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GAAPO: genetic algorithmic
applied to prompt optimization

Xavier Sécheresse*, Jacques-Yves Guilbert–Ly and
Antoine Villedieu de Torcy

Biolevate, Paris, France

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various tasks, with their performance heavily dependent on the quality
of input prompts. While prompt engineering has proven effective, it typically
relies on manual adjustments, making it time-consuming and potentially
suboptimal. This paper introduces GAAPO (Genetic Algorithm Applied to Prompt
Optimization), a novel hybrid optimization framework that leverages genetic
algorithm principles to evolve prompts through successive generations. Unlike
traditional genetic approaches that rely solely on mutation and crossover
operations, GAAPO integrates multiple specialized prompt generation strategies
within its evolutionary framework. Through extensive experimentation on diverse
datasets including ETHOS, MMLU-Pro, and GPQA, our analysis reveals several
important points for the future development of automatic prompt optimization
methods: importance of the tradeoff between the population size and the
number of generations, effect of selection methods on stability results, capacity
of different LLMs and especially reasoning models to be able to automatically
generate prompts from similar queries... Moreover, we decided to use limited size
datasets extracted from the original databases to ensure real life applications of
our prompt optimization strategy. Finally, we provide insights into the relative
effectiveness of different prompt generation strategies and their evolution
across optimization phases. These findings contribute to both the theoretical
understanding of prompt optimization and practical applications in improving
LLM performance.

KEYWORDS

artificial intelligence, prompt engineering, genetic algorithmic, LLM, prompt
optimization

1 Introduction

Large Language Models (LLMs) have gained significant attention following the public
release of generative AI assistants such as ChatGPT (2022) and Claude (2023). A critical
factor in maximizing these models’ effectiveness lies in the quality of input prompts (Sahoo
et al., 2025) - the instructions that guide LLMs toward generating relevant outputs. While
the impact of prompting on LLM performance has been well-documented through various
benchmarks, the process typically relies on manual adjustments, making it both time-
consuming and prone to human error (Schulhoff et al., 2024). This highlights the necessity
for developing automated methods to fully harness the capabilities of modern LLMs.

In response to this need, several machine learning approaches have been developed to
automate prompt optimization. Reinforcement learning has been employed to optimize
evaluation costs and computational efficiency (Yang et al., 2024; Ma et al., 2023), while
in-context learning focuses on improving prompt performance through example-based
learning (Dong et al., 2024). Regression techniques have been explored to establish direct
relationships between prompt characteristics and model performance (Feffer et al., 2024).

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1613007
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1613007&domain=pdf&date_stamp=2025-09-22
mailto:xavier@biolevate.com
https://doi.org/10.3389/frai.2025.1613007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1613007/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sécheresse et al. 10.3389/frai.2025.1613007

These diverse approaches aim to streamline the prompting process,
reducing the reliance on manual intervention while addressing
different aspects of prompt optimization.

Recent research has shown that smaller language models
can achieve performance comparable to larger LLMs through
various optimization techniques such as distillation (Xu et al.,
2024) and prompt engineering (Schulhoff et al., 2024). While
traditional approaches like distillation modify model weights,
prompt optimization offers a more flexible alternative: it enhances
model performance without altering the underlying architecture.
This approach is particularly valuable as it can be applied to any
LLM regardless of size or architecture, providing a generalizable
framework for task-specific optimization while maintaining cost-
effectiveness.

In this work, we introduce GAAPO (Genetic Algorithmic
Applied to Prompt Optimization), an algorithm that integrates
different prompt generation strategies into a hybrid prompt
optimizer. This innovative approach capitalizes on the strengths
of diverse techniques, ensuring optimal performance. Crucially,
it maintains a detailed record of the evolution of prompting
strategies, which is essential for tracking progress and making
informed adjustments. The design of this optimizer prioritizes
adaptability, ensuring it can seamlessly incorporate future
advancements in the field, thereby remaining relevant and effective
as new techniques and models emerge.

2 Materials and methods

2.1 Related works

2.1.1 Prompt engineering
Prompt engineering is a critical aspect of working with large

language models (LLMs), as it involves crafting inputs that guide
the model to produce desired outputs. It has been demonstrated
that this step is critical to enhance LLM capabilities (Schulhoff et al.,
2024). However, this process requires a deep understanding of both
the model’s capabilities and the specific task at hand. Traditionally,
prompt engineering has been a manual process (Bsharat et al.,
2023), relying on human intuition and expertise to iteratively refine
prompts for optimal performance.

2.1.2 Automatic prompt engineering
The limitations of manual prompt engineering have led

to the development of automated approaches. These methods
utilize machine learning algorithms to automatically generate and
optimize prompts, reducing the need for manual intervention
and democratizing access to advanced language processing
capabilities. To standardize these developments, frameworks
like DSPy (Khattab et al., 2023) have emerged, providing a
systematic approach to developing and evaluating automatic
prompt optimization methods. Various approaches have been
explored in this field, from “gradient-oriented” prompt evolution
(Shin et al., 2020) to more sophisticated optimization techniques.
Notable advances include APO (Pryzant et al., 2023), which
introduced gradient-based prompt optimization, while OPRO
(Yang et al., 2024) demonstrated the effectiveness of using LLMs

themselves as optimizers. These automated methods can efficiently
explore vast prompt spaces, identifying optimal prompts that
maximize model performance on specific tasks. This systematic
approach has become increasingly important as LLMs are deployed
in diverse applications, where task-specific prompt optimization
can significantly impact performance.

