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Introduction: Accurate prediction of steps required to address machine faults is
critical for minimizing downtime and enhancing production efficiency in modern
manufacturing. This study utilizes machine failure data and Failure Mode and
Effects Analysis to demonstrate how machine learning supports maintenance
teams in selecting optimal repair methods.
Methods: The research adopts the Design Science Research paradigm, which
emphasizes the creation of artifacts to address practical challenges. For the
practical component, quality assurance and control frameworks in data science
projects were implemented by integrating two widely used methodologies:
CRISP-DM and PDCA, to ensure rigorous quality assurance and control in data
science initiatives.
Results: Repair actions serve as the target variables, while the input comprises
ten multivariate time-series machine parameters. The prediction task is
formulated as a classification problem. Two modeling approaches are evaluated.
The first approach merges multiple time series into a single sequence, facilitating
the application of Multi-Layer Perceptron, Convolutional Neural Networks, and
Fully Convolutional Networks. The second approach preserves the time series as
three-dimensional arrays, enabling advanced applications of MLP, CNN, Multi-
Head CNN, and FCN models.
Discussion: The models are assessed based on their capacity to predict repair
actions, with particular emphasis on the impact of time-series processing
and model architecture on classification accuracy. The findings highlight
effective strategies for predicting machine repairs and advancing prescriptive
maintenance in manufacturing environments.

KEYWORDS

multivariate time-series, multi-class classification, FMEA, corrective maintenance,
quality assurance and control

1 Introduction

Intelligent solutions that enhance equipment performance are needed because
continuous innovation has accelerated the convergence of technology and operational
efficiency in modern business. FMEA is a widely used methodology in several sectors and
engineering disciplines to assess, analyze, and reduce risks related to goods, processes, or
systems (El-Awady, 2023). The US first used FMEA during World War II in the 1940s.

The FMEA methodology (Jin et al., 2022) has significantly evolved to meet the
requirements of diverse industries, such as automotive, electronics, aerospace, and
pharmaceuticals. As technological advancement continued, the intricacy of products and
processes increased, and most FMEAs significantly contributed to the improvement of
product quality, safety, and reliability.

Bosch Car Multimedia relies on FMEA to identify, assess, and mitigate failure risks to
ensure product quality and production efficiency. Two FMEA types: product and process.
This final article covers FMEA terminology for systems, interfaces, designs, production,
assembly, logistics, and machinery. Product FMEAs analyze a product’s quality life cycle,
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GURE 1FI

Process FMEA example of a window lift motor.

components, and interactions. Process FMEA, shown in Figure 1,
assesses quality-related systems and processes from item receipt to
consumer delivery.

The picture delineates the assembly process of the window
lift motor, highlighting probable failure modes and contributing
factors at various stages. This exemplifies a process FMEA
methodology, wherein each stage of the assembly is scrutinized for
risks, utilizing the framework to pinpoint probable failure causes
related to human, machine, technique, material, and environmental
issues.

The project will focus on process FMEA analysis of
manufacturing line equipment maintenance requests. Equipment
failure notices trigger a repair order that the maintenance team
addresses. Failure cause, effect, action, and other parts of the FMEA
analysis will follow.

1.1 Motivation

Market competitiveness has led to a pressing need to optimize
maintenance processes and increase operational efficiency in the
industry. In a scenario where Bosch Car Multimedia plays a crucial
role in the manufacture of high-quality automotive equipment,
the occurrence of repair machine failures can have significant
implications for productivity and product quality.

The desire to anticipate and respond proactively to faults in
the industrial machinery deployed on production lines is key
to minimizing unplanned downtime. The implementation of a
predictive system based on FMEA offers the opportunity to go

beyond the conventional reactive approach, allowing Bosch to
adopt a prescriptive stance in the maintenance of its machines.

In exploring this topic, the aim is not only to test different
model’s for predicting corrective actions, but also to understand the
complexities inherent in the variety and imbalance in the classes
of corrective actions. Overcoming these challenges will contribute
to the advancement of research in artificial intelligence applied to
industrial maintenance.

The motivation lies in the vision of creating a more efficient
production environment where repair machines not only identify
faults, but with the help of artificial intelligence suggesting precise
corrective actions in real time. This approach will not only boost
operational efficiency by reducing costs associated with downtime
but will also strengthen Bosch’s reputation as a leader in innovation
and quality in the automotive industry.

1.2 Objectives

This research develops prediction algorithms to help industrial
maintenance teams fix production equipment. The main goal is
to combine temporal sensory data from equipment before failures
with historical FMEA records describing past equipment failures,
their root causes, and corrective actions. This integration will reveal
the impact of organized (FMEA reports) and unstructured (sensor
time series) historical data.

The project also investigates multi-class classification
techniques applied to multivariate time-series data, finds
patterns and correlations that predict future failures, and uses
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machine learning algorithms that can handle complex industrial
environments where many interdependent variables affect
equipment conditions. Another goal is to compare machine-
learning and time-series data preparation methods. These methods
will be tested for their ability to predict remedial procedures based
on prior failures.

The focus will be on methods that handle the complex
relationships between sensory data, equipment failure modes,
and maintenance procedures. The models’ ability to recommend
remedial actions for each failure scenario will be emphasized.
The comparison study determines the best forecast accuracy and
real-world applicability of maintenance team suggestions. If the
models work, a real-time data pipeline will be created for predictive
maintenance in active production.

