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Introduction: The rapid expansion of artificial intelligence (AI) in medicine has 
led to its increasing integration into upper extremity (UE) orthopedics. The 
purpose of this systematic review is to investigate the current landscape and 
impact of AI in the field of UE surgery.
Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines, a systematic search of PubMed was conducted 
to identify studies incorporating AI in UE surgery. Review articles, letters to the 
editor, and studies unrelated to AI applications in UE surgery were excluded.
Results: After applying inclusion/exclusion criteria, 118 articles were included. 
The publication years ranged from 2009 to 2024, with a median and mode 
of 2022 and 2023, respectively. The studies were categorized into six main 
applications: automated image analysis (36%), surgical outcome prediction (20%), 
measurement tools (14%), prosthetic limb applications (14%), intraoperative aid 
(10%), and clinical decision support tools (6%).
Discussion: AI is predominantly utilized in image analysis, including radiograph 
and MRI interpretation, often matching or surpassing clinician accuracy and 
efficiency. Additionally, AI-powered tools enhance the measurement of range 
of motion, critical shoulder angles, grip strength, and hand posture, aiding in 
patient assessment and treatment planning. Surgeons are increasingly leveraging 
AI for predictive analytics to estimate surgical outcomes, such as infection risk, 
postoperative function, and procedural costs. As AI continues to evolve, its role 
in UE surgery is expected to expand, improving decision-making, precision, and 
patient care.
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Introduction

Artificial Intelligence (AI) refers to computational algorithms that model human 
intelligence in learning, decision-making, and problem-solving. In recent years, the application 
of AI in healthcare has exponentially increased, driven by advancements in machine learning 
models, increased computing power, and improved data availability. The development of 
sophisticated AI systems, such as ChatGPT and deep learning algorithms, has enhanced 
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accessibility for healthcare professionals, patients, and researchers. 
Prior studies have shown the diverse applications of AI in medicine, 
including image recognition for fracture detection and classification, 
preoperative risk assessment, clinical decision support, and predictive 
modeling of treatment outcomes (Myers et al., 2020; Langerhuizen 
et al., 2019).

Due to the rapid expansion of AI implementation in medicine in 
recent years, AI is being used in more areas and more accurately than 
ever before, including in upper extremity (UE) orthopedics. A 2019 
systematic review of 12 studies on AI-driven fracture detection in 
general orthopedics highlighted a promising performance with near-
perfect prediction in five articles (AUC 0.95–1.0) (Langerhuizen et al., 
2019). This near-perfect accuracy provided some insight into the 
capabilities of AI in advancing modern medicine and aiding clinicians 
in their work, especially as updated AI models continue to rise.

A scoping review by Keller et al. (2023) examined AI applications 
in hand surgery before April 2021, revealing limited utilization 
compared to other medical specialties). Given the rapid advancements 
since then, this systematic review aims to comprehensively assess the 
current landscape of AI in UE surgery. By analyzing the existing body 
of evidence, we seek to elucidate the potential clinical impacts of AI 
technologies and identify key areas for future research and 
development within this important field of UE orthopedics.

Materials and methods

Study search strategy

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic and Meta-Analysis 
(PRISMA) (Tricco et al., 2018) guidelines, ensuring methodological 
transparency and accuracy. A comprehensive literature search was 
performed using the MEDLINE/PubMed database. The search 
focused on identifying relevant literature pertaining to the use of AI 
in UE surgery. The search strategy was designed to capture all relevant 
studies published between November 2009 and April 2024. The 
electronic search strategy used was: (Artificial Intelligence OR Machine 
Learning OR Deep Learning) AND (Diagnosis OR Detection) AND 
(Hand Surgery OR Arm Surgery OR Elbow Surgery OR 
Shoulder Surgery).

Inclusion and exclusion criteria

Studies were included if they evaluated AI applications in UE 
surgery and were original research articles. Excluded studies included 
those unrelated to AI in UE surgery, review articles, letters to the 
editor, conference abstracts, and articles not published in English.

Selection process

All database search results were imported into Rayyan, a 
systematic review management tool, where duplicates were 
automatically removed using a trained AI system, as described by 
Adu et al. (2024). Two independent reviewers then performed an 
initial screening of titles and abstracts to exclude studies that did 

not meet the eligibility criteria. Subsequently, full-text articles of 
potentially relevant studies were then reviewed independently by 
both reviewers. At any point, any disagreements regarding study 
inclusion were resolved through discussion, with the 
corresponding author serving as the final adjudicator in cases of 
unresolved discrepancies. Included studies were then sorted into 
categories based on the perceived primary focus of the paper. 
When study overlap between two categories occurred, discussion 
took place, and the studies were placed into their perceived 
primary category.

Results

The initial literature search generated 1,097 unique articles, of 
which 118 met the inclusion criteria after abstract review and 
application of the exclusion criteria. No sources were included from 
grey literature or non-PubMed sources.

These studies were categorized into six primary areas of AI 
implementation in upper extremity (UE) surgery: automated image 
analysis (36%), surgical outcome prediction (20%), measurement 
tools (14%), prosthetic limb applications (14%), intraoperative 
assistance (10%), and clinical decision support tools (6%) 
(Figures 1, 2).

Study overlap

Following categorization, 11 of the 118 studies had overlap 
between two categories. Seven (Minelli et al., 2022; Ro et al., 2021; 
Alike et al., 2023; Lee et al., 2024; Gu et al., 2022; Kim et al., 2021; 
Ramkumar et al., 2018) of the studies overlapped between the Image 
Analysis and Measurement categories. Two (Kluck et al., 2023; Lu 
et al., 2021) of the studies overlapped between Image Analysis and 
Surgical Outcome Prediction. One study (Lee et al., 2018) overlapped 
between Image Analysis and Intraoperative Aid. One study (Cheng 
et  al., 2023) overlapped between Intraoperative Aid and Clinical 
Decision Support Tool (Figures 3, 4).

Automated image analysis

Similar to a prior review on hand surgery, the most common 
application of AI in UE surgery was automated image analysis (Keller 
et al., 2023), accounting for 42 articles (Anttila et al., 2023; Chung 
et al., 2018; Dipnall et al., 2022; Droppelmann et al., 2022; Guermazi 
et al., 2022; Guo et al., 2023; Hahn et al., 2022; Minelli et al., 2022; Ro 
et al., 2021; Yi et al., 2020; Anttila et al., 2022; Feuerriegel et al., 2023; 
Feuerriegel et al., 2024; Grauhan et al., 2022; Kang et al., 2021; Kim 
et al., 2022; Shinohara et al., 2023; Wei et al., 2022; Yang et al., 2024; 
Yoon et al., 2023; Zech et al., 2024; Zech et al., 2023; Alike et al., 2023; 
Alike et al., 2023; Benhenneda et al., 2023; Jopling et al., 2021; Keller 
et al., 2023; Kuok et al., 2020; Lee et al., 2024; Lee et al., 2023; Mert 
et al., 2024; Ni et al., 2024; Oeding et al., 2024; Shinohara et al., 2022; 
Suzuki et  al., 2022; Anderson et  al., 2023; Cirillo et  al., 2019; 
Georgeanu et al., 2022; Jeon et al., 2023; Li and Ji, 2021; Cirillo et al., 
2021; Yoon and Chung, 2021). These studies focused on AI-driven 
interpretation of radiographs, magnetic resonance imaging (MRI), 
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FIGURE 1

PRISMA flowchart. Represents the preferred reporting items for systematic and meta-analysis (PRISMA) flowchart for identification, screening, and 
eventual inclusion of articles in this study.
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FIGURE 2

Distribution of 118 studies across 6 categories, with counts derived from non-overlapping classifications after consensus.
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ultrasound, and arthroscopic images, with radiographs being the most 
frequently analyzed modality.

