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Redefining digital health
interfaces with large language
models

Fergus Imrie1*, Paulius Rauba2 and Mihaela van der Schaar2*
1Department of Statistics, University of Oxford, Oxford, United Kingdom, 2Department of Applied
Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Digital health tools have the potential to significantly improve the delivery of
healthcare services. However, their adoption remains comparatively limited due,
in part, to challenges surrounding usability and trust. Large Language Models
(LLMs) have emerged as general-purpose models with the ability to process
complex information and produce human-quality text, presenting a wealth of
potential applications in healthcare. Directly applying LLMs in clinical settings is
not straightforward, however, as LLMs are susceptible to providing inconsistent
or nonsensical answers. We demonstrate how LLM-based systems, with LLMs
acting as agents, can utilize external tools and provide a novel interface between
clinicians and digital technologies. This enhances the utility and practical impact
of digital healthcare tools and AI models while addressing current issues with
using LLMs in clinical settings, such as hallucinations. We illustrate LLM-based
interfaces with examples of cardiovascular disease and stroke risk prediction,
quantitatively assessing their performance and highlighting the benefit compared
to traditional interfaces for digital tools.
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1 Introduction

Digital healthcare technologies represent a frontier in medicine. Despite a multitude
of tools being developed (Sutton et al., 2020; Dunn et al., 2018), clinical adoption of such
methods faces significant hurdles (Eichler et al., 2007; Mathews et al., 2019), with some
even calling their use “infeasible” (Müller-Riemenschneider et al., 2010) and “substantially
conceptual” (Abernethy et al., 2022). A key issue is usability (Ratwani et al., 2019), which
can result in errors associated with patient harm (Howe et al., 2018) and contribute to
clinician frustration, jeopardizing patient safety (Shanafelt et al., 2016; Gardner et al., 2019).
New tools employing artificial intelligence (AI) and machine learning offer substantial
promise, with their impact expected to be felt across all areas of healthcare (Bajwa et al.,
2021). However, these approaches face the same usability challenges as existing digital
tools, while introducing additional questions about model trust (Rajpurkar et al., 2022;
Asan et al., 2020). Consequently, these issues have limited the uptake and impact of AI
technologies in clinical settings thus far (Goldfarb and Teodoridis, 2022; Davenport and
Kalakota, 2019; Kelly et al., 2019).

Several approaches have sought to simplify or automate the process of obtaining
predictions from clinical predictive models to improve their usability. These include
points-based scoring systems (Gage et al., 2001), web-based calculators (Hippisley-Cox
et al., 2017; Imrie et al., 2023a), and integration within electronic health records (Rothman
et al., 2013). While this can make such tools easier to use, simply obtaining a prediction is
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frequently insufficient and more is required to build model trust
with clinicians (Rajpurkar et al., 2022) and regulators (Food and
Drug Administration and others, 2019; Mourby et al., 2021). For
example, dynamic interactions in the form of natural language
dialogues that can adapt to the specific needs of individual
clinicians and patients have been identified as a key feature
for effectively deploying machine learning models in healthcare
(Lakkaraju et al., 2022).

Large Language Models (LLMs) offer a potential solution
to the challenges faced by digital tools. LLMs have recently
captured the imagination of both the research community and
the general public, pushing the boundaries of human-machine
interaction. Consequently, there is great interest in applying LLMs
in healthcare, with potential applications including facilitating
clinical documentation, summarizing research papers, or as a
chatbot for patients (Moor et al., 2023).

Applying LLMs in safety-critical clinical settings is not
straightforward. LLMs may provide inconsistent or nonsensical
answers (Singhal et al., 2023; Lecler et al., 2023) and have a
tendency to hallucinate facts (Maynez et al., 2020; Ji et al., 2023),
which is unacceptable when making high-stakes clinical decisions.
Additionally, LLMs can encounter difficulty with seemingly basic
functionality, such as mathematical calculations or factual lookup
(Patel et al., 2021; Schick et al., 2023), and are unable to
access up-to-date information by default (Komeili et al., 2022).
These limitations constrain the utility of directly applying LLMs
in medicine.

