridging these gaps, developing integrated, 
interpretable, and real-time systems that meet clinicians’ practical 
needs and directly enhance therapeutic outcomes for individuals 
with SSD.

4.2 Challenges faced by DL techniques in 
analysing speech problems

Despite the promising developments outlined in this review, 
several challenges and gaps must be addressed to implement these DL 
techniques in standard clinical practice for SSD detection. We identify 
the principal challenges as follows:

	 a	 Limited and unbalanced data: A primary challenge is the 
scarcity of annotated UTI data for disordered speech. Only a 
few small datasets exist specifically for SSD, for example, the 
UltraSuite-SSD includes data from only a handful of children 
and covers only a limited range of speech errors. Most DL 
models have therefore been trained on typically developing 
speech or on very limited disordered samples. The scarcity of 
data and class imbalance hinder networks from acquiring 
disorder-specific articulatory patterns, frequently resulting in 
overfitting and poor generalisation (Al-hammuri et al., 2025). 
One review notes that models frequently excel on existing test 
data but fail on unseen speakers or settings, largely due to 
limited training datasets and insufficient diversity. Enhancing 
datasets via augmenting or cross-domain transfer is regarded 
as crucial for improving robustness (Al-hammuri et al., 2022).

	 b	 Speaker variability and generalisability: UTI data significant 
inter-speaker variability. Anatomical variances, such as tongue 
length, palate shape, probe placement variations, and 
differences in speaking style, all influence the ultrasound 
images. Numerous models in the reviewed studies exhibited 
strong performance in within-corpus evaluations; nevertheless, 
a model trained on one group often encounters difficulties 
when applied to a different group. Ribeiro et al. (2019) observed 
a significant decline in accuracy for unseen speakers, despite 
using normalisation techniques. The generalisation issue is 
critical; an SSD detection system may perform effectively on 
the research team’s dataset but may fail when implemented in 
a new clinic with different equipment or patients. Addressing 
this issue may require robust data augmentation, domain 
adaptation methodologies, or training on considerably more 
diverse data. The variability is even greater in disordered 
speech, as each child’s compensatory articulation can 
be  unique. Therefore, ensuring that models are speaker-
independent or can quickly adapt to a new speaker poses a 
significant challenge for practical application.

	 c	 Quality of ultrasound image and noise: The ultrasound 
modality presents technical challenges for DL. UTI frames are 
often low-contrast, noisy images with speckle artefacts and 
occasional shadowing or occlusions (Song et  al., 2024; Xia 
et al., 2024). This image quality hinders feature extraction and 
model learning. Standard computer vision techniques struggle 
with the lack of clear edges or consistent textures in UTI. Even 
advanced CNN-based segmentation models must contend 
with speckle noise and varying brightness, which can degrade 
accuracy. Enhancing the image quality through better 
preprocessing, denoising, or novel ultrasound hardware and 
designing noise-robust architectures is a significant focus of 
current research to tackle this issue.

	 d	 Interpretability of models: Current UTI-based models, like 
many other DL systems in medicine, frequently function as 
“black boxes,” providing limited details about the decision-
making criteria. Clinicians may be  reluctant to rely on 
automated judgments on speech errors without clear rationales. 
However, deep CNN or Transformer models for ultrasound are 
complex and not easily interpretable, especially when trained 
on limited, noisy datasets. The absence of transparency is 
compounded by the variability of input data, and subtle tongue 
shape characteristics acquired by the network are not intuitively 
understood by human experts. Recent studies highlight that 
the intricacy of these models, combined with data limitations, 
makes them difficult to understand and prone to unexpected 
or irrelevant outputs. This highlights the need to integrate 
explainable AI techniques or more interpretable model 
architectures to ensure that speech-language pathologists can 
trust and effectively use the outputs in diagnosis. For example, 
visualising which part of the ultrasound image influenced a 
decision, such as saliency mapping or providing a clear 
measure, like tongue curvature, might bridge this gap.

