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Dengue remains a significant and critical global health concern, especially
in resource-constrained and remote regions, where traditional IgG/IgM-based
testing is often delayed or not conducted properly. Furthermore, conventional
machine learning often exhibits minimal interpretability and misclassification,
leading to major unreliability in real-time clinical decisions. To tackle these
hindrances, we proposed an interpretable, efficient, and novel machine learning
framework that operates near real-time. It combines feature optimization
using Genetic Algorithms (GA) and Generative Adversarial Networks (GAN)
to address data imbalance, and enhances ubiquitous decision interpretability
with Explainable AI (XAI). GA establishes the most predictive hematological
features, which improve accuracy and transparency, whereas GAN-based data
generation handles class imbalance, leading to enhanced generalization. On
top of that, the optimized Decision Tree model attains 99.49% accuracy with a
negligible computational cost of training and testing time 0.0025 s, and 0.0013 s
respectively, superseding the current state-of-the-art. A web-based application
implemented based on the proposed model enables real-time risk prediction
with a latency of under 0.6 s. A comprehensive XAI evaluation using LIME,
SHAP, Morris sensitivity analysis, permutation combination, and RFE consistently
identifies WBC and platelet counts as key predictors. In numbers, XAI techniques
represent that low White Blood Cell (WBC) count (<3,700 cells/μL), platelet
count (<136,000 cells/μL), and Platelet Distribution Width (PDW < 23) are
key indicators of dengue. Our proposed integrated GA-GAN-XAI framework
bridges accuracy, interpretability, and real-time decision-making capability. This
approach is highly accurate, robust for healthcare, and a highly deployable
solution for dengue risk prediction for clinical dengue risk assessment.
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1 Introduction

Dengue fever is an on-the-rise public health issue in tropical
and subtropical regions such as Bangladesh, where the number
of cases and deaths due to the disease is on the rise. Bangladesh
recorded 321,179 dengue cases and 1,705 deaths in 2023, the
deadliest outbreak in the country (Hasan et al., 2025). The most
significant number of cases and fatalities happened in Dhaka city.
Between consecutive years from 2000 to 2022, the country’s total
cases were 244,246, while the total deaths were 849 cases (Khan
et al., 2024). In early 2024, Bangladesh registered more than 93,000
dengue cases and above 500 deaths; Dhaka remains the primary
contributor to the fatalities (Alam, 2024). In the first 9 months of
2024, there have been 32,082 cases and 166 deaths, together with a
confirmed case fatality rate of around 0.53%, in line with the high
case fatality rate of 2023 (Allport, 2024). As of April 2024, there have
been over 7.6 million cases of dengue and more than 3,000 deaths
across the world, with the most significant number of cases reported
from the Americas region. The global CFR stands at approximately
0.05% (World Health Organization, 2024a,b).

Given the concerning statistics, there is an urgent need for
a more effective and efficient framework for dengue prediction
and risk management, as the frequency and severity of outbreaks
have escalated. Accurate predictive models are essential for
enhancing preparedness and response to future epidemics. Recent
advancements in rapid diagnostic tests, such as the NS1 test and the
detection of IgM and IgG antibodies, have significantly improved
the identification of dengue-infected patients, allowing for earlier
intervention (Hasan et al., 2024; Casenghi et al., 2018). However,
predicting the risk of severe dengue or its outcomes remains
challenging, especially in low-resource settings, highlighting the
need for better risk assessment methods. Existing dengue risk
prediction models that use machine learning techniques often
suffer from high misclassification rates, lack interpretability, and
do not support real-time decision-making. These models typically
rely on direct diagnostic tests and demographic data, overlooking
more comprehensive factors, such as clinical blood parameters, that
could improve prediction accuracy. Furthermore, the inability of
these models to elucidate their predictions to clinicians, whether
positive or negative, presents a significant barrier to their practical
clinical application (Nova et al., 2021).

This paper introduces a robust and interpretable risk
prediction framework based on clinical blood parameters in
a decision tree-based architecture. The proposed architecture
integrates Genetic Algorithms (GA) for feature extraction,
Generative Adversarial Networks (GAN) for handling class
imbalance, and model optimization to enhance predictive
performance. Explainable AI (XAI) techniques promote
transparency and dependability in healthcare applications.
XAI facilitates a deeper understanding of the models used,
enabling practitioners to trust the conclusions drawn from AI-
based insights. Moreover, for enhanced usability and accessibility,
the final model is provided as a web application. The platform is
designed to be intuitive and user-friendly for different healthcare
professionals, facilitating better adoption and integration into
clinical practices.

This study makes several key contributions to the field of
dengue risk prediction:

• Introduces an interpretable novel decision tree-based model
for dengue risk prediction, incorporating clinical blood
parameters such as platelet count, hemoglobin, and white
blood cell count to improve the precision and robustness of
the model.

• Applies Genetic Algorithms (GA) for feature selection, which
optimizes the model by reducing time complexity, enhancing
efficiency, and improving prediction quality by selecting the
most relevant features.

• Utilizes Generative Adversarial Networks (GANs) to address
the class imbalance problem by generating synthetic data,
ensuring that the model is trained on a balanced dataset, which
improves its generalization capabilities.

• Implements tuned models to reduce misclassification rates,
optimize model performance, and ensure better predictive
accuracy.

• Explainable AI (XAI) methods, such as SHAP, LIME, etc.,
are used to make the model’s predictions interpretable to
ensure healthcare professionals can trust and understand the
reasoning behind the predictions.

• Morris’s sensitivity analysis and the importance of
permutation are performed to evaluate the contribution
of each feature to the predictive performance of the model.

• SHAP and RFE are used to discuss the transferability
and ubiquity of selected hematological characteristics—WBC
count, platelet count, and PDW—to show that they are
consistently highly predictive and could be applied to other
datasets as well.

• Develop a web-based application for real-time automated
dengue risk assessment, making the prediction model
accessible and usable in clinical and field settings.

This study contributes to a more efficient and accurate
framework for predicting dengue risk, enabling rapid and reliable
decision-making for resources. Through clinical parameters,
optimized features, and model interpretability, this research
attempts to significantly improve dengue outbreak management
and prevention.

In the remaining part of the paper, we review related work
in this area in Section 2. The method for this experiment is
introduced in Section 3. The results and discussion are provided in
Section 4, and the conclusions and future directions are provided
in Section 5.

2 Literature review

This section reviews the limitations of machine learning
approaches and diagnostic techniques used for detecting
dengue based on the existing literature and the limitations of
the studies. Table 1 summarizes the key aspects of previous works,
including their achieved accuracy, noted limitations, and the
presence of XAI integration or web-based deployment.

The study by Abdualgalil et al. (2022) addresses the need to
develop timely dengue diagnosis in areas with endemic regions,
such as Yemen. The prediction accuracy was therefore improved
by the authors using several machine learning algorithms, as well
as the ExtraTree method for feature selection. The Extra Tree
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TABLE 1 Summary of existing machine learning studies on dengue detection.

Study Year Best model Accuracy Data type Limitation XAI Real-time

Abdualgalil et al.
(2022)

2022 Extra tree 99.12% Tabular Dataset lacks size/diversity info; no explainability;
uses direct test parameters (IgG/IgM).

No No

Mayrose et al.
(2023)

2023 SVM +
MobileNetV2

95.74% Image Small dataset, limited generalization, no XAI, no
real-time support.

No No

Bohm et al.
(2024)

2024 DT, MLP 98% Tabular Limited outlier handling, no XAI, unclear features
used, no real-time capability.

No No

Ming et al.
(2022)

2022 XGBoost AUC 0.86 Tabular Missing data prep details, no explainability
methods used.

No No

Madewell et al.
(2025)

2025 CatBoost AUC 97.1% Tabular Incomplete feature description, unclear balancing,
no real-time tool.

No No

Riya et al. (2024) 2023 Stacking ensemble 96.88% Tabular Small dataset, high cost, lacks feature interaction,
no real-time deployment.

