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Introduction: Generalizing deep learning models to unseen target domains with
low latency has motivated research into test-time training/adaptation (TTT/TTA).
However, deploying TTT/TTA in open-world environments is challenging due to
the difficulty in distinguishing between strong out-of-distribution (OOD) samples
and regular weak OOD samples. While emerging Open-World TTT (OWTTT)
approaches address this challenge, they introduce a new vulnerability: test-time
poisoning attacks. These attacks differ fundamentally from traditional poisoning
attacks that occur during model training, as adversaries cannot intervene in the
training process itself.

Methods: Inresponse to this threat, we design a novel test-time poisoning attack
method specifically targeting OWTTT models. Capitalizing on the fact that model
gradients dynamically change during testing, our method employs a single-
step query-based approach to dynamically generate and update adversarial
perturbations. These perturbations are then input into the OWTTT model during
its adaptation phase.

Results: We extensively test our attack method on an OWTTT model. The
experimental results demonstrate a significant vulnerability, showing that the
OWTTT model's performance can be effectively compromised by our test-time
poisoning attack.

Discussion: Our findings reveal that OWTTT algorithms lacking rigorous security
assessment against such attacks are unsuitable for real-world deployment.
Consequently, we strongly advocate for the integration of defenses against
test-time poisoning attacks into the fundamental design of future open-world
test-time training methodologies.

KEYWORDS

adversarial attacks, testing time poisoning, robustness, open world learning, test-time
training/adaptation

1 Introduction

The distribution gap between training and testing data poses great challenges to the
generalization of modern deep learning methods (Joaquin et al., 2008; Ben-David et al.,
2010). To improve the generalization of the model to testing data that may feature a
different data distribution from the training data, domain adaptation has been extensively
studied (Wang and Deng, 2018) to learn domain-invariant characteristics. However, the
existing unsupervised domain adaptation paradigm requires simultaneous access to the
data of both the source and the target domain with an offline training stage (Ganin and
Lempitsky, 2015; Tang and Jia, 2020). In a realistic scenario, access to target domain
data may not become available until the inference stage, and an instant prediction on
testing data is required without further ado. Therefore, these requirements lead to the
emergence of a new paradigm of adaptation at test time, a.k.a. test-time training/adaptation
(TTT/TTA) (Sun et al., 2020; Wang et al., 2021).
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The success of TTT has been demonstrated on many
synthesized corrupted target domain data (Hendrycks and
Dietterich, 2019), manually selected hard samples (Recht et al.,
2019) and adversarial samples (Croce et al., 2022). Recently, many
major language models have also been using TTA to adjust their
models (Hu et al., 2025). However, there are a number of problems
with enabling TTT in open-world (OWTTT). One of the problems
is that the target domain may contain testing data drawn from a
significantly different distribution, e.g., different semantic classes
than source domain, or simply random noise (Li et al., 2023). To
address this challenge, Li et al. (2023) developed an adaptive strong
OOD pruning to improve the effectiveness of the self-training TTT
method, while they further proposed a method to dynamically
extend the prototype to represent the strong OOD samples to
improve the weak/strong OOD data separation.

While this approach has proven successful in ameliorating this
problem, it may introduce a new attack surface for the adversary
to tamper with the parameters of the target model by fine-tuning
them during testing using potentially malicious samples. To explore
this possibility, in this work, we propose a method of test-time
poisoning attacks (TePAs) against this models. TePAs (Cong et al.,
2024) was proposed by Cong et al. i.e., an adversary aims to degrade
a TTA model’s performance at test time. Compared to TrPAs,
TePAs face the following non-trivial challenges: (i) TrPAs require
modification access to the target model’s training dataset, while
TePAs do not poison the training dataset nor control the training
process of the target model. (ii) For TrPAs, poisoned samples are
mixed with clean training samples where they can be learned in
multiple epochs by the model and become more memorable. or
trpa, the poisoned samples are mixed with clean training samples so
that the model can learn the poisoned samples at multiple epochs
and is easier to memorize. However, considering effectiveness and
efficiency, the TTA approach usually uses an update of the model
based on one calendar element arriving from each test data, hence
the different setup for tepa. (iii) In TePAs, poisoned and benign
samples are in the same pipeline, and the model is in a state of
dynamic adjustment. (iv) Since TePAs are test-time attacks, the
adversary must take into account the query budget to maintain the
stealthiness of the attack. (v) To avoid the target models “forgetting”
the original task, TTA methods usually only update part parameters
of the model. However, for TrPAs, the poisoned samples are used to
update the whole model parameters.

In summary, these differences make TePAs harder to succeed
than TrPAs.

Our work. In this paper, our study aims to demonstrate
that current OWTTT methods are prone to tepa. Considering
their use in safety-critical applications where a deterioration in
their efficacy could result in severe consequences, exposing the
model modification right to the adversaries is irresponsible, and
taking into account TePAs during the design of OWTTT methods
becomes crucial.

We propose a Tepa method for the OWTTT model: Single step
query attack data poisoning method (SQDP) which uses queries to
dynamically generate perturbations and inputs toxic test samples
into the model while querying to cause damage to the model.
Experiments show that even when mixed with normal test samples
in a ratio of 3:2, only a small number of queries are needed, the
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attack method still has good results and can produce good results
on models that have already received a large number of normal
test samples.

Meanwhile, we conduct recovery experiments for the models
after the attack using normal samples and find that the models
of some datasets cannot be recovered, and the phenomenon
remains to be further verified. In summary, we make the
following contributions.

e We propose a Tepa method: the single-step query attack data
poisoning method.

e We conducted experiments using this method, which show
that our attack can effectively degrade the performance of
the target model with a small number of queries even with
a limited number of poisoned samples and after training the
model with a large number of normal samples.

e The experiments show that the OWTTT model is difficult to
recover effectively after poisoning with normal samples.