In this paper, we explore a new application of LLMs in
healthcare by proposing their use as facilitators of clinician
interactions with AI models and digital tools. We construct LLM-
based systems that provide intuitive natural language interfaces.
These systems enable dynamic, adaptable dialogues that cater to the
specific needs of clinicians and patients. This addresses limitations
of existing pre-specified interfaces in healthcare and conceptually
differs from previous applications of LLMs in healthcare, such

FIGURE 1

Clinicians have previously needed to interact directly with digital tools, such as risk scores. While others have discussed LLMs replacing existing
clinical tools (1, 2), we envisage LLMs forming a novel interface by enabling dynamic interactions and facilitating deeper engagement with tools and
related information, such as explainability, medical papers, and clinical guidelines (3).

as training medicine-specific LLMs (Luo et al., 2022; Yang et al.,
2022) or using LLMs for prediction (Li et al., 2020; Steinberg
et al., 2021; Jiang et al., 2023). The ability of our LLM-based
approach to adapt and tailor interactions represents a significant
advance in the functionality of such tools, improving efficiency and
usability (Figure 1).

We first describe our approach. LLMs do not inherently possess
the ability to access external tools or information. We propose
augmenting the base functionality of LLMs to enable them to
access approved medical tools and other sources of information,
thereby not solely relying on the inherent capabilities of a given
LLM and using the LLM as an agent. Our framework is scalable
to multiple predictive models, unifying digital tools within a
single, natural language-based interface. By adopting a systems
approach, the LLM does not itself issue predictions and can
access relevant domain-specific information, rather than needing
to possess specific knowledge. Consequently, the potential for
hallucinations is reduced and we ensure actionable information is
provided by approved clinical sources.

To demonstrate our approach, we examine risk scoring
and primarily consider cardiovascular disease (CVD), the most
common cause of mortality globally (Muthiah et al., 2022).
Primary prevention programs use prognostic models, such as
the Framingham score (D’Agostino et al., 2008) in the United
States, SCORE2 (SCORE2 working group and ESC Cardiovascular
risk collaboration, 2021) in Europe, and QRisk3 (Hippisley-Cox
et al., 2017) in the UK, to estimate the risk of developing CVD.
This allows high-risk individuals to be identified and their risk
to be managed via interventions, such as lifestyle modifications
or pharmaceuticals. We construct two LLM-based systems for
interacting with CVD risk scores and accessing related information
based on a traditional risk score and a machine learning model.
We additionally construct a LLM-based system for interacting with
the CHA2DS2-VASc score (Lip et al., 2010) that assesses stroke risk
in patients with atrial fibrillation. We then quantitatively validate
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FIGURE 2

Overview of our LLM-based system that enables clinicians to interface with digital tools using natural language inputs. (1) The LLM is provided with
the history of the interaction, including the current request. (2) Using an iterative reasoning process, the LLM decides which, if any, tools are required
and with what input. (3) The LLM provides a response to the user incorporating information provided by any tools that were used.

the effectiveness of our LLM-based approach on two diverse sets
of questions, each comprising over 100 questions that cover 11
representative scenarios across various stages of risk estimation.
Finally, we provide several examples of dynamic interactions that
substantially extend the capabilities of existing fixed interfaces to
illustrate the potential impact of our proposed approach.

2 Methods

2.1 LLM-based interfaces

In this section, we describe our LLM-based system
incorporating digital health tools. While LLMs are powerful
models for natural language processing, they inherently lack
the functionality to utilize external tools or access additional
information. Methods to extend LLMs beyond text generation
are in their infancy but can already be used to significantly
expand the capabilities of LLMs (Schick et al., 2023; Nakano et al.,
2021). Instead of using an LLM to issue predictions or provide
information directly, we developed an LLM-based system unifying
numerous external tools, sources of information, and clinical data
within a single, natural language-based interface (Figure 2).

2.1.1 LLM framework
By default, LLMs provide responses in the form of text based on

the provided context, such as a prompt or conversation history. To
construct interfaces for digital tools using LLMs, we instead viewed
the LLM as an agent that can interact with an environment to solve

tasks. Formally, at each step t ∈ T, the agent receives observation
ot ∈ O from the environment and subsequently takes action at ∈ A
according to policy π(at|ht), where ht = (o0, a0, . . . , ot−1, at−1, ot)
is the history. To enable the agent to both reason and use external
tools, we used the ReAct framework (Yao et al., 2023) which
decomposes the action space as Â = A∪L, where a ∈ A are actions
using specific tools and an action a ∈ L represents not using an
external tool but instead allows the model to reason over the history
about what action to take next.

