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Background: Speech sound disorders (SSD) in children can significantly impact
communication and development. Ultrasound tongue imaging (UTI) is a
non-invasive method for visualising tongue motion during speech, offering a
promising alternative for diagnosis and therapy. Deep learning (DL) techniques
have shown great promise in automating the analysis of UTI data, although their
clinical application for SSD remains underexplored.

Objective: This review aims to synthesise how DL has been utilised in UTI to
support automated SSD detection, highlighting the advancement of techniques,
key challenges, and future directions.

Methods: A comprehensive search of IEEE Xplore, PubMed, ScienceDirect,
Scopus, Taylor & Francis, and arXiv identified studies from 2010 through 2025.
Inclusion criteria focused on studies using DL to analyse UTI data with relevance
to SSD classification, feature extraction, or speech assessment. Eleven studies
met the criteria: three directly tackled disordered speech classification tasks,
while four addressed supporting tasks like tongue contour segmentation and
tongue motion modelling. Promising results were reported in each category,
but limitations such as small datasets, inconsistent evaluation, and limited
generalisability were common.

Results: DL models demonstrate effectiveness in analysing UTI for articulatory
assessment and show early potential in identifying SSD-related patterns. The
included studies collectively outline a developmental pipeline, from foundational
pre-processing to phoneme-level classification in typically developing speakers,
and finally to preliminary attempts at classifying speech errors in children with
SSD. This progression illustrates significant technological advances; however, it
also emphasises gaps such as the lack of large, disorder-focused datasets and
the need for integrated end-to-end systems.

Conclusion: The field of DL-driven UTI assessment for speech disorders is
developing. Current studies provide a strong technical foundation and proof-of-
concept for automatic SSD detection using ultrasound, but clinical translation
remains limited. Future research should prioritise the creation of larger annotated
UTI datasets of disordered speech, developing generalisable and interpretable
models, and validating fully integrated DL-UTI pipelines in real-world speech
therapy settings. With these advances, DL-based UTI systems have the potential
to transform SSD diagnosis and treatment by providing objective, real-time
articulatory feedback in a child-friendly manner.
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1 Introduction

Human speech enables complex communication, and challenges
in articulating clear speech can negatively impact a child’s academic,
social, and future employment prospects (McFaul et al., 2022). Speech
sound disorders (SSD) are characterised by difficulty acquiring the
spoken language’s phonemes, varying from minor issues with the
articulation of one or two consonants to speech that is predominantly
unintelligible. In many cases, SSDs have unidentified origins, such as
cleft lip and palate, and may arise from particular challenges in other
domains, including speech perception and motor production
(McLeod and Baker, 2017). Untreated SSD can result in avoidance
practices that damage social connections and restrict an individual’s
ability to engage fully in social activities (McCormack et al., 2009).
SSD affects a significant portion of the paediatric population, with
over 25% of children in the UK exhibiting indications of speech-
related difficulties. Approximately 3-4% of these individuals
encounter enduring challenges that may remain throughout
adulthood (Wren et al., 2016). A delayed diagnosis or absence of early
intervention may lead to permanent educational and social
disadvantages (Shahin et al., 2015).

The present assessment and treatment of SSD depend heavily
on expert perceptual judgments by speech-language therapists
(SLTs). However, there is a global shortage of SLTs, and increasing
caseloads limit the availability of individualised therapy. This
shortage has spurred interest in technology-assisted options for
diagnosis and treatment (Leinweber et al, 2023). Several

interactive programs have been developed for children with SSD,
including Apraxia World (Wren et al., 2016), Tabby Talks (Shahin
etal, 2015) Speech Training Assessment and Remediation (STAR)
(Bunnell et al., 2000). These tools transform therapeutic activities
into interactive games or offer automatic feedback for practising
phonetic sounds. Although these applications can enhance
children’s motivation and complement therapy, the majority
concentrate on providing or prompting speech practice rather than
conducting a thorough analysis of speech errors. Among the
current systems, only a limited number employ automatic speech
analysis to deliver feedback, and even those analyses exhibit
restricted accuracy with disordered speech. The dependability of
existing automated speech evaluation methods is inadequate for
clinical use, underscoring the necessity for more
robust methodologies.

Ultrasound tongue imaging (UTI) has emerged as a viable
technique to improve the diagnosis and treatment of SSD. UTI
employs a probe positioned beneath the chin to capture real-time
midsagittal images of the tongue during speech, facilitating the
imaging of tongue shape and motion without radiation or
invasiveness (Cleland, 2021; Smith et al., 2023; Hu et al., 2023).
UTI is safe, suitable for children, and comparatively portable,
making it appealing for paediatric speech therapy. Figure 1
illustrates a typical UTI, where the tongue surface appears as a
bright arc against a darker background, with shadows produced by
the hyoid bone and jaw. Clinicians and researchers have utilised

UTI to deliver biofeedback in therapy and to investigate

FIGURE 1
An ultrasound scan shows the tongue root and tip in the sagittal plane.
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articulation, especially in those with speech disorders like
childhood apraxia or cleft palate, by examining tongue patterns
that are not externally observable (Preston et al., 2017). Interpreting
ultrasound images traditionally requires manual tracing of tongue
contours or professional analysis, both of which are time-intensive
and impractical for implementation in every therapy session.

The initial computational method for analysing UTI in tongue
motion tracking depended on conventional image processing
(Stone, 2005). For example, EdgeTrak by Li et al. (2005) presented
an active contour model for automatic frame-by-frame tracking of
the tongue surface. This approach is effective when the tongue
surface is identifiable, although it possesses significant limitations.
EdgeTrak is deficient in advanced preprocessing capability and
encounters difficulties with poor image quality or when the tongue
surface is partially obscured. It is also incapable of handling
extended video records without manual intervention, making it
impractical for continuous speech or real-time use. Moreover,
EdgeTrak’s foundational method can be computationally intensive,
relying on iterative optimisation that is difficult to run in real time.
These limitations indicate that although systems such as EdgeTrak
demonstrated the viability of automatic tongue contour tracking,
they did not entirely satisfy the requirements of interactive clinical
applications (Tang et al., 2012).

Recent advancements in deep learning (DL), particularly
convolutional neural networks (CNN), have facilitated automation
in image segmentation (Ronneberger et al., 2015), motion tracking
(Adzemovi¢, 2025), and phoneme detection from UTI data.
Nevertheless, the majority of these models are trained on data from
typically developing speakers and concentrate on silent speech
interfaces or language learning tasks rather than clinical SSD
assessment. The variability in speaker anatomy, image quality, and
dataset size continues to pose a significant obstacle to the
generalisability of these systems. The publication of the UltraSuite
corpus (Eshky et al., 2018), which encompasses disturbed child
speech data, represents a significant advancement; yet,
comprehensive assessments of DL methodologies in this clinical
setting are still limited.

While a recent review by Xia et al. (2024) surveyed machine-
learning techniques for UTT more broadly, there remains a need for a
focused synthesis on DL methods that target clinically meaningful
error detection and assessment, and on how close these approaches
are to practical use in speech-language pathology.