Assessing the implementation of AI in examining radiographs 
accounted for 24 articles (Anttila et  al., 2023; Chung et  al., 2018; 
Dipnall et al., 2022; Guermazi et al., 2022; Minelli et al., 2022; Yi et al., 
2020; Anttila et al., 2022; Grauhan et al., 2022; Kang et al., 2021; Wei 
et al., 2022; Yang et al., 2024; Yoon et al., 2023; Zech et al., 2024; Zech 
et al., 2023; Alike et al., 2023; Alike et al., 2023; Jopling et al., 2021; 
Keller et al., 2023; Lee et al., 2024; Mert et al., 2024; Suzuki et al., 2022; 
Anderson et al., 2023; Jeon et al., 2023; Yoon and Chung, 2021). AI 
models show promising capability by quickly and accurately detecting 
fractures (clavicle, arm, elbow, wrist, hand), measuring critical 
shoulder angle, identifying shoulder arthroplasty models, and 

detecting conditions such as enchondromas, joint dislocations, rotator 
cuff tendon tears, and scapholunate ligament ruptures.

Six studies (Chung et al., 2018; Guo et al., 2023; Zech et al., 2023; 
Mert et al., 2024; Ni et al., 2024; Suzuki et al., 2022) directly compared 
AI performance to human clinicians in image analysis, showing that 
AI matched or outperformed human readers in diagnostic accuracy 
and speed. One study demonstrated that an AI model achieved an 
accuracy of 99.3%, a sensitivity of 98.7%, and a specificity of 100% in 
detecting distal radius fractures, surpassing the performance of three 
hand orthopedic surgeons (Suzuki et al., 2022). In detecting proximal 
humerus fractures, AI also outperformed general physicians and 
non-specialized orthopedists, particularly in complex 3- and 4-part 
fractures (Chung et  al., 2018). AI models integrating deep visual 
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Distribution of 118 studies stratified by year of publication.
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features with clinical data improved diagnostic accuracy for 
supraspinatus/infraspinatus tendon complex (SITC) injuries, 
significantly benefiting junior physicians with limited experience 
(Alike et al., 2023).

A separate study showed that the diagnostic accuracy of an AI 
algorithm on dorsopalmar radiography regarding scapholunate 
ligament integrity was close to that of the experienced human reader 
(e.g., differentiation of Geissler’s stages ≤ 2 versus > 2 with a sensitivity 
of 74% and a specificity of 78% compared to 77 and 80%) with a 
correlation coefficient of 0.81 (p < 0.01) (Keller et al., 2023). When AI 

and humans’ ability to analyze radiographs were directly compared to 
each other in terms of accuracy or speed, we did not identify any 
articles that showed humans significantly outperforming AI. Table 1 
shows the results of each study that directly compared the image 
analysis performance between AI models and human readers.

Additionally, several studies (Guermazi et al., 2022; Yoon et al., 
2023; Zech et  al., 2024; Alike et  al., 2023; Anderson et  al., 2023) 
evaluated AI-assisted human image analysis and found that AI 
augmentation improved clinician accuracy. In a retrospective study of 
fracture detection, AI-assisted readings increased sensitivity by 10.4% 

TABLE 1  The results of image analysis when various AI models were directly compared to human readers.

Study* Task Dataset AUC† Accuracy Sensitivity Specificity

Guo et al. (2023)

Detect supraspinatus 

tears

(MRI)

770 MRIs

-

-

-

-

-

0.870 (AI)

0.891 (senior surgeon)

0.761 (junior surgeon)

0.862 (senior 

radiologist)

0.775 (junior 

radiologist)

0.913 (AI)

0.935 (senior surgeon)

0.913 (junior surgeon)

0.935 (senior 

radiologist)

0.891 (junior 

radiologist)

0.848 (AI)

0.870 (senior surgeon)

0.685 (junior surgeon)

0.826 (senior 

radiologist)

0.717 (junior 

radiologist)

Chung et al. 

(2018)

Detect and classify 

proximal humerus 

fractures

(X-ray)

1,891 images (1 per 

person) of normal 

shoulders (n = 515) 

and 4 proximal 

humerus fracture 

types (greater 

tuberosity, 346; 

surgical neck, 514; 

3-part, 269; 4-part, 

247) classified by 3 

specialists were 

evaluated

-

-

-

-

0.96 (AI)

0.85 (general 

physician)

0.93 (general 

orthopedist)

0.93 (shoulder 

orthopedist)

0.99 (AI)

0.82 (general physician)

0.93 (general 

orthopedist)

0.96 (shoulder 

orthopedist)

0.97 (AI)

0.94 (general physician)

0.97 (general 

orthopedist)

0.98 (shoulder 

orthopedist)

Zech et al. (2023)

Detect a range of 

pediatric UE fractures

(X-ray)

58,846 UE X-rays 

(finger/hand, wrist/

forearm, elbow, 

humerus, shoulder/

clavicle) from 14,873 

pediatric and young 

adult patients

-

-

0.897 (AI)

0.851 (residents)

0.908 (AI)

-

0.887 (AI)

-

Mert et al. (2024)

Detect distal radius 

fractures

(X-ray)

100 wrist X-rays with 

and 50 without distal 

radius fractures of 

patients who had 

received X-rays due 

to suspected fracture

0.93 (ChatGPT)

0.985 (hand surgery 

resident)

0.85 (medical 

student)

0.99 (gleamer bone 

view)

-

-

-

-

0.88 (ChatGPT)

0.99 (resident)

0.98 (student)

1.00 (gleamer bone 

view)

0.98 (ChatGPT)

0.98 (resident)

0.72 (student)

0.98 (gleamer bone 

view)

Ni et al. (2024)
Detect SLAP lesions

(MRI)

636 patients (SLAP 

lesions confirmed via 

shoulder 

arthroscopy)

0.98 (AI)

-

-

-

0.96 (AI)

0.85 (radiologist 15)

0.83 (radiologist 10)

0.81 (radiologist 7)

0.94 (AI)

0.91 (radiologist 15)

0.81 (radiologist 10)

0.78 (radiologist 7)

1.00 (AI)

0.76 (radiologist 15)

0.85 (radiologist 10)

0.85 (radiologist 7)

Suzuki et al. 