1.3 Methodologies

The article does not provide a very clear description of
the research and discussion process; please provide a detailed
description. The research was developed using Design Science
Research, a research paradigm focused on creating artifacts
(models, methods, tools) to solve practical problems, while
contributing to the advancement of scientific knowledge (vom
Brocke et al., 2020).

For the practical part, quality assurance and control
frameworks in data science projects were used, which sought
to combine two widely used tools, namely CRISP-DM and PDCA,
to perform quality assurance and control in DS projects. Since the
project falls within the areas of data science, it aims to provide
measures to predict appropriate repair activities for industrial
equipment during corrective maintenance (Oliveira and Brito,
2023). This method (Figure 2) provides a systematic framework
for the development of artifacts and the optimisation of industrial
repair.

1.4 Article structure

This document presents a structured methodology for
forecasting corrective maintenance operations using machine
learning techniques applied to multivariate time series data. The
introduction outlines the research context, objectives, and scope. It
focuses on predicting optimal remedial actions for production line
failures. The subsequent sections detail the materials and methods.
They include a literature-based overview of Bosch’s maintenance
processes and an emphasis on key topics. Remedial measures are
discussed within the Framework for Quality Assurance and Quality
Control in Deep Learning Systems (Oliveira and Brito, 2023). This
framework is pertinent to data science projects.

The document describes several modeling scenarios that use
similar machine learning models. These models are primarily
differentiated by their architectures and how they structure time
series data. The fourth section presents the main findings tied
to the research objectives stated in the introduction. It also
evaluates the degree to which these objectives were achieved.
Additionally, it assesses the performance of predictive models
developed with machine learning techniques on multivariate time

FIGURE 2

Framework for quality assurance and control in DS projects adapted
from Oliveira and Brito (2023).

series data. These results show the potential of such models to help
maintenance teams. They can recommend effective repair strategies
for manufacturing line problems.

The fourth section presents results through a comparison
of two scenarios and proposes directions for future research.
The conclusions and recommendations provide a comparative
analysis of data from the two modeling methodologies, address
broader implications, and discuss the potential for integration
with Bosch maintenance systems. The study identifies limitations
including data availability, variability in model performance, and
computational challenges, thereby offering a realistic assessment of
constraints.

2 Materials and methods

In any machine learning endeavor, particularly in classification
tasks, assessing model performance is crucial to guarantee its
trustworthiness and efficacy. The selection of evaluation metrics
is contingent upon the problem’s characteristics, class distribution,
and the precise objectives of the prediction model. This study
analyzes multi-class categorization of corrective activities utilizing
past failure and sensor data, employing various key criteria to assess
the model’s efficacy in forecasting appropriate repair operations.

2.1 Label reduction using text clustering

In text clustering, Subakti et al. (2022) study the effectiveness
of BERT in text representation for unsupervised learning
tasks, focusing on text clustering. The essay describes BERT
text extraction, including tokenization, padding, and encoding.
Comparative assessments of text data representations from AG
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News, Yahoo! Answers, and R2 highlight metrics. The research
attributes BERT’s success to its ability to align related texts.

Deep Feature-Based Text Clustering (DFTC) is a novel text
clustering structure proposed by Guan et al. (2022). Examining
whether deep text encoders are appropriate for text clustering,
contrasting the suggested model with traditional text clustering
models, and presenting a Text Clustering Results Explanation
(TCRE) model to assess the clustering outcomes qualitatively
are the main objectives. Traditional text clustering techniques,
including Gibbs Sampling Dirichlet Mixture Model (GSDMM),
Latent Dirichlet Allocation (LDA), tf-idf-based K-means, and a
cutting-edge pre-trained language model, BERT, are compared.

Overall, the DFTC framework, with its deep text encoder and
TCRE model, is presented as a robust and effective approach for
text clustering, outperforming both traditional and other deep
learning-based models in the experiments conducted.

2.2 Feature reduction

The paper Subasi et al. (2024) carefully analyses and identifies
feature reduction methods that have low costs/overheads in
terms of time and memory. The identified reduction methods
are also evaluated in terms of their impact on the accuracy,
precision, time and memory costs of traditional classification
algorithms. Specifically, we focus on the less resource-intensive
feature reduction methods that are available in the Scikit-Learn
library. In the evaluation, it was found that in quadratic-scale
feature reduction, the classification algorithms achieve the best
compromise between competing performance metrics. The results
show that overall training times are reduced by 61%, model sizes
are reduced by 6× and accuracy scores increase by 25% compared
to baselines, on average, with quadratic scale reduction.

In label reduction, Siblini et al. (2021) analyzes over
50 publications to study dimensionality reduction strategies
in multilabel classification. There are three primary methods:
reducing the feature space and predicting the label matrix,
diminishing the label space, forecasting the reduced label matrix,
and simultaneously diminishing both. Conditional Principal Label
Space Transformation (CLPST) was one of the first feature-based
label reduction methods.

2.3 Technics for multi-class classification

The study Rácz et al. (2021) the effects of dataset size and
training/test split ratios on various machine learning classification
models were meticulously examined through three distinct case
studies. The research involved repeated modeling with different
versions of starting datasets, varied numbers of samples (NS),
and train/test split ratios (SR), employing five iterations for each
combination of these parameters. The approach integrated detailed
analyses of variance (ANOVA) and multicriteria evaluations to
elucidate the influence of these factors on the performance of
multiclass classification models.

The findings led to a recommendation for the use of an
80%/20% training/test split ratio, particularly for larger datasets,
ensuring an ample supply of training samples for multiclass

classification. This comprehensive analysis sheds light on the
nuanced interactions between dataset characteristics and machine
learning model performance, providing valuable insights for
practitioners navigating the intricacies of classification tasks.

