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Introduction: The rapid expansion of artificial intelligence (Al) in medicine has
led to its increasing integration into upper extremity (UE) orthopedics. The
purpose of this systematic review is to investigate the current landscape and
impact of Al in the field of UE surgery.

Methods: Following PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines, a systematic search of PubMed was conducted
to identify studies incorporating Al in UE surgery. Review articles, letters to the
editor, and studies unrelated to Al applications in UE surgery were excluded.
Results: After applying inclusion/exclusion criteria, 118 articles were included.
The publication years ranged from 2009 to 2024, with a median and mode
of 2022 and 2023, respectively. The studies were categorized into six main
applications: automated image analysis (36%), surgical outcome prediction (20%),
measurement tools (14%), prosthetic limb applications (14%), intraocperative aid
(10%), and clinical decision support tools (6%).

Discussion: Al is predominantly utilized in image analysis, including radiograph
and MRI interpretation, often matching or surpassing clinician accuracy and
efficiency. Additionally, Al-powered tools enhance the measurement of range
of motion, critical shoulder angles, grip strength, and hand posture, aiding in
patient assessmentand treatment planning. Surgeons are increasingly leveraging
Al for predictive analytics to estimate surgical outcomes, such as infection risk,
postoperative function, and procedural costs. As Al continues to evolve, its role
in UE surgery is expected to expand, improving decision-making, precision, and
patient care.

KEYWORDS

artificial intelligence, machine learning, orthopedics, surgery, upper extremity

Introduction

Artificial Intelligence (AI) refers to computational algorithms that model human
intelligence in learning, decision-making, and problem-solving. In recent years, the application
of Al in healthcare has exponentially increased, driven by advancements in machine learning
models, increased computing power, and improved data availability. The development of
sophisticated Al systems, such as ChatGPT and deep learning algorithms, has enhanced
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accessibility for healthcare professionals, patients, and researchers.
Prior studies have shown the diverse applications of Al in medicine,
including image recognition for fracture detection and classification,
preoperative risk assessment, clinical decision support, and predictive
modeling of treatment outcomes (Myers et al., 2020; Langerhuizen
etal., 2019).

Due to the rapid expansion of Al implementation in medicine in
recent years, Al is being used in more areas and more accurately than
ever before, including in upper extremity (UE) orthopedics. A 2019
systematic review of 12 studies on Al-driven fracture detection in
general orthopedics highlighted a promising performance with near-
perfect prediction in five articles (AUC 0.95-1.0) (Langerhuizen et al.,
2019). This near-perfect accuracy provided some insight into the
capabilities of Al in advancing modern medicine and aiding clinicians
in their work, especially as updated AI models continue to rise.

A scoping review by Keller et al. (2023) examined Al applications
in hand surgery before April 2021, revealing limited utilization
compared to other medical specialties). Given the rapid advancements
since then, this systematic review aims to comprehensively assess the
current landscape of Al in UE surgery. By analyzing the existing body
of evidence, we seek to elucidate the potential clinical impacts of Al
technologies and identify key areas for future research and
development within this important field of UE orthopedics.

Materials and methods
Study search strategy

This systematic review was conducted in accordance with the
Preferred Reporting Items for Systematic and Meta-Analysis
(PRISMA) (Tricco et al., 2018) guidelines, ensuring methodological
transparency and accuracy. A comprehensive literature search was
performed using the MEDLINE/PubMed database. The search
focused on identifying relevant literature pertaining to the use of Al
in UE surgery. The search strategy was designed to capture all relevant
studies published between November 2009 and April 2024. The
electronic search strategy used was: (Artificial Intelligence OR Machine
Learning OR Deep Learning) AND (Diagnosis OR Detection) AND
(Hand Surgery OR Arm Surgery OR Elbow Surgery OR
Shoulder Surgery).

Inclusion and exclusion criteria

Studies were included if they evaluated AI applications in UE
surgery and were original research articles. Excluded studies included
those unrelated to Al in UE surgery, review articles, letters to the
editor, conference abstracts, and articles not published in English.

Selection process

All database search results were imported into Rayyan, a
systematic review management tool, where duplicates were
automatically removed using a trained Al system, as described by
Adu et al. (2024). Two independent reviewers then performed an
initial screening of titles and abstracts to exclude studies that did
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not meet the eligibility criteria. Subsequently, full-text articles of
potentially relevant studies were then reviewed independently by
both reviewers. At any point, any disagreements regarding study
with  the
corresponding author serving as the final adjudicator in cases of

inclusion were resolved through discussion,
unresolved discrepancies. Included studies were then sorted into
categories based on the perceived primary focus of the paper.
When study overlap between two categories occurred, discussion
took place, and the studies were placed into their perceived

primary category.

Results

The initial literature search generated 1,097 unique articles, of
which 118 met the inclusion criteria after abstract review and
application of the exclusion criteria. No sources were included from
grey literature or non-PubMed sources.

These studies were categorized into six primary areas of Al
implementation in upper extremity (UE) surgery: automated image
analysis (36%), surgical outcome prediction (20%), measurement
tools (14%), prosthetic limb applications (14%), intraoperative
assistance (10%), and clinical decision support tools (6%)
(Figures 1, 2).

Study overlap

Following categorization, 11 of the 118 studies had overlap
between two categories. Seven (Minelli et al., 2022; Ro et al., 2021;
Alike et al., 2023; Lee et al., 2024; Gu et al., 2022; Kim et al., 2021;
Ramkumar et al., 2018) of the studies overlapped between the Image
Analysis and Measurement categories. Two (Kluck et al., 2023; Lu
et al,, 2021) of the studies overlapped between Image Analysis and
Surgical Outcome Prediction. One study (Lee et al., 2018) overlapped
between Image Analysis and Intraoperative Aid. One study (Cheng
et al., 2023) overlapped between Intraoperative Aid and Clinical
Decision Support Tool (Figures 3, 4).

Automated image analysis

Similar to a prior review on hand surgery, the most common
application of Al in UE surgery was automated image analysis (Keller
et al., 2023), accounting for 42 articles (Anttila et al., 2023; Chung
et al,, 2018; Dipnall et al., 2022; Droppelmann et al., 2022; Guermazi
et al,, 2022; Guo et al., 2023; Hahn et al., 2022; Minelli et al., 2022; Ro
etal., 2021; Yi et al., 2020; Anttila et al., 2022; Feuerriegel et al., 2023;
Feuerriegel et al., 2024; Grauhan et al., 2022; Kang et al., 2021; Kim
et al.,, 2022; Shinohara et al., 2023; Wei et al., 2022; Yang et al., 2024;
Yoon et al., 2023; Zech et al., 2024; Zech et al., 2023; Alike et al., 2023;
Alike et al., 2023; Benhenneda et al., 2023; Jopling et al., 2021; Keller
et al., 2023; Kuok et al., 2020; Lee et al., 2024; Lee et al., 2023; Mert
etal., 2024; Ni et al., 2024; Oeding et al., 2024; Shinohara et al., 2022;
Suzuki et al., 2022; Anderson et al., 2023; Cirillo et al., 2019;
Georgeanu et al., 2022; Jeon et al., 2023; Li and Ji, 2021; Cirillo et al.,
2021; Yoon and Chung, 2021). These studies focused on Al-driven
interpretation of radiographs, magnetic resonance imaging (MRI),
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FIGURE 1