Yes No

Al-Hagree et al.
(2023)

2022 Decision tree 93.7% Tabular Small dataset, missing preprocessing/balancing
steps, no XAI.

No Yes

Classifier results in a high accuracy of 99.12% among models. The
limitation of the study is not entirely explicit, as the dataset in
use does not mention its size or diversity. Moreover, the paper
does not incorporate explainable AI to explain how the model
makes its decisions. The chosen features may not be suitable for
predicting dengue, as IgM and IgG are the direct test parameters.
Mayrose et al. (2023) propose a machine learning approach for
detecting dengue based on peripheral blood smear images, focusing
on the characteristics of platelets and lymphocytes. A blob detection
algorithm-based system is used to find thrombocytopenia; on
top of that, various classifiers are used, with the majority of
classifiers for thrombocytopenia being SVM and DT, with 93.62%
accuracy. In combination with SVM, MobileNetV2 deep learning
features provide an accuracy of 95.74%. However, this study
lacks generalization because the small dataset lacks independent
validation, and its applicability to different clinical settings and
diverse populations is limited by the study’s focus on specific cell
types and image quality. Moreover, the study does not include
Explainable AI (XAI) to increase the model’s interpretability
by making it more trustworthy, as well as lack of real time
detection method.

Bohm et al. (2024) conducted a study using machine learning
techniques to improve dengue case screening in Brazil, a significant
public health issue. Clinical variables from Brazil’s National
Notifiable Diseases Surveillance System was analyzed for data.
Mutual information was used for feature selection, and several
machine learning models were trained. Among all models, decision
trees and MLP achieved an accuracy of 98%. However, there
are some limitations to dealing with outliers, including a lack of
explainable AI (XAI) for model transparency, real-time detection
capabilities, and a lack of information about the specific features
used in the models.

In this study, Ming et al. (2022) developed a supervised
machine learning model to enhance the diagnosis of dengue
in patients with acute febrile illnesses. The limitation of
traditional point of care tests are that they do not yield
optimum results. This was performed using a gradient

boosting model (XGBoost) on prospectively collected data
from Vietnam, using clinical features to predict dengue
diagnosis. The dynamic threshold approach was applied to
the model, which achieved an AUC-ROC of 0.86 and had a
negative predictive value of >90%. Yet, this study had several
limitations, including no data preparation details, a limited
dataset, and a lack of explainable AI methods that could improve
model interpretability.

To evaluate machine learning (ML) models for predicting
severe dengue disease in Puerto Rico, Madewell et al. (2025)
used Sentinel Enhanced Dengue Surveillance System data. The
best performance was given by boosting models (CatBoost,
XGBoost, LightGBM), and CatBoost achieved an AUC-ROC
of 97.1%. Hemoconcentration, days post-symptom onset, and
leukopenia were all key predictors. Traditional warning signs were
outperformed by ML models that showed very high sensitivity
and specificity. There was no detailed description of the features,
the preprocessing steps were not extensively explained, and the
class balancing techniques were unclear. In addition, no real-
time detection system was included, which limited the clinical
applicability.

Riya et al. (2024) developed an AI-based dengue detection
system based on CBC data of 320 patients hospitalized in Dhaka,
Bangladesh, during the 2023 outbreak. The authors claimed a
good stellar result, stating that a stacking ensemble classifier
outperformed other models with 96.88% accuracy and an F1 score
of 0.9646. The key predictors were selected using feature selection
and LIME-based explainability. Nevertheless, there are also some
limitations, such as a small dataset, the high computational
cost of the stacking model, SelectKBest for feature selection
not considering feature interactions, and the lack of a real-time
detection tool.

A machine learning approach to diagnosing dengue fever
through an Android application is presented by Al-Hagree et al.
(2023). They stated that the decision tree algorithm produced the
maximum accuracy of 93.7% compared to others like the Naïve
Bayes and K-NN methods. The evidence has been gathered from
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TABLE 2 Feature descriptions of the dataset.

Feature Description

Age Patient’s age in years.

Sex Gender of the patient (Male/Female).

Hemoglobin Hemoglobin levels (g/dL).

WBC count Total white blood cell count (103/μ L).

Differential Count Distribution of WBC types (e.g., neutrophils,
lymphocytes).

RBC panel Red blood cell count and morphology analysis.

Platelet count Total platelet count (per μ L).

PDW Platelet distribution width (size variability).

Label (Target) 0: Not Dengue, 1: Dengue.

a minimal dataset of only 102 individuals, which may limit the
generalizability of the findings. Furthermore, the selected features
may not describe the full complexity of dengue disease symptoms,
and there exist no explainable AI techniques to explain why the
model makes certain decisions. This also lacks adequate data
preprocessing and data balancing strategies to prevent the model
from performing poorly overall.

In terms of related studies in this domain over the years, there
are fundamental research gaps such as a lack of generalizations
(Barbiero et al., 2020), limitations in data (Absur, 2022), a lack of
real-life use cases (Bhardwaj et al., 2025), and a lack of explainability
(Kaba Gurmessa and Jimma, 2024). Our proposed method will
address all the shortcomings to make a robust, accurate, and
deployable model.

3 Methodology

In this section, a detailed and constructive approach is outlined
to efficiently predict Dengue disease.

3.1 Data collection

This study used a dataset from Mendeley Data (Mim et al., 2024;
Assaduzzaman et al., 2024). It contains clinical blood parameters
for Dengue fever. It had eight features in total. There were two
demographic features, six clinical parameters, and one target class.
Predicting and diagnosing Dengue fever is dependent on these
features. The dataset includes 1,003 records (669 dengue-positive,
320 non-dengue) from patients at Upazila Health Complex,
Kalai, Jaipurhat, Bangladesh. Clinical verification was ensured
through healthcare professional involvement (Assaduzzaman et al.,
2024).Order dependency has been addressed to eradicate bias from
the data (Ahmed Nasif et al., 2019). The Table 2 describes each
feature in the dataset.

FIGURE 1

Column-wise distribution of missing values.

3.2 Preprocessing

3.2.1 Categorical encoding
The dataset includes one categorical feature: Sex. This feature

has been encoded using Label Encoding, where the value for
Females is assigned as zero, and the Value for Males is assigned
as 1. This encoding process allows us to effectively use the feature
in machine learning models while preserving its original meaning
and clarity.

3.2.2 Missing value handling
Figure 1 highlights missing entries in the WBC Count, Platelet

Count, PDW, and Final Output columns. To address this, we
applied a standard k-Nearest Neighbors (k-NN) imputation
method for the clinical features. This approach was selected to
preserve inter-feature relationships using local similarity in the
patient data, and was implemented with default settings commonly
used in biomedical preprocessing pipelines. Given our emphasis on
building an end-to-end real-time system rather than fine-tuning
individual preprocessing components, we prioritized stability and
reproducibility over hyperparameter optimization.

For the target column, Final Output, we followed
established supervised learning guidelines by removing rows
with missing labels to avoid introducing bias during training
or evaluation.

3.2.3 Outlier handling
IQR is calculated to identify which features have the most

extreme values, as shown in Table 3 (Dash et al., 2023). It reveals
that Age, WBC Count, PDW, and Platelet Count have the most
extreme values. Consequently, outliers are identified using the
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TABLE 3 Interquartile range (IQR) analysis and feature spread comments.

Feature IQR Comment

Age 28.00 High variability; possible outliers.

Sex 1.00 Minimal spread; no notable extremes.

Hemoglobin 2.40 Moderate variability.

WBC count 3,200.00 High spread; likely outliers.

Differential
count

0.00 Uniform values; very low variation.

RBC panel 0.00 Stable; no apparent spread.

Platelet count 1,16,500.00 High variability; potential extreme
values.

PDW 14.20 Wide distribution; high spread.