2.4 Multivariate time-series with multiclass
classification

Taco et al. (2024) proposes a unique method for categorizing
failure modes by extracting characteristics from multivariate time
series data. Deep learning’s algorithmic complexity, hardware
requirements, and extensive training times inspired this alternate
method. The CNN model outperforms deep learning techniques
with an accuracy of 82% in the frequency domain. In the frequency
domain, the LSTM, BiLSTM, and ConvLSTM models achieve peak
accuracies of 76%, 76%, and 81%.

In van den Hoogen et al. (2021), deep learning methods
enhance defect identification and condition monitoring, notably
for rolling bearing parts. The study classifies spinning machinery
multivariate data using one-dimensional CNNs. The models are
tested across multiple datasets with various contexts and training
data to demonstrate their generalizability.

The Time Series Attentional Prototype Network, introduced in
Zhang et al. (2020), is a novel multivariate time series classification
model that extracts low-dimensional features without domain
knowledge and addresses the issue of limited labeled data. By
rebuilding time series dimensions into groups using convolutional
layers, the authors suggest a random group permutation method to
discover latent features efficiently.

The Baldán and Benítez (2021) study examines traditional
models with two objectives: producing interpretable data and
optimal classification outcomes, notwithstanding potential
interpretability issues. The technique shows each MTS variable’s
attributes. Transforming the original dataset by arranging its
variables in a row creates a new dataset that combines the
properties of all MTS variables in one instance.

The work presented by Fu and Liu (2022) suggests a data-
driven method for predicting the low-voltage contactor’s remaining
useful life (RUL). The three-phase alternating voltage and current
are used to record the electrical equipment’s useful life and track
how many times it has been used. Then, using the time domain,
frequency domain, and wavelet methods, the characteristics that
are relevant to the failure are extracted. A CNN-LSTM network is
then designed and used to train an RUL prediction model for the
electrical equipment based on the extracted features. The results
show that the suggested method performs better than the most
popular deep learning algorithms in terms of MAE and RMSE.

The problem with fault detection applications is that data from
a single sensor may not be sufficient in terms of performance
to detect abnormalities in equipment, as discussed in the work
of Kullu and Cinar (2022), predictive maintenance. This research
suggests a deep learning approach based on multimodal sensor
fusion to address this issue by combining data from various signal
domains and sensors to identify equipment failures. The short-
term Fourier transform (STFT) is used to convert raw vibration
and current sensor data into time-frequency pictures. The deep
learning model, intended to identify flaws, was then fed the
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time-frequency images and raw time series data. The findings
demonstrated the potential benefits of employing the suggested
approach for multimodal sensor data fusion in the identification
of equipment malfunctions.

To reduce the error of equipment operation trend prediction,
Wang et al. (2023) proposes a method for equipment operation
trend prediction based on a combination of signal decomposition
and an Informer prediction model. Aiming at the problem of
high noise in vibration signals, which makes it difficult to obtain
intrinsic characteristics when directly using raw data for prediction,
the original signal is decomposed once using the variational
mode decomposition (VMD) algorithm optimized by the improved
sparrow search algorithm (ISSA) to obtain the intrinsic mode
function (IMF) for different frequencies and calculate the fuzzy
entropy. The improved adaptive white noise complete set empirical
mode decomposition (ICEEMDAN) is used to decompose the
components with the largest fuzzy entropy to obtain a series of
intrinsic mode components, fully combining the advantages of
the Informer model in processing long time series and predicting
equipment operation trend data. The experimental results indicate
that the proposed method can effectively improve the accuracy of
equipment operation trend prediction compared to other models.

Using three data sets about the operation of (1) an industrial
wrapping machine operating in discrete sessions, (2) an industrial
blood refrigerator operating continuously, and (3) a nitrogen
generator operating continuously, this study Pinciroli Vago et al.
(2024) assesses the effects of reading window and prediction
window size on the performance of models trained to forecast
failures. Multivariate telemetry time series are used to compare
six algorithms: Transformers, LSTM, ConvLSTM, Random Forest,
Support Vector Machine, and Logistic Regression. The findings
show that the dimension of the prediction windows is important
in the scenarios under consideration. They also demonstrate how
well DL approaches classify data with a variety of time-dependent
patterns before a failure, while ML approaches classify similar and
repeating patterns.

2.5 Metrics

In machine learning, especially in classification tasks,
model performance must be evaluated to ensure reliability and
effectiveness. Evaluation metrics depend on the characteristics of
the problem, the class distribution, and the model’s objectives. This
article uses previous failure and sensor data to categorize corrective
efforts into multiclass categories and evaluates the model’s ability
to predict repair operations using crucial metrics. Thus, for this
work, only accuracy will be explored, leaving other metrics for
future work.

• Accuracy = TP+TN
TP+TN+FP+FN ;

• Precision = TP
TP+FP ;

• Recall = TP
TP+FN ;

• F1 = 2∗Precision∗Recall
Precision+Recall .

Where:

• TP (True Positives): The number of positive instances
correctly classified by the model.

• TN (True Negatives): The number of negative instances
correctly classified by the model.

• FP (False Positives): The number of negative instances
incorrectly classified as positive by the model.

• FN (False Negatives): The number of positive instances
incorrectly classified as negative by the model.