	 e	 Restricted clinical validation and integration: The most 
significant gap is the limited involvement of clinicians and 
patients in developing and testing these systems. The literature 
consists mainly of engineering-driven studies assessing models 
on research datasets, with almost no trials of a speech therapist 
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using a DL-powered UTI system in real clinical settings. 
Consequently, usability issues remain unaddressed; in the 
absence of end-users’ feedback, current prototypes may miss 
practical requirements. Moreover, models validated only on 
ideal datasets may not perform well in noisy clinical 
environments. Integrating UTI analysis into real-time therapy 
sessions and demonstrating effectiveness in improving clinical 
results presents significant obstacles.

	 f	 Absence of standardisation in evaluation: Presently, there is a 
consensus on evaluation protocols. Diverse studies employ 
distinct datasets, target tasks, and performance metrics, which 
makes it difficult to compare results or track progress 
(Al-hammuri et al., 2022). Segmentation studies may present 
Dice scores or mean distance errors, while classification studies 
report accuracy or F1 scores, often on different speech targets. 
Unlike other fields of speech technology, there is no 
standardised benchmark dataset for UTI-based speech 
assessment. The lack of standardised evaluation criteria implies 
that reported performance may not be comparable between 
studies or reflect clinically relevant outcomes. Establishing 
unified datasets that encompass a diverse range of disordered 
and typical cases, along with standardised metrics, will facilitate 
the community in systematically assessing advancements and 
ensuring that algorithms fulfil clinical requirements.

4.3 Recommendations for future research

To advance toward clinically implemented methods for SSD 
detection utilising DL and UTI, we  propose several priorities for 
future research, each directly addressing the challenges above:

	 1	 Expand datasets of disordered UTI speech. The community 
needs to develop and release larger, more diverse UTI datasets 
that specifically include children with SSD. This initiative could 
resemble the advantages gained by the speech recognition 
domain through the utilisation of shared corpora. The new 
data should include a variety of SSDs and detailed annotations. 
The new data must encompass a diverse range of ages and 
severities, enabling models trained on it to acquire robust 
features. Collaboration with hospitals and clinics can help 
gather such data ethically and efficiently. Recent medical-
imaging surveys highlight the rapid adoption of transformers 
and self-supervised learning, suggesting label-efficient 
pretraining and hybrid CNN-Transformer decoders could 
mitigate small, labelled UTI datasets (Huang et  al., 2022; 
Shamshad et al., 2023).

By sharing these datasets openly, researchers can benchmark 
their models on common test sets, accelerating progress.

	 2	 Enhance model generalisability: Future models should 
be  designed with cross-speaker and cross-domain 
generalisation. Techniques like domain adaptation (Guan and 
Liu, 2022), data augmentation (Chlap et al., 2021; Kumar et al., 
2025), and multi-task learning are promising. Additionally, 
implementing a method of speaker normalisation, such as 

calibrating a model with limited samples from a new speaker, 
could boost practical performance.

	 3	 Integrate and optimise pipelines for real-time application: 
Future efforts should focus on combining DL models into 
end-to-end systems that operate in real time. A pipeline 
could use a segmentation CNN to preprocess each frame 
and then feed it into a classification model to detect errors. 
Such integration must be  optimised for speed to give 
instant feedback during therapy. Researchers should 
evaluate these pipelines holistically and ensure the overall 
system’s output remains accurate and intelligible to 
clinicians. Ultimately, the presentation of a fully integrated 
prototype in a clinical or realistic environment would be a 
major milestone.

	 4	 Establish standardised evaluation benchmarks: The discipline 
would benefit from uniform evaluation criteria. This entails the 
development of standardised test datasets and reporting 
clinically relevant metrics. In addition to accuracy or Dice 
scores, studies should report metrics like per-phoneme recall 
for error detection. Furthermore, subsequent research should 
uniformly disclose inference time, model size, and the criteria 
for error definition to facilitate comparison. Utilising a 
standardised assessment terminology enables researchers to 
more efficiently refine systems to achieve the requisite 
performance for clinical use.

	 5	 Enhance clinical collaboration and validation: Interdisciplinary 
collaboration with SLTs and clinical researchers should 
be intensified. User-centred design principles can ensure that 
the outputs of these DL models align with what clinicians find 
useful. Conducting trials in clinical environments, including 
minor feasibility studies, is essential for subsequent progress. 
These studies could involve an SLT using a prototype system 
during sessions and providing qualitative feedback on its utility 
or measuring outcomes like reduced assessment time or 
improved accuracy of diagnoses with the tool. Additionally, 
involving clinicians in the training loop could open paths for 
online learning or refinement of models in deployment. 
Ultimately, demonstrable evidence of enhanced patient 
outcomes or increased efficiency from utilising a 
DL-augmented ultrasound system will be  required to 
substantiate clinical adoption. Involving stakeholders early will 
facilitate the eventual integration of this technology into 
everyday practice.