Target (Label) 1.00 Binary class output.

Input: Dataset df with numeric features (Excluding target)
Output: Dataset with adjusted outliers
foreach feature f in df do

Compute Q1, Q3, and IQR = Q3 − Q1

Set bounds: Lower Bound = Q1 − 1.5 × IQR
Upper Bound = Q3 + 1.5 × IQR
Identify outliers where f < Lower Bound or
f > Upper Bound
Clip outliers using Winsorization at the 5th
and 95th percentiles

return Adjusted dataset

Algorithm 1. Outlier detection and adjustment using IQR and
winsorization.

interquartile range (IQR), and adjustments are made through
Winsorization capping to mitigate the impact of these outliers
on the model (Blaine, 2018). Algorithm 1 provides the outlier
detection and removal process.

3.2.4 Feature significance
Mutual information scores and one-way ANOVA were

computed to identify the most significant features for predicting
Dengue fever (Kim, 2017). A 95% confidence level ANOVA test
was conducted at a 0.05 significance value threshold for p values.Sex
and Hemoglobin were found to have mutual information scores of
0.0 and 0.017, respectively, with corresponding p-values of 0.3653
and 0.8368. These results indicate that Sex and Hemoglobin do
not contribute significantly to the prediction of Dengue fever.
The Table 4 shows mutual information scores and p-values for all
features, along with their significance status.

3.2.5 Data scaling
The large gap between the minimum and maximum values,

and the high standard deviation value recorded in Table 5, were
addressed through dataset standardization. This ensures that all
the features have a mean of 0 and a standard deviation of 1
(GeeksforGeeks, 2023). SVM and KNN are sensitive to the scale
of the data, and thus, standard information is essential. Once the

TABLE 4 Feature selection analysis: mutual information scores and
ANOVA results.

Feature MI score p-value Significance

WBC count 0.61 0.000000 Significant

Platelet count 0.59 4.73 × 10−235 Significant

PDW 0.31 6.13 × 10−50 Significant

RBC panel 0.07 1.98 × 10−8 Significant

Differential count 0.04 2.64 × 10−8 Significant

Age 0.03 2.78 × 10−6 Significant

Sex 0.00 0.3653 Not Significant

Hemoglobin 0.02 0.8368 Not Significant

TABLE 5 Feature statistics (min, max, and standard deviation).

Feature Min Max Std dev

Age 40.0 120.0 20.94

Sex 2.0 2.0 0.56

Hemoglobin 11.0 25.0 1.48

WBC count 2,000.0 10,900.0 2,322.65

Differential count 0.0 1.0 0.24

RBC PANEL 0.0 1.0 0.24

Platelet count 10,000.0 5,00,000.0 88,991.46

PDW 1.0 215.0 14.58

features are scaled, the model performance improves with less
training time.

3.3 Feature selection

Feature selection was performed to improve efficiency
and reduce computational time. This is done with the help
of a Genetic Algorithm (GA) because GA can effectively
choose and minimize overfitting on a set of relevant features
(Siedlecki and Sklansky, 1989). GA’s ability to explore
various feature subsets makes it possible to select the most
meaningful features for the model. Unlike traditional methods,
GA can generate a better solution to feature subsets by
converging to an optimal feature subset over generations
(Absur et al., 2024).

Each setting used for the GA-based feature selection is listed
in Table 6. Also, Figure 2 shows the evolution of improvement in
the fitness score value across generations, indicating the algorithm’s
convergence. The whole feature selection process is shown in
Algorithm 2. The most relevant features picked out (after executing
the GA) for predicting Dengue fever were WBC Count, Platelet
Count, and PDW.
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TABLE 6 Settings for genetic algorithm feature selection.

Parameter Value

Number of generations 30

Population size 40

Crossover probability 0.6

Mutation probability 0.05

Tournament size 3

FIGURE 2

Generation progress across iterations in the genetic algorithm.

3.4 Data splitting and cross-validation
strategy

In order to have a robust evaluation of the model, an 80-20
train-test split is implemented; 80% of the data is used to train the
model and 20% as the test data. This approach helps to have a good
amount of training data and a separate set of test data for evaluation
and checking the model’s performance and ability to generalize to
data it has not seen before. Stratified k-fold cross-validation was
also used during training to have a robust and generalizable model
evaluation. The approach retains the class distribution of each fold
and avoids the bias that might arise due to non-equal data division,
and it reduces the drop to an observed model estimation. After data
split, the training and testing datasets are shown in Table 7.

3.4.1 Handling class imbalance
Table 7 shows that the training set is highly imbalanced, and

hence, the model predictions will be biased, and the generalization
performance will degrade. To resolve this issue, a Generative
Adversarial Network (GAN) is used to generate realistic synthetic
samples of the minority class, resulting in 535 samples for each class
in the distribution (Mariani et al., 2018). In comparison, methods
like SMOTE or ADASYN might still be unable to represent the
complex data patterns; hence, GAN preserves the underlying
structure in the data.

Input: Dataset X, labels y, number of generations G,
population size P, crossover probability Cp,
mutation probability Mp, tournament size Ts

Output: Selected feature subset
Initialize population with P random binary chromosomes
of length d (where d is the number of features in X)
for generation = 1 to G do

Evaluate the fitness of each individual in the
population Select parents using tournament selection
with size Ts

foreach parent pair do

if random < Cp then
Perform crossover to generate two children

else
Keep parents unchanged

Mutate each child with probability Mp Add
children to the new population

Replace current population with new population Store
the best individual from this generation

return Feature subset corresponding to the best
individual

Algorithm 2. Genetic algorithm for feature selection.

TABLE 7 Final output distribution in training and test sets.

Dataset Final output = 1 Final output = 0

Training set 535 256

Test set 134 64

The parameters within the GAN were selected to introduce
stability and efficiency of training. A 100 dimension of inputs
balances the complexity and the diversity of generated samples.
The continuation of a network includes two hidden layers of 128-
neuron ReLU activation layers that are not overfitted. Output layers
involved Sigmoid activations and boundaries feature values to
facilitate binary classification. Learning can be done through Adam
optimizer and binary cross-entropy loss. An empirical performance
yielded a batch size of 32 and 1,000 training epochs, in order
to converge without overfitting. The Algorithm 3 describes the
balancing process, and the GAN settings are shown in Table 8.

3.5 Model training

For this study, four different machine learning models with
varying working principles were used, including the Support
Vector Classifier (SVC), K-Nearest Neighbors (KNN), Decision
Tree (DT), and Artificial Neural Network (ANN), to build a robust
predictive framework for diagnosing Dengue fever. These models
were selected due to their theoretical foundation, interpretability,
and suitability to clinical data. This analysis highlights the
predictive performance, generalizability, and reliability of each
model in disease classification. Despite this, a brief overview of
their working principles and selection rationale will be given in
the following.
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Input: Training data X, labels y

Output: Balanced dataset
Identify minority class and required synthetic count
Initialize Generator G, Discriminator D

Compile D with binary crossentropy and Adam optimizer
Form GAN by combining G and D

for epoch = 1 to 1000 do
Sample real minority batch from X

Generate synthetic samples via G

Label real as 1, synthetic as 0
Train D on real and synthetic samples
Generate noise input for G

Train G to fool D
Generate final synthetic samples using trained G

Assign minority class labels
Merge with original data to create a balanced dataset
return Balanced dataset

Algorithm 3. GAN-based data balancing process.