Most prompt optimization techniques follow the same
architecture, described in the Figure 1.

2.1.3 Genetic algorithm
Genetic algorithms (GAs) are a class of optimization techniques

inspired by the principles of natural selection and genetics
(DeJong, 1988). By mimicking the evolutionary process, GAs
have been successfully applied to various machine learning and
artificial intelligence tasks (Lambora et al., 2019). They are
particularly effective in solving complex optimization problems
where traditional methods struggle, thanks to their ability to
explore large and poorly understood search spaces. The GA
process begins with a randomly initialized population of candidate
solutions, each evaluated based on a fitness function that measures
its effectiveness in solving the problem. The best-performing
individuals are selected for reproduction using evolutionary
operators such as crossover, which recombines elements from two
solutions, and mutation, which introduces random modifications
to enhance diversity.

Over the years, GAs have been widely adopted in nearly
every field of machine learning, including feature selection (Yang
and Honavar, 1998), neural network optimization (Stanley and
Miikkulainen, 2002), hyperparameter tuning (Ganapathy, 2020),
clustering (Maulik and Bandyopadhyay, 2000), and reinforcement
learning (Whiteson and Stone, 2006). For example, GAs have
been used to optimize neural network architectures by evolving
network topologies and weight configurations, improving model
performance and efficiency (Stanley and Miikkulainen, 2002).
In reinforcement learning, they have been leveraged to evolve
policies and reward functions, enabling agents to learn complex
behaviors (Whiteson and Stone, 2006). Additionally, hybrid
approaches combining GAs with local search techniques have
been developed to improve convergence speed and accuracy
(Merz and Freisleben, 2000). Parallel implementations of GAs
further enhance their scalability, allowing them to tackle large-
scale optimization problems efficiently (Cantú-Paz, 2001). The
adaptability and robustness of genetic algorithms make them a
powerful tool for advancing machine learning methodologies and
solving a diverse range of computational challenges.

2.1.4 Application to prompt optimization
Genetic algorithms have been previously explored in prompt

optimization, though their implementations often focus on specific
aspects of the prompt space. EvoPrompt (Guo et al., 2023)
introduces a basic evolutionary approach where new prompts
are primarily generated through crossover operations, combining
successful segments from parent prompts followed by linguistic
refinement. This method, while effective, primarily explores
structural variations within a limited scope of the prompt space.
A more sophisticated approach is demonstrated by PhaseEvo (Cui
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FIGURE 1

Schema of the general automatic prompt optimization process.

W. et al., 2024), which implements a two-phase evolutionary
strategy. The first phase employs global mutations to identify
promising regions in the prompt space, effectively searching for
potential global optima. The second phase then applies more
focused optimizations through semantic mutations and gradient-
based refinements.

However, despite their innovative contributions, these
approaches operate within relatively narrow paradigms of prompt
generation and modification. While they effectively handle
structural and semantic modifications, they don’t fully explore the
broader spectrum of prompt transformation strategies. Moreover,
they lack a comprehensive framework that could integrate
existing prompt optimization techniques or adapt to emerging
methodologies in the field. This limitation in extensibility
and modularity restricts their ability to evolve alongside new
developments in prompt engineering.

2.2 Datasets

ETHOS dataset
The ETHOS (Ethics in Text - Hate and Offensive Speech)

multilabel dataset (Mollas et al., 2022) is a specialized benchmark
designed to evaluate hate speech recognition capabilities in
language models. It consists of 443 carefully annotated text
samples categorized across eight distinct dimensions of hate
speech and offensive content, including race, gender, and violence.
Each sample in the dataset is labeled to indicate the presence
or absence of specific types of harmful content, enabling fine-
grained evaluation of model performance in detecting various
forms of hate speech. The dataset’s multi-label structure allows for
comprehensive assessment of language models’ ability to identify

intersecting forms of discriminatory or offensive content, making
it particularly valuable for evaluating ethical content moderation
capabilities. The balanced distribution across different categories
of hate speech ensures robust evaluation across the spectrum of
harmful content typically encountered in real-world applications.

Note: This dataset is different than the standard ETHOS
dataset used in several papers of prompt optimization which
correspond to the detection of messages as hate speeches and not
their classification into different subcategories of hate speeches.

Complementary datasets
To assess performances of our approach on a wide range of

tasks, we evaluated our model on 3 other datasets, alongside with
ETHOS-multilabel:

• The MMLU-Pro (Massive Multitask Language Understanding
Professional) (Wang et al., 2024) dataset extends the
famous MMLU (Hendrycks et al., 2020) dataset by
complexifying it to a professional level, with our focus
on two key subcategories. The Engineering subcategory
evaluates technical understanding across various engineering
disciplines, testing knowledge of fundamental principles,
technical specifications, and complex problem-solving
approaches encountered in professional practice. The
Business subcategory assesses comprehension of management
principles, corporate strategy, financial decision-making, and
organizational behavior through practical business scenarios.