(2022)

Detect distal radius 

fractures

(X-ray)

961 (1971 total 

images)

-

-

-

-

0.993 (AI)

0.973 (surgeon 1)

0.947 (surgeon 2)

0.967 (surgeon 3)

0.987 (AI)

0.960 (surgeon 1)

0.960 (surgeon 2)

0.960 (surgeon 3)

1.00 (AI)

0.987 (surgeon 1)

0.933 (surgeon 2)

0.973 (surgeon 3)

AUC, Area Under Curve; MRI, Magnetic Resonance Imaging; AI, Artificial Intelligence; SLAP, Superior labrum anterior–posterior; UE, Upper Extremity. †A dash (−) indicates that these 
specific data were not available in the study. Studies are listed by the last name of the first author.
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(75.2% vs. 64.8%), while maintaining specificity and reducing average 
reading time by 6.3 s per case (Guermazi et al., 2022). One study 
showed AI improves fracture detection among radiology and 
orthopedic residents in both pediatric and adult patients (Zech et al., 
2024). Additionally, this study shows that AI enhances the specificity, 
sensitivity, and accuracy of physicians diagnosing supraspinatus/
infraspinatus tendon complex injuries (Alike et  al., 2023). 
Furthermore, AI assistance was shown to improve physician 
diagnostic sensitivity and specificity as well as interobserver agreement 
for the diagnosis of occult scaphoid fractures (Yoon et  al., 2023). 
Similar findings were shown in several specialties, such as orthopedics, 
emergency medicine, radiology, and primary care, where the fracture 
miss rate was significantly reduced when aided by AI (Anderson 
et al., 2023).

Surgical outcome prediction

A total of 24 articles (Allen et  al., 2024; Biron et  al., 2020; 
Digumarthi et al., 2024; Giladi et al., 2023; Gowd et al., 2019; Gowd 
et al., 2022; Hoogendam et al., 2022; Karnuta et al., 2020; Kausch et al., 
2020; King et al., 2023; Kluck et al., 2023; Kumar et al., 2021; Kumar 
et al., 2020; Kumar et al., 2022; Li et al., 2023; Lu et al., 2022; Lu et al., 
2021; Mclendon, 2021; Oeding et  al., 2023; Polce et  al., 2021; 
Rajabzadeh-Oghaz et al., 2024; Roche et al., 2021; Shinohara et al., 
2024; Simmons et al., 2023; Vassalou et al., 2022) investigated AI’s 
ability to predict surgical outcomes in UE surgery. These studies 
focused on rotator cuff arthropathy, carpal tunnel syndrome, and 
calcific tendonitis, with total shoulder arthroplasty (TSA) being the 
most frequently analyzed procedure. Among these, 10 studies 
specifically assessed AI’s ability to predict patient outcomes following 
anatomic (ASA) or reverse (RSA) total shoulder arthroplasty. All 
articles except one were retrospective and tested a variety of language 
learning models (LLMs) with different input variables.

AI models demonstrated high predictive accuracy in estimating 
postoperative outcomes, such as improvements in shoulder function, 
patient satisfaction, and complication risk. The predictive variables 
analyzed included patient history/demographics, pain and 
functionality scores, physical exam findings, imaging data (X-ray, CT), 
and laboratory values. Multiple studies showed that machine learning 
models could achieve AUC values between 0.71 and 0.94, effectively 
predicting postoperative range of motion (ROM), risk of infection, 
and the likelihood of requiring revision surgery. One study 
demonstrated 92.9% accuracy (AUC 0.875) in predicting multiple 
clinical outcomes after TSA using a limited set of 19 preoperative 
variables, minimizing the need for extensive data input (Kumar 
et al., 2020).

For each of the 10 studies involving total shoulder arthroplasty 
patients, Table  2 details the input variables used, data set size, 
predictive task, and predictive ability.

Measurement tools

AI has also been applied to automated motion analysis and 
physical assessment in 16 articles (Burns et al., 2018; Darevsky et al., 
2023; Darevsky, 2023; Dousty and Zariffa, 2021; Gauci et al., 2023; Gu 
et al., 2022; Ibara, 2023; Kim et al., 2021; Koyama et al., 2022; Koyama 

et al., 2021; Lee et al., 2016; Ramkumar et al., 2018; Rostamzadeh et al., 
2024; Silver et al., 2006; Takigami et al., 2024; Tsukamoto et al., 2024; 
Tuan et  al., 2022). These studies explored AI models designed to 
analyze videos or images of body movements including shoulder 
range of motion, hand gestures, grip strength, and thumb opposition.

Six studies (Darevsky et al., 2023; Gu et al., 2022; Koyama et al., 
2021; Ramkumar et al., 2018; Takigami et al., 2024; Tsukamoto et al., 
2024) utilized widely accessible devices, such as smartphones and 
smartwatches, to aid in automated physical examination. These AI 
models demonstrated high accuracy, exceeding 90% in classifying 
rotator cuff injuries and nerve dysfunction based on motion analysis. 
One study used AI-powered pose estimation to measure shoulder 
internal and external rotation, achieving a correlation coefficient of 
0.971 and a mean absolute error of 5.778° compared to standard 
goniometric measurements (Takigami et al., 2024) (Table 3).

Prosthetic limb applications

UE orthopedics also includes prosthetic devices, which play a 
significant role for many amputee patients, and optimizing the function 
and utility of these devices with AI is an emerging topic of research. AI 
has played a key role in enhancing prosthetic limb control, particularly 
through surface electromyography (sEMG)-based myocontrol. Among 
the 16 studies (Atzori et al., 2014; Atzori et al., 2016; Castellini et al., 
2009; Edwards et al., 2016; Hahne et al., 2017; Hwang et al., 2017; Jiang 
et al., 2020; Malešević et al., 2021; Mastinu et al., 2020; Nowak et al., 
2023; Olsson et al., 2019; Osborn et al., 2021; Patel et al., 2017; Schmalfuss 
et al., 2018; Wang et al., 2022; Wang et al., 2020) in this category, many 
focused on improving real-time prosthesis functionality through 
AI-driven motor learning and predictive feedback systems (Table 4).

The first of these articles was published in 2009, and since then, 
interest in this field has increased significantly (Figure 5). In fact, this 
was the earliest article included in this review, showing that prosthetics 
was one of the first areas of interest to implement AI in the UE.

Movements performed by prostheses are performed in an “on/off ” 
fashion, thus rendering coordinated movements with a set amount of 
force by particular muscles difficult. To overcome this, many 
prosthesis designs have aimed at incorporating electromyography 
(EMG) data to allow for more fine-tuned functionality. This is given 
further power when such input data is processed by way of a machine 
learning algorithm that can provide real-time feedback and updates 
as well as learn for future use. AI-driven pattern recognition 
algorithms have enabled fine-tuned, adaptive myoelectric control, 
allowing upper extremity amputees to achieve more coordinated, 
natural movement. Some studies incorporated real-time ultrasound 
feedback to improve AI-based prosthesis control, achieving accuracy 
comparable to electromyography-based models (Wang et al., 2020). 
Others demonstrated that machine learning-enhanced myoelectric 
control systems could significantly reduce reaction time and improve 
grip precision in prosthetic hand users (Nowak et al., 2023; Osborn 
et al., 2021; Patel et al., 2017).