Since we will provide the agents with tasks in the form
of natural language, and actions in the language space L are
(essentially) infinite, we chose to benefit from strong language
priors and use a pretrained LLM. To demonstrate the versatility
of our approach, we implemented our LLM-based interfaces using
off-the-shelf pretrained LLMs, specifically GPT-4 (OpenAI, 2023)
and GPT-4o (OpenAI, 2024). Interactions with external tools were
implemented using LangChain (Chase, 2022).

Frameworks such as Toolformer (Schick et al., 2023) and
WebGPT (Nakano et al., 2021) trained LLMs to use basic
tools, such as calculators, calendars, and search engines, via self-
supervised fine-tuning and fine-tuning using behavior cloning and
reinforcement learning, respectively. In contrast, following ReAct
(Yao et al., 2023), we employed in-context learning (Dong et al.,
2024) in the form of prompting, providing the LLM with sufficient
information about possible actions and using the underlying
reasoning capabilities of the LLM. For each tool that the LLM is able
to use, a short description of the tool, application scenarios, and the
input and output formats are provided as text. We did not perform
any prompt optimization. Using in-context learning removes the
need for further training of the LLM, which might be challenging in
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the medical domain without suitable examples, and readily enables
multiple tools to be used and new tools to be added, unlike other
frameworks (Schick et al., 2023), ensuring the approach is flexible
and extendable.

Interactions with the LLM-based system are via a simple
text-based entry and responses can be both text and images,
depending on the tool used, with user interfaces built using
StreamLit (Streamlit, n.d). Additionally, we implemented a
“source” functionality that allows the user to see whether the LLM
used a tool or accessed specific information and, if so, which tool
and with what input. This helps avoid hallucinations since it enables
verification that the information was issued by an underlying
clinical tool or source rather than being generated by the LLM.

2.1.2 External tools
We constructed two illustrative LLM-based systems for

cardiovascular disease risk scores: one for an existing clinical
risk score, QRisk3 (Hippisley-Cox et al., 2017), and another for
a machine learning-based risk score. We also constructed an
LLM-based system for interacting with the CHA2DS2-VASc score
(Lip et al., 2010) that assesses stroke risk in patients with atrial
fibrillation. Below, we describe the external tools and sources of
information made available to the LLM in each case.

2.1.2.1 QRisk3 interface
In our first instantiation of an LLM-based system, we show how

LLMs can incorporate existing tools and information for CVD risk
prediction. We provided the LLM access to QRisk3 (Hippisley-Cox
et al., 2017), a risk prediction tool that assesses the likelihood of
developing CVD within 10 years. We enabled the LLM to use the
risk score either with the provided data or, if requested by the user,
to modify a variable and assess the impact of such a change on
the patient’s risk. Additionally, we provided the LLM with access to
the academic paper describing QRisk3 (Hippisley-Cox et al., 2017)
and the National Institute for Health and Care Excellence (NICE)
clinical guidelines for CVD (National Institute for Health and Care
Excellence, 2014).

2.1.2.2 AutoPrognosis interface
In our second example of an LLM-based system, we equipped

the LLM with a CVD risk prediction model developed using
AutoPrognosis 2.0 (Imrie et al., 2023a). To help build model trust,
a critical step for clinical prognosis models (Rajpurkar et al., 2022;
Asan et al., 2020), we enabled the LLM to use explainable AI (XAI)
methods (Imrie et al., 2023b) on the underlying model, allowing
users to investigate the rationale for predictions, both in general
and for the specific patient. In particular, we used SHAP (Lundberg
and Lee, 2017) to interpret model predictions. We additionally
provided the LLM with a document containing information about
the variables used by the risk score, the underlying methodology
and how the model was constructed, and details regarding the
cohort used to develop the model.

2.1.2.3 CHA2DS2-VASc interface
Finally, we constructed an LLM-based system for a different

risk prediction problem: stroke risk in patients with atrial
fibrillation. We provided the LLM access to CHA2DS2-VASc (Lip

TABLE 1 Representative questions that a clinician might have relating to
a risk score at different stages of a patient encounter, together with
whether existing interfaces for risk scores provide this information.

Stage Representative questions Existing
interfaces

Before Which features does the risk score use? ×

Patient Why are these features included in the risk
score?

×

Encounter How was the risk score validated? ×

What is the methodology underlying the
risk score?

×

Before risk When do clinical guidelines recommend
risk scoring?

×

Scoring What is the recommended risk score? ×

Who is the risk score suitable for? ×

During risk What is the risk for this patient? �

Scoring What characteristics led to the patient’s
risk?

×

What effect would changing this feature
have on the risk?