By implementing these recommendations, developing different 
datasets, building more generalisable and integrated models, 
standardising evaluations, and validating in real-world settings, the 
field can accelerate toward its objectives. Each recommendation 
addresses a current weakness; increased data and collaboration will 
mitigate data scarcity; robustness techniques will address variability; 
integrated pipelines will advance us from isolated demonstrations to 
comprehensive solutions; standards will guarantee consistent progress 
measurement; and clinical validation will maintain the relevance of 
the work within actual patient care. This aligns with the broader trend 
in health technology toward translational engineering, turning 
promising prototypes into effective tools that improve 
healthcare delivery.
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5 Conclusion

This systematic review examined the emerging intersection of 
DL and UTI, emphasising their combined potential to automate the 
detection of SSDs. We identified and synthesised eight key studies 
that collectively illustrate the current advancements, some 
developed direct classifiers for speech errors or phoneme 
production, others provided enabling technology such as tongue 
segmentation and motion modelling, and one highlighted how 
ultrasound is currently used in therapy. Together, these works 
demonstrate that DL algorithms can extract clinically meaningful 
information from raw ultrasound of the tongue, from classifying 
fine-grained phonetic details in typically developing speech to 
detecting misarticulations in children with SSD. Importantly, real-
time capable models such as CNNs and LSTMs have achieved 
accuracy levels that approach practical usability, at least within 
controlled settings.

Despite the relatively small number of studies, the narrative of 
technological evolution is clear. Early efforts focused on demonstrating 
feasibility. Subsequent works have improved robustness and scope, 
such as moving from single-speaker models to speaker-independent 
ones, and from static image analysis to spatial–temporal modelling. 
Moreover, the integration of these techniques is on the horizon: the 
concept of an end-to-end pipeline that takes raw ultrasound and 
outputs a diagnostic aid is now much more tangible than it was a few 
years ago. Each evaluated study has contributed a piece of this puzzle, 
whether through a novel network architecture or empirical evidence 
regarding the information UTI can offer.

Simultaneously, our evaluation highlights that key challenges 
remain unresolved. The primary requirement is the acquisition of 
comprehensive, high-quality data of disordered speech to effectively 
train and test these systems in ecologically valid ways. Many studies 
depended on data from typically developing speakers or very limited 
disorder datasets, which raises questions about how well the findings 
generalise. A further problem is achieving consistency and 
generalisability: a model that performs in one research lab may fail in 
a different clinic environment due to differences in equipment or 
patient demographics. There is also a translational gap between 
algorithm performance to actual clinical impact. No study has yet 
completed the cycle by deploying a DL-UTI system in live therapy 
sessions and assessing outcomes, an essential step for proving the 
technology’s efficacy in practice.

In conclusion, although the use of DL for UTI diagnosis for SSD 
is developing, the existing evidence is promising. We now possess a 
proof-of-concept demonstrating that non-invasive, real-time imaging 
of the tongue, combined with advanced AI algorithms, can detect 
speech sound errors that may elude human auditory perception or 
provide objective validation of hypothesised articulatory patterns. 
Ultimately, these advancements could lead to a new generation of 
clinical tools. This integration of engineering and healthcare 
exemplifies translational innovation by transforming technology 
advancements into practical benefits for those with communication 
disorders. Through sustained interdisciplinary collaboration, the 
prospect of an AI-assisted ultrasound system integrating into routine 
speech therapy is imminent, offering enhanced timeliness, precision, 
and efficacy in the care for children with SSD.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://ultrasuite.github.io/.

Author contributions

SA: Writing  – review & editing, Writing  – original draft. JC: 
Supervision, Writing – review & editing. AZ: Writing – review & 
editing, Supervision.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Engineering and Physical Sciences Research Council [grant 
number EP/S023879/1].