For clinicians, DL-UTI systems can turn ultrasound videos into
usable measures: flagging likely misarticulations, providing real-
time visual feedback during therapy, and producing simple progress
graphs across sessions. This can reduce subjectivity, focus practice
on the most informative targets, and save time by rapidly screening
many patients. These tools are designed to support, not replace,
clinical judgement; outputs should be interpretable and integrated
into routine workflows, with the clinician retaining final decision-
making. This systematic review evaluates current research at the
intersection of UTT and DL for SSD, tracing the field’s progression
from foundational techniques, such as segmentation and motion
modelling, to phoneme/gesture classification in typically developing
(TD) speech, and early studies targeting direct error detection in
disordered speech. We address three research questions: (1) How
have DL models been applied to UTI to aid the detection or
assessment of SSD? (2) What technical and clinical challenges have
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emerged, and how are they being addressed? (3) What advances are
needed to reach clinically viable, automated UTI-based assessment
and therapy support for SSD?

To complement the scope and research questions outlined above,
Figure 2 provides a high-level overview of how DL can be applied to
UTT for SSD assessment, from acquisition and preprocessing through
task-specific modelling to clinician-in-the-loop feedback.

The remainder of this article is structured as follows. Section 2
outlines the literature search strategy, inclusion criteria, and data
extraction process (following PRISMA guidelines). Section 3 describes
the included studies, organised by their contributions to a envisioned
DL-based pipeline for SSD detection. Section 4 interprets and
discusses the findings in context, including challenges and future
research directions for advancing the field. Section 5 concludes the
review by summarising the insights and translational implications,
emphasising how the field can progress toward reliable, automated
SSD detection using UTT and DL.

2 Methods
2.1 Aim and research questions

This comprehensive review analyses the application of DL
approaches to UTT for tasks related to the detection and assessment of
speech sound disorders. We place particular emphasis on the clinical
relevance of these approaches and their potential for integration into
speech-language pathology workflows. The review was guided by
three primary research questions:

« RQI: How have DL models been utilised in UTIs to support the
detection of speech sound disorders?

o RQ2: What are the primary technical and clinical challenges that
restrict the current applications of DL in ultrasound-based
SSD detection?

o RQ3: What future research is necessary to progress toward
clinically viable, automated UTI-based diagnosis or therapy
for SSD??

2.2 Screening

A comprehensive literature search was conducted; our search was
restricted to English-language publications across six databases: IEEE
Xplore, PubMed, ScienceDirect, Scopus, Taylor & Francis Online, and
arXiv. While arXiv was included to partially mitigate publication bias,
we did not systematically search other grey literature sources, and
we did not translate non-English reports. These choices may introduce
language and database coverage bias and could underrepresent null or
negative findings.

The initial search was performed in 2022 and was updated
periodically through August 2025 to capture the most recent
developments in this evolving field. Search queries combined keywords
related to speech disorders, UTI and DL. For example, we used
Boolean strings such as: “speech sound disorder” AND “ultrasound
tongue imaging” AND (deep learning OR neural network), “phoneme
classification” AND (ultrasound OR tongue) AND (CNN OR LSTM),”
“articulatory disorder” AND “ultrasound” AND “machine learning””
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FIGURE 2
Overview of DL for UTl in SSD assessment.
TABLE 1 Inclusion and exclusion criteria.

No. Inclusion criteria Exclusion criteria
1 Applied a DL method to UTI data. Focused exclusively on acoustic or other non-UTI modalities.
2 Addressed speech-related tasks such as classification, contour extraction, or motion tracking. = Used only traditional (non-DL) image processing techniques.
3 Involved human subjects (typically developing children or children with SSD). Used ultrasound for non-speech purposes.
4 Published in English from 2010-2025, in a peer-reviewed venue.

We also included synonymous terms and variations such as

» «
>

“speech impairment,” “convolutional,” and “articulation disorder.” the
results to English-language.

After removing duplicate records, we found 112 unique
publications. We performed an initial screening of titles and
abstracts to exclude irrelevant papers. At this stage, 42 records were
excluded because they did not relate to both ultrasound and
DL. We retrieved the full text of the remaining 11 articles for detailed
evaluation. Each article was assessed against the inclusion criteria

described below.

2.3 Inclusion and exclusion criteria

Studies were included in the final review if they met all of the
criteria summarised in Table 1.

Frontiers in Artificial Intelligence 04

2.4 Data extraction and classification

Following PRISMA guidelines, we documented the study
selection process in a flow diagram, as shown in Figure 3. For each of
the eleven included studies, we extracted key data points: the study’s
title and year, the used DL model, the task, the input data type, the
dataset, evaluation metrics, and any information regarding the study’s
relevance to SSD diagnosing.

To synthesise the contributions of these diverse studies,
we organised them into three broad categories according to their role in
an envisioned end-to-end pipeline for automated SSD detection:

1 Direct SSD detection: studies that explicitly target the
classification of speech sound disorder.

2 Technical foundations: studies that develop core components
required for automated analysis, such as tongue segmentation

frontiersin.org
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FIGURE 3
PRISMA flow diagram of the study selection process.

or tongue motion prediction, which support the overall
purpose of SSD detection.

3 Clinical context: studies that explore the use of UTI in real
clinical settings or provide insight into how UTI-based
feedback can be used in therapy for SSD.

This classification presents a framework for determining how each
study adds to the overarching goal of establishing a fully automated
and therapeutically usable system. It also helps to illustrate
development by highlighting the path from basic technological
advancements to direct applications and, finally, implementation
considerations. Table 2 provides an overview of the included studies
categorised by contribution type, summarising their methods, data,
and findings regarding SSD.

3 Results

3.1 Corpora and datasets used in the
included studies

A central limitation across the reviewed literature is the scarcity
of large, well-annotated pediatric UTI datasets, especially for
disordered speech. To make the landscape clear, Table 3 summarises
the key corpora and datasets encountered in the included studies,
and Table 4 maps each study to the dataset(s) it used. As shown,
most classification studies rely on UltraSuite-UXTD (typically
developing children), whereas resources featuring speech sound
disorders (e.g., UltraSuite-UXSSD and UPX) are much smaller,

Frontiers in Artificial Intelligence

narrower in error coverage, or require additional expert labelling per
study. This imbalance motivates the recent adoption of self-
supervised pretraining and class-imbalance handling (e.g., focal loss,
reduce annotation burden and

hard-sample mining) to

improve robustness.

3.2 Overview of included studies

This review comprised a total of eleven studies in total. Despite
their limited number, these studies represent the initial attempts to
integrate DL and UTI to address speech production analysis and
disorder diagnosis in children. Six investigations focused on direct
SSD detection or associated phoneme categorisation, four on technical
foundations, and one on the clinical use of UTI for disordered speech
therapy. All included research utilised data from paediatric speakers,
highlighting SSD’s paediatric focus; however, due to insufficient
abnormal speech data, several studies substituted typically developing
children as a replacement.