2 Background
2.1 TTT/TTA

Consider that in some cases we would like models already
deployed to the target domain to automatically adapt to the new
environment without accessing the source domain data. With these
considerations in mind, in response to the demand for adaptation
to arbitrary unknown target domain with low inference latency, test
time training/adaptation (TTT/TTA) (Sun et al., 2020; Wang et al.,
2021) have emerged (Li et al., 2023).

We first give an overview of the self-training based TTT
paradigm, following the protocol defined in Su et al. (2022). In
specific, we define the source and target n datasets as Dy =
{xi, yi}i=1..~, with label space C; = {1...K}i=1..N, and D; =
{xi, yi}i=1..~, with label space C; = {1...K, Kep1..Kotk, }i=1..N, -
In closed-world TTT. C; = C;, while C; € C; is true under open-
world TTT. We further denote the representation learning network
aszi = f(x;;0) € RP and the classifier head as h(z;; w, B). Test-
time training is achieved by updating the representation network
and/or classifier parameters on the target domain dataset Dy.

TTT is often realized by three types of paradigms. Self-
supervised learning in the testing data enables adaptation to the
target domain without considering any semantic information (Sun
et al., 2020; Liu et al., 2021). Sun et al. (2020) proposed a method
consisting of a main task and a self-supervised auxiliary task.
The main task and the auxiliary task share the feature extraction
module. The two tasks are trained together during training, and
only the auxiliary task updates the model parameters during testing.
Liu et al. (2021) addressed the problem that TTT can cause severe
overfitting of the updated encoder to the self-supervised learning
task in the absence of any constraints on feature distribution and
proposed imposing a distribution-based constraint during the test
phase training period so that the feature distribution of the test data
is close to the feature distribution of the training domain.

Self-training reinforces the prediction of the model in unlabeled
data and has been shown to be effective for TTT (Wang et al.,
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2021; Chen et al, 2022; Liang et al, 2020; Goyal et al., 2022;
Lee et al,, 2025). Wang et al. (2021) made adjustments to model
parameters by minimizing the loss of entropy in model output
during the testing phase, while reducing the hardware burden
by updating only normalized statistics and affine parameters for
all layers and channels. Liang et al. (2020) divided the model
into a feature extractor module and a classifier module, and fine-
tuned the feature extractor module with the target domain data
in the hope of generating source-like representations for the target
domain samples.

Lastly, distribution alignment provides another viable approach
toward TTT by adjusting model weights to produce features
following the same distribution as the source domain (Su et al,
2022; Liu et al., 2021). Su et al. (2022) proposed TTAC by matching
the statistics of the target clusters with those of the source clusters
and updating the target statistics by using a moving average of the
filtered pseudo-labels.

Recent research also exists on methods that do not require
gradient descent on the model (Niu et al., 2024; Khurana et al,,
2021). Niu et al. (2024) proposed a method that does not require
gradient updates to the model. The method targets the transformer-
vit model by inserting several embeddings to optimize learning
cues during the testing process and improving the derivative-
free optimizer covariance matrix adaptation (CMA) evolutionary
strategy to achieve the purpose without updating the gradient.
Khurana et al. (2021), on the other hand, computed the distribution
of a single image by augmenting the data of that image with the data
of that image, and used this distribution to design AugBN layer
instead of the normal BN layer to achieve distribution alignment
for a single image.

Despite efforts to develop more sophisticated TTT methods, the
certification of the robustness of TTT is still to be fully investigated.

2.2 Poisoning attacks and adversarial
attacks

2.2.1 Poisoning attacks

Poisoning attacks are one of the most dangerous threats to
ML models (Carlini and Terzis, 2022; Yang et al., 2017). These
attacks assume that the adversary can inject poisoned samples into
the ML model’s training dataset. The assumption is reasonable, as
the training datasets of ML models are usually collected from the
Internet and it is hard to detect the poisoned samples manually
given the size of the dataset. In poisoning attacks, the adversary’s
goal is to degrade the performance of the model on a validation
dataset Z,, through some malicious modifications A to the
training data Dy,in as:

max L(Dyar; 0%)

where 6% = arg mein L(A(Dtrain); 0) )

After being trained on the poisoned dataset A(Dyqin), the
model’s performance degrades at test time (Pang et al., 2021).

Poisoning attacks can be broadly grouped into two categories,
untargeted poisoning attacks (Mufioz-Gonzdlez et al., 2017; Yang
et al, 2017) and targeted poisoning attacks (Biggio et al, 2012;
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Shafahi et al., 2018). The goal of untargeted poisoning attacks
is to reduce the overall performance of the target model. The
goal of targeted poisoning attacks is to force the target model to
perform abnormally on a specific input class. Backdoor attacks
(Pang et al., 2020) are a special case of targeted poisoning attacks in
which poisoned target models only misclassify samples that contain
specific triggers (Cong et al., 2024). Vasu et al. (2021) proposed an
attack method that will not be restricted to model categories, i.e.,
gradient-based label flipping attack on binary classification models.
The proposed attack method is not restricted to model categories,
which means that it can be applied to different binary classification
models with good portability. For special types of data, Ma et al.
also propose effective attacks. To address the problem that pairwise
ranking is vulnerable to poisoning attacks, Khurana et al. (2021)
proposed a poisoning attack method that can significantly degrade
the performance of the sorter, that is, poisoning attack on pairwise
comparison estimation. The poisoning attack for pairwise ranking
proposed by the authors is a data poisoning attack that can be
applied to all attack models with strong robustness. However, all of
the above poisoning attack methods are for offline data, and some
of them rely on the model’s labeling, which is not applicable to test
time training/adaptation poisoning.

Recently, Test-Time Poisoning (TePAs) (Cong et al., 2024)
was proposed by Cong et al. The attacker aims to degrade the
performance of the TTA model at test time. However, there are
fewer current studies in this direction, and most of them are
untargeted poisoning attacks. This study in this paper focuses
on targeted poisoning attacks and for TTT/TTA under OWTTT,
which is closer to real-world scenarios.