• GPQA (General Physics Question Answering) presents a
specialized evaluation framework for physics understanding
through multiple-choice questions. The dataset covers a broad
spectrum of physics topics, from mechanics to quantum
physics, requiring both theoretical knowledge and practical
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FIGURE 2

Description of the GAAPO optimization process.

problem-solving abilities. Questions are designed to test not
only recall of physical principles but also their application in
solving concrete problems, making it an effective benchmark
for assessing scientific reasoning capabilities in LLMs (Rein
et al., 2024).

2.3 Methods

2.3.1 Models
2.3.1.1 GAAPO: genetic algorithmic applied to prompt
optimization

GAAPO follows the principles of genetic algorithms to
evolve and optimize prompts through successive generations. The
algorithm combines multiple prompt optimization strategies to
explore a broader prompt space than previous methods, leveraging
the strengths of each approach while maintaining the evolutionary
nature of genetic algorithms. The optimization pipeline, inspired
by existing works (Pryzant et al., 2023; Cui A. et al., 2024) and
described in the Figure 2, operates in three distinct phases during
each generation:

• Generation phase: New prompt candidates are created using
multiple strategies, with each strategy operating on a subset of
high-performing prompts from the previous generations.

• Evaluation phase: The newly generated population is evaluated
on the validation set using either exhaustive evaluation or a
bandit-based approach to optimize computational resources.

• Selection phase: Top-performing prompts are selected based
on their evaluation scores to serve as parents for the next
generation, ensuring best performers are used as parents at all
time for the future generations.

This iterative process combines the exploration capabilities
of genetic algorithms with specialized prompt optimization
techniques, enabling efficient navigation of the prompt space while
maintaining diversity in the population.
Prompt generation

The genetic algorithm framework incorporates multiple
prompt generation methods, each implementing distinct
optimization strategies as detailed in Sections 2.3.1.2.1, 2.3.1.2.2.
These methods, summarized in Table 1, represent diverse
approaches to prompt optimization, each with its own strengths
and limitations. The hybrid nature of GAAPO leverages this
diversity by combining these complementary strategies within
a single optimization framework. This integration enables the
algorithm to capitalize on the advantages of each method while
mitigating their individual limitations through iterative application
of varied optimization approaches. The synergistic combination
of these methods allows for more comprehensive exploration of
the prompt space than would be possible with any single strategy.
Examples of generated prompts on a real-world task are presented
below.

To streamline the optimization process, we unified the
selection and evaluation phases across all different optimization
methods into a single coherent framework. This architectural
decision maintains only the generative (expansion) phases of these
algorithms, integrating them as candidate generation strategies
within GAAPO’s evolutionary cycle. This simplification allows
for consistent evaluation metrics and selection criteria across
all generated candidates while preserving the unique prompt
generation characteristics of each method.

Compared to already existing GA-related prompt optimization
methods, this framework allows a wider exploration of the prompt
space, leveraging advantages of all implemented methods and not
focusing on single-algorithm local improvements.
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TABLE 1 Comparison of prompt generation methods in hybrid genetic
optimizer.

Method Advantages Drawbacks

Mutations • Simple and efficient
implementation

• Multiple mutation
strategies available

• Maintains prompt diversity
• Low computational cost

• Can produce invalid
prompts

• Changes might be too
random

• Limited by predefined
mutation strategies

APO • Error-driven optimization
• Targeted improvements

based on failure analysis
• Systematic approach to

prompt refinement

• Computationally
expensive

• Requires error examples
• May overfit to specific

error patterns

OPRO • Learns from successful
prompts

• Efficient use of historical
information

• Dependent on quality of
previous generations

• Can converge to local
optima

• Higher LLM usage per
generation

Crossover • Combines successful
prompt features

• Preserves effective
components

• Low computational cost

• Simple splitting might
break prompt coherence

• Requires multiple good
parents

• Can produce semantically
invalid combinations

FewShot • Improves prompt with
concrete examples

• Helps model understand
edge cases

• Direct performance
feedback

• Can make prompts too
lengthy

• Risk of overfitting to
examples

• Limited by example
quality and availability

Evaluation
To meaningfully compare new prompts, we evaluate them on a

subset of the task we have at hand and compare their accuracy (in
the current setting).

Several strategies has been implemented for the evaluation
process to rank the individuals in each generation:

• Complete evaluation: Run a standard evaluation of each
prompt on the evaluation set and rank new prompts according
to their accuracy.

• Successive halving (SH) process (Schmucker et al., 2021):
prompt accuracies are compared on a subset of the dataset,
the top-performing half of the models is retained, and the
survivors are evaluated on a new subset. This process is
repeated iteratively until only a few models remain. This
approach allows to drastically reduce the number of API calls
but increases the risk to remove interesting prompts from the
evaluation very early due to the disparity of evaluations results
on subsets.

• Bandit selection algorithm (Slivkins, 2024): run a multi-arm
selection bandit algorithm. Evaluate subsets of the prompt
population on batches of data, and apply the UCB-E reward
model (Han et al., 2024) to identify the best arms. Note that
this method was also used in the original paper of APO
(Pryzant et al., 2023).

Selection
The selection step used to generate the new parents at each

generation is quite simple. We simply chose, among all the prompts
which have been evaluated, the best according to their evaluation
score.