Intraoperative AI applications

Twelve studies (Bernard et  al., 2022; Bockhacker et  al., 2020; 
Cheng et al., 2023; Eslamian et al., 2016; Eslamian et al., 2020; Hein 
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et al., 2021; Kuthiala et al., 2022; Lee et al., 2018; Li et al., 2021; Shafiei 
et  al., 2021; Sühn et  al., 2023; Suh et  al., 2011) investigated AI’s 
intraoperative applications, including robotic-assisted surgery, real-
time bacterial identification, and automated instrument tracking. 
Most of these studies are lab-based, with no proof-of-concept in 
actual surgeries. One study showed that AI-based bacterial 
identification systems detected osteomyelitis-causing pathogens 
within five hours, significantly faster and in a less labor-intensive 
manner than traditional microbial cultures (Bernard et al., 2022). 
Similarly, another study demonstrated that AI-assisted intraoperative 
soft-tissue sarcoma classification achieved an accuracy above 85%, 
outperforming the traditional gold standard of H&E staining frozen 
sections, which often delays completion of the surgical procedure (Li 
et al., 2021).

AI-enhanced robotic surgery was explored in three studies 
(Eslamian et al., 2016; Eslamian et al., 2020; Sühn et al., 2023), showing 
that autonomous AI-controlled surgical cameras improved 
visualization, reduced unnecessary movements, and enhanced 
procedural efficiency and flow. This method was found to be superior 
to manual camera movement by the surgeon or a trained camera 
operator. Such technology additionally keeps the surgical instruments 
in view and avoids unnecessary movement of the camera, preventing 
inadequate visualization and distraction to the surgeon (Eslamian 
et al., 2016; Eslamian et al., 2020).

The direct tactile assessment of surface textures during palpation 
is an essential component of open surgery that is impeded in 
minimally invasive and robot-assisted surgery. A data generation 
framework proved accurate (>96%) in using vibro-acoustic sensing to 

TABLE 2  The predictive task, utilized input variables, dataset, and predictive ability of the 10 studies involving total shoulder arthroplasty of the 24 that 
discussed the ability of AI to predict surgical outcomes.

Study Type Predictive task Input variables Dataset* Predictive ability†

McLendon (2021) Retrospective
Improvement in ASES 

Score

History / Demographics

Questionnaires

Imaging Results

472

(431 ASA, 41 RSA)
Sensitivity - 0.94‡

Kumar et al. (2022) Retrospective
Improvement in Internal 

Rotation

History / Demographics

Questionnaires

Physical Exam Findings

Imaging Results

6,468

(2,270 ASA, 4,198 RSA)

AUC - 0.79§

Accuracy - 82%§

Kumar et al. (2021) Retrospective
Improvement in Multiple 

Clinical Outcomes¶

History / Demographics

Questionnaires

Physical Exam Findings

5,774

(2,153 ASA, 3,621 RSA)

AUC - 0.831§

Accuracy - 89.7%§

Biron et al. (2020) Retrospective
Select Candidates for 

Outpatient Surgery
History / Demographics

4,500

(all ASA)
AUC - 0.77

Polce et al. (2021) Retrospective
Patient Postoperative 

Satisfaction

History / Demographics

Questionnaires

413

(both ASA and RSA)
AUC - 0.80

Oeding et al. (2023) Retrospective
Risk of Prosthetic 

Dislocation
History / Demographics

740

(all RSA)
AUC - 0.71

Gowd et al. (2019) Retrospective
Postoperative 

complications

History / Demographics

Laboratory Results

17,119

(both ASA and RSA)

AUC - 0.71

Accuracy - 95.4%

Kumar et al. (2020) Retrospective
Improvement in Multiple 

Clinical Outcomes¶

History / Demographics

Questionnaires

Physical Exam Findings

Imaging Results

4,782

(1,895 ASA, 2,887 RSA)

AUC - 0.875§

Accuracy - 92.9%§

Rajabzadeh-Oghaz et al. 

(2024)
Retrospective

Improvement in Multiple 

Clinical Outcomes¶

History / Demographics

Questionnaires

Physical Exam Findings

Imaging Results

1,057

(258 ASA, 799 RSA)

AUC - 0.753§

Accuracy - 87.1%§

Simmons et al. (2023) Prospective
Improvement in Multiple 

Clinical Outcomes¶

History / Demographics

Questionnaires

Physical Exam Findings

243

(43 ASA, 200 RSA)

AUC - 0.841§

Accuracy - 89.9%§

Studies are denoted by the last name of the first author. ASA, anatomic shoulder arthroplasty; RSA, reverse shoulder arthroplasty; ASES, American shoulder and elbow surgeons; VAS, visual 
analog pain scale; ROM, Range of Motion; AUC, Area under the curve; MCID, minimal clinically important difference; SCB, substantial clinical benefit. *For each study the Dataset includes 
the total number of patients included in the analysis, and following this the corresponding number of patients that received either an anatomic or reverse total shoulder arthroplasty is denoted 
in parentheses. †For each study the Predictive Ability includes the area under the curve, accuracy, and sensitivity if these values were reported. The values are an average of both ASA and RSA 
if both values were provided in the study. If a study tested multiple different predictive models, the reported values of the model with the highest predictive capabilities is listed here. ‡Sensitivity 
in this study was measured for 3 different subgroups in the study, and this number represents the average of the subgroup sensitivities (0.91, 0.94, 0.98). §In this study, AUC and accuracy were 
measured for both the MCID and SCB. Only the corresponding values for MCID are listed here. MCID is the smallest change in a treatment outcome that would indicate a clinically significant 
improvement in the patient’s condition. SCB is the magnitude of improvement in a clinical outcome that reflects a substantial, clearly meaningful benefit from the patient’s perspective. ¶These 
studies used machine learning models to predict numerous clinical outcome measures such as ASES score, UCLA score, SAS score, Constant score, Global Shoulder Function score, visual 
analog scale (VAS) pain score, active abduction, active forward elevation, and active external rotation. Additionally, AUC and accuracy are listed as the average of the individual AUC and 
accuracy values calculated for each of the individual clinical outcome measures.
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differentiate materials during minimally invasive and robot-assisted 
surgery. This technology could provide valuable information during 
procedures such as a total joint replacement or arthroscopy, in which 
the osteoarthritic cartilage could be identified and graded to help the 
surgeon plan and make intraoperative decisions (Sühn et al., 2023).

Other intraoperative uses for AI included automated surgeon 
distraction monitoring (Shafiei et al., 2021), real-time detection of 
peripherally inserted central catheter (PICC) tips (Lee et al., 2018), 
segmenting arm venous images (Kuthiala et al., 2022), and gesture-
controlled sterile navigation systems. One study evaluating AI-assisted 
touchless image viewing in the operating room, predicted the hand 
gestures of eight surgeons with an average of 6.5 years of experience, 
reaching a 98.94% accuracy in executing the correct task (Bockhacker 
et al., 2020).