2.6 Maintenance process flow

The company’s corrective maintenance process includes
machinery, shop floor workers, maintenance teams, and IT systems,
each having subprocesses and decision points. The maintenance
team evaluates corrective fault repair performance using three
key performance indicators (KPIs): Mean Time Between Failures
(MTBF), Mean Time to Acknowledge (MTTA), and Mean Time to
Repair (MTTR) (see Figure 3). This effort aims to improve MTTR
by reducing equipment repair.

The workflow provides an overview of key performance
indicators (KPIs), such as MTBF (average time between
breakdowns), MTTA (average response time to breakdown),
and MTTR (average time needed for repairs). The graph also
shows OEE loss sizes, which record the damages caused by
equipment failure and offer dates for different phases of the
maintenance procedure.

2.7 Maintenance IT system

BCore IT System was built for the project. The web-
based system manages real-time manufacturing, maintenance, and
other tasks. BCore manages maintenance order creation, status
updates, and selections. This system keeps complete records of all
maintenance orders. BCore calculates MTBF, MTTA, and MTTR
from maintenance order status transactions.

2.8 Corrective maintenance: bridging the
gap

This subsection explains the corrective maintenance project
framework in Figure 4. The primary goal is to use artificial
intelligence to identify the best Failure Mode field for the
failure/effect to help the maintenance team fix industrial equipment
integrated into the manufacturing line. Maintenance teams can
rapidly identify the cause of the fault and determine the proper fix
by evaluating the failure mode column.

Implementing AI significantly benefits the maintenance
process by streamlining troubleshooting procedures and
minimizing downtime caused by equipment malfunctions.
With AI assistance, maintenance teams can swiftly identify and
address issues, leading to expedited resolutions and reduced
operational disruptions. The strategy entails leveraging historical
data from corrective maintenance conducted on organized
production lines to empower the model in FMEA field outcomes.
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FIGURE 3

Corrective maintenance MTBF, MTTA, and MTTR KPI’s workflow.

FIGURE 4

AI prescriptive model application in corrective maintenance process.

We will include production equipment metrics in the model
in addition to past corrective maintenance order data. To fully
cover this topic, a multivariate time-series multi-class classification
model is needed to analyze ten sensor-monitored parameters for
the screwdriving system equipment. The Failure Mode column has
numerous classes, and this model will categorize it using time-series
parameters.

2.9 Development

This section describes creating a machine learning model
using data science design, quality assurance, and control. The
approach improves design and allows maintenance teams to predict
production line faults. Time series data on machine attributes is
used to predict defect repair actions. The development technique
comprises problem identification, exploratory data analysis, data
preparation, and modeling two predictive scenarios.

2.9.1 Plan
Robotics has improved production line efficiency and precision

in modern manufacturing. These gains come with difficulties,

especially in fault detection and correction. Forecasting and fixing
equipment defects is crucial to smooth operations and productivity
for the company’s production lines, where robotic and machine
equipment is critical.

2.9.1.1 The problem and its challenges
This work delves into the utilization of time series data gathered

from organizations’ sensors installed in robotic equipment to
classify corrective actions for identified faults. Yet, despite this
approach’s promise, numerous challenges must be overcome to
effectively predict and implement corrective actions in real-world
manufacturing environments.

Identifying and diagnosing robotic equipment failures is
difficult. Interconnected robotic systems with sensors capture many
data types on production lines. To find the core cause of defects in
these different data streams, sophisticated algorithms must identify
regular operating changes from prospective breakdowns.

2.9.1.2 Phenomenon analysis
Robotic equipment operates in unpredictable circumstances,

affecting product specifications, manufacturing volumes, ambient
conditions, and maintenance schedules. It is crucial to create robust
models that can handle variations and accurately predict issues.
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Production line sensor data may be noisy, partial, or irrelevant,
requiring pre-processing and feature engineering. Predictive
models require turning sensor data into functional attributes.

AI models struggle with multiple labels and multi-output
scenarios. Multiple labels and decision boundaries may increase
computing and overfitting. The output space becomes more
dimensional in multi-output contexts, complicating learning.
Managing output dependencies and correlations gets increasingly
complicated, necessitating advanced designs and training methods
to capture the linkages.

Forecasting and real-time adaptation complicate things.
Corrective activities must be accurately predicted to minimize
downtime in continuous manufacturing environments with
fixed production timetables. Real-time forecasting requires
efficient algorithms and predictive models in the production
line architecture. If the above issues are addressed, predictive
maintenance solutions can forecast production line robotic
equipment malfunction repairs.

2.9.2 Execute
After defining the project’s problems, we move on to the

project’s implementation section. As mentioned in the previous
section, the data relating to industrial equipment parameter
measurements and the respective failure analyses are stored in a
MySQL database using the BCore software developed within the
company.

2.9.2.1 Exploratory data analysis
In the MySQL database, two tables record the necessary

information. One of these tables is view_maintenanceorders, which
records all the maintenance carried out in production (corrective
or preventive), and the other is view_measurements, which records
some of the equipment parameters on the production lines.
Data has been stored in the maintenance since 2020, and the
categorization of data related to FMEA only began on September
18, 2023, before corrective maintenance was free text.