The research collectively represents elements of a potential
end-to-end system, with some focusing on extracting usable features
from raw ultrasound data and others attempting to classify those
features into clinically significant outcomes. CNNs were the
predominant architecture, often adapted for specific tasks. Two studies
used recurrent or sequence models in conjunction with CNNs to
handle the temporal dynamics of speech. The UltraSuite corpora and
smaller lab-collected datasets are frequently utilised for specific tasks
such as silent speech or tongue contour tracking. Due to the limited
availability of accessible datasets, most studies have employed data

frontiersin.org
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TABLE 2 Summary of included studies categorised by contribution type.

Study

(Year)

DL method

Dataset

Input type

Metric

10.3389/frai.2025.1631134

Technical
strengths

Clinical
relevance

Rib | SSD + Typically Speech Accuracy, End-to-end from High - directly
ibeiro et al.
(2021) CNN developing (TD) Raw UTI + audio classification precision, recall, | raw image to error targets SSD
(UltraSuite) (SSD) F1 class classification
Medium -
Accuracy, Spatiotemporal
Ani etal. Raw UTT + texture = Phonetic segment phoneme
FusionNet (CNN) TD (UltraSuite) precision, recall, modelling, feature
(2024) features classification discrimination
F1 fusion
support
Medium -
Speaker-
Masked modelling foundational
Ribeiro et al. independent
CNN + DNN TD (UltraSuite) Raw UTI Accuracy for speaker speaker-
(2019) phoneme
generalisation independent
classification
modelling
Medium -
Masked Modelling
Xu et al. D Phonetic segment Self-supervised enhances the
+ Hard Sample Raw UTI Accuracy
(2024) Mini (UltraSuite) classification learning scalability of
inin
¢ phoneme classifiers
Improves
Spatio-temporal articulatory
masked discrimination
You et al. Phonetic segment Label-efficient SSL
autoencoder+ UltraSuite- UXTD Raw UTI Accuracy from raw UTI; a
(2023) classification via mask modelling
Token Shift foundational step
Module toward automated
SSD screening
Higher robustness
for UTIL
Spatio-temporal
classification;
masked Captures cross-
Dan et al. Phonetic segment strengthens
autoencoder+ UltraSuite- UXTD Raw UTI Accuracy frame dynamics via
(2025) classification pipeline
Token Shift token shifting
components needed
Module
for reliable SSD
tools
Mozaffariand | U-Net variant Tongue contour Dilated CNNs for Medium - real-
Ottawa UTI Corpus = UTI Images Dice
Lee (2019) (BowNet) segmentation robust segmentation | time segmentation
Multi-dataset Medium -
Tongue contour Intersection over
Lietal (2022) = wUNet (VGG-16) NS, TJU, TIMIT UTI training, speaker- segmentation
extraction Union (IoU)
agnostic across setups
U-Net-based Quantifies impact of | Supports efficient
Mukai et al. Tongue surface
contour point Institutional UTI UTI frames Accuracy annotation design 3D tongue model
(2022) extraction
extraction on learning construction
Zhao et al. ComvLSTM Silent Speech UTI Video Tongue motion Mean squared Temporal dynamics | Low-indirect
onv.
(2019) Dataset Sequence prediction error (MSE) captured application to SSD
Qualitative Highly informed
Cleland Qualitative Real-world
N/A (Descriptive) = Clinical Case Series = UTI in Therapy evaluation of UTI design and
(2023) Insights feasibility context
use deployment

augmentation or transfer learning to enhance performance, although

model generalisability remains to pose a barrier, as elaborated below.

All studies presented various assessment metrics, often

accuracy for classification tasks or Dice score/IoU for segmentation

tasks, to illustrate feasibility. Direct comparisons between studies

are problematic due to variations in tasks and datasets. The

classification-focused studies achieved accuracy rates between 75

Frontiers in Artificial Intelligence

and 95% for their designed objectives, whilst the segmentation

studies earned contour agreement scores ranging from the

mid-80s to mid-90s, suggesting applicability in clinical settings.

The singular clinical-focused investigation did not present

quantitative metrics due to its observational nature. The

subsequent subsections include a narrative synthesis of the

findings from these investigations, arranged according to their
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TABLE 3 Datasets used or referenced by the included studies.

Dataset Population N participants Language Modality Typical use  Availability
in reviewed
papers
4-way phoneme/
UltraSuite- Scottish English; gesture
TD children 58 ~9y3m UTI + audio Public (UltraSuite)
UXTD clinic/school tasks classification;
pretraining
UltraSuite-
SSD children 8 ~7y7m Scottish English UTI + audio Error detection Public (UltraSuite)
UXSSD
Therapy (cleft palate
UltraSuite-UPX 20 ~8y4m Therapy sessions UTI + audio Clinical/therapy Public (UltraSuite)
+ cleft lip / SSD)
Ottawa UTI Tongue contour
Mixed/TD (local) n/a n/a Research lab UTI Local / not public
Corpus segmentation
NS, TJU, Tongue contour
Mixed (lab) n/a n/a Research lab UTI Local / not public
TIMIT-UTI extraction
Silent Speech Frame prediction
Silent-speech
(WSJO0-derived; Adults (lab) n/a n/a UTI video / motion Local / not public
interface
TJU) modelling
Institutional
Tongue surface
coronal UTI Children (therapy-
19 cross-sections n/a Vowels UTI extraction for 3D Local / not public
(Mukai et al., oriented)
modelling
2022)
TABLE 4 Mapping from included studies to dataset(s).
Study Task Dataset(s) used Population
Ribeiro et al. (2021) Error detection UXTD (+ external adult TaL) Children (TD + SSD)
Ani et al. (2024) 4-way phoneme classification UXTD TD children
Ribeiro et al. (2019) Speaker-independent phoneme classification UXTD TD children
Xu et al. (2024) Masked modelling + hard-sample mining UXTD TD children
You et al. (2023) Self-supervised ViT; 4-way classification UXTD TD children
Dan et al. (2025) Spatio-temporal masked modelling UXTD TD children
Mozaffari and Lee (2019) Tongue contour segmentation Ottawa UTI Corpus, Seeing Speech Mixed
Li et al. (2022) wUNet segmentation NS, TJU, TIMIT-UTI Mixed
Zhao et al. (2019) Motion prediction Silent-speech (WSJ0/TJU) Adults
Cleland (2023) Clinical/therapy context Clinical case series Children
Mukai et al. (2022) Segmentation for 3D modelling Institutional coronal UTI Children

placement in the proposed pipeline from ultrasound data to  segment classification, proving that UTI can distinguish speech sounds

clinical outcomes. and detect misarticulations.

For instance, Ribeiro et al. (2021) made significant efforts to
identify SSDs utilising UTI. This study examined the application of
3.3 DL applications in UTI for speech: from

segmentation to disorder classification

UTI for the automated detection of speech articulation errors,
concentrating on clinically relevant errors such as velar fronting and
rhotic sound abnormalities in Scottish English-speaking children. To

3.3.1 Automated classification of speech sounds
and errors in children

A core motivation for applying DL to UTI is to automate the
evaluation of whether a child produces a speech sound correctly or
inappropriately, thereby supporting SSD diagnosis and therapy. In our
review, six of the research analyses focused specifically on speech

Frontiers in Artificial Intelligence

improve the system’s adaptability, it was trained using a combination
of in-domain child speech data from the UltraSuite UXTD dataset and
out-of-domain adult data from the TaL corpus. The evaluation of
model performance utilised both typically developing and atypical
speech samples. Experienced SLTs provided ground truth annotation
evaluations based on synchronised ultrasound and audio recordings.
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There was significant inter-rater agreement in identifying velar
fronting errors, but reduced consistency for rhotic errors.