Acknowledgments

The authors would like to thank S. Cochran, University of 
Glasgow, for his reading and review of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

https://doi.org/10.3389/frai.2025.1631134
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://ultrasuite.github.io/


Al Ani et al.� 10.3389/frai.2025.1631134

Frontiers in Artificial Intelligence 15 frontiersin.org

References
Adžemović, M. (2025). Deep learning-based multi-object tracking: a comprehensive 

survey from foundations to state-of-the-art. doi: 10.48550/arXiv.2506.13457

Al-hammuri, K., Gebali, F., and Kanan, A. (2025). TongueTransUNet: toward effective 
tongue contour segmentation using well-managed dataset. Med. Biol. Eng. Comput. 63, 
2295–2309. doi: 10.1007/s11517-024-03278-7

Al-hammuri, K., Gebali, F., Thirumarai Chelvan, I., and Kanan, A. (2022). Tongue 
contour tracking and segmentation in lingual ultrasound for speech recognition: a 
review. Diagnostics 12:2811. doi: 10.3390/diagnostics12112811

Ani, S. A., Cleland, J., and Zoha, A. (2024). “Automated classification of phonetic 
segments in child speech using raw ultrasound imaging” in Proceedings of the 17th 
international joint conference on biomedical engineering systems and technologies. 
SCITEPRESS - Science and Technology Publications, Lda. 326–331.

Bunnell, H. T., Yarrington, D. M., and Polikoff, J. B. (2000). STAR: Articulation 
training for young children., in 6th international conference on spoken language 
processing (ICSLP 2000), (ISCA), 4, 85–88–0.

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., and Haworth, A. (2021). 
A review of medical image data augmentation techniques for deep learning applications. 
J. Med. Imaging Radiat. Oncol. 65, 545–563. doi: 10.1111/1754-9485.13261

Cleland, J. (2021). “Ultrasound tongue imaging” in Manual of clinical phonetics. ed. 
M. J. Ball (London: Routledge), 399–416.

Cleland, J. (2023). Ultrasound tongue imaging in research and practice with people 
with cleft palate ± cleft lip. Cleft Palate Craniofacial J. 62, 337–341. doi: 
10.1177/10556656231202448

Dan, X., Xu, K., Zhou, Y., Yang, C., Chen, Y., and Dou, Y. (2025). Spatio-temporal 
masked autoencoder-based phonetic segments classification from ultrasound. Speech 
Comm. 169:103186. doi: 10.1016/j.specom.2025.103186

Eshky, A., Ribeiro, M. S., Cleland, J., Richmond, K., Roxburgh, Z., Scobbie, J., et al. 
(2018). “UltraSuite: a repository of ultrasound and acoustic data from child speech therapy 
sessions” in Interspeech. ISCA. 2018, 1888–1892. doi: 10.21437/Interspeech.2018-1736

Guan, H., and Liu, M. (2022). Domain adaptation for medical image analysis: a survey. 
I.E.E.E. Trans. Biomed. Eng. 69, 1173–1185. doi: 10.1109/TBME.2021.3117407

Hu, S., Xie, X., Geng, M., Cui, M., Deng, J., Li, G., et al. (2023). “Exploiting cross-
domain and cross-lingual ultrasound tongue imaging features for elderly and dysarthric 
speech recognition” in INTERSPEECH 2023, (IEEE), 2313–2317.

Huang, Z., Miao, J., Song, H., Yang, S., Zhong, Y., Xu, Q., et al. (2022). A novel tongue 
segmentation method based on improved U-net. Neurocomputing 500, 73–89. doi: 
10.1016/j.neucom.2022.05.023

Kumar, S., Asiamah, P., Jolaoso, O., and Esiowu, U. (2025). Enhancing image 
classification with augmentation: data augmentation techniques for improved image 
classification. doi: 10.48550/arXiv.2502.18691

Leinweber, J., Alber, B., Barthel, M., Whillier, A., Wittmar, S., Borgetto, B., et al. 
(2023). Technology use in speech and language therapy: digital participation 
succeeds through acceptance and use of technology. Front. Commun. 8. doi: 
10.3389/fcomm.2023.1176827

Li, G., Chen, J., Liu, Y., and Wei, J. (2022). Wunet: a new network used for ultrasonic 
tongue contour extraction. Speech Comm. 141, 68–79. doi: 10.1016/j.specom.2022.05.004