The maintenance crew categorized all equipment failures.
FMEA fields define corrective issues by failure effect, mode,
cause, and function. This table covers all corrective incidents,
but will focus on ’Robot Universal’ equipment because it has
the most precise FMEA data linked with maintenance activities.
From “2023-09-18 06:00:00” to “2024-02-29 23:59:59”, data in
the view_maintenanceorders and view_measurements tables was
filtered for “Robot Universal” equipment subtype

Given the range of categories in the failure effect column,
the category “Falha de Aparafusamento” is used to evaluate the
categorization capabilities of the other fields (failure mode, FMEA
cause, FMEA action) while completing a correction order for the
failure/effect in universal robots. However, the few cross-links show
that fmeacause and fmeaaction are not diverse. Once a repair
order’s failure mode is recognized, the maintenance operator can
easily determine its FMEA cause and response.

The maintenance team corroborated this result, emphasizing
that the crucial part is identifying the failure mode associated
with the remedial event. In the table view_measurements, only
robots documented in view_maintenanceorders with data records

for the same timeframe between “2023-09-18 06:00:00” and “2024-
02-29 23:59:59” were chosen for merging. Before merging with
the maintenance orders database, the data needs preprocessing to
guarantee temporal synchronization of the recorded parameters.

This table includes 10 parameters relating to the universal
robot’s computer-sensed measurements. A correlation graph,
Figure 5 was created using the Phi_k coefficient to analyze the
correlation between categorical and numerical variables. This
method is particularly effective for assessing relationships in mixed
data types, providing a robust measure of association.

The Phi_k coefficient, Adriani and Palupi (2021) is designed
to handle the complexities of mixed data types, making it a
versatile tool for modern data analysis. Phi_k operates by first
transforming categorical variables into numerical counterparts
through an optimal binning process. This process ensures that the
categorical data is represented to maximize information retention
and the original data’s statistical integrity.

2.9.2.2 Data preparation
This section details the data preparation steps undertaken

before the data modeling phase. It includes data cleaning,
transformation, and normalization processes, handling missing
values, and encoding categorical variables. As each parameter is not
recorded simultaneously, it was necessary to group the data into
15-minute intervals. The next step involved joining the two tables
based on the maintenance dates and when the curve values for each
parameter were recorded.

Standardizing failuremode column entries improved
classification model performance and analysis clarity. The
original dataset included class labels for the same failure mode
but different labels. Redundancy adds complexity and noise,
which may affect model performance. Therefore, these classes
were renamed and merged into more consistent groups. This
preprocessing procedure simplified the dataset and enhanced the
model’s failure mode learning and prediction.

Besides these modifications, the equipment’s 10 parameters’
time series data includes holidays and production slowdowns. The
study and results can be significantly affected by these data gaps.
To maintain a continuous dataset, interpolation techniques (Oh
et al., 2020) are used to fill in missing values. Interpolating the data
preserves the time series and improves analysis.

The duration of corrective maintenance for equipment varies,
leading to time series with different lengths. To standardize these
time series and ensure they all have the same number of time steps,
we removed the last x time steps before corrective maintenance.
However, it was essential to filter out only those time series that
contained at least x time steps before the maintenance event. This
approach ensures that all included time series are of uniform length,
thereby enabling consistent and reliable analysis across the dataset.

Time series data with 100, 500, 1000, 1500, and 2000 time
steps were tested to analyze various scenarios. The time series
were structured in two ways. The first method concatenated a 10-
parameter time series horizontally into one extended time series.
The second method used three-dimensional arrays of time series.
This 3D array preserves temporal dependencies and interactions
between variables across samples for sophisticated modeling
approaches like deep learning, enabling more complicated and
detailed analysis.
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FIGURE 5

Phi_k correlation result between parameters and FMEA columns.

2.9.2.3 Data modeling
This phase of our study aims to construct robust and precise

models for multivariate time-series multiclass classification. Our
methodology will utilize three separate modeling techniques:
Multi-Layer Perceptron, Convolutional Neural Networks,
and Fully Convolutional Networks. To thoroughly assess the
performance and efficacy of these models, we will employ time-
series datasets of varied lengths: 100, 500, 1000, 1500, and 2000
time points over the previously outlined scenarios.

This data modeling phase aims to create and evaluate the
performance of MLP (Arablouei et al., 2023), CNN (Khushi et al.,
2024), and FCN (Agarwal et al., 2023) models on time-series
datasets of varying lengths and contexts. Through a comprehensive
evaluation of these models, we want to discern the strengths and
weaknesses of each method in managing multivariate time-series
data for multiclass classification problems.

Before implementing the models, it is essential to understand
how the class distribution of the time series varies with size.
As the size increases, the number of classes tends to decrease.

This happens because many samples might not meet the size
requirement. Specifically, data may not be available for a given size
if a corrective failure occurs.

3 Results

This section examines the results obtained through the
experiments from the methodologies elucidated in the previous
sections and is divided into two scenarios.

3.1 Modeling—Scenario 1

As described in the data preparation section, the preliminary
scenario entails classifying the failure mode column using 10
distinct time series parameters. The MLP was tested first, with
results from five time series sizes filtered to 500 steps. Thus, the final
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FIGURE 6

Represents the value of the loss over the seasons and the value of the accuracy. (a) Sc 1 loss and accuracy values in MLP. (b) Sc 1 loss an accuracy
values in MLP with Keras-Tuner.

time series with all 10 parameters will have 5,000 steps (500 * 10).
Basic MLP and Keras auto-tuner MLP performance was compared.

The optimal outcome with a basic MLP was attained using
1,500 time steps per time, resulting in a test loss of 6.59 and an
accuracy of 0.25. The Keras auto-tuner yielded optimal results with
500 time steps, achieving a loss of 2.23 and an accuracy of 0.32, as
depicted in Figure 6.