2.3.1.2 Generation methods
This section describes the prompt optimization methods

incorporated into our study, which function as constituent
elements of GAAPO and, for some of them, as comparative
baselines for the evaluations.

Next subsections present the details of the models along with
prompts obtained at the end of the optimization process (for
baselines) for illustrative purpose. The task was to optimize the
following prompt to better detect hate speech classes, using the
ETHOS-multilabel dataset (presented in Section 2.2):

A message from a user, your goal is to determine
if this message is a hate speech or not and in
case it is, classify it: user_message. Possible
class for the hate speech are: violence,
directed_vs_generalized, gender, race,
national_origin, disability, religion, and
sexual_orientation.

2.3.1.2.1 “Forced” evolutions
The first categories of generators were directly inspired from

standard prompt optimization models, described below. This
methods directly use previous prompts to generate new ones,
by using the errors made (APO) or trying to expand a prompt
trajectory (OPRO), hence the “forced” evolution.
OPRO: Optimization by PROmpting Optimization by
PROmpting (OPRO) (Yang et al., 2024) is an iterative prompt
optimization algorithm that leverages large language models
to generate and refine prompts through a trajectory-based
optimization approach. The algorithm maintains a trajectory of
the top-performing prompts, ranked by their performance scores,
and uses this historical information to guide the generation of
new candidates. During training, OPRO employs a stochastic
dropout mechanism on the trajectory of best-performing prompts
to maintain diversity and prevent convergence to local optima.
The filtered trajectory then serves as input for the generation of
new candidate prompts, which are subsequently evaluated on
the current set. This evaluation process updates the trajectory,
maintaining a dynamic optimization path. Example of obtained
prompt:

Analyze the message to determine if it is hate
speech: user_message.
Consider the following factors in your analysis:
- Presence of derogatory language or slurs
targeting race, gender, religion, or other
protected characteristics.
- Any explicit or implicit threats, calls to
violence, or incitement of harm.
- Discriminatory statements that demean or
degrade individuals or groups.
- The overall tone, intent, and context of the
message.
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Ensure your reasoning is thorough and your
solution is actionable and clear. Possible
categories for hate speeches are: violence,
directed_vs_generalized, gender, race,
national_origin, disability, religion, and
sexual_orientation.

ProTeGi: Prompt Optimization with Textual Gradients

The Automatic Prompt Optimizer (APO/ProTeGi) (Pryzant
et al., 2023) is an iterative algorithm designed to automatically
optimize prompts for Large Language Models through a three-
phase process described in Figure 3. The expansion phase begins
by evaluating existing prompts to identify errors, which are
then grouped for focused analysis. The algorithm generates
improvement “gradients” from these errors and creates new
candidate prompts. In the selection phase, APO employs multi-
armed bandit strategies [such as epsilon-greedy (Kuleshov
and Precup, 2014) or Bayesian UCB (Han et al., 2024)] to
efficiently identify promising candidates. This approach balances
the exploration of new prompt variations with the exploitation
of proven patterns, evaluating candidates on small batches for
computational efficiency. The validation phase assesses selected
candidates on a separate validation set ensuring the robustness of
the optimized prompts. Key features include parallel processing,
adaptive error analysis, and gradient-guided refinement. Example
of obtained prompt:

Analyze the given message to determine if it
contains hate speech: user_message.
Definition: Hate speech is defined as language
that attacks or diminishes a person or group
based on attributes such as race, religion,
sexual orientation, gender, disability, national
origin, or other protected characteristics. Your
task is to:
- Provide a detailed reasoning justifying your
classification.
- Categorize the message into the most relevant
categories from the following list. Each category
should be clearly justified in your reasoning:

+ sexual_orientation: Attacks or offensive
language targeting individuals based on their
sexual orientation or gender identity.
+ religion: Language that attacks or demeans
individuals based on their religious beliefs or
affiliation.
+ [... definitions of other categories...]

2.3.1.2.2 Random evolutions
To complement the “forced” evolution optimization strategies,

we developed three additional prompt generation methods that
were incorporated into GAAPO’s framework. These supplementary
approaches expand the algorithm’s capacity to explore diverse
regions of the prompt space. They all use already existing prompts
to generate new ones by randomly modifying them.
Random mutator: prompt random mutation

The Random Mutator serves as a mutation operator within a
genetic algorithm framework, designed to explore the vast prompt
space through controlled random modifications. This approach
draws inspiration from biological mutations in genetic evolution,
where random changes can lead to beneficial adaptations. The
mutation process operates by randomly selecting from eight
distinct mutation strategies, each targeting different aspects of
prompt engineering:

• instruction expansion: adds detailed guidelines,
• expert persona injection: introduces specialized viewpoints,
• structural variation: modifies the prompt’s architecture,
• constraint addition: introduces new boundaries,
• creative backstory: weaves narrative elements,
• task decomposition: breaks down complex instructions,
• concise optimization: streamlines the content,
• role assignment: establishes specific model behaviors.