PRISMA flowchart. Represents the preferred reporting items for systematic and meta-analysis (PRISMA) flowchart for identification, screening, and

eventual inclusion of articles in this study.
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FIGURE 2
Distribution of 118 studies across 6 categories, with counts derived from non-overlapping classifications after consensus.
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FIGURE 3
Distribution of 118 studies stratified by year of publication.
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Distribution of 118 studies stratified into 6 categories and further divided by study design. Prospective studies were classified as those in which
participants were followed forward in time from the point of the study’s initiation. Retrospective studies were classified as those in which researchers
examined existing records of past events to find associations between exposures and outcomes. Any disagreements on study design were resolved
through discussion, with the corresponding author serving as the final adjudicator in cases of unresolved discrepancies.

ultrasound, and arthroscopic images, with radiographs being the most
frequently analyzed modality.

Assessing the implementation of Al in examining radiographs
accounted for 24 articles (Anttila et al., 2023; Chung et al., 2018;
Dipnall et al., 2022; Guermazi et al., 2022; Minelli et al., 2022; Yi et al.,
2020; Anttila et al., 2022; Grauhan et al,, 2022; Kang et al., 2021; Wei
etal,, 2022; Yang et al., 2024; Yoon et al., 2023; Zech et al., 2024; Zech
et al,, 2023; Alike et al., 2023; Alike et al., 2023; Jopling et al., 2021;
Keller et al., 2023; Lee et al., 2024; Mert et al., 2024; Suzuki et al., 2022;
Anderson et al., 2023; Jeon et al., 2023; Yoon and Chung, 2021). AI
models show promising capability by quickly and accurately detecting
fractures (clavicle, arm, elbow, wrist, hand), measuring critical
shoulder angle, identifying shoulder arthroplasty models, and
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detecting conditions such as enchondromas, joint dislocations, rotator
cuff tendon tears, and scapholunate ligament ruptures.

Six studies (Chung et al., 2018; Guo et al., 2023; Zech et al., 2023;
Mert et al., 2024; Ni et al., 2024; Suzuki et al., 2022) directly compared
Al performance to human clinicians in image analysis, showing that
Al matched or outperformed human readers in diagnostic accuracy
and speed. One study demonstrated that an AI model achieved an
accuracy of 99.3%, a sensitivity of 98.7%, and a specificity of 100% in
detecting distal radius fractures, surpassing the performance of three
hand orthopedic surgeons (Suzuki et al., 2022). In detecting proximal
humerus fractures, Al also outperformed general physicians and
non-specialized orthopedists, particularly in complex 3- and 4-part
fractures (Chung et al,, 2018). Al models integrating deep visual

frontiersin.org


https://doi.org/10.3389/frai.2025.1621757
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Parry et al. 10.3389/frai.2025.1621757

features with clinical data improved diagnostic accuracy for  and humans’ ability to analyze radiographs were directly compared to

supraspinatus/infraspinatus tendon complex (SITC) injuries, each other in terms of accuracy or speed, we did not identify any
significantly benefiting junior physicians with limited experience
(Alike et al., 2023).

A separate study showed that the diagnostic accuracy of an Al

articles that showed humans significantly outperforming AL Table 1
shows the results of each study that directly compared the image
analysis performance between AI models and human readers.

algorithm on dorsopalmar radiography regarding scapholunate Additionally, several studies (Guermazi et al., 2022; Yoon et al.,
2023; Zech et al., 2024; Alike et al., 2023; Anderson et al., 2023)

evaluated Al-assisted human image analysis and found that AI

ligament integrity was close to that of the experienced human reader
(e.g., differentiation of Geissler’s stages < 2 versus > 2 with a sensitivity
of 74% and a specificity of 78% compared to 77 and 80%) with a
correlation coefficient of 0.81 (p < 0.01) (Keller et al., 2023). When AI

augmentation improved clinician accuracy. In a retrospective study of
fracture detection, Al-assisted readings increased sensitivity by 10.4%

TABLE 1 The results of image analysis when various Al models were directly compared to human readers.

Dataset

Accuracy

Sensitivity

Specificity

Detect supraspinatus

0.870 (AI)
0.891 (senior surgeon)

0.761 (junior surgeon)

0.913 (AI)
0.935 (senior surgeon)

0.913 (junior surgeon)

0.848 (AI)
0.870 (senior surgeon)

0.685 (junior surgeon)

Guo et al. (2023) tears 770 MRIs - 0.862 (senior 0.935 (senior 0.826 (senior
(MRI) - radiologist) radiologist) radiologist)
- 0.775 (junior 0.891 (junior 0.717 (junior
radiologist) radiologist) radiologist)
1,891 images (1 per
person) of normal
shoulders (n = 515)
0.96 (AI)
and 4 proximal 0.99 (A) 0.97 (AI)
0.85 (general
Detect and classify humerus fracture - hysician) 0.82 (general physician) | 0.94 (general physician)
sician
Chung et al. proximal humerus types (greater - P 0.93 (general 0.97 (general
0.93 (general
(2018) fractures tuberosity, 346; - orthopedist) orthopedist)
orthopedist)
(X-ray) surgical neck, 514; - 0.96 (shoulder 0.98 (shoulder
0.93 (shoulder
3-part, 269; 4-part, orthopedist) orthopedist)
orthopedist)
247) classified by 3
specialists were
evaluated
58,846 UE X-rays
(finger/hand, wrist/
Detect a range of forearm, elbow,
0.897 (AI) 0.908 (AI) 0.887 (AI)
Zech et al. (2023) pediatric UE fractures | humerus, shoulder/
0.851 (residents) - -
(X-ray) clavicle) from 14,873
pediatric and young
adult patients
0.93 (ChatGPT)
100 wrist X-rays with
0.985 (hand surgery 0.88 (ChatGPT) 0.98 (ChatGPT)
and 50 without distal -
Detect distal radius resident) 0.99 (resident) 0.98 (resident)
radius fractures of -
Mert et al. (2024) fractures 0.85 (medical 0.98 (student) 0.72 (student)
patients who had -
(X-ray) student) 1.00 (gleamer bone 0.98 (gleamer bone
received X-rays due -
0.99 (gleamer bone view) view)
to suspected fracture
view)
636 patients (SLAP  0.98 (A 0.96 (AI) 0.94 (AD) 1.00 (AT)
N L 2024) Detect SLAP lesions lesions confirmed via | - 0.85 (radiologist 15) 0.91 (radiologist 15) 0.76 (radiologist 15)
ietal 4
(MRI) shoulder - 0.83 (radiologist 10) 0.81 (radiologist 10) 0.85 (radiologist 10)
arthroscopy) - 0.81 (radiologist 7) 0.78 (radiologist 7) 0.85 (radiologist 7)
- 0.993 (AI) 0.987 (AI) 1.00 (AI)
Detect distal radius
Suzuki et al. . 961 (1971 total - 0.973 (surgeon 1) 0.960 (surgeon 1) 0.987 (surgeon 1)
ractures
(2022) (Xoray) images) - 0.947 (surgeon 2) 0.960 (surgeon 2) 0.933 (surgeon 2)
-ra
Y - 0.967 (surgeon 3) 0.960 (surgeon 3) 0.973 (surgeon 3)