2.2.2 Adversarial attacks
Adversarial attacks aim to find a perturbed example x*%

around x which can be misclassified by the model. Such x*®" i

s
called an adversarial example. Find such adversarial examples can
be formulated as the following constrained optimization problem:

X — arg max L(x',y;0)
X

stlx — x|, <€ (2)

where y is the ground-truth label, ||. |, is the [,-norm, and L(.) is the
loss.

Adversarial attacks can be roughly divided into four
transfer-based, and

categories: score-based,

decision-based attacks.

gradient-based,

Most existing attacks rely on detailed model information
including the gradient of the loss w.r.t. the input. Examples are
the Fast-Gradient Sign Method (FGSM), the Basic Iterative Method
(BIM) (Kurakin et al., 2018), DeepFool (Moosavi-Dezfooli et al.,
2016), the Jacobian-based Saliency Map Attack (JSMA) (Papernot
et al,, 2016), Houdini (Cisse et al., 2017), and the Carlini &
Wagner attack (Carlini and Wagner, 2017). Goodfellow et al.
(2014) proposed the FGSM method, which works by computing
the gradient of the input loss function and generating a small
perturbation by multiplying a small selected constant by the
sign vector of the gradient. BIM (Kurakin et al., 2018) performs
multiple small perturbations in the direction of increasing the
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gradient in an iterative manner and recalculates the direction of
the gradient after each small step. Moosavi-Dezfooli et al. (2016)
proposed a new method DeepFool without limiting the range of
original sample perturbations, which is an early adversarial sample
generation method that can generate perturbations smaller than
the fast gradient attack. DeepFool first initializes the original image
and assumes that the decision boundaries of the classifier limit
the results of the image classification, and then, through each
iteration, performs multiple steps of small perturbations along the
decision direction of the decision boundary, gradually moving the
classification result to the other side of the decision boundary,
making the classifier misclassification.

Some attacks are more agnostic and only rely on the predicted
scores (e.g., class probabilities or logits) of the model. On a
conceptual level, these attacks use the predictions to numerically
estimate the gradient. This includes black-box variants of JSMA
(Narodytska and Kasiviswanathan, 2016) and of the Carlini &
Wagner attack (Chen et al., 2017) as well as generator networks that
predict adversaries (Hayes and Danezis, 2017). JSMA (Narodytska
and Kasiviswanathan, 2016) proposed Jacobi based significance
map attack (JSMA). Instead of utilizing the gradient information of
the loss function of the model output, JSMA uses the probabilistic
information of the model output categories for backpropagation
to obtain the gradient information and then constructs adversarial
significance maps for the purpose of the attack. Chen et al.
(2017) proposed three adversarial attack methods (Lo attack, L
attack, and Lo attack) to find perturbations that minimize various
similarity measures.

Transfer-based attacks do not rely on model information, but
need information about the training data. This data is used to
train a fully observable substitute model from which adversarial
perturbations can be synthesized (Nayebi and Ganguli, 2017). They
rely on the empirical observation that adversarial examples often
transfer between models. If adversarial examples are created on
an ensemble of substitute models, the success rate on the attacked
model can reach 100% in certain scenarios (Liu et al., 2016).

Decision-based adversarial attacks are based entirely on the
final decision of the model (Brendel et al., 2018), which is closer to
the black-box model in real-world scenarios, and at the same time,
it does not require a lot of knowledge of attack models, which makes
it easy to migrate attacks during implementation.

3 Methodology

In this chapter, we first review the method of boundary
attack. Then we introduce the open-world TTT method based on
prototype extension. Finally, we introduce how to apply Single-step
Query-attack Data Poisoning(SQDP) to degrade the performance
of the model. The overall workflow of SQDP is illustrated in
Figure 1.

3.1 Open-world TTT algorithm

When calculating strong OOD samples to estimate the target
domain distribution, methods based on distribution alignment will
be affected. The global distribution alignment (Liu et al., 2021) and
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the category distribution alignment (Su et al., 2022) can be affected
and lead to an incorrect distribution of features.

Therefore, Li et al. proposed an open-world TTT method
based on prototype expansion. This method has developed a super
parameter-free method to trim strong OOD samples, defining a
strong OOD score for each test sample:

osi =1 — max < f(x),px > (3)
PrEPs

The function f(x) extracts features from the target and p
represents the cluster centers of various class features in the
prototype clustering pool. Then, by using a certain step exhaustive
method to minimize the algorithm (Equation 4), we obtain the
threshold 7 to separate strong OOD and weak OOD data, where
Nt e Y "l(os; > ), N~ € Y " l(os; < 7):

mm— E los; —

iy Dlos - NL

1

< sum; l(os] > r)osj]
sumjl(osj < 1:)osj]2 (4)

Simultaneously, dynamically expand the prototype pool to
include prototypes representing strong out-of-distribution (OOD)
samples. Then, self-training was applied to the source domain
prototypes and strong OOD prototypes to create a larger gap in
the feature space between the weak and strong OOD samples.
The losses of self-training are as algorithm (Equation 5), while
N(us, s) is the Gaussian distribution for the source domain
feature, N(us, X;) is the Gaussian distribution for the target
domain feature

> e
Lpc=— ) I(Gi=klog 7=
keC, Zlec exp( Pl )
<Pk Zi>
S G = Rlog— 2P ) 5)
(<pl z,>)
keC, ZleC +1€Xp

3.2 Single-step query-attack data
poisoning

Traditional adversarial attacks target models whose gradients
are unmetered, and most methods generate adversarial samples
from either acquired gradient information or inferred gradient
information. However, OWTTT methods continuously update
their models based on test data, so the gradients of their models
are not constant. Also, because of the existence of strong and weak
OOD clustering pools, its gradient information is more difficult to
simulate with agent models. Therefore, it is a great challenge to
generate samples for models with changing gradient information
that can cause a misdiagnosis of the model. Compared to other
methods, the query attack can dynamically obtain the boundary
information of the model while performing the query, and at
the same time requires less model information, so the Single-step
Query-attack Data Poisoning (SQDP) method is based on this.