Each mutation creates a new variant of the original prompt,
potentially discovering more effective formulations. Like genetic
mutations in nature, these modifications can range from subtle
adjustments to significant transformations, allowing for both

FIGURE 3

Description of the APO optimisation process, which served as a basis for GAAPO.
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local and global exploration of the prompt space. This random
but structured approach enables the discovery of novel prompt
variations that might not be obvious through deterministic
methods. Example of obtained prompt:

Analyze the message to determine if it is hate
speech, using the following structured approach:
- Identify offensive language targeting protected
characteristics.
- Assess intent and context.
- Evaluate potential harm.
- Ensure bias-free analysis adhering to hate
speech policies.
Provide evidence-based reasoning and actionable
solutions. Examples: Racial slurs dehumanize
based on race; messages promoting violence incite
harm; derogatory gender terms cause
marginalization. Analyze: user_message.

Crossover: random prompt merging

Crossover operations in prompt engineering also draw
inspiration from genetic algorithms’ recombination mechanisms,
but require careful adaptation for text-based prompts. While
traditional genetic algorithms can perform straightforward
splitting and merging of genetic sequences, prompt crossover
needs to maintain semantic coherence and structural integrity. In
our implementation, we developed a simple yet effective crossover
mechanism: given two parent prompts that have demonstrated
good performance, the operation splits each prompt approximately
at its midpoint and combines the first half of one prompt with the
second half of the other. This approach, while basic (and which
could be optimized), provides several advantages:

• It preserves coherent instruction blocks from each parent.
• It enables the combination of different strategic elements

(e.g., merging a prompt with strong reasoning guidelines with
another that has effective constraint definitions).

• It maintains a balance between exploration and preservation
of successful prompt components.

However, this straightforward approach could be enhanced in
future work through more sophisticated crossover mechanisms,
such as semantic block identification and recombination, or
intelligent selection of crossover points based on prompt structure
analysis.

Already existing GA-related prompt optimization methods
such as EvoPrompt (Guo et al., 2023) are a combination of these
first two categories of methods.
Fewshot: in-context learning for prompt optimization

In-context learning is a fundamental capability of large
language models (LLMs) (Dong et al., 2024) that allows them
to adapt their behavior based on examples provided within
the prompt, without requiring model parameter updates. This
ability enables LLMs to understand and emulate patterns from
demonstrated examples in real-time. The few-shot algorithm
for prompt optimization leverages this capability by augmenting
existing prompts with selected examples while maintaining the
original prompt’s structure and purpose. The process begins by
randomly selecting 1 to 3 labeled examples from the training
dataset for each parent prompt. These examples are then appended

to the original prompt in a structured format, with clear input-
output pairs. The algorithm is computationally efficient as it doesn’t
require complex prompt modifications or extensive evaluations.
Instead, it relies on the natural ability of LLMs to learn from
examples, making it a practical approach for prompt enhancement
while maintaining the original prompt’s core functionality.

2.3.1.2.3 GAAPO
Table 1 presents the advantages and drawbacks of methods

used in GAAPO. An example of prompt optimized to classify hate
speeches is:

You are a team of experts tasked with determining
if a given message contains hate speech. Your
team consists of three roles:
**The Critic**: Your first responsibility is to
carefully analyze the message for any indicators
of hate speech, such as offensive language,
derogatory terms, or discriminatory content.
Consider the context and tone of the message.
**The Problem Solver**: After the critic has
provided their analysis, your role is to
determine whether the message qualifies as hate
speech based on the indicators identified.
Consider the broader implications of labeling the
message as hate speech.
**The Expert Reviewer**: Your role is to review
the analysis and solution provided by the
previous roles.
Ensure that the reasoning is thorough, the
solution is accurate, and the output is
consistent with the examples provided. Here is
the message to analyze: user_message.

GAAPO represents a fundamental advancement beyond simple
combination of existing optimization strategies by introducing
a novel adaptive parameter tuning mechanism and dynamic
strategy switching architecture. Unlike traditional approaches that
statically combine methods like APO and OPRO, GAAPO employs
asophisticated multi-strategy framework that dynamically allocates
computational resources across five distinct optimization strategies
(mutation, OPRO, APO, few-shot learning, and crossover) based
on real-time convergence patterns and performance feedback. The
algorithm’s key innovation lies in its ability to maintain a “Hall
of Fame” of high-performing candidates while simultaneously
tracking evolution paths, enabling intelligent strategy selection
that adapts to the optimization landscape and possibility to
study the best evolutions in order to discover optimization
patterns across certain tasks. Furthermore, GAAPO introduces
novel evaluation strategies (successive halving, bandit-based
selection, and comprehensive evaluation) that significantly reduce
computational overhead while maintaining optimization quality
as demonstrated in the results. This hybrid architecture not only
combines the strengths of existing methods but creates emergent
behaviors through strategy interaction, where the combination
of multiple approaches produces superior results that cannot be
achieved by any single strategy alone.

2.3.2 Optimization framework
Hint Optimization and Prompt Refinement (HOPR) is a

Python framework designed for systematic prompt optimization
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and evaluation. Like DSPy (Khattab et al., 2023), it provides a
structured approach to prompt engineering, but with a distinct
focus on evolutionary optimization techniques. While DSPy
emphasizes the composition and chaining of language model
operations through programmatic interfaces, HOPR specializes in
automated prompt optimization through a variety of implemented
strategies extracted from the state of the art methods for automatic
prompt engineering.