The classification model, implemented as a CNN, utilised both
ultrasound frames and corresponding audio features as input, with
ultrasound data contributing significantly to the detection of place-of-
articulation errors such as velar fronting. The algorithm achieved a
maximum accuracy of 86.9% in classifying phonetic segments in
typically developing child speech and accurately identified 86.6% of
the velar fronting errors annotated by experts. Significantly, 73.2% of
the errors detected by the system aligned with expert judgments,
showing reasonably high precision. The findings on the detection
of/r/—sound errors were less conclusive, most possibly due to poor
inter-annotator agreement on those errors, suggesting the need for a
more robust or objective annotation process for specific error types.
Overall, this study demonstrates that UTI, when paired with DL, can
be an effective technique for augmenting clinical speech evaluations.
It demonstrated the viability of automatic detection of some speech
errors, paving the way for the incorporation of automated error
detection systems into speech treatment process, such as tracking
intervention results in children with SSD.

Building on a similar technique but in typically developing
speakers, Ani et al. (2024) focused on phoneme classification using
UTTI in developing children’s speech disorders. This study proposes a
DL framework for the automatic classification of phonetic segments
in child speech using raw ultrasound images. The method integrates
visual and textual features obtained from the ultrasound. The aim was
to enhance speaker-independent classification performance, which is
generally challenging due to anatomical and speech variability.

Data were collected from the UltraSuite UXTD dataset,
comprising UTT recordings from nine typically developing children.
The study focused on utterances containing isolated words or
non-words, categorising sounds into four principal phonetic classes
based on place of articulation: (1) bilabial/labiodental, (2) dental/
alveolar/postalveolar, (3) velar, and (4) the alveolar approximant (/r/).
To generate texture information from the UTTs, the authors extracted
features using the Local Binary Patterns (LBP) operator, which
identifies local texture patterns and is extensively utilised in
image analysis.

Several classification models were assessed, including a standard
CNN, deep feed-forward neural networks (DNNs), and transfer
(ResNet-50 and
Inception-V3). Furthermore, Ani et al. (2024) proposed a novel dual-

learning using pre-trained image models

stream design named FusionNet. FusionNet has two parallel streams:
one CNN-based stream processes the raw ultrasound image for shape-
based features, while the other employs a fully-connected network to
extract LBP texture features; these streams are subsequently integrated
and jointly optimised to produce the final classification. The models
were trained and evaluated under three conditions: speaker-
dependent, where training and testing occurred on the same child, a
multi-speaker scenario, involving training on many children and
testing on a separate subset of those children; and speaker-
independent, which entailed training on a group of children and
testing on an entirely unseen child.

Experimental results indicated that FusionNet outperformed all
other models. Specifically, FusionNet achieved a precision of
91.88% in the speaker-dependent scenario, 92.12% in the multi-
speaker scenario, and 82.32% in the speaker-independent scenario.
These findings demonstrate how combining complementary visual
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and texture characteristics can enhance the robustness and
generalisability of UTI-based speech classification. The performance
decrease in the speaker-independent scenario to approximately
82% indicates the challenge of generalising to new speakers. This
study demonstrates that multi-modal learning has significant
potential for improving UTI speech classification. This study
focused on typically developing speech and phoneme classes;
nevertheless, the developed methodology could be utilised in the
future to classify specific speech error types, thereby enhancing SSD
assessment tools.

Ribeiro et al. (2019) also contributed by investigating the
challenges of speaker-independent phonetic segment classification
using raw UTI from child speech. This study aimed to achieve the
same objective as Ani et al. (2024) which was to improve generalisation
across speakers. The authors developed a four-class classification task
based on the place of articulation, utilising the UltraSuite UXTD
dataset. The preprocessing methods were a notable aspect; they
experimented with raw image normalisation and dimensionality
reduction techniques, including principal component analysis (PCA)
and the 2D discrete cosine transform (2D-DCT) on the ultrasound
frames. These approaches aimed to reduce input size and eliminate
certain speaker-specific characteristics, enabling the network to focus
on essential features. They evaluated classification models, including
feed-forward DNNs and CNNs, based on various input representations.

A key innovation was the utilisation of a speaker mean image,
which accurately computes the average ultrasound frame for each
speaker, captures that speaker’s typical tongue posture/background
and provides that as an additional input channel to the CNN. The idea
is that the network will learn to utilise this as a reference to normalise
speaker-specific differences.

The results showed that in the absence of speaker adaptation,
models performed significantly worse on unseen speakers. The CNN
on raw images achieved approximately 67.0% accuracy in speaker-
independent conditions, while in multi-speaker training, it reached
~74.8%. Interestingly, incorporating the speaker’s mean image as input
improved performance, and using DCT-transformed inputs also gave
competitive results, especially when training data were scarce.
PCA-based input consistently underperformed the others in this
context. Furthermore, Ribeiro et al. found that performing a small
amount of speaker-specific modification significantly improved
speaker-independent accuracy.

Overall, the findings highlight the challenges of generalising
across unseen speakers in UTI-based speech classification, which is
an important consideration for clinical use. They also demonstrate the
effectiveness of speaker normalisation approaches and minimum
adaptation in improving robustness. This study provides important
foundational insights for developing models capable of handling the
broad anatomical and speech variability observed in children,
particularly those with SSD.

A notable advancement of the masked modelling paradigm was
presented by Xu et al. (2024) and You et al. (2023). This study proposed
a self-supervised learning framework to classify phonetic segments
from raw UTI data to improve performance in low-data scenarios.
Their approach employed masked image modelling and hard sample
mining rather than requiring significant labelled data. The objective
was to train a model to reconstruct missing parts of the ultrasound
image so that it learns robust features of tongue shapes without
needing labels. After this pre-training, the model is fine-tuned for
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phoneme classification. They employed a hard sample mining strategy
where difficult frames, those near phoneme boundaries, which are
often misclassified, were enhanced to enhance the model’s ability to
manage challenging frames during training.

Evaluated on the UltraSuite typical developing dataset, their
model achieved phoneme classification accuracies of over 85%,
representing a significant improvement over many prior results,
especially in scenarios with limited annotated data. This study
underscores the scalability of DL models with minimal supervision, a
key consideration for clinical translation where large, labelled datasets
of disordered speech are scarce. By leveraging unlabelled data, the
approach by Xu et al. (2024) strengthens the case for self-supervised
learning as a path toward robust, annotation-efficient articulatory
models. This method could help future SSD detection systems train
on a wealth of unlabelled ultrasound data to improve their feature
extraction, therefore requiring only a smaller size of labelled
disordered data to achieve optimal performance.