×

After risk
scoring

What action is recommended by the
guidelines based on the risk?

×

All questions can be addressed using LLM-based interfaces.

et al., 2010), a rules-based score that assesses the annual risk of
stroke and thromboembolism in patients with atrial fibrillation. As
above, we enabled the LLM to use the risk score either with the
provided data or, if requested by the user, to modify a variable
and assess the impact on the score. Additionally, we provided the
LLM with the academic paper describing CHA2DS2-VASc (Lip
et al., 2010) and the NICE clinical guidelines for atrial fibrillation
(National Institute for Health and Care Excellence, 2021).

2.2 Quantitative assessment of LLM-based
systems

Clinicians and medical practitioners are faced with a multitude
of questions when using risk scores beyond simply obtaining the
risk for a given patient. Currently, existing interfaces primarily (and
often only) enable the patient’s risk to be calculated. To quantify
the extent to which LLM-based interfaces with access to external
information and tools could benefit risk estimation, we detailed 11
representative questions covering four distinct stages of a patient
encounter (Table 1).

The first stage is before any patient encounter to enable
healthcare practitioners to better understand a particular risk
score. This includes understanding which clinical variables are
used, how the risk score was developed, and for what patient
population the risk score is applicable. This is also an area where
the inherent knowledge LLMs possess can prove beneficial beyond
simply facilitating information retrieval; for example, if the user was
not familiar with a particular modeling approach, they could ask
the LLM for more details. Second, before conducting risk scoring,
clinicians must understand when and for whom the guidelines
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recommend risk scoring, as well as which score to use. Third,
beyond just receiving the output from a risk score, the clinician
or patient might want to better understand the rationale for the
prediction or the impact of specific features on the predicted risk.
Lastly, after receiving a risk estimate, the healthcare professional
and patient need to know what possible actions are recommended
by the guidelines given the output of the risk score.

To quantitatively assess the performance of LLM-based
systems and demonstrate their suitability to be deployed in such
scenarios, we created a set of 127 specific questions across the
11 representative questions for CVD and 106 questions for the
atrial fibrillation scenario. Unless otherwise stated, each question
was asked once to each LLM or LLM-based system. Responses
were assessed according to a specific set of criteria for each
question and were also checked for hallucinations. Responses
that correctly answered the question with no hallucinations were
deemed successful.

A key component of the proposed LLM-based system is the
ability to access external information and tools. Thus, in addition
to assessing our LLM-based system, we posed the same questions
to a standalone LLM. We chose to compare to the same LLMs
that we used to implement our LLM-based systems, and thus any
differences are being driven specifically by the ability to query and
interact with external tools and sources of information. For a full
list of all questions and responses for each system considered, see
Code and Data Availability.

3 Results

In this section, we first quantitatively evaluate our LLM-based
systems and then provide multiple examples that demonstrate how
such systems can provide a novel interface for digital health tools,
in particular clinical risk scores.

3.1 Performance of LLM-based interfaces

We compared our LLM-based systems, which enable the use
of tools and can access external information, with LLMs without
such capabilities. Our LLM-based systems that use external tools
and sources of information each successfully answered all but
one question across 127 questions encompassing 11 representative
situations in CVD risk prediction, achieving an overall success
rate of over 99% (Table 2, Supplementary Table S1), and correctly
answered 104 of 106 questions in stroke risk prediction in atrial
fibrillation patients (98%, Supplementary Table S2). In comparison,
the standalone LLMs answered around half the questions correctly
in the CVD risk prediction scenario (GPT-4: 44%, GPT-4o: 50%)
and 79 of 106 questions correctly in the atrial fibrillation scenario
(75%). This demonstrates the importance of external functionality
and information beyond the base LLM.

In the remainder of this section, we focus our analysis
on the LLM-based system for CVD risk prediction using
GPT-4 as the underlying LLM. However, similar trends were
observed in each scenario. Our LLM-based system was able
to cope equally well with all types of questions (Table 2),
while there was significant variability in the performance

TABLE 2 Performance of LLM-based interfaces using GPT-4 for CVD risk
prediction.

Representative
questions

GPT-4 Ours

Q1 Which features does the risk score
use?

0/10 (0.0%) 10/10 (100%)

Q2 Why are these features included in
the risk score?

20/21 (95.2%) 21/21 (100%)

Q3 How was the risk score validated? 5/10 (50.0%) 9/10 (90.0%)

Q4 What is the methodology
underlying the risk score?