AUC, Area Under Curve; MRI, Magnetic Resonance Imaging; Al, Artificial Intelligence; SLAP, Superior labrum anterior-posterior; UE, Upper Extremity. A dash (—) indicates that these
specific data were not available in the study. Studies are listed by the last name of the first author.
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(75.2% vs. 64.8%), while maintaining specificity and reducing average
reading time by 6.3 s per case (Guermazi et al., 2022). One study
showed AI improves fracture detection among radiology and
orthopedic residents in both pediatric and adult patients (Zech et al.,
2024). Additionally, this study shows that AI enhances the specificity,
sensitivity, and accuracy of physicians diagnosing supraspinatus/
infraspinatus tendon complex injuries (Alike et al, 2023).
Furthermore, Al assistance was shown to improve physician
diagnostic sensitivity and specificity as well as interobserver agreement
for the diagnosis of occult scaphoid fractures (Yoon et al., 2023).
Similar findings were shown in several specialties, such as orthopedics,
emergency medicine, radiology, and primary care, where the fracture
miss rate was significantly reduced when aided by AI (Anderson
etal., 2023).

Surgical outcome prediction

A total of 24 articles (Allen et al.,, 2024; Biron et al., 2020;
Digumarthi et al., 2024; Giladi et al., 2023; Gowd et al., 2019; Gowd
etal., 2022; Hoogendam et al., 2022; Karnuta et al., 2020; Kausch et al.,
2020; King et al., 2023; Kluck et al., 2023; Kumar et al., 2021; Kumar
et al., 2020; Kumar et al., 2022; Li et al., 2023; Lu et al., 2022; Lu et al.,
2021; Mclendon, 2021; Oeding et al, 2023; Polce et al., 2021;
Rajabzadeh-Oghaz et al., 2024; Roche et al., 2021; Shinohara et al.,
2024; Simmons et al., 2023; Vassalou et al., 2022) investigated AT’s
ability to predict surgical outcomes in UE surgery. These studies
focused on rotator cuff arthropathy, carpal tunnel syndrome, and
calcific tendonitis, with total shoulder arthroplasty (TSA) being the
most frequently analyzed procedure. Among these, 10 studies
specifically assessed AT’s ability to predict patient outcomes following
anatomic (ASA) or reverse (RSA) total shoulder arthroplasty. All
articles except one were retrospective and tested a variety of language
learning models (LLMs) with different input variables.

AI models demonstrated high predictive accuracy in estimating
postoperative outcomes, such as improvements in shoulder function,
patient satisfaction, and complication risk. The predictive variables
analyzed included patient history/demographics, pain and
functionality scores, physical exam findings, imaging data (X-ray, CT),
and laboratory values. Multiple studies showed that machine learning
models could achieve AUC values between 0.71 and 0.94, effectively
predicting postoperative range of motion (ROM), risk of infection,
and the likelihood of requiring revision surgery. One study
demonstrated 92.9% accuracy (AUC 0.875) in predicting multiple
clinical outcomes after TSA using a limited set of 19 preoperative
variables, minimizing the need for extensive data input (Kumar
et al., 2020).

For each of the 10 studies involving total shoulder arthroplasty
patients, Table 2 details the input variables used, data set size,
predictive task, and predictive ability.

Measurement tools

AI has also been applied to automated motion analysis and
physical assessment in 16 articles (Burns et al., 2018; Darevsky et al.,
2023; Darevsky, 2023; Dousty and Zariffa, 2021; Gauci et al., 2023; Gu
etal., 2022; Ibara, 2023; Kim et al., 2021; Koyama et al., 2022; Koyama

Frontiers in Artificial Intelligence

10.3389/frai.2025.1621757

etal., 2021; Lee et al., 2016; Ramkumar et al., 2018; Rostamzadeh et al.,
2024; Silver et al., 2006; Takigami et al., 2024; Tsukamoto et al., 2024;
Tuan et al., 2022). These studies explored AI models designed to
analyze videos or images of body movements including shoulder
range of motion, hand gestures, grip strength, and thumb opposition.
Six studies (Darevsky et al., 2023; Gu et al., 2022; Koyama et al.,
2021; Ramkumar et al., 2018; Takigami et al., 2024; Tsukamoto et al.,
2024) utilized widely accessible devices, such as smartphones and
smartwatches, to aid in automated physical examination. These Al
models demonstrated high accuracy, exceeding 90% in classifying
rotator cuff injuries and nerve dysfunction based on motion analysis.
One study used Al-powered pose estimation to measure shoulder
internal and external rotation, achieving a correlation coefficient of
0.971 and a mean absolute error of 5.778° compared to standard
goniometric measurements (Takigami et al., 2024) (Table 3).

Prosthetic limb applications

UE orthopedics also includes prosthetic devices, which play a
significant role for many amputee patients, and optimizing the function
and utility of these devices with Al is an emerging topic of research. Al
has played a key role in enhancing prosthetic limb control, particularly
through surface electromyography (SEMG)-based myocontrol. Among
the 16 studies (Atzori et al., 2014; Atzori et al., 2016; Castellini et al.,
2009; Edwards et al., 2016; Hahne et al., 2017; Hwang et al., 2017; Jiang
et al., 2020; MalesSevi¢ et al., 2021; Mastinu et al., 2020; Nowak et al.,
2023; Olsson et al., 2019; Osborn et al., 2021; Patel et al., 2017; Schmalfuss
etal, 2018; Wang et al., 2022; Wang et al., 2020) in this category, many
focused on improving real-time prosthesis functionality through
Al-driven motor learning and predictive feedback systems (Table 4).

The first of these articles was published in 2009, and since then,
interest in this field has increased significantly (Figure 5). In fact, this
was the earliest article included in this review, showing that prosthetics
was one of the first areas of interest to implement Al in the UE.