The framework is built around modular components:
optimizers that implement different prompt generation strategies,
metrics for evaluation, and a core system for managing prompt
evolution. HOPR’s architecture allows researchers to easily
implement and compare different prompt optimization techniques,
track the evolution of prompts to study the best optimization
methods, and maintain a “hall of fame” of top-performing
candidates.

Unlike DSPy’s focus on prompt composition and application,
HOPR emphasizes the development of automatic prompting
methods by facilitating the implementation of concurrent strategies
on the same problem. While being easily adaptible to new models,
this allow a sain and reproducible comparative analysis of different
prompt engineering approaches.

A key differentiator is HOPR’s hybrid approach, which
allows multiple optimization strategies to work in parallel,
potentially discovering more effective prompts than single-strategy
approaches. This makes it especially valuable for researchers
studying prompt optimization methods and practitioners seeking
to automatically optimize prompts for specific tasks.

2.3.3 Training pipeline
2.3.3.1 Dataset organization

The optimization process requires careful data partitioning to
ensure robust evaluation and prevent overfitting. We divide each
dataset into three distinct subsets:

• Training set: used during prompt generation for strategy-
specific optimization. APO leverages this set for error analysis
and improvement, while the few-shot strategy uses it to select
examples for in-context learning.

• Validation set: employed during the optimization process
to evaluate and compare generated prompts, enabling the
selection of promising candidates for subsequent generations.

• Test set: reserved exclusively for final evaluation, measuring
generalization capability and tracking performance evolution
across optimization steps.

2.3.3.2 Population management
Each strategy is assigned a weight determining its contribution

to the next generation’s population. The number of candidates
per strategy is calculated by multiplying these weights by the total
population size. To maintain the exact desired population size, any
remaining slots are allocated to the strategy with the highest weight.
This weighted approach ensures:

• Balanced exploration across different optimization
techniques.

• Customizable strategy emphasis based on task requirements.
• Consistent population size maintenance throughout

generations.

2.3.3.3 Evaluation process
The evaluation of generated prompts follows a systematic

approach:

• Initial evaluation on validation set to establish baseline
performance.

• Generational evaluation to select promising candidates.
Evaluations concerning advocated results in the paper where
conducted twice, due to disparities in LLM response and their
probabilistic answers construction.

• Final testing on the held-out test set to measure true
generalization.

This structured pipeline ensures robust optimization while
maintaining the flexibility to adapt to different tasks and
requirements through adjustable strategy weights and evaluation
parameters.

2.3.3.4 Metrics
ETHOS multilabel dataset
For the multi-label classification task of the ETHOS dataset,

we employ strict accuracy as our evaluation metric. A prediction
is considered correct if and only if the set of predicted labels exactly
matches the set of true labels, regardless of their order. Formally,
for a sample with true labels Y and predicted labels Ŷ , the binary
accuracy is defined as:

accuracy(Y , Ŷ) =
{

1 if Y = Ŷ

0 otherwise

where Y and Ŷ are treated as sets, meaning {a, b} = {b, a}. The
final accuracy score is then computed as the average of these binary
evaluations across all samples in the dataset.

MMLU and GPQA
For MMLU-Pro and GPQA datasets, we employ standard

accuracy as our evaluation metric, where a prediction is considered
correct if and only if it matches the correct answer. Formally, for
a sample with true answer y and predicted answer ŷ, the binary
accuracy is defined as:

accuracy(y, ŷ) =
{

1 if y ≡ ŷ

0 otherwise

where ≡ denotes semantic equivalence rather than strict string
matching. This equivalence consideration was necessary as these
datasets provide multiple-choice answers in a standardized format
(typically including punctuation marks like commas), but the
LLM sometimes generated correct answers with slight formatting
variations. To address this, we implemented an LLM-based
evaluation system that validates semantic correctness, ensuring that
superficial differences in formatting do not impact the accuracy
assessment. The reliability of this approach was verified through
manual inspection of a representative sample of model outputs.
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Prompt interpretability and human comparison
While qualitative analysis of prompts from an end-user

perspective might seem valuable, we deliberately eschew direct
comparison with human-designed prompts based on empirical
evidence from prior research. Studies have demonstrated that
human intuition regarding prompt effectiveness often fails to align
with actual performance metrics, with human-designed prompts
frequently underperforming compared to automatically optimized
ones (Zhou et al., 2022). Our approach prioritizes objective
performance metrics over subjective human interpretation, as
the optimization process explores prompt configurations that
may appear counterintuitive to human designers but demonstrate
superior empirical performance. This aligns with the broader
finding that human prompt design intuition does not reliably
predict effectiveness, making qualitative comparisons potentially
misleading rather than informative for practitioners.

2.3.4 Experiments
2.3.4.1 Datasets

Three hundred samples were extracted to the orignal ETHOS
dataset and separated in 3 subsets: 50 samples for the training set
(used in the APO and the fewshot algorithms), 50 samples for the
validation set (used for the selection of prompts at each generation)
and 200 were used as test set to allow a meaningful comparison
of different prompts while limiting the risks of overfitting on
other subsets during the optimzation process. Those numbers were
chosen as a tradeoff between the budget allowed to the optimization
process and the typical size of the datasets which can be obtained in
real life optimization tasks. Most results displayed in this paper use
the ETHOS dataset.