Clinical decision support tool

AI was utilized as a clinical decision support tool (CDST) in six 
articles (Bulstra et al., 2022; Daher et al., 2023; Jagiella-Lodise et al., 
2024; Rigamonti et al., 2021; Simmons et al., 2022; Yamamoto et al., 
2024), meaning they were used in some degree to aid clinical decision-
making but did not fall under any of the above categories. These 
studies focused on diagnostic guidance, treatment planning, and 
patient education.

Two studies evaluated ChatGPT’s diagnostic capabilities in UE 
conditions. One study found that ChatGPT correctly diagnosed and 
recommended appropriate management for 93 and 83% of shoulder 
and elbow cases, respectively (Daher et  al., 2023). Another study 
assessed ChatGPT’s ability to answer common patient questions 
related to hand and wrist pathologies, with responses receiving an 
accuracy rating of 4.83 out of 6 (Jagiella-Lodise et al., 2024).

Another study tested the ability of an AI program to predict 
scaphoid fractures given elements of a patient’s demographics, 
history, and physical exam findings without being provided imaging 
(Bulstra et al., 2022). This machine learning algorithm achieved an 
area under the receiver operating characteristic curve of 0.77 when 
predicting the probability of a scaphoid fracture for a retrospective 
patient cohort. Although accurate, this performance does not 
exceed that of experienced physicians, who have shown a negative 
predictive value of up to 96% when predicting scaphoid fractures 
using a Clinical Scaphoid Score, without the aid of imaging (Pham, 
2025). Additionally, this program was able to recommend advanced 
imaging for patients with a ≥ 10% risk of fracture, yielding 100% 
sensitivity, 38% specificity, and would have reduced the number of 
patients undergoing advanced imaging by 36% without missing 
a fracture.

Another study evaluated how a CDST would help surgeons plan 
preoperatively whether to perform an anatomic or reverse total 
shoulder arthroplasty for a patient with osteoarthritis. While this tool 
did not necessarily direct their decision, it improved their confidence 
in their own chosen decision (Simmons et al., 2022). Finally, one study 
discussed the ability of an AI model to analyze gait characteristics 
from in-shoe wearable monitors to predict distal radius fracture risks 
(Yamamoto et al., 2024).

These studies are outlined in Table 5.

Risk of bias assessment

Risk of bias was assessed using the QUADAS-2 tool for 
diagnostic accuracy studies and the PROBAST tool for prediction 
model studies. Among the studies evaluated with QUADAS-2 (a 

TABLE 3  The tasks and results from the six studies which analyzed AI 
models’ ability to perform measurements from easily accessible devices 
such as a smartphone or smart watch.

Study Smartphone AI 
task

Dataset Accuracy

Darevsky et al. 

(2023)

Measure video 

recordings of a string-

pulling task to classify 

human patients as 

having a RC tear

12 participants:

6 patients with 

RC pathology 

and 6 healthy 

volunteers

Accuracy - > 90%

Gu et al. 

(2022)

Analyze images to 

detect abnormal hand 

gestures and classify 

patients with nerve 

injury

56 participants 

(total of 1,344 

images):

22 patients, 34 

volunteers

Accuracy - > 95% 

accuracy (all 

models)

Ramkumar 

et al. (2018)

Measure shoulder 

abduction, internal 

rotation, external 

rotation, and forward 

flexion from video 

recordings

10 participants 

without 

shoulder pain 

performed the 

arcs of motion 

for 5 repetitions

Compared to 

goniometer, the 

mean differences 

for the arcs of 

motion were 

abduction, 

−3.7° ± 3.2°; 

forward flexion, 

−4.9° ± 2.5°; 

internal rotation, 

−2.4° ± 3.7°; and 

external rotation 

−2.6° ± 3.4°

Koyama et al. 

(2021)

Measure thumb 

opposition using an 

app to diagnose 

patients with CTS

63 participants:

36 patients with 

CTS and 27 

healthy patients

Sensitivity - 94% 

sensitivity

Specificity −67%

Tsukamoto 

et al. (2024)

Analyze 10 s grip and 

release videos to 

diagnose patients with 

CTS

59 participants:

25 patients with 

CTS, 34 healthy 

patients

Sensitivity - 89%

Specificity - 83% 

correlation 

coefficient of 0.68 

with severity on 

nerve conduction 

studies

Takigami et al. 

(2024)

Estimate the shoulder 

joint internal/external 

rotation angle using 

pose estimation AI 

from video recordings

10 healthy 

volunteers

Correlation 

coefficient of 

0.971 and a MAE 

of 5.778 when 

estimating 

shoulder joint 

angle from a 

direct-facing 

position

Studies are listed according to the last name of the first author. RC, Rotator Cuff; CTS, Carpal 
Tunnel Syndrome; AI, Artificial Intelligence; MAE, Mean Absolute Error.
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TABLE 4  Outlines for each of the studies relating to the use of prosthetics the study type (prospective/retrospective), the dataset (number of study 
participants, whether amputee or non-amputee), and the results of the study (short summary of study results).

Study Type Dataset Results

Jiang et al. (2020) Prospective 15 non-amputees CNN algorithms can effectively recognize shoulder muscle movements using EMG input information

Wang et al. 

(2022)
Retrospective 30 non-amputees EMG input can improve the grasping process for hand prostheses

Hahne et al. 

(2017)
Prospective

10 non-amputees

1 transradial amputee
EMG input can help refine and improve movements for hand prostheses

Osborn et al. 

(2021)
Prospective 1 transhumeral amputee

Over the course of 1 year, prosthesis usage and functional metrics improved with a machine learning-based 

myoelectric pattern recognition algorithm

Nowak et al. 

(2023)
Prospective 1 transradial amputee

Through use of a machine learning protocol, both objective and subjective hand prosthesis measures 

improved over a 1-year period

Patel et al. (2017) Prospective 10 non-amputees
Incorporating proprioceptive, force, and grip measurements into a machine learning algorithm improved 

myocontrol in hand prostheses

Edwards et al. 

(2016)
Prospective

4 non-amputees

1 transhumeral amputee
A real-time prediction learning algorithm improved efficiency in tasks with a robotic arm

Castellini et al. 

(2009)
Prospective 10 non-amputees

A machine learning technique was able to achieve real-time grip posture and required force for hand 

actions

Atzori et al. 

(2014)
Prospective

67 non-amputees

11 transradial amputees

This study represents the beginning of a new database of information used to study machine learning 

methods in hand prostheses

Wang et al. 

(2020)
Prospective 1 transradial amputee

A machine learning model based on US input performed similarly to one with EMG input hand prosthesis 

control

Schmalfuss et al. 

(2018)
Prospective

10 non-amputees

1 transradial amputee

Subjects controlled a hand prosthesis more rapidly and accurately using a hybrid machine learning model 

with integrating an extra degree of freedom for control

Olsson et al. 

(2019)
Prospective 14 non-amputees CNN algorithms can use EMG input to provide versatile and responsive hand control interfaces

Hwang et al. 