Movements performed by prostheses are performed in an “on/oft”
fashion, thus rendering coordinated movements with a set amount of
force by particular muscles difficult. To overcome this, many
prosthesis designs have aimed at incorporating electromyography
(EMQG) data to allow for more fine-tuned functionality. This is given
further power when such input data is processed by way of a machine
learning algorithm that can provide real-time feedback and updates
as well as learn for future use. Al-driven pattern recognition
algorithms have enabled fine-tuned, adaptive myoelectric control,
allowing upper extremity amputees to achieve more coordinated,
natural movement. Some studies incorporated real-time ultrasound
feedback to improve Al-based prosthesis control, achieving accuracy
comparable to electromyography-based models (Wang et al., 2020).
Others demonstrated that machine learning-enhanced myoelectric
control systems could significantly reduce reaction time and improve
grip precision in prosthetic hand users (Nowak et al., 2023; Osborn
et al., 2021; Patel et al., 2017).

Intraoperative Al applications
Twelve studies (Bernard et al., 2022; Bockhacker et al., 2020;

Cheng et al., 2023; Eslamian et al., 2016; Eslamian et al., 2020; Hein
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TABLE 2 The predictive task, utilized input variables, dataset, and predictive ability of the 10 studies involving total shoulder arthroplasty of the 24 that
discussed the ability of Al to predict surgical outcomes.

Predictive task Input variables Dataset* redictive ability*
History / Demographics
Improvement in ASES 472
McLendon (2021) Retrospective Questionnaires Sensitivity - 0.94*
Score (431 ASA, 41 RSA)
Imaging Results
History / Demographics
Improvement in Internal Questionnaires 6,468 AUC - 0.79°
Kumar et al. (2022) Retrospective
Rotation Physical Exam Findings (2,270 ASA, 4,198 RSA) Accuracy - 82%"°
Imaging Results
History / Demographics
Improvement in Multiple 5,774 AUC - 0.831°
Kumar et al. (2021) Retrospective Questionnaires
Clinical Outcomes® (2,153 ASA, 3,621 RSA) Accuracy - 89.7%°
Physical Exam Findings
Select Candidates for 4,500
Biron et al. (2020) Retrospective History / Demographics AUC-0.77
Outpatient Surgery (all ASA)
Patient Postoperative History / Demographics 413
Polce et al. (2021) Retrospective AUC - 0.80
Satisfaction Questionnaires (both ASA and RSA)
Risk of Prosthetic 740
Oeding et al. (2023) Retrospective History / Demographics AUC-0.71
Dislocation (all RSA)
Postoperative History / Demographics 17,119 AUC-0.71
Gowd et al. (2019) Retrospective
complications Laboratory Results (both ASA and RSA) Accuracy - 95.4%
History / Demographics
Improvement in Multiple Questionnaires 4,782 AUC - 0.875°
Kumar et al. (2020) Retrospective
Clinical Outcomes® Physical Exam Findings (1,895 ASA, 2,887 RSA) Accuracy - 92.9%°
Imaging Results
History / Demographics
Rajabzadeh-Oghaz et al. Improvement in Multiple Questionnaires 1,057 AUC - 0.753°
Retrospective
(2024) Clinical Outcomes*® Physical Exam Findings (258 ASA, 799 RSA) Accuracy - 87.1%°
Imaging Results
History / Demographics
Improvement in Multiple 243 AUC - 0.841°
Simmons et al. (2023) Prospective Questionnaires
Clinical Outcomes® (43 ASA, 200 RSA) Accuracy - 89.9%°
Physical Exam Findings

Studies are denoted by the last name of the first author. ASA, anatomic shoulder arthroplasty; RSA, reverse shoulder arthroplasty; ASES, American shoulder and elbow surgeons; VAS, visual
analog pain scale; ROM, Range of Motion; AUC, Area under the curve; MCID, minimal clinically important difference; SCB, substantial clinical benefit. *For each study the Dataset includes
the total number of patients included in the analysis, and following this the corresponding number of patients that received either an anatomic or reverse total shoulder arthroplasty is denoted
in parentheses. "For each study the Predictive Ability includes the area under the curve, accuracy, and sensitivity if these values were reported. The values are an average of both ASA and RSA
if both values were provided in the study. If a study tested multiple different predictive models, the reported values of the model with the highest predictive capabilities is listed here. *Sensitivity
in this study was measured for 3 different subgroups in the study, and this number represents the average of the subgroup sensitivities (0.91, 0.94, 0.98). *In this study, AUC and accuracy were
measured for both the MCID and SCB. Only the corresponding values for MCID are listed here. MCID is the smallest change in a treatment outcome that would indicate a clinically significant
improvement in the patient’s condition. SCB is the magnitude of improvement in a clinical outcome that reflects a substantial, clearly meaningful benefit from the patient’s perspective. *These
studies used machine learning models to predict numerous clinical outcome measures such as ASES score, UCLA score, SAS score, Constant score, Global Shoulder Function score, visual
analog scale (VAS) pain score, active abduction, active forward elevation, and active external rotation. Additionally, AUC and accuracy are listed as the average of the individual AUC and

accuracy values calculated for each of the individual clinical outcome measures.

etal., 2021; Kuthiala et al., 2022; Lee et al., 2018; Li et al., 2021; Shafiei
et al, 2021; Sithn et al,, 2023; Suh et al.,, 2011) investigated AT’s
intraoperative applications, including robotic-assisted surgery, real-
time bacterial identification, and automated instrument tracking.
Most of these studies are lab-based, with no proof-of-concept in
actual surgeries. One study showed that Al-based bacterial
identification systems detected osteomyelitis-causing pathogens
within five hours, significantly faster and in a less labor-intensive
manner than traditional microbial cultures (Bernard et al., 2022).
Similarly, another study demonstrated that Al-assisted intraoperative
soft-tissue sarcoma classification achieved an accuracy above 85%,
outperforming the traditional gold standard of H&E staining frozen
sections, which often delays completion of the surgical procedure (Li
etal., 2021).
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Al-enhanced robotic surgery was explored in three studies
(Eslamian et al., 2016; Eslamian et al., 2020; Sithn et al., 2023), showing
that autonomous Al-controlled surgical cameras improved
visualization, reduced unnecessary movements, and enhanced
procedural efficiency and flow. This method was found to be superior
to manual camera movement by the surgeon or a trained camera
operator. Such technology additionally keeps the surgical instruments
in view and avoids unnecessary movement of the camera, preventing
inadequate visualization and distraction to the surgeon (Eslamian
et al., 2016; Eslamian et al., 2020).

The direct tactile assessment of surface textures during palpation
is an essential component of open surgery that is impeded in
minimally invasive and robot-assisted surgery. A data generation
framework proved accurate (>96%) in using vibro-acoustic sensing to
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TABLE 3 The tasks and results from the six studies which analyzed Al
models’ ability to perform measurements from easily accessible devices
such as a smartphone or smart watch.

detect abnormal hand

(total of 1,344

Smartphone Al Dataset Accuracy
task
Measure video 12 participants:
recordings of a string- | 6 patients with
Darevsky et al.
(2023) pulling task to classify | RC pathology Accuracy - > 90%
: human patients as and 6 healthy
having a RC tear volunteers
Analyze images to 56 participants

Accuracy - > 95%

Ramkumar

etal. (2018)

rotation, external
rotation, and forward
flexion from video

recordings

shoulder pain
performed the
arcs of motion

for 5 repetitions

Guetal d classif ) ) (all
gestures and classify images): accuracy (al
(2022)
patients with nerve 22 patients, 34 models)
injury volunteers
Compared to
goniometer, the
mean differences
for the arcs of
Measure shoulder 10 participants
motion were
abduction, internal without

abduction,
—3.7°+£3.2°%
forward flexion,
—4.9° +2.5%
internal rotation,
—2.4° +3.7% and
external rotation

—2.6°+3.4°

Koyama et al.