The SQDP is based on boundary attack (Brendel et al., 2018).
It is initialized from a point that is already adversarial and
then performs a random walk along the boundary between the
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FIGURE 1

Workflow of SQDP. The adversary uses SQDP to generate poisoned samples which will be fed into the test data stream. The target model f will be
updated via OWTTT methods to f; (the blue one) according to the arrived test data. When meeting benign samples, the performance of fi(Acc) will be
improved. However, the poisoned samples could degrade the prediction ability of f.

l v
Acc/ Acc/

adversarial and the non-adversarial region such that (1) it stays
in the adversarial region and (2) the distance toward the target
image is reduced. In other words it perform rejection sampling
with a suitable proposal distribution P to find progressively smaller
adversarial perturbations n; according to a given adversarial
criterion ¢(:) (Brendel et al., 2018). ny is sampled from N(0, 1) and
then processed to satisfy the following conditions:

e The perturbed sample lies within the input domain,

o1 0k e 10,255] (6)
e The perturbation has a relative size of §,

Inllz = 8 - d(0,3") )

e The perturbation reduces the distance of the perturbed image
toward the original input by a relative amount €,

(0,651 — d(0,6" " +1f) =€ - d(0,6") (8

In practice, it is difficult to sample from such distributions,
so a simpler heuristic is used here: first, we sample from an
iid Gaussian distribution nk N(0,1), and then rescale and clip
the samples so that Equations 6, 7 hold. In the second step, we
project n* onto the sphere around the original image o such that
d(0,01) — (0,01 + etak) = € - d(0,5*"') and Equation 6 hold.
We refer to this as the orthogonal perturbation and use it later
in the hyperparameter tuning. In the last step, we make a small
shift to the original image so that Equations 6, 8 hold. For high-
dimensional inputs and small §; o the constraint (Equation 7) will
also hold approximately.

Unlike the general query attack, our goal is not to
generate adversarial

samples, but to degrade the model
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performance by feeding poisoned samples to the model,
of the model
gradient, we fix the number of queries, and at the same

while taking into account the dynamics
time, even if a certain sample is queried for its being a toxic
sample in a certain query, it is still queried and adjusted the
next time.

Single-Step Query Attack Data Poisoning (SQDP), as an
adversarial attack paradigm designed for Open-World Test-
Time Training (OWTTT) scenarios, formalizes its execution
flow into a three-phase iterative architecture: poisoned sample
generation, query mixing with label mapping, and dynamic
sample updating. This mechanism adaptively adjusts perturbation
strategies through active querying of model feedback, with
its core advantage lying in independence from gradient
information. This characteristic ensures the robustness of
the attack in gradient-dynamic environments induced by
test-time training.

e Poisoned sample generation. Based on the perturbed sample
o1 from initialization or step k — 1, generate candidate
poisoned samples:

F=0 )

0
where nf ~ P(6*1) is random perturbation sampled from
proposal distribution and complies with the provisions of
Equations 6-8. The method of ¥ generation is introduced in
the third paragraph of this section.

e Query mixing and label mapping. To simulate data
heterogeneity in open-world environments, a hybrid dataset
strategy constructs query inputs:

Dinixed = &Dpoison + (1= a)Dgean (0.0 < <1.0) (10)
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where o« is the preset mixing ratio, and aDpoison =
k. Then feed candidate poisoned samples to model and
obtain prediction:

j}fnixed = f(Dmixed) (1 1)

This achieves dual objectives:

- Model poisoning attack: Induce the model to output error
labels on ¥ to reduce the performance of the model.
~ Mapping y¥ to ¢;, while ¢; refers to the true label of 5
ME = (e 7Dy} = £@) (12)
e Sample update. Update perturbed samples based on attack
result via Equation 13:

ok

L if7f =ci and (¢, %) € MK
% =) <k—1

k .
0 +mn; otherwise

(13)

The update strategy follows the following principles: when
the disturbance successfully leads to misclassification, keep
the current disturbance increase, otherwise keep the image

~k—1

the same as the 0; " . This feedback driven closed-loop

optimization significantly improves the attack efficiency.

In conclusion, the core of SQDP methodology resides

in alternately executing the aforementioned three-phase

query-
feedback mechanisms, it achieves progressive degradation of

process during model testing. Through iterative
the model performance. Compared to conventional gradient-based
approaches, its gradient-independent nature effectively overcomes
gradient drift caused by test-time training, establishing a novel
paradigm for adversarial robustness research in open dynamic
environments. Complete algorithmic workflow is detailed in

Algorithm 1.

4 Experiments
4.1 Settings

4.1.1 Datasets

For the corruption datasets, we selected CIFARIO-
C/CIFAR100-C (Hendrycks and Dietterich, 2019) as a small
corruption dataset, each containing 10,000 corrupt images with
10/100 categories, and ImageNet-C (Hendrycks and Dietterich,
2019) as a large-scale corruption dataset, which contains 50,000
corruption images within 1,000 categories. We also introduced
some style transfer datasets. ImageNet-R (Hendrycks et al., 2021)
is a large-scale realistic style transfer dataset that has renditions of
200 ImageNet classes resulting in 30,000 images. Tiny-ImageNet
(Pouransari and Ghili, 2014) consists of 200 categories with each
category containing 500 training images and 50 validation images.
We also introduce some digits datasets. MNIST (LeCun et al,
2002) is a handwritten digit dataset, which contains 60,000 training
images and 10,000 testing images. SVHN (Netzer et al.,, 2011) is
a digital dataset in a real street context, including 50,000 training
images and 10,000 testing images.
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Require: original image o = {xj}i—1.n, OWTTT model f,
target image t, original labels c, dataset D

1: function SQDP(o, ¢, f, t, D)

2: while k < maximum number of steps do

3: draw random perturbation from proposal
distribution »¥ P(dk—1)

4: )‘/k=f(6k*1+n§)

5: Dmixed = @Dpoison + (1 — @)Dclean (0.0 < a <
1.8) where aDpoison = 0F

6: Vnﬂlxed = T (Dnixed)

7: MK ={(c1, 75) vk = £(3K))

8: while 1 <N do

9: if y5=c; and (ci, 7§) e MX then

10 set 8k =oK™

11: else

12: set 8k =K~ 4k

13: end if

14: end while

15: end while

16: end function

Algorithm 1. SQDP.