A notable extension of the masked-modelling paradigm was
introduced by You et al. (2023), who framed phonetic segment
recognition from raw midsagittal UTT as a self-supervised pretrain to
the supervised fine-tune problem. Their approach pretrains a vision
transformer (ViT) encoder by masked image modelling on a large
amount of unlabelled UTT, encouraging the network to reconstruct
withheld patches and thereby internalise robust articulatory structure
without labels. The pretrained encoder is then fine-tuned for 4
phoneme classification on UltraSuite-UXTD, evaluated across
dependent, multi-speaker, independent, and adapted scenarios.
Reported accuracies were 88.10, 84.82, 83.72, and 88.94%, respectively,
amounting to an average +13.3% gain over a SimSiam baseline. In
practical terms, this study highlights how self-supervised pretraining
on unlabelled UTI can significantly decrease dependence on scarce
annotations while enhancing robustness across speakers and sessions,
an important step toward annotation-efficient pipelines in clinical
SSD applications.

Building on this line of work, Dan et al. (2025) advance masked
modelling into the spatio-temporal domain, arguing that reliable
phonetic discrimination in UTI requires modelling frame-to-frame
articulatory dynamics. They employ a ViT-based spatio-temporal
masked autoencoder augmented with a token shift module to
propagate information across adjacent frames during pretraining,
followed by supervised fine-tuning for 4-way classification on
UltraSuite-UXTD. The model achieves an accuracy of 90.32% for
dependent, 86.45% for multi-speaker, 85.27% for independent, and
90.11% for adapted accuracy, with performance remaining stable even
at high masking ratios of ~75%. By explicitly capturing temporal
structure under limited labels, this study shows how motion-aware
self-supervision can further enhance generalisation and label
efficiency, narrowing the gap between research-grade UTI classifiers
and clinically robust articulatory recognition needed for SSD
screening and therapy support.

In summary, these six studies trace a clear trajectory: from clinical
error detection (Ribeiro et al., 2021) through TD phoneme/gesture
classification (Ani et al., 2024; Ribeiro et al., 2019) to annotation-
efficient self-supervised modelling (Xu, 2024; You et al., 2023; Dan
et al, 2025). CNN-based pipelines and their transformer-based
extensions consistently separate UTI-encoded articulations, but
generalisation to unseen speakers and error types with low annotation
reliability remains an open challenge. Promising strategies include
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speaker normalisation/adaptation, multi-modal inputs (ultrasound +
audio), and self-supervised pretraining that exploits large stores of
unlabelled UTI, practical steps toward deployable, clinician-
supportive tools for SSD assessment and monitoring.

3.3.2 Foundational tools: tongue segmentation
and motion modelling

Beyond classification, several studies have concentrated on
foundational technical tasks that are essential for a fully automated
analysis pipeline. Chief among these is tongue segmentation, the
automatic identification of the tongue surface in each ultrasound
frame and motion modelling, which captures dynamic tongue
movement and has implications for silent speech interfaces and
articulatory analysis.

Two of the reviewed studies addressed the longstanding challenge
of automatic tongue contour extraction using DL. Accurate tongue
segmentation is critical because it transforms raw ultrasound images
into sequences of structured tongue shapes, which can then be further
analysed or fed into classification models. Traditional methods like
EdgeTrak often struggled with noise and often required manual
correction, but DL offers a data-driven solution with improved
generalisability and automation.

Mozaffari and Lee (2019) introduce BowNet and wBowNet, two
novel deep CNN architectures designed for fully automatic and real-
time tongue contour extraction from UTL Recognising the challenges
posed by the noisy, low-contrast nature of UTI, the authors designed
these models to capture both local and global contextual information
through a combination of standard and dilated convolutions. The
networks operate end-to-end, with an encoder-decoder structure
inspired by UNet, and DeepLab v3, using a VGG-16 backbone. The
wBowNet variant features a more deeply interwoven architecture to
enhance feature resolution and context at multiple scales.

The models were trained and validated on two datasets, a local
University of Ottawa UTI dataset and the publicly available Seeing
Speech dataset. They employed both online and offline data
augmentation to increase robustness. Notably, the authors also
developed a Python-based annotation tool utilising B-spline
interpolation to produce smooth ground truth contours from manual
points, addressing inconsistencies in manual labels and ensuring high-
quality training data.

Extensive evaluations showed that both BowNet variants achieved
robust and accurate segmentation. On cross-validation within and
across datasets, wBowNet slightly outperformed BowNet, with mean
Dice scores around 0.85 when evaluating tongue boundary overlap
with ground truth. Under cross-dataset validation, performance
understandably dropped but remained quite excellent, indicating
some generalisation. Importantly, both models maintained real-time
performance on a GPU, and their compact architecture meant they
used less memory than a standard U-Net with similar accuracy.
Overall, BowNet and wBowNet represent a significant advance in UTT
segmentation, offering a scalable and relatively accessible tool for
researchers and potentially for clinicians to automatically track tongue
movements. This is an enabling technology by reliably extracts tongue
contours from ultrasound, and subsequent classification of speech
sounds or visual feedback in therapy becomes more feasible.

Building on similar concepts, Li et al. (2022) proposed wUnet, an
enhanced CNN architecture tailored for tongue contour extraction,
particularly in the context of silent speech recognition. wUNet extends
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the U-Net framework by adding extra skip connections between
encoding and decoding layers and by using a VGG-16 network to
initialise the encoder. Additionally, it includes a multi-level feature
fusion strategy to combine feature maps from different depths,
presumably to better capture both low-level edge information and
high-level shape information.

Li et al. trained and evaluated wUNet on three datasets: the NS
dataset, the TJU dataset, and the TIMIT UTI dataset. They
compared wUNet against baseline models like a vanilla U-Net and
UNet++. The results were impressive, wUNet outperformed both
U-Net and UNet++ in segmentation accuracy. For example, on the
NS dataset, wUNet achieved a peak IoU of 98.22% and a Dice
coefficient of 94.47%, substantially higher than baseline models. It
also showed lower sensitivity to image resolution differences and
training data volume, indicating strong generalisability
and efficiency.

These results affirm wUNet’s potential for real-time, high-
precision tongue tracking. High IoU (~98%) implies that the predicted
tongue contours almost perfectly overlapped the manual contours,
which is near-human performance. Its robustness across multiple
datasets suggests it could handle different ultrasound machines or
populations. While this study framed the work in the context of silent
speech interfaces, the ability to accurately and automatically extract
tongue contours has direct relevance for clinical tools as well, since
those contours can be used for visual biofeedback or as input to
classification algorithms for error detection.

Mukai et al. (2022) add a complementary perspective by
examining how annotation design affects learning for tongue surface
extraction aimed at 3D tongue modelling. Using an institutional
dataset (19 coronal cross-sections; 264 base images expanded to
~7,700 via augmentation; 44 test images), they compared teachers
defined by sparse points versus splines and trained a U-Net-based
contour-point extractor. With spline-based teachers, the model
achieved 91.7% horizontal multiplicity, 4.1 px relative vertical error,
and 81.8% subjective acceptability, with vowel-wise error profiling.
This careful quantification shows that labelling protocol choices
materially influence segmentation quality, offering practical guidance
for building efficient training sets and for downstream editable 3D
models of the tongue, directly relevant to clinical scenarios such as
lateral misarticulation therapy planning.