5/10 (50.0%) 10/10 (100%)

Q5 When do clinical guidelines
recommend risk scoring?

0/10 (0.0%) 10/10 (100%)

Q6 What is the recommended risk
score?

10/10 (100%) 10/10 (100%)

Q7 Who is the risk score suitable for? 6/10 (60.0%) 10/10 (100%)

Q8 What is the risk for this patient? 0/10 (0.0%) 10/10 (100%)

Q9 What characteristics led to the
patient’s risk?

0/10 (0.0%) 10/10 (100%)

Q10 What effect would changing this
feature have on the risk?

0/10 (0.0%) 10/10 (100%)

Q11 What is recommended by the
guidelines based on the risk?

10/16 (62.5%) 16/16 (100%)

Overall 56/127
(44.1%)

126/127
(99.2%)

Across a varied set of questions, our LLM-based system (Ours) significantly outperformed the
same LLM used in a standalone manner (GPT-4). For each representative question, we report
the number of successes and questions, as well as the success rate.

of the standalone GPT-4 model, which performed well on
questions that required more straightforward or general
answers (e.g. Q2, Q6), significantly less well on questions
that required more detailed or nuanced answers (e.g. Q1, Q3,
Q4, Q11), and could not answer questions that require external
tools (i.e. Q8, Q9, Q10). Three example responses for each
approach illustrating some of these differences are provided
in Figure 3.

Most failures of the standalone LLM that were not a direct
consequence of an inability to use tools fell into one of the
following classes: (1) hallucinating specific factual information,
(2) an inability to access up-to-date information due to a fixed
knowledge cutoff, and (3) a lack of deeper understanding in
nuanced situations.

Hallucinations are a significant barrier to the successful
adoption of LLMs in medicine, degrading performance and
creating substantial safety concerns (Ji et al., 2023). Our findings
suggest that enabling LLMs to access external data reduces the
risk of hallucination. In our experiments, we did not find evidence
of our LLM-based system hallucinating in any response, while
the standalone LLM suffered from frequent hallucinations across
multiple questions.

This is exemplified by Question 1, which requires the LLMs to
provide a list of the 21 features used in QRisk3. In all responses, our
LLM-based system with access to the QRisk3 publication correctly
provided the exact features used. In contrast, while GPT-4 typically
provided around 20 of the correct features, in all instances at least
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FIGURE 3

Example responses from GPT-4 and our LLM-based system. Responses highlighted in red contain inaccuracies; those in green are correct.

one feature was omitted and in nine of ten cases features were
hallucinated. These errors ranged from more subtle, for example
including HIV or AIDS status, which was considered as input for

QRisk3 but ultimately not included Hippisley-Cox et al. (2017),
to features not mentioned in the QRisk3 paper, such as polycystic
ovary syndrome, postpartum psychosis, and asthma.
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Similarly, in responses to Questions 3 and 4, GPT-4 often failed
to provide specific details or hallucinated, while our LLM-based
system was able to extract the relevant details from the provided
information. As an example, when asked which metrics were used
to assess QRisk3, our LLM-based system correctly provided the
four metrics used, while GPT-4 did not specify how calibration
was measured, suggested an incorrect discrimination metric, and
erroneously claimed two other metrics were calculated (Figure 3).

The second significant limitation to using fixed LLMs without
access to external knowledge is an inherent knowledge cutoff. This
is most clearly demonstrated by Question 5, which asked when
the NICE Clinical Guidelines (National Institute for Health and
Care Excellence, 2014) recommend risk scoring. Before May 2023,
the NICE Clinical Guidelines specified that “People older than 40
should have their estimate of CVD risk reviewed on an ongoing
basis” and “Use the QRISK2 risk assessment tool to assess CVD
risk for the primary prevention of CVD in people up to and
including age 84 years.” In May 2023, the NICE Clinical Guidelines
were updated, specifying to “Use the QRisk3 tool to calculate the
estimated CVD risk within the next 10 years for people aged
between 25 and 84 without CVD” and “Review estimates of CVD
risk on an ongoing basis for people over 40.”

GPT-4, which has a knowledge cutoff of April 2023, consistently
responded that the guidelines recommended risk scoring only in
adults aged 40–84. Our LLM-based system, despite employing
GPT-4 as the underlying LLM, provided the correct age range
for QRisk3. To check that this was a consequence of the training
data, we additionally tested an LLM trained on more recent data.
Specifically, we used GPT-4o, which has a knowledge cutoff of
October 2023 and thus has been trained on data after the updated
guidelines. GPT-4o correctly states the eligibility range for QRisk3;
however, the limitation of a fixed knowledge cutoff is clear.