Li, M., Kambhamettu, C., and Stone, M. (2005). Automatic contour tracking in 
ultrasound images. Clin. Linguist. Phon. 19, 545–554. doi: 10.1080/02699200500113616

McCormack, J., McLeod, S., McAllister, L., and Harrison, L. J. (2009). A systematic 
review of the association between childhood speech impairment and participation 
across the lifespan. Int. J. Speech Lang. Pathol. 11, 155–170. doi: 
10.1080/17549500802676859

McFaul, H., Mulgrew, L., Smyth, J., and Titterington, J. (2022). Applying evidence to 
practice by increasing intensity of intervention for children with severe speech sound 
disorder: a quality improvement project. BMJ Open Qual. 11:e001761. doi: 
10.1136/bmjoq-2021-001761

McLeod, S., and Baker, E. (2017). Children’s speech: An evidence-based approach to 
assessment and intervention. Boston, USA: Pearson.

Mozaffari, M. H., and Lee, W.-S. (2019). Bownet: dilated convolution neural network 
for ultrasound tongue contour extraction. J. Acoust. Soc. Am. 146, 2940–2941. doi: 
10.1121/1.5137212

Mukai, Y., Järvikivi, J., and Tucker, B. V. (2022). The role of phonology-to-orthography 
consistency in predicting the degree of pupil dilation induced in processing reduced and 
unreduced speech. 2024 7th Asia Conference on Cognitive Engineering and Intelligent 
lnteraction (CEII). 41–45. doi: 10.31234/osf.io/zv8y3

Preston, J. L., McAllister Byun, T., Boyce, S. E., Hamilton, S., Tiede, M., Phillips, E., 
et al. (2017). Ultrasound images of the tongue: a tutorial for assessment and remediation 
of speech sound errors. J. Vis. Exp. e55123. doi: 10.3791/55123

Ribeiro, M. S., Cleland, J., Eshky, A., Richmond, K., and Renals, S. (2021). Exploiting 
ultrasound tongue imaging for the automatic detection of speech articulation errors. 
Speech Comm. 128, 24–34. doi: 10.1016/j.specom.2021.02.001

Ribeiro, M. S., Eshky, A., Richmond, K., and Renals, S. (2019). “Speaker-independent 
classification of phonetic segments from raw ultrasound in child speech” in 
ICASSP  2019–2019 IEEE international conference on acoustics, speech and signal 
processing (ICASSP), Institute of Electrical and Electronics Engineers. 1328–1332.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks for 
biomedical image segmentation” in Medical image computing and computer-assisted 
intervention–MICCAI 2015. eds. N. Navab, J. Hornegger, W. M. Wells and A. F. Frangi 
(Cham: Springer International Publishing), 234–241.

Shahin, M., Ahmed, B., Parnandi, A., Karappa, V., McKechnie, J., Ballard, K. J., et al. 
(2015). Tabby talks: an automated tool for the assessment of childhood apraxia of 
speech. Speech Comm. 70, 49–64. doi: 10.1016/j.specom.2015.04.002

Shamshad, F., Khan, S., Zamir, S. W., Khan, M. H., Hayat, M., Khan, F. S., et al. (2023). 
Transformers in medical imaging: a survey. Med. Image Anal. 88:102802. doi: 
10.1016/j.media.2023.102802

Smith, A., Dokovova, M., Lawson, E., Kuschmann, A., and Cleland, J. (2023). A pilot 
fieldwork ultrasound study of tongue shape variability in children with and without 
speech sound disorder: international congress of phonetic sciences. Proc. 20th Int. Congr. 
Phon. Sci. Prague 2023, 3874–3877. doi: 10.17605/OSF.IO/3BYVP

Song, K., Feng, J., and Chen, D. (2024). A survey on deep learning in medical 
ultrasound imaging. Front. Phys. 12:1398393. doi: 10.3389/fphy.2024.1398393

Stone, M. (2005). A guide to analysing tongue motion from ultrasound images. Clin. 
Linguist. Phon. 19, 455–501. doi: 10.1080/02699200500113558