Figure 6b shows that the loss in the simple MLP is stable
and low over epochs, indicating effective learning of the training
data. However, this may indicate issues with the training

data itself. While the accuracy fluctuates, the training accuracy
typically increases, reaching 0.5, indicating superior training data
identification. Validation accuracy is best around 0.3, changing
throughout epochs.

The MLP with Keras auto-tuner (Figure 6a) significantly
improved training and validation loss, demonstrating effective
performance and no overfitting. The minor difference between
training and validation loss reflects good learning in the model.
Training accuracy of 0.35 and validation accuracy near 0.25 indicate
that the model’s performance increases with more training epochs.
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FIGURE 7

Results of class balancing using SMOTE. (a) Sc 1 loss and accuracy values in MLP with SMOTE. (b) Sc 1 loss an accuracy values in MLP with Keras
auto-tuner and SMOTE.

A test was conducted to balance the classes utilizing SMOTE
(Figure 7), and the findings indicate that, although an overall
decline in performance, a significant enhancement was observed
when the time series were constrained to 2000 time steps. The test
accuracy was 0.25, and the loss was 10.251 with a fundamental
MLP. The test accuracy was 0.20, while the test loss was 2.54 when
employing the Keras auto-tuner.

The second model assessed was a CNN. This model was
evaluated with and without the Keras auto-tuner used to
improve hyperparameters (Figure 8). 200-time steps per parameter

produced the best results with a simple CNN architecture
(Figure 8b), with an accuracy of 0.30 and a loss of 4.13. The
model processed 500 data per parameter when the CNN parameter
optimization Keras auto-tuner was used. This led to a much lower
loss of 2.29 and a somewhat better accuracy of 0.338.

The CNN’s training loss decreases as the model progresses,
indicating effective convergence. The validation loss stabilizes and
marginally rises after epoch 6, signifying overfitting. The validation
loss fluctuates and stabilizes at about 25.0, whereas the training loss
attains a minimum of approximately 5.0. The training accuracy
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FIGURE 8

Results of the CNN model. (a) Sc 1 loss an accuracy values in CNN. (b) Sc 1 loss an accuracy values in CNN with Keras auto-tuner.

steadily increases, attaining around 80% by the 14th epoch. The
validation accuracy exhibits variability, initially reaching a peak of
about 40%, thereafter declining and stabilizing at 20%.

The CNN with Keras auto-tuner achieved better results
(see Figure 8a), with training loss reducing and stabilizing at
zero, indicating effective learning. The validation loss rapidly
decreases and stabilizes at 1.5 by the fifth epoch, showing a
robust link between training and validation performance with
low overfitting. In training and validation, accuracy consistently

increases, reaching 90% by the 10th epoch. However, the validation
accuracy ranges from 25% to 35%, indicating good performance on
training data.

The CNN model was also evaluated using SMOTE
(Rachmatullah, 2022) (Figure 9), to address class imbalance
(Rachmatullah, 2022), but this approach yielded significantly worse
results. The best performance, obtained after tuning with keras
auto-tuner using 1500 time-steps per parameter, resulted in an
accuracy of 0.214 and a loss of 3.5.
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FIGURE 9

Sc 1 loss an accuracy values in CNN with Keras auto-tuner and SMOTE.

The final model tested was the FCN both with and without the
Keras auto-tuner (Figure 10).

Simple FCN performed best at 1500 time steps per time series
with 0.35 accuracy and 1.94 loss. The Keras auto-tuner FCN
performed best with 500 time steps per parameter, 0.28 accuracy
and 2.09 loss. Training loss for basic FCN steadily lowers from
1.95 to 1.7 by the sixth epoch (see to Figure 10a). Improvement
and stability at 1.9 in validation loss. This shows the model has
trouble predicting new data. A slight drop to 0.45 increases training
precision. Once validation accuracy drops to 0.15, it stays between
0.10 and 0.15 for subsequent epochs.

The considerable gap between training and validation accuracy
and the marginally lower validation loss suggest overfitting, in
which the model performs better on training data than on
validation data. FCN with Keras auto-tuner (Figure 10b) shows a
continuous decrease in training loss and an increase in validation
loss after a given number of epochs. The model may overfit the
training data by memorizing the examples rather than generalizing
it to new data.

However, attempts to rectify the FCN model’s class imbalance
by utilizing SMOTE were unsuccessful. After adjusting each
parameter with 1500 time steps in the Keras auto-tuner, the optimal
performance yielded a loss of 2.13 and an accuracy of 0.25. Among
the three models tested, CNN proved to be the most effective for
this preliminary strategy.

3.2 Modeling—Scenario 2

The second scenario uses ten time-series variables to classify
failure. The current time series data is organized in a three-
dimensional array with the number of samples, variables, and
time steps for each variable, unlike the previous example. This
data format keeps the 3-dimensional array size constant across all

samples for all time series. The initial model tested was the MLP,
both with and without the Keras auto-tuner (see Figure 11).

A 500-step time-series test sans Keras auto-tuner yielded the
best results, with an accuracy of 0.23 and a loss of 2.20 (Figure 11b).
Keras auto-tuner fared best with 1500 time steps per series, 0.27
accuracy, and 2.12 loss. Different MLP models operate. Untuned
models reduce training and validation loss by learning slowly.
It is 0.24 accurate. Strong generalization and no overfitting are
indicated by a somewhat greater validation accuracy than training
accuracy. Keras auto-tuner (Figure 11b) causes increased volatility.
Although peaking around 0.3, training and validation accuracy
swings, suggesting instability. Accuracy swings indicate overfitting
or training sensitivity, but loss drops dramatically.