(2021)

Measure thumb
opposition using an
app to diagnose
patients with CTS

63 participants:
36 patients with
CTS and 27

healthy patients

Sensitivity - 94%
sensitivity

Specificity —67%

Tsukamoto

Analyze 10 s grip and

release videos to

59 participants:
25 patients with

Sensitivity - 89%
Specificity - 83%
correlation

coefficient of 0.68

from video recordings

etal. (2024) diagnose patients with | CTS, 34 healthy
with severity on
CTS patients
nerve conduction
studies
Correlation
coefficient of
Estimate the shoulder 0.971 and a MAE
joint internal/external of 5.778 when
Takigami et al. 10 healthy
rotation angle using estimating
(2024) volunteers
pose estimation Al shoulder joint

angle from a

direct-facing

position

Studies are listed according to the last name of the first author. RC, Rotator Cuff; CTS, Carpal
Tunnel Syndrome; Al, Artificial Intelligence; MAE, Mean Absolute Error.

differentiate materials during minimally invasive and robot-assisted
surgery. This technology could provide valuable information during
procedures such as a total joint replacement or arthroscopy, in which
the osteoarthritic cartilage could be identified and graded to help the
surgeon plan and make intraoperative decisions (Stithn et al., 2023).

Frontiers in Artificial Intelligence

10.3389/frai.2025.1621757

Other intraoperative uses for Al included automated surgeon
distraction monitoring (Shafiei et al., 2021), real-time detection of
peripherally inserted central catheter (PICC) tips (Lee et al., 2018),
segmenting arm venous images (Kuthiala et al., 2022), and gesture-
controlled sterile navigation systems. One study evaluating Al-assisted
touchless image viewing in the operating room, predicted the hand
gestures of eight surgeons with an average of 6.5 years of experience,
reaching a 98.94% accuracy in executing the correct task (Bockhacker
et al., 2020).

Clinical decision support tool

AT was utilized as a clinical decision support tool (CDST) in six
articles (Bulstra et al., 2022; Daher et al., 2023; Jagiella-Lodise et al.,
2024; Rigamonti et al., 2021; Simmons et al., 2022; Yamamoto et al.,
2024), meaning they were used in some degree to aid clinical decision-
making but did not fall under any of the above categories. These
studies focused on diagnostic guidance, treatment planning, and
patient education.

Two studies evaluated ChatGPT’s diagnostic capabilities in UE
conditions. One study found that ChatGPT correctly diagnosed and
recommended appropriate management for 93 and 83% of shoulder
and elbow cases, respectively (Daher et al., 2023). Another study
assessed ChatGPT’s ability to answer common patient questions
related to hand and wrist pathologies, with responses receiving an
accuracy rating of 4.83 out of 6 (Jagiclla-Lodise et al., 2024).

Another study tested the ability of an AI program to predict
scaphoid fractures given elements of a patient’s demographics,
history, and physical exam findings without being provided imaging
(Bulstra et al., 2022). This machine learning algorithm achieved an
area under the receiver operating characteristic curve of 0.77 when
predicting the probability of a scaphoid fracture for a retrospective
patient cohort. Although accurate, this performance does not
exceed that of experienced physicians, who have shown a negative
predictive value of up to 96% when predicting scaphoid fractures
using a Clinical Scaphoid Score, without the aid of imaging (Pham,
2025). Additionally, this program was able to reccommend advanced
imaging for patients with a > 10% risk of fracture, yielding 100%
sensitivity, 38% specificity, and would have reduced the number of
patients undergoing advanced imaging by 36% without missing
a fracture.

Another study evaluated how a CDST would help surgeons plan
preoperatively whether to perform an anatomic or reverse total
shoulder arthroplasty for a patient with osteoarthritis. While this tool
did not necessarily direct their decision, it improved their confidence
in their own chosen decision (Simmons et al., 2022). Finally, one study
discussed the ability of an AI model to analyze gait characteristics
from in-shoe wearable monitors to predict distal radius fracture risks
(Yamamoto et al., 2024).

These studies are outlined in Table 5.

Risk of bias assessment
Risk of bias was assessed using the QUADAS-2 tool for

diagnostic accuracy studies and the PROBAST tool for prediction
model studies. Among the studies evaluated with QUADAS-2 (a
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TABLE 4 Outlines for each of the studies relating to the use of prosthetics the study type (prospective/retrospective), the dataset (number of study
participants, whether amputee or non-amputee), and the results of the study (short summary of study results).

Study Type Dataset Results
Jiang et al. (2020) | Prospective 15 non-amputees CNN algorithms can effectively recognize shoulder muscle movements using EMG input information
Wang et al.
( ) Retrospective | 30 non-amputees EMG input can improve the grasping process for hand prostheses
2022
Hahne et al. 10 non-amputees
Prospective EMG input can help refine and improve movements for hand prostheses
(2017) 1 transradial amputee
Osborn et al. Over the course of 1 year, prosthesis usage and functional metrics improved with a machine learning-based
Prospective 1 transhumeral amputee
(2021) myoelectric pattern recognition algorithm
Nowak et al. Through use of a machine learning protocol, both objective and subjective hand prosthesis measures
Prospective 1 transradial amputee
(2023) improved over a 1-year period
Incorporating proprioceptive, force, and grip measurements into a machine learning algorithm improved
Patel et al. (2017) | Prospective 10 non-amputees
myocontrol in hand prostheses
Edwards et al. 4 non-amputees
Prospective A real-time prediction learning algorithm improved efficiency in tasks with a robotic arm
(2016) 1 transhumeral amputee
Castellini et al. A machine learning technique was able to achieve real-time grip posture and required force for hand
Prospective 10 non-amputees
(2009) actions
Atzori et al. 67 non-amputees This study represents the beginning of a new database of information used to study machine learning
Prospective
(2014) 11 transradial amputees | methods in hand prostheses
Wang et al. A machine learning model based on US input performed similarly to one with EMG input hand prosthesis
Prospective 1 transradial amputee
(2020) control
Schmalfuss et al. 10 non-amputees Subjects controlled a hand prosthesis more rapidly and accurately using a hybrid machine learning model
Prospective
(2018) 1 transradial amputee with integrating an extra degree of freedom for control
Olsson et al.
( ) Prospective 14 non-amputees CNN algorithms can use EMG input to provide versatile and responsive hand control interfaces
2019
15 non-amputees
Hwang et al. Arm positional changes can make it difficult for accurate myoelectric control despite the use of machine
Prospective 1 wrist-deficient subject
(2017) learning models
(congenital)
Atzori et al. Machine learning algorithms using EMG input can lead to better hand prosthesis integration and
Prospective 11 transradial amputees
(2016) optimization
Malesevic et al. This study represents the beginning of a new database of information used to study machine learning
Prospective 20 non-amputees
(2021) methods of EMG input in hand prosthesis control
Mastinu et al. b 3 transhumeral Prostheses that allow for somatosensory input to the amputee via neural stimulation along with EMG input
rospective

(2020)

amputees

to machine learning algorithms may lead to better myocontrol and prosthesis functionality

CNN, Convolution neural network; EMG, electromyography. Each study is denoted by the last name of the first author.