The third significant failure mode of the standalone LLM was
exhibited when the questions required more specific details or
nuance. For Questions 7 and 11, GPT-4 achieved around 60%
success primarily by correctly answering the questions involving
the most straightforward and general criteria. However, when
more specific information was required, the standalone GPT-4
model was not able to correctly answer. For example, the NICE
guidelines (1.4.7) specify a specific set of actions for individuals
with elevated triglyceride levels (10–20 mmol/l). GPT-4 correctly
noted the patient’s triglyceride level of 14 mmol/l was high but did
not provide the specific actions to take (Figure 3). In contrast, our
LLM-based system, which could query the guidelines, successfully
answered such questions.

Beyond these failure modes, GPT-4 declined to answer in three
cases and said it could only provide general advice twice. Further,
in nine of the ten responses to Question 10, GPT-4 stated that the
exact impact depended on the specific model, also not providing
a specific answer in the other case. While this can be seen as better
than confidently providing an incorrect answer, it still represents an
inability to answer the question successfully, unlike the augmented
LLM-based system, which answered all questions correctly.

The only question in our assessment that the LLM-based system
answered incorrectly was “Which data sources were employed to
create and verify the QRisk3 risk score?” (part of Question 3),
where it did not explicitly state that the QResearch database was

used, instead responding “The QRisk3 risk score was created and
verified using data from general practice records, mortality records,
and hospital admission records. These data sources are linked,
providing a comprehensive view of patient health outcomes, which
helps in accurately determining the incidence of cardiovascular
disease among the study cohorts.” Since LLM sampling can be
performed in a stochastic manner, we regenerated the response to
this question, which resulted in a correct answer.

The errors of the LLM-based systems using GPT-4o as base
models were similar. For example, the two errors in the atrial
fibrillation scenario were not specifying precise thresholds for low,
medium, and high risk designations and, in one case, not providing
all possible scenarios in which the CHA2DS2-VASc risk score
should be used. In contrast to the CVD risk prediction scenario, the
standalone LLM exhibited improved performance on the questions
for stroke risk prediction in patients with atrial fibrillation. This
was primarily a result of CHA2DS2-VASc being a relatively simple
points-based score, which the base LLM had learnt. The standalone
LLM was frequently able to successfully apply the CHA2DS2-VASc
criteria to calculate risk (Q8 and Q10) and determine the most
important risk factors (Q9). However, it did not always perform
calculations correctly and exhibited similar failure modes on the
other questions as in the CVD risk scoring scenario.

Overall, our quantitative assessment of standalone LLMs
and our LLM-based system clearly demonstrates the benefits of
augmenting LLMs with additional functionality and information,
in particular for reducing hallucinations.

3.2 Illustrative use cases of LLM-based
interfaces

Having quantitatively assessed the ability of an LLM-based
system to answer a diverse range of questions related to clinical risk
scoring, we now provide several multi-stage examples of how such
systems could be used in practice to provide a novel interface for
digital health tools, specifically clinical risk scores.

3.2.1 QRisk3 interface
We first provide an illustrative conversation with the LLM-

based system that has access to the QRisk3 model, the academic
paper describing QRisk3 (Hippisley-Cox et al., 2017), and the
National Institute for Health and Care Excellence (NICE) clinical
guidelines for CVD (National Institute for Health and Care
Excellence, 2014; Figure 4).

In this example, when asked for the patient’s 10-year risk of
developing CVD, the LLM used QRisk3 to estimate the patient’s
risk, providing this to the user. The LLM then summarized
the relevant information from the QRisk3 paper to explain the
inclusion of certain features before providing the recommended
action for this patient based on the NICE clinical guidelines. Finally,
the LLM used QRisk3 to recalculate the patient’s counterfactual
risk assuming that they were able to reduce their systolic blood
pressure to within normal ranges. This allows both the clinician and
patient to understand the potential impact of changes to modifiable
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FIGURE 4

Example interaction with an LLM-based interface for QRisk3. The LLM uses QRisk3 to calculate the patient’s 10-year risk of developing CVD, explains
why certain features are included in the risk score using the QRisk3 paper (Hippisley-Cox et al., 2017), provides recommendations from the NICE
clinical guidelines, and recalculates the patient’s risk under a counterfactual scenario.
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FIGURE 5