The statistical significance of our results is ensured through
multiple independent trials using the same settings but a different
repartition of the selected dataset. This repeated experiments (3
repetitions) were conducted for the direct comparisons of of
GAAPO against the selected baselines (result Section 3.1). The
stability of results along with the expensive computation costs led
us to use this settings only for the first displayed results. For all
other experiments, computations were conducted one time with the
dataset explained above.
Models

We computed prompt optimization for several methods, which
we reimplemented, respecting the original description made in
their respective papers. In detail, APO (Pryzant et al., 2023), OPRO
(Yang et al., 2024) were used as baselines, along with a random
mutator described above. In the implementation in GAAPO, no
dropout were used for the selection of the prompt trajectory we do
not have any necessity to avoid local optimizations issues due to the
presence of other prompt generation methods which ensure a more
robust exploration of the optimization space. However, when we
used OPRO as a baseline, the prompt chosen for the optimization
trajectory for the next generation were selected proportionnally
to their validation score (a better prompt had a most important
probability to be selected as an element of the next trajectory).

In our GAAPO implementation, we’ve carefully balanced
the prompt generation distribution to ensure comprehensive
exploration of the optimization space. The distribution is set as

follows: random mutations (40%), APO (20%), OPRO (20%), few-
shot learning (10%), and crossover operations (10%). For the
random mutations component, we implemented an equiprobable
selection mechanism among the eight mutation types, with each
mutation having an equal probability of being selected. This
uniform distribution was chosen deliberately, as we had no prior
knowledge about which mutation types would be most effective for
different tasks.

These numbers were chosen as a trade-off between random
prompt modifications (mutations and crossover), local prompt
optimization (APO and OPRO) and in-context learning (fewshot).
We deliberately choose to limit the importance of in-context
learning as it has already been demonstrated that prompt efficiency
scales with the number of given examples. Our goal here is
to increase prompt efficiency for very small datasets to have
a prompting method which can be used on real life prompts
(comparison results are presented in Section 3.1).

However, a complete study of the optimal distribution of
ressource allocation across strategies has not been made. Indeed, we
believe that this optimisation is task-dependent as the exploration
of the prompt optimization space differ between the different tasks.

For each experiment, the number of generations and number
of prompt generated at each generation was experimentally
determined and will be justified in the Results Section 3.3.
LLMs

The experimental setup employs two distinct Large Language
Models (LLMs) for different aspects of the optimization process.

For prompt generation, we utilize in most experiments
DeepSeek-R1-distill-LLaMA-70B-versatile, a state-of-the-art open-
source LLM based on the LLaMA architecture. This model,
accessed through Groq’s inference platform, offers a balance
between performance [with state-of-the-art performances on LLM
tasks (DeepSeek-AI et al., 2025)] and computational efficiency
[with inference times sensibly lower using Groq platform (Abts
et al., 2022)]. We compared the performance optimization obtained
by this model to others in Section 3.5.

For the target model to be optimized through our prompting
process, we employ GPT-4o-mini or llama3-8B-instant (Grattafiori
et al., 2024). We decided to use 2 models to assess the difference
in evolution performance (which can be seen in Section 3.2) across
different experiment settings, arguing that a prompt optimization
could be model dependent.

This configuration allows us to assess the generalizability of
our prompt optimization approach while maintaining a clear
separation between the prompt generation and evaluation phases
of our methodology.
Generalization

We evaluated our prompt optimization approach across several
widely used datasets, with results presented in Section 3.6. For each
dataset, we maintained a consistent splitting strategy: 50 samples
for training, 50 for validation, and up to 200 samples for testing
(or the maximum available if fewer than 200 samples remained).
This standardized approach, first validated on ETHOS, ensures fair
comparison across different datasets while maintaining sufficient
samples for reliable evaluation. Complementary datasets used for
this study are presented in Section 2.2. Note that for GPQA, only
98 samples were used in the testing set.
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Optimization of the selection process
To optimize the computational budget while maintaining

effective prompt selection, we implemented and compared three
different selection strategies (see Section 3.7 for results): complete
evaluation, successive halving, and bandit selection. These methods
present different trade-offs between evaluation accuracy and
computational efficiency. For a representative scenario with a
test dataset of 50 samples and a population of 50 prompts, the
computational requirements vary significantly across methods.

• Complete evaluation, which tests every prompt against every
sample, requires 2,500 LLM calls (50 prompts × 50 samples),
while providing exhaustive but computationally intensive
evaluation.

• Successive halving (Schmucker et al., 2021) offers a
more efficient approach by progressively eliminating
underperforming prompts. In our implementation, we
evaluate prompts on 20% of the dataset at each iteration
and eliminate 40% of the lowest-performing prompts. This
process continues until reaching a predetermined number
of prompts. This strategy reduces the number of LLM calls
to approximately 1,200, representing a 55% reduction in
computational cost compared to complete evaluation while
maintaining robust selection pressure.

• The bandit selection method (Slivkins, 2024) provides the
most efficient tradeoff (Pryzant et al., 2023), evaluating only
20 prompts on 15 samples over 5 iterations. This approach
requires approximately 1,500 LLM calls (20 prompts ×
15 samples × 5 iterations), achieving a 40% reduction in
computational cost compared to complete evaluation. While
this method samples less extensively, it leverages statistical
efficiency to identify high-performing prompts.