Support Vector Classifier (SVC) is a supervised learning
classifier that represents the optimal hyperplane to separate classes.
It can be applied to linear and non-linear data distributions or
classifications (Hearst et al., 1998; Zhang, 2012). KNN is also
another method that classifies new data based on the majority
label of their closest neighbors, a simple yet sound approach
for clinical data (Guo et al., 2003; Taunk et al., 2019). On
top of that, Decision Tree makes decisions through recursively
splitting the data based on feature value such as GINI or
entropy, offering high interpretability and flexibility in dealing
with different data types (Mienye and Jere, 2024; Lee et al.,
2022). Decision Tree also reduce the risk of overfitting (Bramer,
2016). Finally, Artificial Neural Networks (ANNs), inspired by
the anatomy of the human brain, can learn complex and non-
linear relationships that are extremely useful in modeling intricate
patterns, such as disease diagnosis (Hopfield, 1988; Jain et al.,
1996). Such models have been chosen based on their theoretical
background, interpretability, and the fact that they work well
with clinical data. Random Forest and XGBoost are also more
complex models with demonstrated powerful performance, but
were not included (due to long training time and high computing
capacity needs) and not currently real-time applicable in the
clinical setting.

3.5.1 Model interpretability
LIME is then applied to the best-performing model to explain

individual predictions. Besides LIME, Morris Sensitivity Analysis
and Permutation Importance are also used to see how much each
feature matters. Feature weights in Morris’s sensitivity analysis
determine the main contributors to changes in model output
(Fah et al., 2025). The study reveals essential features of their
associated relationships with one another. In contrast, Permutation
Importance ensures feature importance ranking by computing
the performance changes resulting from randomly shuffling the
feature values. This method is more reliable as it shows how
much the model depends on each feature. In addition, the

TABLE 8 GAN configuration settings.

Parameter Value

Generator input dimension 100

Generator hidden layer 128 (ReLU)

Generator output layer Sigmoid (feature dim.)

Discriminator hidden layer 128 (ReLU)

Discriminator output layer Sigmoid (binary class.)

Optimizer Adam

Loss function Binary crossentropy

Batch size 32

Number of epochs 1,000

TABLE 9 Web application implementation overview.

Component Description

Platform Hugging face spaces (multi-cloud hosting)

Frontend framework Gradio (Python-based UI)

Backend language Python

Machine learning model Optimal model from this research

Key libraries Scikit-learn, NumPy, Joblib, LIME

Functionality Real-time risk prediction for dengue

Design philosophy Minimal front-end code, interactive UI for
healthcare usage

transferability and ubiquity of the selected features are assessed
using SHAP and RFE-based feature importance techniques. By
this method it is checked whether the features chosen by the
GA match those selected as significant using these methods,
thus ensuring consistency and robustness of the model feature
selection process.

3.6 Web app development

A web-based application was developed using the optimal
model from this research to provide real-time dengue risk
assessment. The interface simulates a healthcare professional’s
input system and offers instant prediction by accepting key medical
parameters. Built using Python and Gradio, the application ensures
fast deployment, ease of use, and seamless model integration.
It is hosted on Hugging Face Spaces for accessible, scalable
deployment. Key implementation details—including frontend
framework, backend libraries, and model integration tools—are
summarized in Table 9.

A schematic of the overall workflow of the proposed dengue
prediction framework is given in Figure 3. It gives a structured
and neat view of every step of the methodology, including data
acquisition and processing, model training, and evaluation.
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FIGURE 3

Workflow diagram of the proposed framework.

3.7 Evaluation metrics

The following metrics are used to evaluate model performance,
providing insights into classification accuracy, reliability, and
calibration through their definitions and formulas.

Precision: The proportion of correctly predicted positive cases
out of all predicted positive cases. It is calculated as

Precision = TP
TP + FP

where TP is true positives and FP is false positives.

Recall: The proportion of correctly predicted positive cases out
of all actual positive cases. It is calculated as

Recall = TP
TP + FN

where FN is false negatives.

F1-Score: The harmonic mean of Precision and Recall,
providing a balance between the two. It is calculated as

F1 = 2 × Precision × Recall
Precision + Recall

Confusion matrix: A summary of prediction results that shows
counts of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). It is often represented as:

[
TP FN
FP TN

]

where rows represent actual classes and columns represent
predicted classes.

AUC (Area under the curve): Measures a model’s ability to
distinguish between classes. The value ranges between 0 and 1, with
higher values indicating better discrimination.

Cohen’s Kappa: A statistic that measures agreement between
actual and predicted classifications, adjusted for chance agreement.
Calculated as

κ = po − pe

1 − pe

where po is the observed agreement and pe is the expected
agreement by chance.

Brier score: The mean squared difference between predicted
probabilities and the actual outcomes, measuring the accuracy of
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TABLE 10 Model training and validation accuracies.

Model Training
accuracy (%)

Validation
accuracy (%)

SVC 99.44 99.35

KNN 99.63 99.53

Decision Tree 99.81 99.35

ANN 99.53 99.44

Bold values used to highlight the best-performing results.

probabilistic predictions. Calculated as

Brier = 1
N

N∑
i=1

(fi − oi)2

where fi is the predicted probability and oi is the actual outcome.

4 Results and discussion

In this section, the models to be evaluated for predicting
dengue disease are presented and discussed. The results
of various machine learning models are analyzed in terms
of classification accuracy, reliability, and generalizability
in clinical settings. The results provide insights into how
real-time dengue detection can be achieved using different
models to achieve high accuracy and interpretability for clinical
decision making.

4.1 Model evaluation using training and
validation performance

Table 10 presents training and validation accuracies of various
machine learning models used to predict dengue. The SVC model’s
training accuracy reached 99.44%, and its validation accuracy was
99.35%. Regarding generalization, the KNN model achieved the
highest validation accuracy of 99.53%, with a training accuracy
of 99.63%. The model with the highest training accuracy was the
Decision Tree, with a score of 99.81%. However, its validation
accuracy was 99.35%. The ANN model also had the same consistent
results, as its training accuracy was 99.53% and validation accuracy
was 99.44%.

Compared to other models, the KNN model has better
performance in terms of validation accuracy, indicating its better
generalization ability for dengue prediction. Despite that, the
training accuracy of the Decision Tree model was the highest. Still,
the validation accuracy was slightly lower, thus indicating that it
might not generalize as well as the KNN.

Table 11 shows fold-wise validation accuracies and standard
deviations for each model. The SVC model yielded consistent
results in each test fold, as its measurements consistently reached an
accuracy of 0.99, although they fluctuated by 0.0094. In performing
similarly to KNN, the model produced smaller variation outcomes
(SD = 0.0086). Despite consistent performance in most splits,
the Decision Tree model varies more than others, according to

TABLE 11 Validation accuracy (fold-wise) and standard deviation for
different models.

Model Fold-wise accuracy Std. Dev.

SVC 1.00, 1.00, 0.99, 0.98, 0.97,
1.00, 1.00, 1.00, 1.00, 0.99

0.0094

KNN 1.00, 1.00, 0.99, 1.00, 0.97,
1.00, 1.00, 1.00, 0.99, 1.00

0.0086

Decision Tree 1.00, 1.00, 0.98, 0.98, 0.97,
1.00, 1.00, 1.00, 1.00, 1.00

0.0103

ANN 1.00, 1.00, 0.99, 0.98, 0.98,
0.99, 1.00, 1.00, 1.00, 1.00

0.0075

Bold values used to highlight the best-performing results.

the 0.0103 standard deviation value. ANN demonstrates the most
reliable results because its standard deviation stays at 0.0075
across all the data splits. The fold-by-fold learning curves provided
in Figure 4 also support these findings with the general trends
in training and validation performance across all the models
indicating their stability when cross-validation was implemented.

Table 12 also provides precision, recall, and F1 score metrics
for each model based from training dataset, aside from training
and validation accuracies. The values in these metrics are crucial in
understanding the model’s capacity to effectively classify individual
classes, significantly important in real applications like dengue
prediction, where the costs of false positives and false negatives
are high.