(2017)
Prospective

15 non-amputees

1 wrist-deficient subject 

(congenital)

Arm positional changes can make it difficult for accurate myoelectric control despite the use of machine 

learning models

Atzori et al. 

(2016)
Prospective 11 transradial amputees

Machine learning algorithms using EMG input can lead to better hand prosthesis integration and 

optimization

Malešević et al. 

(2021)
Prospective 20 non-amputees

This study represents the beginning of a new database of information used to study machine learning 

methods of EMG input in hand prosthesis control

Mastinu et al. 

(2020)
Prospective

3 transhumeral 

amputees

Prostheses that allow for somatosensory input to the amputee via neural stimulation along with EMG input 

to machine learning algorithms may lead to better myocontrol and prosthesis functionality

CNN, Convolution neural network; EMG, electromyography. Each study is denoted by the last name of the first author.
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FIGURE 5

Distribution of the 16 articles under Prosthetic Limb Applications stratified by year of publication.
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total of 28), 15 were judged to have a high overall risk of bias, 10 
had a low risk, and 3 had an unclear risk. For studies assessed with 
PROBAST (a total of 90), 53 demonstrated a high overall risk of bias 
and 37 had a low risk. No studies in the PROBAST group were rated 
as having an unclear risk of bias. These assessments provide insight 
into the methodological quality and potential limitations of the 
included studies. Table  6 and Figure  6 show the results of the 
QUADAS-2 analysis, and Table 7 and Figure 7 show the results of 
the PROBAST analysis.

Discussion

The rapid evolution of AI has reshaped multiple domains of 
medicine, including orthopedics. While machine learning has been 
extensively used for over a decade in myoelectric control for upper 
limb amputees, the past 2 years have witnessed an unprecedented 
surge in AI applications across UE surgery. This growth reflects both 
the increasing sophistication of AI models and a growing recognition 
of their potential to enhance diagnostic precision, streamline surgical 
workflows, and improve patient outcomes. Our systematic review 
categorized AI applications into six primary domains: imaging 
analysis, surgical outcome prediction, intraoperative assistance, 
measurement tools, prosthetic limb control, and clinical decision 
support systems (CDSTs).

Among these, AI-driven imaging analysis has shown the most 
immediate and impactful benefits. AI models now routinely match or 
exceed human performance in detecting fractures (Chung et al., 2018; 
Zech et al., 2023; Mert et al., 2024; Suzuki et al., 2022), measuring 
critical anatomical angles (Minelli et al., 2022; Gu et al., 2022), and 
identifying soft tissue pathologies (Droppelmann et al., 2022; Guo 
et  al., 2023; Hahn et  al., 2022; Kang et  al., 2021; Ni et  al., 2024). 
Although few studies (Guo et al., 2023; Mert et al., 2024) showed 
surgeons capable of outperforming AI, deep learning algorithms have 
demonstrated higher sensitivity and specificity than experienced 
clinicians in certain diagnostic tasks, reinforcing their utility in 
radiographic interpretation. When AI and human performance are 
clinically integrated together, results improve. For example, Guermazi 
et al., demonstrated AI-assisted fracture readings increased sensitivity 
by 10% and reduced reading time (Guermazi et al., 2022). Such results 
emphasize that AI should not be replacing, rather enhancing clinician 
performance. AI-driven pre-screening of X-rays could improve 
radiology efficiency and speed by up to 16 s per image (Guermazi 
et  al., 2022). AI-based measurement tools also provide precise 
quantifications of range of motion (ROM) (Li et al., 2023; Ramkumar 
et al., 2018), grip strength (Koyama et al., 2021), and hand posture (Gu 
et  al., 2022) using accessible technologies like smartphones and 
smartwatches. These advancements offer a scalable, cost-effective 
means to enhance clinical assessments and facilitate remote 
patient monitoring.

TABLE 5  Outlines for each of the studies relating to the clinical decision support tools the study task, the dataset (whether real patients, fictional case 
presentations, survey results, or algorithm responses to questions), and the results of the study (short summary of study results).

Study Task Dataset Results

Bulstra et al. 

(2022)

Predict scaphoid fractures given 

patients’ history, demographics, and 

PE findings and recommend further 

imaging if needed

Retrospective cohort of 422 patients with 

radial wrist pain after wrist trauma, 117 

confirmed scaphoid fractures

A machine learning model was successfully able to predict 

scaphoid fractures (0.77 AUC) given patient information and 

recommend further diagnostic imaging only if needed, reducing 

overuse of advanced imaging.

Daher et al. 

(2023)

Provide a diagnosis and treatment 

plan for patients with UE complaints 

given patient demographics, PE 

findings, and imaging results

29 patients with UE complaints

ChatGPT was able to diagnose UE complaints (93%) more 

accurately than it was able to provide correct treatment 

recommendations (83%), particularly in situations where 

multiple treatment options were applicable or depended on 

patient preference.

Simmons 

et al. (2022)

Compare surgeon confidence in 

treatment recommendations without 

vs. with the help of a CDST

30 orthopedic surgeons with 2 + years of 

shoulder arthroplasty experience

The addition of CDST results did not dictate or alter treatment 

recommendations for surgeons but it increased the confidence of 

their respective surgical recommendations.

Jagiella-

Lodise et al. 

(2024)

Provide accurate information to 

common questions about orthopedic 

hand conditions

5 common hand conditions with 12–15 

questions each asked to ChatGPT (carpal 

tunnel syndrome, Dupuytren contracture, De 

Quervain tenosynovitis, trigger finger, and 

CMC arthritis)

For basic orthopedic hand conditions, ChatGPT has mostly 

correct (4.83 out of 6 ± 0.95) but sometimes incomplete (2 out of 

3 ± 0.59) responses to questions patients may ask when 

undergoing self-diagnosis.

Yamamoto 

et al. (2024)

Estimate patients with DRF using gait 

features obtained from an in-shoe 

inertial measurement unit

28 postmenopausal females with DRF, 32 

age-matched controls

A machine learning model using in-shoe inertial measurements 

was able to reasonably predict DRFs (0.740 AUC) in elderly 

females.

Rigamonti 

et al. (2021)

Provide correct diagnosis to common 

sports-related injuries

5 fictional case studies (Concussion, ankle 

sprain, muscle pain, chronic knee instability 

(after ACL rupture) and tennis elbow)

All chosen injuries and pathologies were either correctly 

diagnosed or at least tagged with the right advice of when it is 

urgent for seeking a medical specialist using a machine learning 

algorithm; however, with an understanding that user knowledge 

will affect interpretability of output.