N

[unN

FIGURE 5

Number of Al Articles Relating to Prosthetics by Date

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Distribution of the 16 articles under Prosthetic Limb Applications stratified by year of publication.
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TABLE 5 Outlines for each of the studies relating to the clinical decision support tools the study task, the dataset (whether real patients, fictional case
presentations, survey results, or algorithm responses to questions), and the results of the study (short summary of study results).

Study Task Dataset Results
Predict scaphoid fractures given A machine learning model was successfully able to predict
Retrospective cohort of 422 patients with
Bulstraetal. | patients’ history, demographics, and scaphoid fractures (0.77 AUC) given patient information and
radial wrist pain after wrist trauma, 117
(2022) PE findings and recommend further recommend further diagnostic imaging only if needed, reducing
confirmed scaphoid fractures
imaging if needed overuse of advanced imaging.
ChatGPT was able to diagnose UE complaints (93%) more
Provide a diagnosis and treatment
accurately than it was able to provide correct treatment
Daher et al. plan for patients with UE complaints
29 patients with UE complaints recommendations (83%), particularly in situations where
(2023) given patient demographics, PE
multiple treatment options were applicable or depended on
findings, and imaging results
patient preference.
Compare surgeon confidence in The addition of CDST results did not dictate or alter treatment
Simmons 30 orthopedic surgeons with 2 + years of

treatment recommendations without

et al. (2022)
vs. with the help of a CDST

shoulder arthroplasty experience

recommendations for surgeons but it increased the confidence of

their respective surgical recommendations.

Jagiella- Provide accurate information to
Lodise et al.

(2024)

common questions about orthopedic
hand conditions

CMC arthritis)

5 common hand conditions with 12-15
questions each asked to ChatGPT (carpal
tunnel syndrome, Dupuytren contracture, De

Quervain tenosynovitis, trigger finger, and

For basic orthopedic hand conditions, ChatGPT has mostly
correct (4.83 out of 6 + 0.95) but sometimes incomplete (2 out of
3 £ 0.59) responses to questions patients may ask when

undergoing self-diagnosis.

Estimate patients with DRF using gait
Yamamoto
features obtained from an in-shoe
etal. (2024) age-matched controls
inertial measurement unit

28 postmenopausal females with DRE, 32

A machine learning model using in-shoe inertial measurements
was able to reasonably predict DRFs (0.740 AUC) in elderly

females.

Rigamonti Provide correct diagnosis to common

etal. (2021) sports-related injuries

5 fictional case studies (Concussion, ankle
sprain, muscle pain, chronic knee instability

(after ACL rupture) and tennis elbow)

All chosen injuries and pathologies were either correctly
diagnosed or at least tagged with the right advice of when it is
urgent for seeking a medical specialist using a machine learning
algorithm; however, with an understanding that user knowledge

will affect interpretability of output.

PE, physical exam; AUC, area under the curve; UE, upper extremity; CDST, clinical decision support tool; CMC, carpometacarpal; DRE, distal radius fracture; ACL, anterior cruciate ligament.

total of 28), 15 were judged to have a high overall risk of bias, 10
had a low risk, and 3 had an unclear risk. For studies assessed with
PROBAST (a total of 90), 53 demonstrated a high overall risk of bias
and 37 had a low risk. No studies in the PROBAST group were rated
as having an unclear risk of bias. These assessments provide insight
into the methodological quality and potential limitations of the
included studies. Table 6 and Figure 6 show the results of the
QUADAS-2 analysis, and Table 7 and Figure 7 show the results of
the PROBAST analysis.

Discussion

The rapid evolution of AI has reshaped multiple domains of
medicine, including orthopedics. While machine learning has been
extensively used for over a decade in myoelectric control for upper
limb amputees, the past 2 years have witnessed an unprecedented
surge in Al applications across UE surgery. This growth reflects both
the increasing sophistication of AI models and a growing recognition
of their potential to enhance diagnostic precision, streamline surgical
workflows, and improve patient outcomes. Our systematic review
categorized Al applications into six primary domains: imaging
analysis, surgical outcome prediction, intraoperative assistance,
measurement tools, prosthetic limb control, and clinical decision
support systems (CDSTS).

Frontiers in Artificial Intelligence

Among these, Al-driven imaging analysis has shown the most
immediate and impactful benefits. Al models now routinely match or
exceed human performance in detecting fractures (Chung et al., 2018;
Zech et al., 2023; Mert et al., 2024; Suzuki et al., 2022), measuring
critical anatomical angles (Minelli et al., 2022; Gu et al,, 2022), and
identifying soft tissue pathologies (Droppelmann et al., 2022; Guo
et al,, 2023; Hahn et al,, 2022; Kang et al., 2021; Ni et al,, 2024).
Although few studies (Guo et al., 2023; Mert et al., 2024) showed
surgeons capable of outperforming Al, deep learning algorithms have
demonstrated higher sensitivity and specificity than experienced
clinicians in certain diagnostic tasks, reinforcing their utility in
radiographic interpretation. When Al and human performance are
clinically integrated together, results improve. For example, Guermazi
etal,, demonstrated Al-assisted fracture readings increased sensitivity
by 10% and reduced reading time (Guermazi et al., 2022). Such results
emphasize that Al should not be replacing, rather enhancing clinician
performance. Al-driven pre-screening of X-rays could improve
radiology efficiency and speed by up to 16 s per image (Guermazi
et al,, 2022). Al-based measurement tools also provide precise
quantifications of range of motion (ROM) (Li et al., 2023; Ramkumar
etal., 2018), grip strength (Koyama et al., 2021), and hand posture (Gu
et al., 2022) using accessible technologies like smartphones and
smartwatches. These advancements offer a scalable, cost-effective
means to enhance clinical assessments and facilitate remote
patient monitoring.
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TABLE 6 The results of the QUADAS-2 bias analysis regarding whether included studies showed low, moderate, high, or unclear risk of bias in the
categories of patient selection, index text, reference standard, flow and timing, as well as an overall risk of bias (QUADAS-2).