4.1.2 Evaluation metric

Our experiments expose a flaw in OWTTT metrics: cumulative
indicators (Accs/n) (Li et al., 2023) systematically misrepresent
shift. As
demonstrates, when instantaneous weak OOD accuracy fails

adaptation progress under distribution Figure 2
to exceed the decaying Accs threshold (batch!, , < Accg_l),
rising weak OOD

performance—revealing critical temporal metric discordance.

the legacy metric declines despite

To establish weak OOD generalization as the primary
evaluation standard, we adjusted Accs propose the core metric
Accypeqr as Equation 14, where Bg refers to the weak OOD samples
in each batch, y; refers to the predicted label and I(y; € B;) is true if

yi is in the set By:

5 101 = 50T € B)
ZX;‘,}/,‘EBS ]I(yi S Bs)

ACCyeak = (14)

Contrasted with the Accg as Equation 15, where C; refers to
the cumulative set of all weak OOD samples processed through
OWTTT model:

> sigien, i = i) - 1yi € C5)
in,y,'EDt I(yi € C)

Accg = (15)

The defining distinction lies in the temporal scope—not data
domain. Whereas Accg aggregates the accuracy over all historical
batches (batches 1 to t — 1) calculates the instantaneous accuracy
exclusively on the current batch.

4.1.3 Training details
Before using SQDP, we pre-train the OWTTT model with the
appropriate data and obtain the model’s Acc,,qq for each training.
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FIGURE 2
Divergence between cumulative weak OOD accuracy Acc_s (left) and and instantaneous weak OOD accuracy Acc_weak (right). When a‘ccsveak fails
to exceed the decaying Acc_s threshold, the cumulative metric declines despite actual model improvement.

After that, we use SQDP to poison the model and use normal
samples to test the Accyeqr of the model after the poisoning. Below
are the parameters of each model:

For the OWTTT part, we follow the parameters specified in Li
etal. (2023). We followed the sequential test-time training protocol
specified in Su et al. (2022) and choose ResNet-50 (He et al., 2016)
as the backbone network for all experiments. For optimization, we
choose SGD with momentum to optimize the backbone network.
We set the learning rate « = {le — 3,1e — 4,2.5¢ — 5,2.5¢ —
5, }, the batch size Ny = {256,256,128,128},A = {1,1,0.4,0.4},
respectively, for experiments on Cifar10-C, Cifar100-C, ImageNet-
C, and ImageNet-R, respectively. To further reduce the effect of
incorrect pseudo-labeled, we only use 50% samples with odi far
from t* to perform prototype clustering for each batch. For all
0.1, the length of
strong OOD prototypes queue Ny = 100, and the length of moving

experiments, we use temperature scaling § =

average N, = 512.

Although there are known security vulnerabilities in the test
time adaptation framework, there is still a lack of research on
targeted poisoning attack methods for open world test time training
(OWTTT). To establish the baseline evaluation, we used the
Diverse Input-FGSM (DIM) attack as a benchmark method, which
was used in recent research (Cong et al, 2024). The empirical
results show that DIM has a significant destructive effect in a
variety of test time training (TTT) and test time adaptation (TTA)
paradigms (Cong et al., 2024). For the DIM model, we follow the
parameters specified in Cong et al. (2024). We set the perturbation
budget € = 32/255 (Io-norm) for default. And we set @ = 4/255.

For the SQDP model, we used the boundary attack under
foolbox,! and we set the parameters as follows: epsilons =
0.3, steps = 0.01, source_step = 0.01,
source_step_convergance = 1.5, and
update_stats_every_k = 10. All of the parameters are default except

100, spherical_step =
le-7, step_adaptation =

the epsilons and steps.

For the calculation of expenses, we use the A40 graphics card
for calculation. For the CIFARI1O0 and 100 datasets, the OWTTT
algorithm consumes 10.21 GB of video memory during runtime,
while SQDP attacks the OWTTT model with 13.13 GB of video
memory. It takes 82.52 seconds for a hundred queries. For the
Imagenet dataset, the OWTTT algorithm consumes 17.24 GB of
video memory during runtime, while SQDP attacks the OWTTT

1 https://github.com/bethgelab/foolbox.git
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model with 40.60 GB of video memory. It takes 84.5 seconds for a
hundred queries. Considering the low query time under the current
computational load, and the fact that the video memory overhead
of this algorithm includes the occupied space of the attacked
algorithm, and only the adversarial sample images and target
images to be generated need to be loaded during actual operation,
the video memory consumption will be greatly reduced. Even
graphics cards with lower configurations than A40 can run SQDP
algorithm, resulting in lower overall computational overhead.

4.2 SQDP against OWTTT models

We introduce here SQDP against the OWTTT model. In order
to fully demonstrate the vulnerability of the OWTTT model to
SQDP, we adapt all datasets with poisoned samples and evaluate the
impact on the prediction performance. Considering the fluctuation
of the results of Acc,qi for a single batch, the comparison of the
results takes the average of the last 5 times of the pre-training and
the 5 times of the OWTTT model’s Acceqr before testing using
normal data after the completion of the SQDP, respectively. The
results are shown in Tables 1-4 and Figure 3. The first row in the
table represents the category of week ood dataset, and the first
column represents the category of strong OOD dataset. There is
no weak OOD data in Imagenet-r dataset, so there is no weak OOD
data identifier.