PE, physical exam; AUC, area under the curve; UE, upper extremity; CDST, clinical decision support tool; CMC, carpometacarpal; DRF, distal radius fracture; ACL, anterior cruciate ligament.
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Preoperatively, AI is increasingly utilized for surgical outcome 
prediction. Machine learning models can synthesize demographic, 
clinical, and imaging data to forecast postoperative ROM, 
complication risks, and patient satisfaction (Biron et al., 2020; Gowd 
et al., 2019; Kumar et al., 2021; Kumar et al., 2022; Mclendon, 2021; 
Oeding et al., 2023; Polce et al., 2021; Rajabzadeh-Oghaz et al., 2024; 
Simmons et al., 2023). Notably, some studies found that AI could 
achieve similar predictive accuracy using a reduced set of input 
variables, minimizing the burden of extensive data collection while 
still delivering actionable insights (Mclendon, 2021). This suggests 
that AI could streamline clinical workflows and assist in personalized 
treatment planning, optimizing decision-making without 
overwhelming surgeons with unnecessary data entry. Additionally, AI 
implementations continue to expand intraoperatively, with notable 
advancements in robotic-assisted surgery, real-time microbial 
identification, automated surgical instrument tracking, and 

vibro-acoustic sensing technologies capable of assessing cartilage 
integrity (Bernard et al., 2022; Hein et al., 2021; Sühn et al., 2023). For 
example, using AI to identify microbial infections could reduce 
waiting time on results from days to hours, allowing physicians a 
quicker response to identify and treat infections (Bernard et al., 2022). 
Such advancements could refine decision-making in joint preservation 
or arthroplasty procedures.

The ethical implications surrounding AI integration in UE 
surgery demand consideration. One pressing concern is algorithmic 
bias: if training datasets lack sufficient representation of minority 
groups (e.g., racial or ethnic minorities), fracture-detection or 
surgical-planning algorithms may underperform for those 
populations, exacerbating existing health disparities. For instance, 
studies have documented that AI models trained on primarily 
White patient data perform less accurately on underrepresented 
groups, leading to potential misdiagnoses or treatment delays 

TABLE 6  The results of the QUADAS-2 bias analysis regarding whether included studies showed low, moderate, high, or unclear risk of bias in the 
categories of patient selection, index text, reference standard, flow and timing, as well as an overall risk of bias (QUADAS-2).

Study Patient selection Index test Reference standard Flow and 
timing

Overall risk of 
bias

Guermazi et al. (2022) High Low Low Unclear High

Droppelmann et al. (2022) Low Low Unclear Low Unclear

Yi et al. (2020) Low Low Unclear Low Unclear

Guo et al. (2023) Low Low Low Low Low

Hahn et al. (2022) Low Low Low Unclear Unclear

Chung et al. (2018) Low Low Low Low Low

Daher et al. (2023) High Moderate High High High

Ro et al. (2021) Low Low Low Low Low

Anttila et al. (2023) Low Low Low Low Low

Wei et al. (2022) High Low Low Low High

Grauhan et al. (2022) High Low High Low High

Koyama et al. (2021) High Low Low Low High

Feuerriegel et al. (2023) High Low High Low High

Benhenneda et al. (2023) Low Moderate High Low High

Feuerriegel et al. (2024) Low Low Low Low Low

Gauci et al. (2023) Low Low Low Low Low

Alike et al. (2023) Low Low Low Low Low

Kuok et al. (2020) High Low Moderate Low High

Lee et al. (2023) Moderate Low Moderate Low Low

Keller et al. (2023) Moderate Low Low Low Low

Jopling et al. (2021) High Moderate Low Low High

Jagiella-Lodise et al. (2024) N/A High High Low High

Jeon et al. (2023) High High Low Unclear High

Tuan et al. (2022) Low Low High Moderate High

Edwards et al. (2016) High Low Unclear High High

Bernard et al. (2022) High Low Unclear High High

Simmons et al. (2022) Low Low Moderate Moderate Low

Darevsky et al. (2023) High Low Low High High

Studies are listed by last name of the first author. N/A (not applicable) is used in where a study did not contain a certain category.
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(Pham, 2025). Ethical best practices call for inclusive, diverse 
datasets, regular demographic performance audits, and adoption of 
fairness-aware algorithm design methods (e.g., reweighting, 
adversarial debiasing) to ensure equitable care across populations 
(Pham, 2025). Moreover, AI systems often function as “black boxes,” 
complicating informed consent and undermining the doctor-
patient relationship if neither patient nor clinician can understand 
the rationale behind AI-driven recommendations (Kumar et al., 
2025). Ensuring meaningful transparency, such as explainability 
reports and shared decision-making frameworks, is essential. 
Without these safeguards, AI risk reinforcing, rather than reducing, 
disparities in surgical care.

Integrating AI into UE surgery holds great promise, but significant 
implementation barriers remain. Regulatory delays, particularly 
lengthy FDA clearance processes, pose a major hurdle. Only about half 
of AI-assisted orthopedic devices have undergone dynamic clinical 
validation, and many remain untested in real-world surgical settings, 
slowing adoption (Kumar et  al., 2025). Training needs represent 
another critical obstacle. Orthopedic surgeons often lack formal 
education in AI or data science; moreover, generational divides 
influence perceived ease of use, with senior surgeons reporting lower 
familiarity and higher learning effort requirements (Schmidt et al., 
2024). Surveys highlight infrastructure limitations—such as lack of 
institutional support, AI courses, and interdisciplinary collaboration—
as persistent constraints, despite growing interest and ethical concerns 
like explainability and accountability. Finally, there is the question of 
legal liability. When an AI-assisted diagnosis or treatment is incorrect 
and leads to an adverse medical outcome, there is debate whether 
liability should fall on the company that developed the algorithm, the 
physician who used the tool, or the regulatory agency that approved 
it (Cestonaro et al., 2023). These intertwined challenges, regulatory 

bottlenecks, educational gaps, and infrastructural barriers, need to 
be addressed systematically to enable safe, effective integration of AI 
into UE orthopedic practice.

The objective of this literature review was to identify the 
current applications of AI in UE surgery. In order to cover a broad 
spectrum to this robust topic and find studies which UE surgeons 
may find interesting, we  selected general search keywords. In 
agreement with the objective of this review, to give the reader a 
meaningful overview of the broad topic, we  conducted this 
systematic review with clustering of the articles into six groups of 
thematically related publications. One limitation to our study is 
publication bias as studies with successful or positive results are 
more likely to be published. In addition, most of the studies in 
prosthetics are characterized by small sample sizes, which may 
limit their clinical relevance. Another limitation is that some 
studies overlapped into multiple sections. For example, two 
studies (Minelli et al., 2022; Gu et al., 2022) tested an AI model’s 
ability to analyze radiographs and measure critical shoulder 
angles. One study segmented burn images, but also accurately 
predicted the length of recovery needed based on burn depth 
(Cirillo et al., 2021). Additionally, one study used AI as a CDST 
to effectively predict shoulder surgery outcomes (Simmons et al., 
2023). To determine which section to label these “overlap” studies, 
discussion took place between the primary reviewers until a 
consensus was achieved. A numeric comparison (accuracy, AUC, 
dataset, sensitivity, etc.) between certain studies took place when 
feasible, and the results were listed in their respective tables; 
however, another limitation to our study is that the majority of 
our sections contained rather unclear boundaries in terms of 
association to “artificial intelligence” and “upper extremity 
surgery.” To address this limitation and achieve the objective of 
this systematic review, we  decided to interpret these vague 
sections in a narrative and qualitative fashion with citation of 
comparable publications. Although the target audience of our 
study is primarily medical professionals, a limitation to this study 
is that our literature search was conducted using only the 
MEDLINE/PubMed database, which may introduce selection bias. 
Most of the studies in our review did not report AI tool type, 
future research could be  directed toward investigating the 
differences between commercial and academic AI algorithms, 
particularly in terms of performance, scalability, and transparency. 
Incorporating Explainable AI techniques such as SHAP, LIME, 
and DeepSHap into future research and application could also 
be valuable in aiding physicians in their decision-making process.