Tang, L., Bressmann, T., and Hamarneh, G. (2012). Tongue contour tracking in 
dynamic ultrasound via higher-order MRFs and efficient fusion moves. Med. Image 
Anal. 16, 1503–1520. doi: 10.1016/j.media.2012.07.001

Wren, Y., Miller, L. L., Peters, T. J., Emond, A., and Roulstone, S. (2016). Prevalence 
and predictors of persistent speech sound disorder at eight years old: findings from a 
population cohort study. J. Speech Lang. Hear. Res. 59, 647–673. doi: 
10.1044/2015_JSLHR-S-14-0282

Xia, Z., Yuan, R., Cao, Y., Sun, T., Xiong, Y., and Xu, K. (2024). A systematic review of 
the application of machine learning techniques to ultrasound tongue imaging analysis. 
J. Acoust. Soc. Am. 156, 1796–1819. doi: 10.1121/10.0028610

Xu, K., You, K., Zhu, B., Feng, D., and Yang, C. (2024). Masked Modeling-Based 
Ultrasound Image Classification via Self-Supervised Learning. IEEE Open J Eng Med 
Biol, 5, 226–237. doi: 10.1109/OJEMB.2024.3374966

You, K., Liu, B., Xu, K., Xiong, Y., Xu, Q., Feng, M., et al. (2023). “Raw ultrasound-
based phonetic segments classification via mask Modeling” in ICASSP 2023–2023 IEEE 
international conference on acoustics, speech and signal processing (ICASSP), 1–5.

Zhao, C., Zhang, P., Zhu, J., Wu, C., Wang, H., and Xu, K. (2019). “Predicting tongue motion 
in Unlabeled ultrasound videos using convolutional Lstm neural networks” in 
ICASSP 2019–2019 IEEE international conference on acoustics, speech and signal processing 
(ICASSP), ISCA (International Speech Communication Association). 5926–5930.

https://doi.org/10.3389/frai.2025.1631134
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.48550/arXiv.2506.13457
https://doi.org/10.1007/s11517-024-03278-7
https://doi.org/10.3390/diagnostics12112811
https://doi.org/10.1111/1754-9485.13261
https://doi.org/10.1177/10556656231202448
https://doi.org/10.1016/j.specom.2025.103186
https://doi.org/10.21437/Interspeech.2018-1736
https://doi.org/10.1109/TBME.2021.3117407
https://doi.org/10.1016/j.neucom.2022.05.023
https://doi.org/10.48550/arXiv.2502.18691
https://doi.org/10.3389/fcomm.2023.1176827
https://doi.org/10.1016/j.specom.2022.05.004
https://doi.org/10.1080/02699200500113616
https://doi.org/10.1080/17549500802676859
https://doi.org/10.1136/bmjoq-2021-001761
https://doi.org/10.1121/1.5137212
https://doi.org/10.31234/osf.io/zv8y3
https://doi.org/10.3791/55123
https://doi.org/10.1016/j.specom.2021.02.001
https://doi.org/10.1016/j.specom.2015.04.002
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.17605/OSF.IO/3BYVP
https://doi.org/10.3389/fphy.2024.1398393
https://doi.org/10.1080/02699200500113558
https://doi.org/10.1016/j.media.2012.07.001
https://doi.org/10.1044/2015_JSLHR-S-14-0282
https://doi.org/10.1121/10.0028610
https://doi.org/10.1109/OJEMB.2024.3374966

	Deep learning in ultrasound tongue imaging: a systematic review toward automated detection of speech sound disorders
	1 Introduction
	2 Methods
	2.1 Aim and research questions
	2.2 Screening
	2.3 Inclusion and exclusion criteria
	2.4 Data extraction and classification

	3 Results
	3.1 Corpora and datasets used in the included studies
	3.2 Overview of included studies
	3.3 DL applications in UTI for speech: from segmentation to disorder classification
	3.3.1 Automated classification of speech sounds and errors in children
	3.3.2 Foundational tools: tongue segmentation and motion modelling
	3.3.3 Clinical insights: ultrasound in practice for SSD therapy

	4 Discussion
	4.1 Toward an integrated DL pipeline for SSD detection
	4.2 Challenges faced by DL techniques in analysing speech problems
	4.3 Recommendations for future research

	5 Conclusion

	References