Example interactions with LLM-based interfaces. (a) Clinicians can ask the LLM questions about the AutoPrognosis risk score, such as what variables
are included, the underlying methodology, and the cohort on which the model was derived. (b) After calculating the patient’s risk using the
AutoPrognosis model, the clinician can query why this prediction was issued using explainable AI to improve understanding of the model predictions.

variables on the patient’s risk. While the clinician could have used
the underlying resources to obtain this information, the LLM
interface made the interaction simpler and more efficient, which
has been identified as a key limitation of digital tools (Ratwani et al.,
2019; Mathews et al., 2019). Furthermore, studies have shown that
even with access to the relevant documents, time limitations often
prevent clinicians finding the correct answers or even pursuing
answers to their questions, which can lead to suboptimal patient
care decisions (Del Fiol et al., 2014; Kell et al., 2024), while
readily-available, accurate, up-to-date information could improve
adherence to clinical guidelines (Cabana et al., 1999; Ament et al.,
2015).

3.2.2 AutoPrognosis interface
We additionally present two example interactions using the

LLM-based interface with access to the machine learning CVD
risk score developed using AutoPrognosis (Figure 5). In our first
example, we demonstrate the role such an interface could have
upon model deployment (Figure 5a). A clinician might have
many questions about a risk score before using the predictions
to inform recommendations or interventions (Table 1). Here,

the LLM provided the user with specific information about the
variables used by the risk score, the underlying methodology, how
the model was constructed, and the cohort of individuals used to
train the model. This can enable a user to rapidly learn about a new
model, facilitating successful deployment.

Building model trust is a crucial step for prognostic models,
in particular for models that are not inherently interpretable
(Rajpurkar et al., 2022). A recent study found that medical decision-
makers had a strong preference for interactive explanations and,
in particular, for these interactions to take the form of natural
language dialogues (Lakkaraju et al., 2022).

After calculating the patient’s risk using the AutoPrognosis
model, the LLM-based system used Shapley additive explanations
(SHAP) (Lundberg and Lee, 2017) to help the clinician understand
why the model issued this prediction. As shown in Figure 5b, the
estimated 4.2% risk for this individual was primarily caused by
their age and family history of CVD, mitigated by being a woman,
not smoking, and low levels of lipoprotein (a). An additional
interaction can be found in Supplementary Figure S2.

Finally, due to large-scale pretraining, LLMs possess general
knowledge of many topics; this can provide valuable additional
information during interactions beyond the specific tools and
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external information sources provided to the LLM. For example,
if a clinician is not familiar with the underlying XAI methodology,
SHAP (Lundberg and Lee, 2017), the LLM could explain how the
approach works in a variety of different ways and possibly over
multiple interactions with the clinician, allowing specific queries
or misunderstandings to be clarified. The underlying knowledge of
LLMs extends the utility of LLM-based interfaces beyond simply
using existing tools.

4 Discussion

Large Language Models hold substantial promise for the
medical domain, particularly in augmenting digital workflows and
improving the efficiency and effectiveness of healthcare delivery.
The ability to integrate external tools and functionality with LLMs
paves the way for innovative applications and can overcome
limitations of LLMs, such as hallucinations (Ji et al., 2023). Doing
so offers a potential transformation for how clinicians interact with
digital tools and sources of information, helping overcome the
challenges of deploying clinical AI models.

We have demonstrated how LLMs can provide a unique
interface between healthcare professionals and clinical predictive
models, such as risk scores, by acting as agents within an LLM-
based system. Currently, clinicians must access these tools via
fixed user interfaces or application programming interfaces (APIs),
with existing interfaces typically only calculating risk. We have
showed how, through an LLM-based interface, practitioners can
obtain substantial additional information about the risk score, its
development and methodology, the prediction issued, and related
medical guidelines in a manner that specifically addresses their
needs or questions without providing superfluous information.

In particular, we developed LLM-based interfaces for QRisk3
(Hippisley-Cox et al., 2017), the current recommended risk score
in the UK for CVD, a machine learning-based risk score for CVD,
and CHA2DS2-VASc (Lip et al., 2010), which is recommended for
risk assessment for stroke in patients with atrial fibrillation. We
quantitatively assessed the performance of our LLM-based systems
and compared its capabilities with standalone LLMs. We also
provided several illustrative examples of more complex multi-step
use cases, demonstrating the potential of such approaches at various
stages of a patient encounter. Our approach is scalable and does
not require any additional training of the language model, although
approaches that improve with use could be yet more powerful.
Additionally, we aim to mitigate the problem of hallucination
by ensuring that actionable advice is anchored in approved
clinical resources, contrasting several previous applications of
LLMs in medicine that focused exclusively on the knowledge
and information learned by LLMs. While our approach does not
guarantee that hallucinations cannot occur, our empirical analysis
found substantially fewer examples of hallucinations for LLM-
based systems than standalone LLMs.