A complementary technical advancement was proposed by Zhao
et al. (2019) and Zhao et al. (2019), who investigated convolutional
long short-term memory (ConvLSTM) networks for predicting
tongue motion in unlabelled UTI sequences. Unlike the previous
segmentation works that focus on static frame-by-frame analysis, this
study addresses dynamic modelling. The task was to predict future
ultrasound frames given a sequence of past frames. This was done in
the context of a silent speech interface, but the approach is generally
applicable to articulatory motion prediction. They trained a
ConvLSTM model to predict the next few frames of a UTI video based
on the preceding 8 frames. Two datasets were used, one derived from
the WSJO speech corpus and another from TJU. Performance was
assessed using metrics like MSE between predicted and actual frames,
and a structural similarity metric (CW-SSIM) adapted to evaluate how
well the motion was captured.

The ConvLSTM consistently outperformed a 3D-CNN baseline.
It was also able to maintain reasonable accuracy for several frames.
Notably, while ConvLSTM excelled at raw pixel prediction, when it
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came to directly predicting contours, a 3D CNN was slightly better for
that specific task, suggesting the ConvLSTM might smooth out some
high-frequency detail. Nonetheless, the ConvLSTM captured the
temporal dynamics of tongue movement with high fidelity.

For clinical relevance, a model like this could be used to
anticipate articulatory movements or to detect anomalies in
motion. It could also be part of a system providing real-time
feedback, for instance, predicting where the tongue should go next,
to compare against where it does go in a child with apraxia. While
Zhao et al’s application was silent speech, their approach
underscores the value of sequence models in capturing
coarticulation and speech dynamics, which are very relevant for
assessing certain speech motor disorders.

In summary, these segmentation (Mozaffari and Lee, 2019; Li
et al,, 2022; Mukai et al,, 2022) and motion-prediction (Zhao et al.,
2019) studies provide the building blocks for ultrasound-based speech
analysis. Automatic, high-quality contouring reduces manual effort
and converts UTI into structured articulatory representations;
sequence models capture how these shapes evolve. Together they ease
persistent barriers, speckle noise, labelling burden, and temporal
complexity, and move the field toward a fully automated pipeline in
which high-level articulatory information is extracted reliably and
made available for downstream error detection, therapy monitoring,
and clinician-facing biofeedback.

3.3.3 Clinical insights: ultrasound in practice for
SSD therapy

While most of the included studies focus on algorithmic
developments, one study by Cleland (2023) provides crucial clinical
insights by examining the use of UTI in both research and therapeutic
practice for individuals with cleft lip and palate (+ cleft lip) is a
condition often associated with compensatory articulatory strategies
and persistent SSD, making it an important test case for
ultrasound feedback.

Drawing on case examples, Cleland (2023) describes how UTT is
used as a visual biofeedback tool to support articulation therapy post-
palate repair. One key insight from this case series is that UTI can
reveal atypical tongue movements and covert contrast errors that are
not apparent through audio-based assessment alone. For example,
children with cleft-related SSDs may exhibit abnormal articulatory
placements such as posterior or double articulations, which are often
difficult to discern by ear but can be visualised and directly addressed
in therapy with ultrasound. Real-time ultrasound images allow
therapists to see where the tongue is making contact or forming
constrictions, thus helping them guide the child to a more
typical articulation.

Cleland reported that using UTI in therapy improved some
children’s awareness of their tongue placement and helped in
correcting misarticulations that had been resistant to change.
However, the study also notes several limitations of the current clinical
use of UTI. Interpretation of ultrasound images requires substantial
expertise. Typically, a clinician must analyse the images in real-time
and provide verbal guidance because the child cannot interpret the
ultrasound screen by themselves. This is precisely where automation
could provide significant support, for instance, a system that could
automatically detect and highlight certain articulatory features in real
time would offload some cognitive work from the clinician and
provide more direct feedback to the patient.
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Another practical consideration mentioned is the need for
specialised equipment and training. While UTTI is non-invasive and
child-friendly, not all clinics have ultrasound machines or clinicians
trained to use them for speech therapy. Therefore, evidence from
Cleland’s work helps identify what would make UTI more viable
clinically. For example, simplified user interfaces, automated
annotation, and perhaps some quantification of progress. Such
features correspond to the technical developments that the other
studies are working toward.

In conclusion, the reviewed studies together outline a path toward
automated SSD detection and feedback using UTI. The initial step is
ensuring the reliable extraction of articulatory data, like tongue
contours from ultrasound images. This data can then be used to
classify speech sounds and detect articulatory errors. Ultimately, these
tools must be embedded into clinical workflows to be truly useful. The
results so far demonstrate high accuracy in controlled experiments
and show strong clinical relevance, but they also highlight that the
field is in its early stages, most models have been evaluated on limited
datasets or in lab settings.

The next section explores how these foundational elements can
be integrated into a coherent pipeline, the challenges that remain, and
the research directions needed to bring this technology into everyday
clinical practice.

4 Discussion

4.1 Toward an integrated DL pipeline for
SSD detection

The literature collectively outlines a practical pipeline for
automated detection of SSD with UTI and DL. No single study
implements the entire pathway end-to-end, but the reviewed works
provide complementary advances that illuminate the route to clinical
integration. Figure 2 gives a high-level overview of the end-to-end
system. Figure 4 illustrates representative outputs at each stage of the
technical pipeline.

The pipeline typically begins with preprocessing and
segmentation to isolate the tongue surface and reduce speckle/
artefacts. DL contour extractors such as BowNet/wBowNet (Mozaffari
and Lee, 2019) and wUNet (Li et al., 2022) demonstrate accurate and
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robust tongue boundary extraction. Recent work by Mukai et al.
(2022) shows that annotation design (points vs. spline teachers)
materially impacts segmentation quality for 3D tongue modelling,
offering practical guidance for dataset curation. At the same time,
several classification studies operate directly on raw UTI without
explicit segmentation, indicating two viable architectural paths:
segmentation-first when interpretable contours are needed, and raw
end-to-end when throughput and label-efficiency dominate. In the
second stage, the sequences of tongue shapes are analysed for
phoneme classification or speech error detection. Foundational TD
classification studies (Ribeiro et al., 2019; Ani et al., 2024) highlight
both the promise of UTI-based articulatory cues and the challenge of
generalising to unseen speakers, mitigated by speaker normalisation/
adaptation and multi-modal inputs of ultrasound and audio.
Clinically targeted work (Ribeiro et al, 2021) shows that UTI
materially aids the detection of place-of-articulation errors of velar
fronting, though reliability for/r/remains limited by annotator
agreement, underscoring the need for objective targets/labels for
certain error types.