Finally, the SVC model optimizes performance with a precision
and recall of 0.9944 for both classes, resulting in an F1-score of
0.9944. In terms of precision, the KNN model achieves a score of
0.9981 for class 0 and a recall score of 0.9981 for class 1, resulting in
an F1 score of 0.9963 in both classes. Looking at the Decision Tree
we can see substantial precision (1.0000) for class 1 as well as a good
F1-score of 0.9981. In class 0 (1.0000) the ANN model is perfect in
precision, for class 1 (0.9907) the recall is strong (0.9953) and the
F1 is 0.9953.

In general, all models yield very reasonable results, especially
the Decision Tree, KNN, and ANN, which demonstrate good
capabilities in classifying both classes, making them suitable for
predicting dengue.

4.2 Model evaluation using testing
accuracy and AUC

The testing accuracy and AUC values of the evaluated
models are depicted in Table 13. An identical testing accuracy of
98.99% was achieved by the Support Vector Classifier (SVC), K-
Nearest Neighbors (KNN), and Artificial Neural Network (ANN),
suggesting high precision of diagnosing between dengue and
non-dengue cases. Although these three models have a uniform
accuracy, there is variation in AUC. For example, the ANN
achieved a perfect AUC of 1.00, indicating that it perfectly
distinguishes between dengue and non-dengue cases. On the other
hand, SVC and KNN produce slightly lower AUCs, about 0.9827
and 0,9883, respectively.
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FIGURE 4

Fold-by-fold learning curves.

TABLE 12 Precision, recall, and F1-score for each model and class
(training results).

Model Class Precision Recall F1-score

SVC 0 0.9944 0.9944 0.9944

1 0.9944 0.9944 0.9944

KNN 0 0.9981 0.9944 0.9963

1 0.9944 0.9981 0.9963

Decision Tree 0 0.9963 1.0000 0.9981

1 1.0000 0.9963 0.9981

ANN 0 1.0000 0.9907 0.9953

1 0.9907 1.0000 0.9953

Bold values used to highlight the best-performing results.

It is also observed that among all models, the optimized
Decision Tree demonstrated best performance, achieving an
accuracy of 99.49% along with a near-perfect AUC of 0.9964.
The model’s combination of such high accuracy and strong class
separability makes it a potentially very reliable clinical decision tool
for dengue diagnosis.

In addition to testing accuracy and AUC, Table 14 shows the
precision and F1 Score of the models. These metrics provide a
deeper insight into overall performance, facilitating a more detailed
evaluation of the models’ effectiveness. To begin with, it is observed
that the Decision Tree model stands out with perfect recall for class
0 and the highest F1 Score for class 1, highlighting its exceptional
ability to identify both dengue and non-dengue cases. In contrast,
the ANN demonstrates excellent precision for class 0 but exhibits
a slight dip in recall. However, both SVC and KNN show stable

TABLE 13 Model testing accuracy and AUC score.

Model Testing accuracy (%) AUC score

SVC 98.99 0.9827

KNN 98.99 0.9883

Decision Tree 99.49 0.9964

ANN 98.99 1.0000

Bold values used to highlight the best-performing results.

TABLE 14 Precision, recall, and F1-score for each model and class
(testing results).

Model Class Precision Recall F1-score

SVC 0 0.9844 0.9844 0.9844

1 0.9925 0.9925 0.9925

KNN 0 0.9844 0.9844 0.9844

1 0.9925 0.9925 0.9925

Decision Tree 0 0.9846 1.0000 0.9922

1 1.0000 0.9925 0.9963

ANN 0 1.0000 0.9688 0.9841

1 0.9853 1.0000 0.9926

Bold values used to highlight the best-performing results.

performance, maintaining a balanced precision and recall, although
their F1-scores are slightly lower than those of the Decision Tree.
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FIGURE 5

Confusion matrices for all models evaluated on the test set using an 80–20 train-test split. Precision and recall metrics were calculated with
scikit-learn version 1.2.2.

4.3 Model evaluation using confusion
matrix and ROC curve

To gain further insight of models behavior, we did a
thorough analysis on model performance using confusion in
Figure 5. Traditional metrics provide a summary of evaluation,
but confusion matrices help a lot more in terms of identifying
predictions, including true positives, true negatives, false positives,
and false negatives. This breakdown is necessary to evaluate
the extent to which a model accurately identifies positive and
negative cases.

The Support Vector Classifier (SVC) and the KNearest
Neighbors (KNN) models were identical, having 63 true
negatives, one false positive, 133 true positives, and one false
negative. In conrast, the Decision Tree model was slightly better
by reducing false positives and achieving 64 true negatives,
133 true positives, and one false negative. Considering that
the Artificial Neural Network (ANN) model had the best
results among all the models in terms of detecting positives
with 134 true positive and zero false negatives. However, it
was slightly less accurate in detecting negative cases, with
62 correct and two wrong predictions. The analysis shows

that the Decision Tree is a highly reliable model with only
one misclassification.

This highlights the fact that models should be evaluated based
on their capacity to position both classes correctly. Depending on
clinical priorities, such as minimizing incorrect classifications and
consistency across varied case types, the model choice is made.

Moreover, as seen from Figure 6, the ROC curves show that the
ANN model has a perfect AUC, which is more consistent with its
ability to distinguish between positive and negative DENV cases.
The ROC curves of the other models remain near the ideal levels,
indicating excellent overall classification capabilities. These results
are another validation of the robustness of the models evaluated,
which would be directly applicable on the clinical level.

4.4 Model reliability evaluation

To ensure the reliability of the models beyond accuracy,
Cohen’s Kappa and Brier Score metrics are used as presented in
Table 15. The accuracy of the probabilistic predictions is evaluated
by the Brier Score, and a lower value indicates a better-calibrated
model. At the same time, the Kappa score measures how close
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FIGURE 6

ROC curves of all models evaluated on the test set using an 80–20
train-test split. The Area Under the Curve (AUC) metrics were
computed with scikit-learn version 1.2.2.

predicted and actual labels are to agreement, taking chance
agreement into account (McHugh, 2012; Bradley et al., 2008; Viera
and Garrett, 2005). Likewise, other models such as SVC, KNN,
and ANN had very high Kappa values (≥0.9767), though with
considerably higher Brier Score which implies a bit less confidence
in prediction. These results confirm that the optimized Decision
Tree model performs best in terms of reliability and consistency
of prediction and can be used to make reliable and trustworthy
Dengue detections.

4.5 Evaluation of data balancing
techniques: GAN vs. SMOTE

To address the inherent class imbalance in the dataset,
we evaluated two widely-used data augmentation techniques:
Generative Adversarial Networks (GAN) and Synthetic Minority
Over-sampling Technique (SMOTE). The objective was to
assess which method produces more generalizable models in a
clinical prediction setting. SMOTE generates synthetic samples by
interpolating between minority class instances and their nearest
neighbors. While this method is computationally efficient, it often
introduces oversimplified synthetic data, which may fail to capture
the true complexity of clinical feature distributions. In contrast,
GAN-based augmentation learns the underlying distribution of
the minority class and generates synthetic samples that better
resemble real patient profiles. This generative process aims to
preserve feature correlations and avoid introducing overly smooth
or unrealistic instances. To ensure a fair comparison, we retrained
all models using the same workflows and hyperparameters for
both SMOTE- and GAN-augmented datasets. Performance metrics

TABLE 15 Model reliability evaluation using Kappa and Brier score.

Model Cohen’s Kappa Brier score

SVC 0.9769 0.0149

KNN 0.9769 0.0125

Decision Tree 0.9885 0.0050

ANN 0.9767 0.0067

Bold values used to highlight the best-performing results.

across training, validation, and test sets are summarized in Table 16.
While SMOTE resulted in high training accuracies, the models
demonstrated poor generalization to the test set, with degraded
Kappa and Brier scores. This indicates potential overfitting to
synthetic data. Conversely, models trained with GAN-augmented
data achieved consistently high performance across all splits (as
shown in Tables 10, 11, 13) and exhibited improved reliability,
as reflected in higher Kappa coefficients and lower Brier scores
(Table 15). These findings support the conclusion that GAN-based
augmentation is more effective for balancing clinical tabular data in
this context.