Conclusion

In conclusion, AI is reshaping UE surgery by augmenting 
diagnostic accuracy, enhancing surgical precision, improving 
prosthetic control, and facilitating personalized predictive modeling. 
As AI becomes increasingly embedded in orthopedic practice, future 
efforts should focus on optimizing real-world applications, addressing 
ethical and regulatory considerations, and fostering AI literacy among 
both clinicians and patients. AI should complement, rather than 
replace, physician expertise, necessitating intuitive interfaces, targeted 
clinician training, and real-time interpretability to foster trust and 
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QUADAS-2: Overall Risk of Bias
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FIGURE 6

The results of the QUADAS-2 bias analysis regarding whether 
included studies showed low, high, or unclear overall risk of bias 
(QUADAS-2).
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TABLE 7  The results of the PROBAST bias analysis regarding whether included studies showed low, moderate, or high risk of bias in the categories of 
participants, predictors, outcome, analysis, as well as an overall risk of bias.

Study Participants Predictors Outcome Analysis Overall risk of 
bias

McLendon (2021) Low Low Low High High

Kumar et al. (2022) Low Low Low High High

Jiang et al. (2020) Low Low Low High High

Bulstra et al. (2022) Low Low Low Low Low

Kumar et al. (2021) Low Low Low Low Low

Roche et al. (2021) Low Low Low Low Low

Anttila et al. (2023) Low Low Low High High

Dipnall et al. (2022) Low Low Low Low Low

Kluck et al. (2023) Low Low Low Low Low

Shinohara et al. (2024) Low Low Low Low Low

Lu et al. (2021) Low Low Low High High

Minelli et al. (2022) High Low High High Low

Gu et al. (2022) Low Low Low Moderate Low

Biron et al. (2020) Low Low Moderate High Low

Polce et al. (2021) Low Low Low High High

Ramkumar et al. (2018) High Low Low High High

Oeding et al. (2023) Low Low Low High High

Kausch et al. (2020) High Low Low High High

Gowd et al. (2019) Low Low Low High High

Li et al. (2023) High Low Low High High

Vassalou et al. (2022) Low Low Low Low Low

Kim et al. (2022) High Low Low High High

Yang et al. (2024) Low Low Low Low Low

Allen et al. (2024) Low Low Low High High

King et al. (2023) Low Low Low High High

Zech et al. (2023) Low Low Low High High

Yoon et al. (2023) Low Low Low High High

Shinohara et al. (2023) Low Low Low High High

Kang et al. (2021) Low Low Low High High

Lee et al. (2024) Low Low Low High High

Mert et al. (2024) Low Low Low High High

Tsukamoto et al. (2024) High Low Low High High

Oeding et al. (2024) Low Low Low High High

Ni et al. (2024) Low Low Low High High

Zech et al. (2024) Low Low Low High High

Takigami et al. (2024) High Low Low High High

Suzuki et al. (2022) Low Low Low High High

Hoogendam et al. (2022) Low Low Low Low Low

Yoon and Chung (2021) High Low Unclear High High

Alike et al. (2023) Low Low Low Low Low

Simmons et al. (2023) Low Low Low Moderate Low

Silver et al. (2006) High Low Moderate High High

Giladi et al. (2023) Low Low High Low Low

(Continued)
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TABLE 7  (Continued)

Study Participants Predictors Outcome Analysis Overall risk of 
bias

Shinohara et al. (2022) High Low Moderate High High

Dousty and Zariffa 

(2021)

High Low Moderate High High

Gowd et al. (2022) Moderate Low Moderate High High

Hein et al. (2021) High Low Moderate High High

Anderson et al. (2023) Low Low Low Moderate Low

Burns et al. (2018) High Low Moderate High High

Darevsky et al. (2023) Low Low Low High Low

Lu et al. (2022) Low Low Low High Low

Koyama et al. (2021) High Low Moderate High High

Kuthiala et al. (2022) Moderate Low Low High High

Ibara (2023) Low Low Low Low Low

Wang et al. (2022) Low Low Low High High

Georgeanu et al. (2022) Low Low Low High High

Hahne et al. (2017) Low Low Low Moderate Low

Kim et al. (2021) Low Low Low High High

Rostamzadeh et al. 

(2024)

Low Low Low High High

Karnuta et al. (2020) Low Low Low High High

Osborn et al. (2021) High Low Low High High

Nowak et al. (2023) High Low Low High High

Sühn et al. (2023) High Low High Low Low

Cirillo et al. (2019) High Low High Moderate Low

Li and Ji (2021) High Low High Moderate Low

Lee et al. (2018) Moderate Low Moderate Low Low

Patel et al. (2017) High Low Moderate Moderate Low

Digumarthi et al. (2024) Low Low Low Moderate Low

Lee et al. (2016) Low Low Low High High

Shafiei et al. (2021) High Low High High High

Castellini et al. (2009) Low Low Low Moderate Low

Atzori et al. (2014) Low Low Low Low Low

Wang et al. (2020) High Low Low High High

Suh et al. (2011) High Moderate Low High High

Schmalfuss et al. (2018) Moderate Low Low High High

Yamamoto et al. (2024) Low Low Low Moderate Low

Eslamian et al. (2020) Low Low Low Moderate Low

Olsson et al. (2019) Low Low Low Moderate Low

Hwang et al. (2017) Low Low Low Moderate Low

Eslamian et al. (2016) Low Low Low Moderate Low

Atzori et al. (2016) Moderate Low Low Moderate Low

Bockhacker et al. (2020) High Low Low High High

Cirillo et al. (2021) High Low Low High High

Li et al. (2021) High Low Low High High

Rigamonti et al. (2021) High Low Unclear High High

(Continued)
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adoption among orthopedic surgeons. With continued advancements, 
AI has the potential to revolutionize orthopedic surgery, driving 
improvements in patient care, surgical efficiency, and clinical decision-
making for years to come.
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TABLE 7  (Continued)

Study Participants Predictors Outcome Analysis Overall risk of 
bias

Malešević et al. (2021) High Low Low High High

Mastinu et al. (2020) Low Low Low High High

Cheng et al. (2023) High High High High Low

Rajabzadeh-Oghaz et al. 

(2024)

Low Low Low Moderate Low

Kumar et al. (2020) Low Low Low Moderate Low

Studies are listed by last name of the first author.
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FIGURE 7

The results of the PROBAST bias analysis regarding whether included 
studies showed low or high overall risk of bias (PROBAST).
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