Patient selection Index test Reference standard Flow and Overall risk of
timing oJEN
Guermazi et al. (2022) High Low Low Unclear High
Droppelmann et al. (2022) Low Low Unclear Low Unclear
Yi et al. (2020) Low Low Unclear Low Unclear
Guo et al. (2023) Low Low Low Low Low
Hahn et al. (2022) Low Low Low Unclear Unclear
Chung et al. (2018) Low Low Low Low Low
Dabher et al. (2023) High Moderate High High High
Ro et al. (2021) Low Low Low Low Low
Anttila et al. (2023) Low Low Low Low Low
Wei et al. (2022) High Low Low Low High
Grauhan et al. (2022) High Low High Low High
Koyama et al. (2021) High Low Low Low High
Feuerriegel et al. (2023) High Low High Low High
Benhenneda et al. (2023) Low Moderate High Low High
Feuerriegel et al. (2024) Low Low Low Low Low
Gauci et al. (2023) Low Low Low Low Low
Alike et al. (2023) Low Low Low Low Low
Kuok et al. (2020) High Low Moderate Low High
Lee et al. (2023) Moderate Low Moderate Low Low
Keller et al. (2023) Moderate Low Low Low Low
Jopling et al. (2021) High Moderate Low Low High
Jagiella-Lodise et al. (2024) | N/A High High Low High
Jeon et al. (2023) High High Low Unclear High
Tuan et al. (2022) Low Low High Moderate High
Edwards et al. (2016) High Low Unclear High High
Bernard et al. (2022) High Low Unclear High High
Simmons et al. (2022) Low Low Moderate Moderate Low
Darevsky et al. (2023) High Low Low High High

Studies are listed by last name of the first author. N/A (not applicable) is used in where a study did not contain a certain category.

Preoperatively, Al is increasingly utilized for surgical outcome
prediction. Machine learning models can synthesize demographic,
clinical, and imaging data to forecast postoperative ROM,
complication risks, and patient satisfaction (Biron et al., 2020; Gowd
et al., 2019; Kumar et al., 2021; Kumar et al., 2022; Mclendon, 2021;
Oeding et al., 2023; Polce et al., 2021; Rajabzadeh-Oghaz et al., 2024;
Simmons et al., 2023). Notably, some studies found that AI could
achieve similar predictive accuracy using a reduced set of input
variables, minimizing the burden of extensive data collection while
still delivering actionable insights (Mclendon, 2021). This suggests
that AI could streamline clinical workflows and assist in personalized
treatment planning, optimizing decision-making without
overwhelming surgeons with unnecessary data entry. Additionally, AI
implementations continue to expand intraoperatively, with notable
advancements in robotic-assisted surgery, real-time microbial

identification, automated surgical instrument tracking, and
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vibro-acoustic sensing technologies capable of assessing cartilage
integrity (Bernard et al.,, 2022; Hein et al., 2021; Sithn et al., 2023). For
example, using Al to identify microbial infections could reduce
waiting time on results from days to hours, allowing physicians a
quicker response to identify and treat infections (Bernard et al., 2022).
Such advancements could refine decision-making in joint preservation
or arthroplasty procedures.

The ethical implications surrounding AI integration in UE
surgery demand consideration. One pressing concern is algorithmic
bias: if training datasets lack sufficient representation of minority
groups (e.g., racial or ethnic minorities), fracture-detection or
surgical-planning algorithms may underperform for those
populations, exacerbating existing health disparities. For instance,
studies have documented that Al models trained on primarily
White patient data perform less accurately on underrepresented
groups, leading to potential misdiagnoses or treatment delays
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QUADAS-2: Overall Risk of Bias

Unclear

® Low mHigh

FIGURE 6

The results of the QUADAS-2 bias analysis regarding whether
included studies showed low, high, or unclear overall risk of bias
(QUADAS-2).

(Pham, 2025). Ethical best practices call for inclusive, diverse
datasets, regular demographic performance audits, and adoption of
fairness-aware algorithm design methods (e.g., reweighting,
adversarial debiasing) to ensure equitable care across populations
(Pham, 2025). Moreover, Al systems often function as “black boxes,”
complicating informed consent and undermining the doctor-
patient relationship if neither patient nor clinician can understand
the rationale behind AI-driven recommendations (Kumar et al.,
2025). Ensuring meaningful transparency, such as explainability
reports and shared decision-making frameworks, is essential.
Without these safeguards, Al risk reinforcing, rather than reducing,
disparities in surgical care.

Integrating Al into UE surgery holds great promise, but significant
implementation barriers remain. Regulatory delays, particularly
lengthy FDA clearance processes, pose a major hurdle. Only about half
of Al-assisted orthopedic devices have undergone dynamic clinical
validation, and many remain untested in real-world surgical settings,
slowing adoption (Kumar et al., 2025). Training needs represent
another critical obstacle. Orthopedic surgeons often lack formal
education in Al or data science; moreover, generational divides
influence perceived ease of use, with senior surgeons reporting lower
familiarity and higher learning effort requirements (Schmidt et al.,
2024). Surveys highlight infrastructure limitations—such as lack of
institutional support, Al courses, and interdisciplinary collaboration—
as persistent constraints, despite growing interest and ethical concerns
like explainability and accountability. Finally, there is the question of
legal liability. When an Al-assisted diagnosis or treatment is incorrect
and leads to an adverse medical outcome, there is debate whether
liability should fall on the company that developed the algorithm, the
physician who used the tool, or the regulatory agency that approved
it (Cestonaro et al., 2023). These intertwined challenges, regulatory
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bottlenecks, educational gaps, and infrastructural barriers, need to
be addressed systematically to enable safe, effective integration of Al
into UE orthopedic practice.

The objective of this literature review was to identify the
current applications of ATl in UE surgery. In order to cover a broad
spectrum to this robust topic and find studies which UE surgeons
may find interesting, we selected general search keywords. In
agreement with the objective of this review, to give the reader a
meaningful overview of the broad topic, we conducted this
systematic review with clustering of the articles into six groups of
thematically related publications. One limitation to our study is
publication bias as studies with successful or positive results are
more likely to be published. In addition, most of the studies in
prosthetics are characterized by small sample sizes, which may
limit their clinical relevance. Another limitation is that some
studies overlapped into multiple sections. For example, two
studies (Minelli et al., 2022; Gu et al., 2022) tested an AI model’s
ability to analyze radiographs and measure critical shoulder
angles. One study segmented burn images, but also accurately
predicted the length of recovery needed based on burn depth
(Cirillo et al., 2021). Additionally, one study used AI as a CDST
to effectively predict shoulder surgery outcomes (Simmons et al.,
2023). To determine which section to label these “overlap” studies,
discussion took place between the primary reviewers until a
consensus was achieved. A numeric comparison (accuracy, AUC,
dataset, sensitivity, etc.) between certain studies took place when
feasible, and the results were listed in their respective tables;
however, another limitation to our study is that the majority of
our sections contained rather unclear boundaries in terms of
association to “artificial intelligence” and “upper extremity
surgery.” To address this limitation and achieve the objective of
this systematic review, we decided to interpret these vague
sections in a narrative and qualitative fashion with citation of
comparable publications. Although the target audience of our
study is primarily medical professionals, a limitation to this study
is that our literature search was conducted using only the
MEDLINE/PubMed database, which may introduce selection bias.
Most of the studies in our review did not report Al tool type,
future research could be directed toward investigating the
differences between commercial and academic AI algorithms,
particularly in terms of performance, scalability, and transparency.
Incorporating Explainable AI techniques such as SHAP, LIME,
and DeepSHap into future research and application could also
be valuable in aiding physicians in their decision-making process.