A parallel, rapidly developing studies uses self-supervised masked
modelling and Transformer encoders to improve label efficiency and
cross-speaker robustness on raw UTL Xu et al. (2024) demonstrated
masked-image pretraining with hard-sample mining. You et al. (2023)
pre-trained a ViT on unlabelled UTI and fine-tuned for 4-way
phoneme classification, reporting +13.3% over a SimSiam baseline.
Dan et al. (2025) extended masked modelling to the spatio-temporal
domain with a Token-Shift module, achieving high accuracy while
remaining stable at high masking ratios of ~75%. Collectively, these
results indicate that SSL and Transformers are strong candidates for
annotation-efficient pipelines that must generalise across children,
sessions, and devices.

A parallel stream in the pipeline is motion modelling, which
captures dynamic tongue behaviour relevant to motor-speech
disorders. ConvLSTM-based predictors (Zhao et al., 2019) forecast
future frames with high fidelity, suggesting uses in anticipatory
feedback and trajectory consistency assessment, even if 3D-CNNs
may retain an edge for sharp contour prediction. Integrating motion
cues with static classifiers is a natural next step for nuanced
SSD assessment.

The final stage involves translation of model outputs into clinically
meaningful feedback or measures. This could include converting
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detected phonemes or errors into summary reports for SLTs or
providing real-time visual or auditory biofeedback to clients during
therapy. This stage also encompasses user interface design, integration
into clinical workflows, and ensuring the system can operate in real-
time during a therapy session.

Importantly, the pipeline framework underscores the tension
between technical capability and clinical applicability. For example, a
high-accuracy segmentation algorithm could be of limited use if it
cannot run in real time or if its output is not interpretable by clinicians.
Similarly, a phoneme classifier trained exclusively on typical speech
may perform poorly when applied to disordered populations, where
articulatory patterns diverge significantly. This reinforces the notion
that technical development must be guided by clinical objectives, not
merely optimised in a vacuum. To be useful, each stage of the pipeline
must consider end-user requirements: speed, accuracy across diverse
populations, and transparency.

Encouragingly, some studies already bridge multiple stages.
Ribeiro et al. (2021), for instance, implicitly combined segmentation
and classification to detect articulatory errors from raw UTI frames.
Their work hints at an end-to-end approach where the system goes
straight from ultrasound to an error decision. This type of integration
is promising and demonstrates the feasibility of building more
comprehensive systems.

Overall, the reviewed literature demonstrates solid progress in the
early stages of the pipeline and emerging work on dynamic modelling.
There has been limited exploration of the final integration stage, with
Cleland (Cleland, 2023) being an initial foray into that. Current
systems remain largely task-specific, trained on constrained datasets,
and rarely validated in real-world clinical environments. Future
research must focus on bridging these gaps, developing integrated,
interpretable, and real-time systems that meet clinicians’ practical
needs and directly enhance therapeutic outcomes for individuals
with SSD.

4.2 Challenges faced by DL techniques in
analysing speech problems

Despite the promising developments outlined in this review,
several challenges and gaps must be addressed to implement these DL
techniques in standard clinical practice for SSD detection. We identify
the principal challenges as follows:

a Limited and unbalanced data: A primary challenge is the
scarcity of annotated UTI data for disordered speech. Only a
few small datasets exist specifically for SSD, for example, the
UltraSuite-SSD includes data from only a handful of children
and covers only a limited range of speech errors. Most DL
models have therefore been trained on typically developing
speech or on very limited disordered samples. The scarcity of
data and class imbalance hinder networks from acquiring
disorder-specific articulatory patterns, frequently resulting in
overfitting and poor generalisation (Al-hammuri et al., 2025).
One review notes that models frequently excel on existing test
data but fail on unseen speakers or settings, largely due to
limited training datasets and insuflicient diversity. Enhancing
datasets via augmenting or cross-domain transfer is regarded
as crucial for improving robustness (Al-hammuri et al., 2022).
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b Speaker variability and generalisability: UTI data significant

inter-speaker variability. Anatomical variances, such as tongue
length, palate shape, probe placement variations, and
differences in speaking style, all influence the ultrasound
images. Numerous models in the reviewed studies exhibited
strong performance in within-corpus evaluations; nevertheless,
a model trained on one group often encounters difficulties
when applied to a different group. Ribeiro et al. (2019) observed
a significant decline in accuracy for unseen speakers, despite
using normalisation techniques. The generalisation issue is
critical; an SSD detection system may perform effectively on
the research team’s dataset but may fail when implemented in
a new clinic with different equipment or patients. Addressing
this issue may require robust data augmentation, domain
adaptation methodologies, or training on considerably more
diverse data. The variability is even greater in disordered
speech, as each childs compensatory articulation can
be unique. Therefore, ensuring that models are speaker-
independent or can quickly adapt to a new speaker poses a
significant challenge for practical application.

Quality of ultrasound image and noise: The ultrasound
modality presents technical challenges for DL. UTI frames are
often low-contrast, noisy images with speckle artefacts and
occasional shadowing or occlusions (Song et al., 2024; Xia
etal,, 2024). This image quality hinders feature extraction and
model learning. Standard computer vision techniques struggle
with the lack of clear edges or consistent textures in UTL Even
advanced CNN-based segmentation models must contend
with speckle noise and varying brightness, which can degrade
accuracy. Enhancing the image quality through better
preprocessing, denoising, or novel ultrasound hardware and
designing noise-robust architectures is a significant focus of
current research to tackle this issue.

Interpretability of models: Current UTI-based models, like
many other DL systems in medicine, frequently function as
“black boxes,” providing limited details about the decision-
making criteria. Clinicians may be reluctant to rely on
automated judgments on speech errors without clear rationales.
However, deep CNN or Transformer models for ultrasound are
complex and not easily interpretable, especially when trained
on limited, noisy datasets. The absence of transparency is
compounded by the variability of input data, and subtle tongue
shape characteristics acquired by the network are not intuitively
understood by human experts. Recent studies highlight that
the intricacy of these models, combined with data limitations,
makes them difficult to understand and prone to unexpected
or irrelevant outputs. This highlights the need to integrate
explainable AI techniques or more interpretable model
architectures to ensure that speech-language pathologists can
trust and effectively use the outputs in diagnosis. For example,
visualising which part of the ultrasound image influenced a
decision, such as saliency mapping or providing a clear
measure, like tongue curvature, might bridge this gap.
Restricted clinical validation and integration: The most
significant gap is the limited involvement of clinicians and
patients in developing and testing these systems. The literature
consists mainly of engineering-driven studies assessing models
on research datasets, with almost no trials of a speech therapist
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using a DL-powered UTI system in real clinical settings.
Consequently, usability issues remain unaddressed; in the
absence of end-users’ feedback, current prototypes may miss
practical requirements. Moreover, models validated only on
ideal datasets may not perform well in noisy clinical
environments. Integrating UTI analysis into real-time therapy
sessions and demonstrating effectiveness in improving clinical
results presents significant obstacles.

f Absence of standardisation in evaluation: Presently, there is a
consensus on evaluation protocols. Diverse studies employ
distinct datasets, target tasks, and performance metrics, which
makes it difficult to compare results or track progress
(Al-hammuri et al., 2022). Segmentation studies may present
Dice scores or mean distance errors, while classification studies
report accuracy or F1 scores, often on different speech targets.
Unlike other fields of speech technology, there is no
standardised benchmark dataset for UTI-based speech
assessment. The lack of standardised evaluation criteria implies
that reported performance may not be comparable between
studies or reflect clinically relevant outcomes. Establishing
unified datasets that encompass a diverse range of disordered
and typical cases, along with standardised metrics, will facilitate
the community in systematically assessing advancements and
ensuring that algorithms fulfil clinical requirements.