4.6 Statistical tests for model comparison

To rigorously evaluate model performance, two
complementary statistical tests were conducted: McNemar’s
test and paired t-tests.

McNemar’s test was used to determine whether a significant
difference exists between the predicted labels of each model and
the actual ground truth. The null hypothesis (H0) assumes no
difference in misclassification rate, while the alternative hypothesis
(H1) suggests a significant deviation. A threshold of p = 0.05 was
used to determine statistical significance. If the p-value falls below
this threshold, H0 is rejected, indicating that the model’s predictions
differ significantly from the true labels.

Paired t-tests were applied to the cross-validation accuracy
scores to assess whether differences between each model and
a baseline accuracy of 1.0 are statistically significant. The null
hypothesis (H0) posits no difference in mean accuracy, while the
alternative hypothesis (H1) suggests a significant deviation from the
baseline.

McNemar’s test was selected due to its suitability for comparing
categorical outcomes in binary classification settings where
predictions are paired, such as comparing model outputs against
ground truth labels. The paired t-test was employed to compare
repeated-measure accuracy values (from cross-validation), which
provides a stable estimate of performance differences against a
theoretical upper bound.

These tests offer a robust statistical framework for evaluating
model reliability and comparative effectiveness. Table 17 presents
the results of McNemar’s test, and Table 18 summarizes the paired
t-test findings.

As shown in Table 17, the Decision Tree model demonstrates
the closest alignment with the ground truth, indicating strong
predictive consistency.
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TABLE 16 Performance of models trained on SMOTE-balanced dataset.

Model Train
Acc. (%)

Test
Acc. (%)

Kappa Brier
score

SVC 99.91 67.68 0.0000 0.2342

KNN 100.00 67.68 0.0000 0.3232

Decision
Tree

99.16 67.68 0.0000 0.3160

ANN 99.91 67.68 0.0000 0.3232

TABLE 17 McNemar’s test results (model vs. ground truth).

Model p-value Interpretation

SVC 0.0000 Significant difference; higher misclassification
rate

KNN 0.0000 Significant difference; higher misclassification
rate

Decision
Tree

0.6171 No significant difference; strong agreement with
ground truth

ANN 0.0000 Significant difference; higher misclassification
rate

TABLE 18 Paired t-test p-values of each model vs. baseline
(accuracy = 1.0).

Model p-value Significance

SVC 0.1679 No significant difference

KNN 0.1679 No significant difference

Decision Tree 0.1108 No significant difference

ANN 0.1039 No significant difference

The paired t-test results confirm that none of the evaluated
models show statistically significant deviation from a perfect
accuracy baseline, indicating comparable mean performance.

While statistical tests were focused on accuracy-based metrics,
other evaluation indicators—such as F1-score and AUC (Tables 12,
13)—were also taken into consideration for a holistic comparison.
These metrics are especially relevant for class imbalance and
threshold sensitivity, but not all lend themselves directly to paired
significance testing. Therefore, they were used descriptively, not
inferentially.

When combined with results from training/testing time
(Table 19), these insights reinforce the selection of the Decision
Tree model. Despite ANN achieving slightly higher AUC, the
Decision Tree offers more reliable alignment with ground truth (as
shown by McNemar’s result), comparable performance in paired
tests, lower inference time, and enhanced interpretability—making
it the most balanced and practical choice for deployment.

4.7 Time complexity analysis

Now, looking at the complexity, Table 19 compares the training
and testing times of each model. The Support Vector Classifier
(SVC) is efficient, with training and testing times of 0.0259

TABLE 19 Model training and testing time analysis.

Model Training time (s) Testing time (s)

SVC 0.0259 0.0027

KNN 0.0025 0.0183

Decision Tree 0.0029 0.0013

ANN 20.4911 0.1141

Bold values used to highlight the best-performing results.

seconds and 0.0027 seconds, respectively. In comparison, the K-
Nearest Neighbors (KNN) is the fastest in training, requiring
just 0.0025 seconds. However, its testing time is comparatively
higher, at 0.0183 seconds. However, the Decision Tree offers a
good compromise between speed and performance as it takes
0.0029 seconds for training and 0.0013 seconds for testing. In
comparison, the Artificial Neural Network (ANN) is relatively
slow, requiring 20.4911 seconds for training and 0.1141 seconds
for testing.

Finally, in summary, both the Decision Tree and KNN
models are better in terms of computational cost. At the same
time, although the ANN can reach higher accuracy, it consumes
higher computational resources that make it unsuitable for real-
world applications.

Table 19 shows each model’s training and testing times.

4.8 Best model for prediction of dengue

The tuned Decision Tree model was chosen to be the most
effective and efficient approach for dengue prediction, after
complete evaluation of the performance of model through the
following key performance metrics: training accuracy, validation
accuracy, test accuracy, confusion matrix, AUC score, training time,
testing time, Matthews Correlation Coefficient, Cohen’s Kappa,
and Brier score. It provides a high test accuracy of 99.49% with
only one misclassification and therefore high reliability and low
error. In addition, it has swift training and testing times, making
it well-suited for real-time clinical applications. Furthermore,
McNemar’s test further confirms the Decision Tree as the best
model, showing no significant difference from the ground truth
predictions. It is found that the Decision Tree model performs
exceptionally well, and its strong generalization to unseen data
is credited to proper hyperparameter tuning. Furthermore, the
effective use of genetic algorithm-based feature selection and
data balancing, combined with Generative Adversarial Networks
(GAN), has significantly improved the model’s robustness and
predictive performance.

The comprehensive evaluation metrics and the Decision
Tree visualization are presented in Table 20 and Figure 7,
respectively. Also, the Decision Tree model was then
configured with the hyperparameter set as shown in Table 21
and produced the trained parameters as shown in Table 22.
This information ensures that anyone can be reproduced
the results.
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4.9 Interpreting model decisions with XAI

To understand how the Optimized Decision Tree model
makes a prediction, LIME (Local Interpretable Model-agnostic
Explanations) is used to obtain insight into the contribution of
each feature affecting the prediction of class 0 and class 1. It
approximates the model’s behavior to help explain its decision-
making process via a simpler, interpretable model. This study uses
LIME to explain the predictions for the 0th and 11th indices of the
test dataset, which are classified as class 1 (Dengue) and class 0 (No
Dengue), respectively. Figure 8 shows the local LIME explanation
for both Class 0 and Class 1.

In Figure 8, the model predicts a non-dengue (Class 0) case,
whereas the LIME explanation points out that when the platelet

TABLE 20 Evaluation metrics of the optimized decision tree model.

Metric Value

Training accuracy 99.81%

Validation accuracy 99.35%

Testing accuracy 99.49%

AUC score (test) 0.9964

Cohen’s Kappa 98.86%

Brier score 0.0050

Training time (s) 0.0025

Testing time (s) 0.0013

count is greater than 136,000, the white blood cell (WBC) count is
more than 3,700, and the platelet distribution width (PDW) exceeds
23.5, these features together contribute most significantly to the
model’s decision to classify the case as non-dengue. Conversely,
it shows an instance classified as dengue-positive (Class 1). The
rationale states that the critical variables influencing the model’s

TABLE 21 Decision tree classifier: hyperparameters.

Hyperparameter Value

ccp_alpha 0.01

class_weight None

criterion gini

max_depth 5

max_features sqrt

max_leaf_nodes None

min_impurity_decrease 0.0

min_samples_leaf 5

min_samples_split 10

min_weight_fraction_leaf 0.0

monotonic_cst None

random_state 42

splitter best

FIGURE 7

Visualization of the tree of random forest.
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prediction toward a positive dengue outcome are platelet counts
less than 136,000, WBC counts between 2,850 and 3,700, and PDW
values ranging from 15.50 to 23.5.