In our study, we first observe that our poisoned samples
almost always lead to a significant decrease in the predictive
power of the target model, regardless of which combination of
strong-OOD and weak-OOD datasets is used. This phenomenon
suggests that the quality and characteristics of the data have a non-
negligible impact on the performance of the model. By analyzing
the experimental results, we find that the poisoned samples can
significantly interfere with the normal operation of the model and
cause its accuracy to decrease dramatically in the face of unknown
data, which also provides an important experimental basis for our
subsequent research.

In addition to analyzing the comparability of different
combinations of strong-OOD and weak-OOD data, we note
that there is a significant difference in the magnitude of model
performance degradation. For example, the data in Table 1 shows
that when the weak OOD data is SNOW and the strong OOD data
is MNIST, the accuracy of the model plummets from 0.88 to 0.24,
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TABLE 1 Poisoning results on CIFAR10-C.

10.3389/frai.2025.1621025

Snow Frost Shot_noise
Before Ours DIM Before Before Ours Before Ours
MNIST 0.88 0.24 0.83 0.87 0.61 0.81 0.90 0.71 0.86 0.87 0.62 0.83
noise 091 0.03 0.84 0.88 0.80 0.80 091 0.20 0.89 0.88 0.05 0.85
SVHN 091 0.10 0.84 0.88 0.10 0.80 091 0.44 0.86 0.89 0.24 0.85
Tiny-Tmagenet 0.80 0.38 0.78 0.85 0.11 0.84 0.88 0.67 0.84 0.82 0.32 0.87
Cifar100 0.72 0.31 0.72 0.87 0.11 0.82 0.87 0.27 0.81 0.77 0.20 0.87

Bold value means that the result is better than other comparison models and has achieved better results.

TABLE 2 Poisoning results on CIFAR100-C.

Snow Fog Frost Shot_noise
Before Ours DIM Before Ours Before Ours Before Ours
MNIST 0.59 0.002 0.51 0.55 0.01 0.45 0.65 0.02 0.86 0.61 0.03 0.29
Noise 0.61 0.50 0.55 0.60 0.47 0.44 0.65 0.51 0.58 0.62 0.53 0.47
SVHN 0.61 0.02 0.57 0.60 0.01 0.45 0.65 0.04 0.58 0.62 0.05 0.46
Tiny-Tmagenet 045 0.24 0.36 036 0.30 0.34 0.50 0.02 0.84 0.48 0.41 0.18
Cifar10 0.43 0.27 035 033 0.42 0.28 0.49 0.34 0.40 047 0.30 0.05

Bold value means that the result is better than other comparison models and has achieved better results.

TABLE 3 Poisoning results on Imagenet-C.

MNIST 0.59 0.02 0.28 0.55 0.01 0.42 0.65 0.00 0.11
noise 0.61 0.02 031 0.60 0.00 0.41 0.65 0.01 0.03
SVHN 0.61 0.05 032 0.60 0.01 0.41 0.65 0.01 0.05
Bold value means that the result is better than other comparison models and has achieved better results.
which shows great vulnerability. Comparatively, when the weak TABLE 4 Poisoning results on Imagenet-R.
OOD data is replaced with frost, the model performs relativel
: P ol odel p _ Y Before Ours DIM
poorly, with the accuracy similarly dropping to 0.71. This suggests
that the model’s resistance and adaptability are significantly affected MNIST 044 o.01 0-38
in different data combinations, which depend on the specific Noise 045 0.00 0.39
characteristics of the dataset. SVHN 046 0.26 0.39

Finally, our experimental results also show that, compared
the DIM method,
better in most cases. This is evident from our streamlined

to our proposed method performs

better results.

querying process, where only a small number of queries
the of the
In our experiments, a significant suppression of

can effectively degrade performance target

model.

Bold value means that the result is better than other comparison models and has achieved

target model post-poisoning. Specifically, we examine a scenario

the predictive ability of the target model was successfully
achieved by performing only 100 queries. This finding not
only highlights the effectiveness of our approach but also
provides new ideas and approaches for further research
and applications.

4.3 The recovery of OWTTT model

In this study, we investigate the effects of incorporating
independent and identically distributed (i.i.d.) samples into the

Frontiersin Artificial Intelligence

where poisoned samples are introduced first, followed by the
feeding of ii.d. samples. Using the performance on CIFAR-10-
C (as illustrated in Figure 4) as a reference, we observe that in
some cases, the utility of the model can recover to near normal
levels. For example, when combining weak OOD samples from
MNIST with strong OOD samples affected by fog, we note that
the accuracy of weak OOD samples can return to 0.86, indicating
a substantial recovery from the effects of poisoning. This suggests
that the degradation in model performance caused by poisoned
samples can be substantially mitigated by careful selection of the
data fed to the model after the poisoning process.
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FIGURE 3
Poisoning results on different datasets. The y-axis and x-axis represent the accuracy (Accweax) and dataset names of different datasets under SQDP.
The x-axis name follows the naming rule of “weak OOD category_strong OOD data.” The above picture effectively proves the feasibility of our
method.

However, it is important to note that, in most combinations

vulnerability; it illustrates that certain combinations of

of strong and weak OOD datasets, the efficiency of the model
does not exhibit significant recovery. For instance, when the
weak OOD sample is MNIST and the strong OOD sample
is snow, the accuracy after recovery only reaches 0.05, which
is than
levels. This result underscores a troubling aspect of model

drastically lower the pre-poisoning performance
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datasets may lead to conditions from which the model
cannot effectively recover. Thus, these findings suggest the
potential for enduring detrimental effects on the models
predictive capabilities following an attack, raising concerns
about the resilience of machine learning models in similar
threat scenarios.
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Finally, our experimental results show that our proposed
method outperforms the DIM method in most cases. In TePAs,
the TTA method attacked using the DIM method is recoverable
after accepting normal samples; however, the present method
makes recovery impossible on some datasets. Note that we
effectively degrade the performance of the target model using only
a small number of queries. In our experiments, the predictive
power of the target model was significantly suppressed with only
100 queries, which proves the effectiveness of our method. At
the same time, the unrecoverable nature of the attack shows
that the attack method is fatal to the model and needs to be
highly emphasized.