4.3 Recommendations for future research

To advance toward clinically implemented methods for SSD
detection utilising DL and UTI, we propose several priorities for
future research, each directly addressing the challenges above:

1 Expand datasets of disordered UTI speech. The community
needs to develop and release larger, more diverse UTI datasets
that specifically include children with SSD. This initiative could
resemble the advantages gained by the speech recognition
domain through the utilisation of shared corpora. The new
data should include a variety of SSDs and detailed annotations.
The new data must encompass a diverse range of ages and
severities, enabling models trained on it to acquire robust
features. Collaboration with hospitals and clinics can help
gather such data ethically and efficiently. Recent medical-
imaging surveys highlight the rapid adoption of transformers
and self-supervised learning, suggesting label-efficient
pretraining and hybrid CNN-Transformer decoders could
mitigate small, labelled UTI datasets (Huang et al., 2022;
Shamshad et al., 2023).

By sharing these datasets openly, researchers can benchmark
their models on common test sets, accelerating progress.

2 Enhance model generalisability: Future models should

be designed with cross-speaker and cross-domain
generalisation. Techniques like domain adaptation (Guan and
Liu, 2022), data augmentation (Chlap et al., 2021; Kumar et al.,
2025), and multi-task learning are promising. Additionally,

implementing a method of speaker normalisation, such as
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calibrating a model with limited samples from a new speaker,
could boost practical performance.

3 Integrate and optimise pipelines for real-time application:
Future efforts should focus on combining DL models into
end-to-end systems that operate in real time. A pipeline
could use a segmentation CNN to preprocess each frame
and then feed it into a classification model to detect errors.
Such integration must be optimised for speed to give
instant feedback during therapy. Researchers should
evaluate these pipelines holistically and ensure the overall
system’s output remains accurate and intelligible to
clinicians. Ultimately, the presentation of a fully integrated
prototype in a clinical or realistic environment would be a
major milestone.

4 Establish standardised evaluation benchmarks: The discipline
would benefit from uniform evaluation criteria. This entails the
development of standardised test datasets and reporting
clinically relevant metrics. In addition to accuracy or Dice
scores, studies should report metrics like per-phoneme recall
for error detection. Furthermore, subsequent research should
uniformly disclose inference time, model size, and the criteria
for error definition to facilitate comparison. Utilising a
standardised assessment terminology enables researchers to
more efficiently refine systems to achieve the requisite
performance for clinical use.

5 Enhance clinical collaboration and validation: Interdisciplinary
collaboration with SLTs and clinical researchers should
be intensified. User-centred design principles can ensure that
the outputs of these DL models align with what clinicians find
useful. Conducting trials in clinical environments, including
minor feasibility studies, is essential for subsequent progress.
These studies could involve an SLT using a prototype system
during sessions and providing qualitative feedback on its utility
or measuring outcomes like reduced assessment time or
improved accuracy of diagnoses with the tool. Additionally,
involving clinicians in the training loop could open paths for
online learning or refinement of models in deployment.
Ultimately, demonstrable evidence of enhanced patient
outcomes or increased efficiency from utilising a

DL-augmented ultrasound system will be required to

substantiate clinical adoption. Involving stakeholders early will

facilitate the eventual integration of this technology into
everyday practice.

By implementing these recommendations, developing different
datasets, building more generalisable and integrated models,
standardising evaluations, and validating in real-world settings, the
field can accelerate toward its objectives. Each recommendation
addresses a current weakness; increased data and collaboration will
mitigate data scarcity; robustness techniques will address variability;
integrated pipelines will advance us from isolated demonstrations to
comprehensive solutions; standards will guarantee consistent progress
measurement; and clinical validation will maintain the relevance of
the work within actual patient care. This aligns with the broader trend
in health technology toward translational engineering, turning
effective  tools that

promising  prototypes into improve

healthcare delivery.
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5 Conclusion

This systematic review examined the emerging intersection of
DL and UTI, emphasising their combined potential to automate the
detection of SSDs. We identified and synthesised eight key studies
that collectively illustrate the current advancements, some
developed direct classifiers for speech errors or phoneme
production, others provided enabling technology such as tongue
segmentation and motion modelling, and one highlighted how
ultrasound is currently used in therapy. Together, these works
demonstrate that DL algorithms can extract clinically meaningful
information from raw ultrasound of the tongue, from classifying
fine-grained phonetic details in typically developing speech to
detecting misarticulations in children with SSD. Importantly, real-
time capable models such as CNNs and LSTMs have achieved
accuracy levels that approach practical usability, at least within
controlled settings.

Despite the relatively small number of studies, the narrative of
technological evolution is clear. Early efforts focused on demonstrating
feasibility. Subsequent works have improved robustness and scope,
such as moving from single-speaker models to speaker-independent
ones, and from static image analysis to spatial-temporal modelling.
Moreover, the integration of these techniques is on the horizon: the
concept of an end-to-end pipeline that takes raw ultrasound and
outputs a diagnostic aid is now much more tangible than it was a few
years ago. Each evaluated study has contributed a piece of this puzzle,
whether through a novel network architecture or empirical evidence
regarding the information UTI can offer.

Simultaneously, our evaluation highlights that key challenges
remain unresolved. The primary requirement is the acquisition of
comprehensive, high-quality data of disordered speech to effectively
train and test these systems in ecologically valid ways. Many studies
depended on data from typically developing speakers or very limited
disorder datasets, which raises questions about how well the findings
generalise. A further problem is achieving consistency and
generalisability: a model that performs in one research lab may fail in
a different clinic environment due to differences in equipment or
patient demographics. There is also a translational gap between
algorithm performance to actual clinical impact. No study has yet
completed the cycle by deploying a DL-UTTI system in live therapy
sessions and assessing outcomes, an essential step for proving the
technology’s efficacy in practice.

In conclusion, although the use of DL for UTI diagnosis for SSD
is developing, the existing evidence is promising. We now possess a
proof-of-concept demonstrating that non-invasive, real-time imaging
of the tongue, combined with advanced AI algorithms, can detect
speech sound errors that may elude human auditory perception or
provide objective validation of hypothesised articulatory patterns.
Ultimately, these advancements could lead to a new generation of
clinical tools. This integration of engineering and healthcare
exemplifies translational innovation by transforming technology
advancements into practical benefits for those with communication
disorders. Through sustained interdisciplinary collaboration, the
prospect of an Al-assisted ultrasound system integrating into routine
speech therapy is imminent, offering enhanced timeliness, precision,
and efficacy in the care for children with SSD.
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