In this paper, we have focused on clinicians interacting
with digital tools. However, there are numerous stakeholders in
healthcare in addition to clinicians, such as patients, regulators, and
administrators, each with different goals and requirements (Imrie
et al., 2023b). For example, in concurrent work, Shi et al. developed
a retrieval-augmented generation instantiation of ChatGPT to help

patients with adolescent idiopathic scoliosis and their families
prepare for discussions with clinicians (Shi et al., 2023). Our
framework and approach could be applied to improve digital health
interfaces for these alternate stakeholders. While this could have
additional challenges, there are potentially even more substantial
benefits for such individuals, given the differences in requirements,
knowledge, and familiarity with digital health technology, among
other factors.

Despite the general capabilities of LLMs, they can lack domain-
specific knowledge. This has led to the development of medical-
focused LLMs, either by training new LLMs from scratch (Luo
et al., 2022; Taylor et al., 2022; Yang et al., 2022) or by adapting
existing general-purpose LLMs (Singhal et al., 2023). While we
showed using specialist LLMs is not required, they could be readily
incorporated due to the modularity of our approach, possibly
further enhancing the functionality of LLM-based interfaces.
Additionally, although we demonstrated that in-context learning
is effective, fine-tuning LLMs for specific interfaces could further
improve their task-specific capabilities, albeit this would add
complexity to the creation of LLM-based interfaces. Finally, we
expect the continued advances in LLMs, such as improved base
models or ways of accessing external tools and information, will
complement the use case of LLMs described in our work and should
make them more performant at such tasks.

While our experiments highlight the promise of LLM-
based interfaces, several additional considerations must be taken
into account before deploying such systems. From a technical
perspective, LLMs require more computational resources than
previous interfaces to risk scores. The cost of LLM-based
systems is rapidly declining; at current OpenAI API pricing,
we estimate an interaction would cost less than $0.10, while
local systems could prove even more affordable. We believe
these expenses could be more than offset by productivity
gains. Additionally, there is some latency associated with using
LLM-based interfaces, as the models must process the data
and query related information and tools. However, the models
used in our evaluation provide answers in close to real-time
with minimal latency, although this could increase under high
concurrency if sufficient resources were not available. Clinical
deployment of LLMs requires regulatory approval (Ong et al.,
2024). Moreover, any AI system that informs clinical decisions
must satisfy appropriate medical device regulations and data must
be used appropriately, for example complying with GDPR in
the EU. While we believe LLM-based systems are more robust
than standalone LLMs, questions remain around data privacy
and security. Such challenges could be addressed with open-
source LLMs that run locally in secure compute environments
managed by medical providers. While being able to update
the sources of information is a key benefit of LLM-based
interfaces, this introduces additional maintenance. Documents and
tools could be automatically updated from a central resource,
in cases where one exists. Failure to update systems as new
guidelines and other resources are published may result in
incorrect recommendations.

Finally, conducting user studies with clinicians is a critical
next step in evaluating the effectiveness of LLM-based interfaces
and an exciting direction for future work. While our quantitative
assessment demonstrates the potential benefit of such systems, a
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limitation is the possibility of biases in the question sets. The
questions used cover a broad range of topics and multiple use cases;
however, they do not rigorously probe edge cases, such as poorly or
ill-posed questions. The true value and limitations of LLM-based
systems can only be fully understood through in-depth trials with
the target users in real-world settings.

As AI in medicine continues to advance, further research into
LLMs and their potential applications in healthcare could provide
significant benefits. For example, LLMs could help alleviate the
data burden that is contributing to clinician burnout, as well as
streamline patient management processes. Furthermore, studies
have demonstrated high usability of LLMs, even with limited
experience (Skjuve et al., 2023), which is critical for successful
clinical deployment. While we believe this paper represents an
important first step, we are only scratching the surface of the
potential of LLMs in healthcare. Ultimately, this line of work may
significantly change the digital health landscape, enhancing the
capabilities of clinicians and the quality of patient care.
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