The second model tested in this scenario was a CNN, where
the architecture from the previous test was retained, with the
only modification being a different input data format. Like the
previous experiment, the model was evaluated with and without
Keras auto-tuner (Figure 12).

Without keras auto-tuner (Figure 12b), 500 time-steps per time
series yielded the best accuracy of 0.26 and a loss of 2.32. Using
Keras auto-tuner (Figure 12a), the optimal result was achieved
with 500 time-steps per time series, but with better accuracy of
0.28 and reduced loss of 2.18. The CNN model without the Keras
auto-tuner performs well on the training set but overfits. Poor
generalization is shown by a validation accuracy of 0.18 and a
training accuracy of 0.27. In comparison, the Keras auto-tuner MLP
model generalizes better. The training accuracy peaks at 0.29, and
the validation accuracy follows at 0.25, showing higher consistency
across datasets.

The model was improved and evaluated via Keras AutoTuner, a
hyperparameter tuning library. Optimal performance was attained
after thorough tuning with 500 time steps for each time series
variable. This combination had an accuracy of 0.31 and a loss
value of 2.23. Figure 13 demonstrates a distinct downward trend,
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FIGURE 10

Results of the FCN model with and without the Keras auto-tuner. (a) Sc 1 loss an accuracy values in FCN. (b) Sc 1 loss an accuracy values in FCN with
Keras auto-tuner.

with training and validation loss consistently declining as the
model trains, signifying that the model is acquiring knowledge and
enhancing its fit to the data.

Model convergence occurs during the 10th epoch when
training and validation loss levels stabilize and decrease. A close
final loss value means the model did not overfit the training
data. Training loss is slightly lower than validation. However, the
accuracy plot, notably the validation accuracy, fluctuates wildly.
Initial training and validation accuracy rises but loses stability. The

model’s accuracy improves steadily but remains around 30% post-
training, indicating little predictive capability despite capturing
data trends. The validation accuracy shows even greater peaks and
drops, proving the model cannot generalize to new data.

The FCN was the last model tried in this scenario; it used
the identical architecture as the previous experiment, with the
input data format being the sole difference. Like the earlier case,
the model was assessed with and without the Keras auto-tuner
(Figure 14).

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1630907
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Oliveira et al. 10.3389/frai.2025.1630907

FIGURE 11

MLP test results, with and without the Keras auto-tuner. (a) Sc 2 loss an accuracy values in MLP. (b) Sc 2 loss an accuracy values in MLP with Keras
auto-tuner.

Without Keras auto-tuner, 1,000 time steps per time series
resulted in the best performance, with an accuracy of 0.31 and
a loss of 1.85 (see Figure 14b), Keras’ auto-tuner chose the
ideal setup with 1,500 time steps per time series, obtaining 0.28
accuracy and 1.96 loss. The Keras auto-tuner examined numerous
configurations. However, the optimal results without tuning had
slightly higher accuracy and lower loss.

Early epochs without Keras auto-tuner lose less training.
Model convergence occurs when the loss curve flattens in the

sixth epoch. However, validation loss remains around 1.9 during
training, indicating poor validation set generalization. The rising
training-validation loss gap suggests overfitting. The accuracy plot
shows that training accuracy approaches 35%, whereas validation
accuracy remains at 12–15%. In the second example, Keras auto-
tuner reduces model training loss progressively (Figure 3). The
previous model validation loss was 1.9.

Though narrower, the training-validation loss gap shows
less overfitting than the untuned model. Training accuracy is
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FIGURE 12

Results of the CNN model test. (a) Sc 2 loss an accuracy values in CNN. (b) Sc 2 loss an accuracy values in CNN.

15–25%. However, validation accuracy fluctuates mid-training
and recovers. Despite oscillations, validation accuracy is 15–
25%, comparable to the untuned model. Training data improves
both models. However, validation set performance is uneven
and overfitting.

In this scenario, among the four models tested, the multi-head
CNN stands out in its ability to learn from multivariate time-series
data, particularly for the classification task.

4 Discussion

This section presents the discussion of the results, comparing
the different scenarios. This comparison is made using Table 1,
which was created to display the best results obtained from each
model tested across all scenarios. This table presents the top-
performing result for each model under each scenario, along with
the corresponding number of time-steps for the 10 variables in
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FIGURE 13

Sc 2 loss an accuracy values in multi-head CNN with Keras auto-tuner.

time-series format. The columns labeled “Size of TS-1” and “Size
of TS-2” represent the length of the time-series data for scenario 1
and scenario 2, respectively.

Table 1 indicates that all models exhibited comparable
performance in both cases, with negligible outcome changes.
Notably, the models’ performance at 500 time steps is
significant, especially considering the heightened difficulty of
this configuration. The assignment required guessing 11 distinct
classes, resulting in a baseline accuracy of around 0.09 (1/11) for a
random pick.

Despite comparable performance, the models’ 500-time-step
results stand out, where the classification problem is more complex
due to the increasing number of classes. These models learned
from time series data and predicted several classes with better-than-
random accuracy even in difficult categorization situations.

Low results were primarily due to poor data quality for the
models. The dataset has few samples and 10 time-series variables
with low predictive ability, making it difficult for models to identify
target groups. Better feature selection and engineering can extract
more relevant and informative features from time-series data.

The development of this work enables us to present several
contributions that involve the successful integration of sensory data
from time series with historical FMEA records, which categorize
equipment failures and previous corrective actions, representing a
significant achievement of this research.