4.4 Factors that may affect the
effectiveness of the attack

In this chapter, we systematically explore the various factors
that may affect the effectiveness of an attack. To achieve
this, we design a series of experiments utilizing two different
datasets: the MNIST dataset as out-of-distribution (OOD)
data and the CIFAR-10-C dataset as in-distribution data.
Without additional instructions, the rest of the parameters
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TABLE 5 Poisoning results on strong oods.

Target Snow Fog Frost Shot_noise
Strong 0.47 0.01 0.04 0.08
Weak 0.24 0.61 0.71 0.62

in the experiment are the same as in Section 4.1. Through
the experiments in this chapter, we aim to demonstrate the
effectiveness of the attack methodology and gain insight
into how different factors can change the dynamics of the
attack’s effectiveness.

4.4.1 The settings of target

The previous attacks used strong OOD data as the target, and
added perturbations to the weak OOD data and input them into
the model. To confirm whether the target setting has any effect on
the attack effect, in this chapter, we set weak OOD as the target, add
perturbation to the strong OOD data and input it into the model,
and other experimental conditions remain unchanged. The results
are shown in Table 5.
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TABLE 6 Poisoning results on models without pre-training.

Target Snow Fog Frost Shot_noise
Origin ‘ 0.73 ‘ 0.68 ‘ 0.73 ‘ 0.61
After ‘ 0.05 ‘ 0.02 ‘ 0.00 ‘ 0.23

From the table, it can be seen that there is a significant
difference in the attack effect for different datasets with different
target settings. Specifically, when the weak OOD data category is
set to “snow, the attack effect partially decreases; while in the
other three categories, the attack effect increases significantly. These
results suggest that the effect of target setting on attack effectiveness
cannot be ignored. However, it is worth noting that even if the
target setting is changed, the attack method itself remains valid and
does not lead to a fundamental failure of the attack effect. Therefore,
differences in target settings do not impede the effectiveness of the
attack methods.

4.4.2 Poisoning models without pre-training

In this section, we conduct systematic attack experiments on
models that are not pre-trained and provide data on normal
samples after the attack to test whether the performance of the
model is significantly affected by its performance in the pre-trained
state. The experimental results are detailed in Table 6, where the
row named origin represents the mean value of acc_weak for the
untrained model on the initial 5 normal sample batch sets. The
row named after indicates the mean value of acc_weak on the
initial 5 normal sample batch for the model after accepting the
poisoned samples.

The experimental results shown in Figure5 show that
generating poisoned samples against an uninitialized model can
effectively reduce its initial accuracy in open-world scenarios, and
that this attack does not negatively affect the attack performance
of the model. In addition, the attacked model has more difficulty
in recovering its performance when faced with normal samples,
which further emphasizes the importance of pre-training for model
stability and recovery.

4.4.3 The times of queries

In this chapter, we aim to investigate the relationship between
attack effectiveness and the number of queries. It is evident that
attack effectiveness is closely related to the number of queries;
however, the precise nature of this relationship remains to be
explored further. To systematically analyze the impact of varying
query counts on attack effectiveness, we have designed experiments
with the number of queries set at 50, 75, 100, 125, and 150. The
experimental results are presented in Table 7 and Figure 6, which
will provide significant empirical support for understanding how
query counts influence attack effectiveness.

Firstly, the effectiveness of the attacks increases steadily with
the number of attacks. Based on the data presented in the table,
it is evident that all combinations demonstrate a general decline
in accuracy as the number of queries increases. This observation
not only indicates the effectiveness of the attacks but also confirms
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that the decrease in model accuracy during the experiments is not
limited to a specific query point; rather, it represents a widespread
and systematic phenomenon. This finding suggests that the model
consistently exhibits vulnerability in the face of increasing attack
frequency. Therefore, we can conclude that the efficacy of the
attacks is robust, and the decline in model performance is not an
isolated incident, but rather a clear reflection of the cumulative
impact of the attacks.

Second, the relationship between the effectiveness of the
attack and the number of queries does not grow linearly. In the
experiments with snow as the weak OOD dataset, the model
accuracy decreases significantly after the 100th query is performed,
while the decrease is limited in the first 100 queries, showing that
there is a specific query threshold; when the threshold is reached,
the attack effectiveness increases significantly. The query threshold
also varies across datasets; for example, for the frost dataset, the
threshold is not reached until the 125th query. Considering that
the frequency of calls against the same interface is usually limited
in open-world scenarios, too high a number of queries does not
meet the practical application requirements. Therefore, the attack
strategy of limiting the number of queries is more applicable in
real-world applications and provides a more realistic reference for
model security evaluation.

4.4.4 The percentage of mixed samples

In this section, we explore the effect of sample mixing ratio
on the proposed method. The data in Table 8 show that there is
a significant correlation between the attack effect and the mixing
ratio, but the exact pattern of the relationship still needs to be
studied in depth. To this end, we will input the generated toxic
data into the model according to five different ratios, namely 0.2,
0.4, 0.6, 0.8 and 1.0, with the aim of observing the changes in
model performance.

First, we note that the poisoned samples generated at different
mixing ratios all have a significant negative impact on the
performance of the model. This phenomenon not only clearly
demonstrates the effectiveness of the attack method, but also shows
that the poisoned samples generated by the method are capable
of causing substantial damage to the model even at very low
mixing ratios. This important finding highlights the importance of
giving high priority to this attack method when performing security
evaluations of models, as the magnitude of the potential threat may
be much higher than we expect.