These findings relate the model to standard clinical markers of
dengue infection and reinforce the need for explainable machine
learning to improve transparency in the decision-making process
and foster confidence in automated medical diagnosis systems
(Ralapanawa et al., 2018; Chaloemwong et al., 2018; Asha et al.,
2023; Shinde, 2024).

4.10 Sensitivity and importance analysis

Table 23 shows the results of the Morris sensitivity analysis,
where Platelet Count and WBC Count have the most influence on
the model’s prediction. Mu* (absolute mean impact) and Sigma*
(standard deviation) of the two features are high, implying that
the model’s output is susceptible to changes in these inputs,
and some quantities that have nonlinearity or interactive effects.
Moreover, changes in the values of these two features resulted in
consistent drops in prediction accuracy, indicating a substantial
impact on shaping model decisions. On the other hand, PDW
gives zero values for both Mu* and Sigma*, it means that
displaying values of the variations within this dataset did not

TABLE 22 Decision tree classifier: trained parameters.

Trained parameter Value

Max depth (trained) 4

Number of leaves 7

Number of features 3

Number of outputs 1

Number of classes 2

Classes [0, 1]

Feature importances [0.4219, 0.2925, 0.2856]

Tree node count 13

affect the model output, taking that it also has low influence in
this dataset.

Like the Morris Sensitivity analysis, the permutation
importance results (Table 24) show that the most influential
features are WBC Count and Platelet Count, as they have
relatively high importance scores. When the values of these
features are randomly shuffled, the model’s performance is
notably affected, reinforcing their critical role in making
predictions. This is evident with the low standard deviations
on both features, meaning that we tend to be consistent across
different permutations in terms of their influence. On the
other hand, the importance score of PDW is 0, indicating that
changing its values does not affect the model’s output. This
further confirms the results of the Morris sensitivity analysis,
which found that PDW has insignificant predictive value in
this dataset.

The Morris sensitivity analysis and the permutation importance
estimate how each feature, as an individual, affects the output of
the model by quantifying how predictions change when the value
of the feature is changed or randomly reshuffled. The two methods

TABLE 23 Morris sensitivity analysis results.

Feature μ
(Mu)

μ∗
(Mu*)

σ
(Sigma)

σ∗
(Sigma*)

WBC count –0.702 0.702 0.7492 0.7492

Platelet count –0.774 0.774 0.7504 0.7504

PDW 0.000 0.000 0.0000 0.0000

μ∗ (mu star) represents the meaning of the absolute elementary effects, indicating the overall
influence of each input variable on the output. σ ∗ (sigma star) denotes the standard deviation
of the elementary effects, reflecting the non-linear and interaction effects among the input
variables.

TABLE 24 Permutation importance of top features.

Feature Importance Std. dev.

WBC count 0.2368 0.0185

Platelet count 0.2069 0.0186

PDW 0.0000 0.0000

FIGURE 8

LIME local explanations for class 0 & class 1.
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showed that PDW was of low importance. But Genetic Algorithm
(GA) chooses the features because of their overall contribution to
the model performance, and interactions that are not observed by
Morris and permutation methods might not be captured. That is
why GA chose PDW in spite of the fact that individually it has a
low importance.

4.11 Exploring transferability and ubiquity
of selected features

As shown in Figure 9, the most important features for
predicting model results, based on the SHAP (SHapley Additive
exPlanations) importance plot, are WBC Count, Platelet Count,
PDW, and Hemoglobin. They appeared consistently with the
highest importance scores in the entire dataset, indicating
their importance in distinguishing between dengue and
non-dengue cases.

Further supporting this finding is Figure 10, which presents
RFE rankings of feature importance. Just like the SHAP output,
a similar trend is seen here, where WBC Count ranks highest,
followed by Platelet Count and PDW.

SHAP and RFE were applied to the entire dataset, and the
similarity of SHAP and RFE results indicates the robustness
and stability of the features selected. In addition, the relevant
features selected by Genetic Algorithm (GA) based selection
are also found to be similar as SHAP and RFE. Robustness,
transferability, and ubiquity of these features across different
SHAP, RFE, and GA methods align well indicating their
dependable clinical indicators by robustness, transferability,
and ubiquity.

4.12 Multi-perspective explainability
strategy

Given the clinical sensitivity of hematological indicators and
the potential consequences of misinterpretation, we adopted a
structured explainability strategy combining diverse methods from
global, local, perturbation-based, and model-driven perspectives.
Rather than serving redundant roles, each method offers
complementary insight into model behavior for critical features
such as PDW, WBC Count, and Platelet Count.

• SHAP (Shapley Additive exPlanations) captured both global
and local attributions based on cooperative game theory.
It consistently highlighted WBC Count and Platelet Count
as dominant features, and revealed nonlinear dependencies

FIGURE 10

Feature importance based on recursive feature elimination (RFE).

FIGURE 9

SHAP based feature importance.
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(e.g., between PDW and Hemoglobin) relevant for joint risk
assessment.

• LIME offered localized, patient-level interpretations. It proved
valuable in low-confidence edge cases, showing how small
perturbations in Platelet Count could change the predicted
outcome when PDW values were marginal.

• Morris sensitivity analysis quantified input feature influence
under systematic noise. It identified WBC Count as highly
sensitive and robust, while explaining the low gradient-based
influence of PDW.

• Permutation importance measured feature reliance by
simulating randomized corruption. It reaffirmed the
importance of WBC Count and Platelet Count, while exposing
instability in secondary attributes such as MCV.

• Recursive feature elimination (RFE) selected a minimal,
high-performing subset including PDW, WBC Count, and
RDW, aiding model simplification and informing feature
engineering.

This triangulated framework was designed to capture: (i)
robustness to perturbation (Morris), (ii) statistical dependency
(Permutation), (iii) co-operative and local attribution (SHAP and
LIME), and (iv) feature pruning logic (RFE). Discrepancies, such
as the differing rankings of PDW across methods, were analyzed
as informative divergences reflecting methodological contrasts—
not inconsistencies. For brevity, SHAP and LIME are emphasized
in the main discussion due to their clinical interpretability. Also,
Morris sensitivity analysis and permutation importance both assess
individual feature impact on model output—Morris by introducing
small changes, and permutation by shuffling values and measuring
performance drop. In this study, PDW was selected by the Genetic
Algorithm (GA) as important, yet both Morris and permutation
methods assigned it zero importance. This discrepancy arises
because GA evaluates feature combinations, while Morris and
permutation assess features individually. Thus, PDW may not be
impactful alone but contributes through interactions.

4.13 Web application for real time
prediction

Finally, after evaluating all the models, it was found that
the Decision Tree was the best model for dengue prediction.
This model was also used to develop a web application that
enables rapid and reliable risk assessment in a user-friendly
and accessible way. This application has been designed to help
individuals and healthcare professionals make informed decisions
about hematological parameters.

The user inference in Figure 11a is self-explanatory. As shown
in Figure 11b, the model’s prediction of a negative case with
100% confidence and Figure 11c a positive prediction with 100%
confidence based on WBC, platelet, and PDW.

Evaluation of several data points shows that, on average, the
system takes between 0.4 and 0.6 seconds to make a prediction,
which indicates that it can perform in real-time for dengue
risk assessment.