The successful integration of time-series sensory data with
historical FMEA records, which categorize past equipment failures
and corrective actions, represents a key achievement of this
research. Data preprocessing techniques were employed to clean,
standardize, and transform the sensor data, ensuring consistency
and readability for the models. Additionally, various methods were
applied to format the time-series data to allow models to interpret
the records in multiple ways, thus facilitating a thorough analysis of
each model’s predictive capabilities.

It is also important to note that the categorization of repair
actions required careful refinement, including the consolidation
of similar actions to reduce the number of classes. This step
was essential to improve the models’ ability to generalize
different failure modes while providing accurate and actionable
recommendations. By structuring the data in this way, the research
was able to effectively test and compare various approaches
to multi-class classification, further contributing to a better
understanding of the relationship between sensory data and
equipment failures.

Finally, this work provided valuable insights into the
practical application of AI in real-world scenarios. The challenges
encountered during model development revealed important
lessons about the complexities of working with AI in this
industrial context, pointing to areas for future research and
improvement. Despite the setbacks, the project was an essential
learning experience in applying artificial intelligence to operational
processes.

The challenges encountered during model development
revealed key lessons about the intricacies of working with AI
in this industrial context, pointing to areas for future research
and improvement. Despite the setbacks, the project was an
essential learning experience in applying artificial intelligence to
operational processes.

5 Conclusion

This paper investigated whether machine learning models
may help maintenance teams predict production line equipment
breakdown repair processes. Ten industrial equipment time series
variables and 1441 historical corrective failures were examined.
This study used time-series sensory data and FMEA records to
categorize equipment failures and corrective actions. Filtering,
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FIGURE 14

Results of the FCN model with and without the Keras auto-tuner. (a) Sc 2 loss an accuracy values in FCN. (b) Sc 2 loss an accuracy values in FCN with
Keras auto-tuner.

standardizing, and translating sensor data ensured model clarity.
Time series data came in many ways, so models interpreted them
differently.

Repair activity classification requires purposeful improvement,
combining related acts to minimize classifications. The models
generalized across failure scenarios and produced actionable
recommendations throughout this step. This data format compares
multi-class classification methods to improve sensory data and
equipment failure knowledge. Models surpassed random chance

under challenging cases with multiple failure types. Though the
dataset is flawed, the strategy sounds promising. MLP, CNN, Multi-
head CNN, and FCN found intriguing time-series patterns in
various scenarios.

The results indicate that, among the three models evaluated,
the CNN achieved the best performance for this initial approach.
However, it is evident that the models struggled with generalization,
as their ability to predict unseen data was limited. This issue is
likely due to the relatively small number of time series, which may
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TABLE 1 Best results scenario comparation.

Models Scenario
1

Size of
TS- 1

Scenario
2

Size of
TS-2

MLP 0.32 500 0.27 1,500

CNN 0.34 500 0.28 500

Multi-head
CNN

Not applicable 0.30 500

FCN 0.36 1,500 0.31 1,000

not provide sufficient variability for the models to learn effectively.
Additionally, combining multiple time series into one dataset could
have introduced complexity, making it more difficult for the models
to differentiate between distinct parameters or temporal patterns.

As a result, this approach may have hindered the model’s
ability to capture unique trends and relationships within each
individual time series, impacting their overall predictive accuracy.
In this scenario, among the four models tested, the multi-head
CNN stands out in terms of its ability to learn from multivariate
time-series data, particularly for the classification task. While the
accuracy results in the test set were not significantly better than the
other models, the training graphs indicate that the multi-head CNN
exhibits stronger learning capabilities.

This suggests that the model can capture more complex
patterns during training, even though this advantage did not fully
translate to better performance in the test results. The challenge
with achieving higher test accuracy lies in the nature of the
data itself. The time-series variables used appear to have limited
correlation with the target classes or fault types, making it difficult
for the model to learn meaningful relationships. Additionally, the
dataset suffers from a lack of sufficient occurrences of corrective
faults, leading to an imbalance in the data. This scarcity of
fault-related samples limits the model’s ability to generalize and
accurately predict these rare events.

This issue of insufficient data, especially about corrective faults,
negatively impacted the performance of all four models tested. The
limited sample size and the inherent complexity of the time-series
variables reduced the models’ ability to effectively differentiate
between the classes. This problem mirrors the challenges observed
in the previous scenario, where the models similarly struggled
to perform well due to the lack of robust and diverse training
examples. Addressing this issue would likely require either the
collection of more comprehensive fault data or the use of advanced
techniques, such as data augmentation or synthetic data generation,
to improve the models’ ability to generalize.

Low performance shows that data preprocessing and model
development must be enhanced for more accurate predictions.
The complexity of predicting corrective failures, particularly with
limited and weakly predictive data, suggests that incorporating
additional data sources or employing more sophisticated
techniques will be crucial for significantly improving prediction
accuracy.

Future work could improve input data quality through
feature engineering and selection, and add data sources to
improve the model’s forecasting powers. Synthetic data synthesis
may be considered to handle limited data. Transformers,

ensemble learning, and hyperparameter fine-tuning could increase
performance. Transfer learning and attention methods may help
the model capture time-series data’s temporal dependencies.

Current models can forecast corrective failures, but their
accuracy is limited. Maintenance teams need broader approaches
to suit their needs. Enhancing and expanding the existing models
can lead to a more accurate and dependable system that supports
maintenance operations and reduces downtime.
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