Conclusion

In conclusion, Al is reshaping UE surgery by augmenting
diagnostic accuracy, enhancing surgical precision, improving
prosthetic control, and facilitating personalized predictive modeling.
As Al becomes increasingly embedded in orthopedic practice, future
efforts should focus on optimizing real-world applications, addressing
ethical and regulatory considerations, and fostering Al literacy among
both clinicians and patients. Al should complement, rather than
replace, physician expertise, necessitating intuitive interfaces, targeted
clinician training, and real-time interpretability to foster trust and
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TABLE 7 The results of the PROBAST bias analysis regarding whether included studies showed low, moderate, or high risk of bias in the categories of
participants, predictors, outcome, analysis, as well as an overall risk of bias.

Participants Predictors Outcome Analysis Overall risk of
bias
McLendon (2021) Low Low Low High High
Kumar et al. (2022) Low Low Low High High
Jiang et al. (2020) Low Low Low High High
Bulstra et al. (2022) Low Low Low Low Low
Kumar et al. (2021) Low Low Low Low Low
Roche et al. (2021) Low Low Low Low Low
Anttila et al. (2023) Low Low Low High High
Dipnall et al. (2022) Low Low Low Low Low
Kluck et al. (2023) Low Low Low Low Low
Shinohara et al. (2024) Low Low Low Low Low
Lu et al. (2021) Low Low Low High High
Minelli et al. (2022) High Low High High Low
Gu et al. (2022) Low Low Low Moderate Low
Biron et al. (2020) Low Low Moderate High Low
Polce et al. (2021) Low Low Low High High
Ramkumar et al. (2018) High Low Low High High
Oeding et al. (2023) Low Low Low High High
Kausch et al. (2020) High Low Low High High
Gowd et al. (2019) Low Low Low High High
Li et al. (2023) High Low Low High High
Vassalou et al. (2022) Low Low Low Low Low
Kim et al. (2022) High Low Low High High
Yang et al. (2024) Low Low Low Low Low
Allen et al. (2024) Low Low Low High High
King et al. (2023) Low Low Low High High
Zech et al. (2023) Low Low Low High High
Yoon et al. (2023) Low Low Low High High
Shinohara et al. (2023) Low Low Low High High
Kang et al. (2021) Low Low Low High High
Lee et al. (2024) Low Low Low High High
Mert et al. (2024) Low Low Low High High
Tsukamoto et al. (2024) High Low Low High High
Oeding et al. (2024) Low Low Low High High
Ni et al. (2024) Low Low Low High High
Zech et al. (2024) Low Low Low High High
Takigami et al. (2024) High Low Low High High
Suzuki et al. (2022) Low Low Low High High
Hoogendam et al. (2022) Low Low Low Low Low
Yoon and Chung (2021) High Low Unclear High High
Alike et al. (2023) Low Low Low Low Low
Simmons et al. (2023) Low Low Low Moderate Low
Silver et al. (2006) High Low Moderate High High
Giladi et al. (2023) Low Low High Low Low

(Continued)
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TABLE 7 (Continued)

Participants Predictors Outcome Analysis Overall risk of
bias
Shinohara et al. (2022) High Low Moderate High High
Dousty and Zariffa High Low Moderate High High
(2021)
Gowd et al. (2022) Moderate Low Moderate High High
Hein et al. (2021) High Low Moderate High High
Anderson et al. (2023) Low Low Low Moderate Low
Burns et al. (2018) High Low Moderate High High
Darevsky et al. (2023) Low Low Low High Low
Lu et al. (2022) Low Low Low High Low
Koyama et al. (2021) High Low Moderate High High
Kuthiala et al. (2022) Moderate Low Low High High
Ibara (2023) Low Low Low Low Low
Wang et al. (2022) Low Low Low High High
Georgeanu et al. (2022) Low Low Low High High
Hahne et al. (2017) Low Low Low Moderate Low
Kim et al. (2021) Low Low Low High High
Rostamzadeh et al. Low Low Low High High
(2024)
Karnuta et al. (2020) Low Low Low High High
Osborn et al. (2021) High Low Low High High
Nowak et al. (2023) High Low Low High High
Sithn et al. (2023) High Low High Low Low
Cirillo et al. (2019) High Low High Moderate Low
Liand Ji (2021) High Low High Moderate Low
Lee et al. (2018) Moderate Low Moderate Low Low
Patel et al. (2017) High Low Moderate Moderate Low
Digumarthi et al. (2024) Low Low Low Moderate Low
Lee et al. (2016) Low Low Low High High
Shafiei et al. (2021) High Low High High High
Castellini et al. (2009) Low Low Low Moderate Low
Atzori et al. (2014) Low Low Low Low Low
Wang et al. (2020) High Low Low High High
Suh et al. (2011) High Moderate Low High High
Schmalfuss et al. (2018) Moderate Low Low High High
Yamamoto et al. (2024) Low Low Low Moderate Low
Eslamian et al. (2020) Low Low Low Moderate Low
Olsson et al. (2019) Low Low Low Moderate Low
Hwang et al. (2017) Low Low Low Moderate Low
Eslamian et al. (2016) Low Low Low Moderate Low
Atzori et al. (2016) Moderate Low Low Moderate Low
Bockhacker et al. (2020) High Low Low High High
Cirillo et al. (2021) High Low Low High High
Lietal. (2021) High Low Low High High
Rigamonti et al. (2021) High Low Unclear High High
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TABLE 7 (Continued)

10.3389/frai.2025.1621757

Participants Predictors Outcome Analysis Overall risk of

bias

Malesevi¢ et al. (2021) High Low Low High High

Mastinu et al. (2020) Low Low Low High High

Cheng et al. (2023) High High High High Low

Rajabzadeh-Oghaz et al. Low Low Low Moderate Low

(2024)

Kumar et al. (2020) Low Low Low Moderate Low

Studies are listed by last name of the first author.

PROBAST: Overall Risk of Bias

® Low = High

FIGURE 7
The results of the PROBAST bias analysis regarding whether included
studies showed low or high overall risk of bias (PROBAST).

adoption among orthopedic surgeons. With continued advancements,
Al has the potential to revolutionize orthopedic surgery, driving
improvements in patient care, surgical efficiency, and clinical decision-
making for years to come.
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