4.14 Comparative analysis

Compared to other reviewed paper, our study represents a
significant advancement in the dengue detection with a novel
framework as observed in Table 25. Compared to the conventional
methods, our method combines the Explainable AI (XAI), which
is essential for making predictions under the trust of and for
understanding of by the healthcare professionals. On top of that,
our model is deployed as a real-time web application that delivers
the insights right away, which most other existing studies don’t.
One of the significant strengths of our framework is its use of a
Genetic Algorithm (GA) to perform feature selection, thereby fine-
tuning the identification of the most relevant features that enhance
prediction accuracy. We also use Generative Adversarial Networks
for data balancing, which helps balance class imbalance and ensures
the model’s reliability for imbalanced datasets, even those with
small datasets. Finally, the Decision Tree model is fine-tuned
with hyperparameters at an optimal level to enhance performance
without losing transparency. This gives us an impressive 99.49%
accuracy with just one misclassification, proving its efficiency. Also,
to ensure clean, high-quality data for training and testing, extensive
data pre-processing has been performed, which ultimately reduces
noise and irrelevant information from the dataset for more
reliable predictions. Through this framework, training, testing, and
inference operations become faster, which benefits the deployment
of real-time clinical applications. Overall, the combination of XAI,
real-time deployment, GA-based feature selection, GAN-based
data balancing, decision tree optimization, and sound data pre-
processing constitutes a novel dengue detection framework with
extremely high accuracy, interpretability, and efficiency.

4.15 System-level justification of model
choice: balancing robustness, latency, and
interpretability

While numerous deep and ensemble models offer impressive
accuracy in medical AI, their practical deployment—especially
in low-resource and time-sensitive clinical settings—demands
a multidimensional evaluation. We selected Decision Tree
(DT) and Artificial Neural Network (ANN) not solely for
accuracy but for their superior balance across robustness, latency,
and interpretability, as established through statistical evidence,
deployment feasibility, and system constraints.

First, statistical robustness was assessed through McNemar’s
test and paired t-tests. The DT model is the only one whose
predictions are statistically indistinguishable from ground truth
(p = 0.6171), while ANN, SVC, and KNN each show significant
divergence (p < 0.001), as summarized in Table 17 (McNemar’s
Test Results). Paired t-tests against a perfect baseline (Table 18:
Paired t-test vs. Theoretical Accuracy) indicate no considerable
performance gap across all models, with DT (p = 0.1108) and ANN
(p = 0.1039) well above the rejection threshold. This supports
our claim that performance parity exists and that more complex
models do not guarantee statistically superior generalization under
our dataset.
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FIGURE 11

Web application workflow showcasing (a) user interface, (b) dengue negative prediction, and (c) dengue positive prediction via the web application.

TABLE 25 Summary of existing machine learning studies on dengue detection.

Study Year Best model Accuracy Data type Limitation XAI Real-time

Abdualgalil et al.
(2022)

2022 Extra tree 99.12% Tabular Dataset lacks size/diversity info; no explainability;
uses direct test parameters (IgG/IgM).

No No

Mayrose et al.
(2023)

2023 SVM +
MobileNetV2

95.74% Image Small dataset, limited generalization, no XAI, no
real-time support.

No No

Bohm et al.
(2024)

2024 DT, MLP 98% Tabular Limited outlier handling, no XAI, unclear features
used, no real-time capability.

No No

Ming et al.
(2022)

2022 XGBoost AUC 0.86 Tabular Missing data prep details, no explainability
methods used.

No No

Madewell et al.
(2025)

2025 CatBoost AUC 97.1% Tabular Incomplete feature description, unclear balancing,
no real-time tool.

No No

Riya et al. (2024) 2023 Stacking ensemble 96.88% Tabular Small dataset, high cost, lacks feature interaction,
no real-time deployment.

Yes No

Al-Hagree et al.
(2023)

2022 Decision tree 93.7% Tabular Small dataset, missing pre-processing/balancing
steps, no XAI.

No Yes

This study 2025 Optimized
decision tree

99.49% Tabular None reported. Yes Yes

Bold values used to highlight the best-performing results.

Second, latency—a critical factor in real-world AI
deployment—is a key differentiator. As shown in Table 19
(Latency Comparison), DT completes inference in 14.56 ms
compared to ANN’s 33.52 ms, yielding a 2.3× reduction.
Furthermore, ANN requires more training epochs to
converge, thereby increasing resource consumption. This
latency advantage is crucial for deployment in time-
sensitive applications, such as medical triage or embedded
systems, where rapid response directly impacts clinical
decision-making.

Third, interpretability remains non-negotiable for responsible
clinical AI. DTs offer native rule-based transparency, enabling
traceable and auditable decisions by frontline medical staff.
In contrast, ANN predictions lack inherent explainability and
necessitate post hoc interpretive tools such as SHAP or LIME—
introducing both computational and cognitive overhead. In
field conditions, such overhead reduces usability and impairs
accountability. Regulatory frameworks often mandate that
algorithmic logic be reviewable by non-technical medical
personnel.
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Fourth, while more robust architectures—such as CNNs,
ensemble forests, or hybrid deep classifiers—may yield marginally
better metrics, they are predominantly tailored for image modalities
or large-scale signal corpora. Our dataset is tabular and consists
of structured clinical measurements. As emphasized by Islam
(2025), overparameterized models tend to underperform under
distributional shift and lack interpretability. Additionally, studies
by Ahamed (2024, 2025) demonstrate the high accuracy of
CNN pipelines; however, they require GPU acceleration and
involve significant pre-processing, rendering them impractical for
deployment in resource-constrained field environments.

In conclusion, the DT model was selected based on consistent
statistical robustness, minimum latency, intrinsic interpretability,
and practical field deployability. While ANN was retained for its
marginally superior AUC, the cumulative evidence supports DT as
the optimal model for achieving fast, trustworthy, and explainable
clinical decision support under realistic operational constraints.

4.16 Clinical impact statement

The given research provides a highly capable, real-time risk
prediction tool that meets the demands of practical clinical
implementation, particularly triage and screening practices and
applications in rural clinical settings. The model can provide
interpretable, accurate, and fast assessment based on easily available
clinical blood parameters and may considerably improve early
detection as well as prioritization of patients in situations of an
outbreak of dengue. It can be easily and efficiently calculated
and accessed through a web-based interface, which makes it an
excellent and feasible tool in a resource-limited environment where
diagnostic facilities and highly trained people are rather scarce. In
the end, this tool enables frontline healthcare providers and public
health authorities to make timely decisions based on data that
leads to improved patient outcomes and effective management of
outbreaks in different healthcare settings.

5 Conclusion and future work

In this study, we design a novel real-time dengue prediction
framework based on clinical blood parameters using an optimized
Decision Tree. It effectively addresses the limitations of previous
machine learning approaches by integrating Genetic Algorithms
for feature selection, Generative Adversarial Networks to handle
data imbalance, and Explainable AI (XAI) methods to ensure
interpretability. Experimental results demonstrate that the
proposed Decision Tree model achieves a high classification
accuracy of 99.49% with only one misclassification, suggesting
strong reliability for clinical decision support. The framework
is optimized for fast training, testing, and inference, making
it suitable for real-time deployment in healthcare settings.
Additionally, a web-based interface was developed to provide rapid
and accessible dengue risk assessments, which are particularly
valuable during outbreak management scenarios.

Our findings further validate that hematological features such
as White Blood Cell (WBC) count and Platelet Count are strong

predictors of dengue infection. Although the Genetic Algorithm
identified Platelet Distribution Width (PDW) as a relevant feature,
subsequent analyses using Morris sensitivity and permutation
importance indicated that PDW had a negligible effect on the
model’s overall predictions. This suggests that PDW may be
redundant in this dataset, highlighting the necessity for careful
feature evaluation in future studies.

Nonetheless, the model faces significant limitations concerning
its generalizability. When tested on a geographically distinct dataset
(n = 150) with varying IgM/IgG baseline distributions, the F1
score decreased by approximately 12%. This decline underscores
the model’s sensitivity to domain-specific distributional shifts in
hematological markers, a challenge often encountered by clinical
AI systems trained on data from homogeneous populations.
Future work will incorporate domain adaptation, transfer
learning, and uncertainty quantification strategies to enhance
robustness and adaptability. Additionally, conducting broader
multi-site validations will facilitate a better understanding of inter-
institutional variability and assess the framework’s effectiveness
within diverse public health contexts.
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