Second, we observe that changes in the mixing proportions
of different samples directly affect the performance of the attack
model. Under most datasets, the model performance generally
shows a decreasing trend as the proportion of poisoned samples
gradually increases, especially when the weak OOD dataset is
snow, fog, and frost. However, when the weak OOD dataset used
is shot_noise, the model performance is relatively superior, and
only at mixing ratios of 0.2 and 1.0, the model performance can
still be maintained at a relatively good level. This result suggests
that how to specifically define and select the mixing ratio of the
samples is still an important topic worthy of in-depth research,
especially in the process of optimizing the model’s ability to resist
attacks. Further exploration in this research direction will provide a
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TABLE 7 Poisoning resultes on different queries.

Times (0] 50 60 70 80 90 100 110 120 130 140 150
Snow 0.88 0.78 0.74 0.71 0.52 0.44 0.24 0.17 0.17 0.17 0.07 0.06
Fog 0.87 0.71 0.63 0.67 0.70 0.68 0.61 0.36 0.39 0.22 0.39 0.09
Frost 0.90 0.85 0.73 0.70 0.69 0.70 0.71 0.54 0.41 0.24 0.09 0.05
Shot_noise 0.87 0.74 0.77 0.76 0.75 0.74 0.62 0.60 0.27 0.26 0.20 0.43
o Accuracy in different times of queries
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FIGURE 6
Poisoning results on different queries The y-axis and x-axis represent the accuracy (Accyeax) and query count for different query counts.

This finding implies the vulnerability of the model against
potential attacks. It is worth noting that previous studies (e.g.,
Tepas) have focused on traditional TTT/TTA models, which are
not as effective against attacks in open-world environments. In
addition, we observe that some instances of the models that
have been attacked by SQDP appear to be unrecoverable by
normal samples, which further emphasizes the vulnerability of
the models. Due to the fact that the ImageNet dataset contains
1,000 fine-grained object categories (Russakovsky et al, 2015),
covering most visual concepts in the real world (Deng et al,
2009), the robustness results validated on this dataset have broad

theoretical basis and practical guidance to improve the robustness
and security of the model.

5 Discussion

The main findings of the study reveal that the robustness of
current TTT/TTA models, especially TTT/TTA (OWTTT) models
in open-world environments, is in dire need of enhancement
and has significant security concerns and risks. Specifically,
we propose a Single Query Data Poisoning (SQDP) attack

methodology, by which we are able to significantly reduce the
accuracy of models on different datasets with only 100 queries.

Frontiersin Artificial Intelligence

12

representativeness and transferability (Hendrycks and Dietterich,
2019).
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TABLE 8 Poisoning results on different mixed percentage.

Snow 0.88 0.74 0.63 0.24 0.32 0.11
Fog 0.87 0.71 0.68 0.61 0.30 0.09
Frost 0.90 0.74 0.78 0.71 0.46 0.18
Shot_noise 0.87 0.40 0.72 0.62 0.75 0.11

The importance of this finding is not only on the technical level,
but also relates to the practical application of TTT/TTA technology
in critical areas such as medical diagnosis and autonomous driving.
In the current context of rapid development, models with high
accuracy and strong adaptability will provide more efficient and
reliable solutions in these fields. However, the popularization of
technology is accompanied by security risks that cannot be ignored.
For example, attacks on models through specific means can lead
to significant degradation of model performance, which can have
serious consequences. Despite the growing interest in this area,
research in this area still appears to be relatively scarce, making the
results of this study of great academic and practical significance.

Despite the results of this study, we must also recognize its
limitations. First, although the experiments prove the effectiveness
of the SQDP attack method, in some cases, when the percentage
of poisoned samples is very low, the model performance decreases
relatively slowly or requires more queries, increasing the cost
of the attack. In addition, this paper does not provide an in-
depth discussion of strategies for defending against this attack
method, whereas SQDP attacks are more necessary to cope with
potentially changing attack methods than traditional adversarial
defense strategies.

Based on the findings of this study, future research directions
can focus on the following two areas:

e Designing more efficient attack algorithms to generate
poisoned samples and execute attacks against the model.

e Exploring practical and effective defense strategies aimed at
countering attacks against OWTTT models.

In conclusion, this study clearly demonstrates the possible
robustness issues and security risks of OWTTT techniques. We
call on researchers to pay more attention to the security issues of
AT while pursuing technological advances in order to realize the
sustainable development of AI technology.

6 Conclusion

In this article, we conducted an in-depth study of targeting
test-time poisoning attacks (TePAs) for the Open-world Test-
time Training (OWTTT). Specifically, we propose a toxic sample
generation framework that relies on query-based adversarial attack
techniques to construct disruptive adversarial samples. These
adversarial samples are then used as poisoned samples designed
to significantly degrade the performance of OWTTT models by
maliciously manipulating the inputs to the target model. Through
empirical evaluation, our experimental results show that this attack
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methodology is largely successful in weakening the performance
of the target OWTTT model, demonstrating the effectiveness and
relevance of our attack strategy.

In addition, we note that the target model has an extremely low
probability of recovering its performance after experiencing our
attack. This finding reveals the fatal flaws of the OWTTT model in
the face of the target test-time poisoning attack, and suggests that
the existing models have serious shortcomings in terms of security
and robustness. Therefore, how to conduct an effective defense
against such attacks becomes an interesting research direction that
deserves in-depth exploration. We believe that the research on
defense mechanisms for OWTTT models not only has important
academic value, but also has practical significance for security
enhancement in practical applications.

In conclusion, our study shows that current OWTTT methods
are vulnerable to test-time poisoning attacks, a finding that
provides important insights for future research. Based on this,
we advocate the active integration of defenses against test-time
poisoning attacks in the design of future OWTTT methods to
enhance the security and robustness of the model. Through such
efforts, we hope to promote the further development of the
OWTTT field in resisting adversarial attacks and lay the foundation
for building more secure and reliable target tracking systems.
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