These selection strategies offer different balances between
evaluation thoroughness and computational efficiency, allowing
practitioners to choose based on their specific constraints
and requirements. Our empirical results suggest that both
successive halving and bandit selection maintain effective prompt
identification while significantly reducing computational overhead.

3 Results

3.1 Comparison with baselines

The experimental results demonstrate the effectiveness of
our proposed GAAPO (Genetic Algorithm Assisted Prompt
Optimization) approach on the ETHOS multilabel hate speech
classification task. Figure 4 illustrates the validation performance

FIGURE 4

Results obtained by using several prompt generation strategies. LLM-optimizer used: llama-3.1-8B.
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TABLE 2 Test and validations scores for the ETHOS dataset.

Model Validation score Test score

Ours 0.60 ± 0.04 0.46 ± 0.02

APO 0.52 ± 0.02 0.38 ± 0.04

OPRO 0.28 ± 0.08 0.24 ± 0.06

Mutator 0.52 ± 0.04 0.34 ± 0.04

Comparison of performance of prompt optimization using llama3-8B-instant (Grattafiori
et al., 2024). The bold values correspond to the best scores obtained.

across different prompt optimization strategies over multiple
iterations, while Table 2 presents the final test and validation scores.
Additionally, obtained prompts are presented in Section 2.3.1.2.

GAAPO demonstrates strong performance on the validation
set, achieving a score of 0.46, which significantly surpasses baseline
methods including OPRO (0.24), Mutator (0.34), and APO (0.38).
The evolution curve in Figure 3 shows GAAPO’s ability to maintain
consistent improvement throughout the optimization process.

A critical analysis of test and validation scores reveals an
important phenomenon common to genetic algorithms: selection
bias. This is particularly evident in APO’s performance, where
results at some iterations highlight a very high difference
score between test and validation sets (culminating at 0.3 for
the 2nd generation). This extreme disparity illustrates how
genetic algorithms can inadvertently optimize for specific test set
characteristics rather than general problem-solving capabilities.
GAAPO mitigates this selection bias through its diverse strategy
portfolio, resulting in more balanced performance between test
(0.60) and validation (0.46) scores, suggesting better generalization.

The lower performance of OPRO (test: 0.26, validation: 0.24)
indicates that reinforcement learning-based approaches struggle
with exploring vast prompt spaces effectively. The Mutator
approach achieves intermediate results (test: 0.52, validation: 0.34),
but still shows signs of selection bias with its significant test-
validation gap. These observations highlight how selection bias
can affect different optimization strategies to varying degrees, with
GAAPO’s hybrid approach providing the most robust defense
against this common genetic algorithm limitation.

Moreover, we can see a difference in the original score of the
models (at iteration 0, all scores should be identicals). However,
due to the disparity in LLM performance and their probabilistic
caracters, results are not always exactly consistent across time.

3.2 Model evaluation comparison

Comparing the optimization trajectories between GPT-4o-mini
and LLaMA3-8B (displayed in Figure 5) reveals few differences in
how these models respond to prompt optimization. Both models
show significant improvement from their initial performance, but
their learning patterns and final achievements slightly differ.

Both GPT-4o-mini and LLaMA3-8B demonstrate stable
optimization trajectories, with consistent learning patterns and
similar generalization characteristics across generations. However,
GPT-4o-mini achieves notably superior performance, reaching
validation scores of up to 0.70 compared to LLaMA3-8B’s 0.60.

Both models maintain steady optimization paths with comparable
stability in their generalization gaps.

Examining test scores reveals GPT-4o-mini’s consistent edge in
performance, maintaining a 0–0.05 point advantage over LLaMA3-
8B throughout the optimization process. However, this superior
performance must be interpreted with caution, as both models
show signs of potential overfitting in later generations. The
increasing gap between validation and test scores after generation
8 suggests that while GPT-4o-mini achieves better absolute
performance, careful monitoring of generalization remains crucial
for both models.

Given the higher performance metrics of GPT-4o-mini and
comparable computational costs between the two models in our
experimental setup, we selected GPT-4o-mini as our primary LLM-
optimizer for subsequent experiments. This choice was driven by
the quantitative advantages in optimization outcomes, while both
models demonstrate equally reliable optimization stability.

3.3 Influence of population size

We conducted experiments with varying population sizes while
maintaining a comparable total number of LLM calls across
configurations, as shown in Table 3. The results demonstrate
a clear trade-off between population size and the number of
generations required. Larger populations (50 prompts) with fewer
generations (10) achieve higher test scores (0.68) compared to
smaller populations running for more generations (20 prompts, 25
generations, 0.50 test score).

While the configuration with 30 prompts shows the best
validation score (0.50) and a smaller generalization gap, we
opted for the 50-10 configuration for several practical advantages.
First, larger populations enable better parallelization of prompt
evaluation, significantly reducing wall-clock time. Second, this
configuration aligns well with optimized selection strategy, which
benefits from a larger pool of candidates to select from in each
generation.

However, the increased generalization gap in the 50–10
configuration (0.22 points between test and validation scores,
compared to 0.08 points for 20–25) suggests a higher risk of
overfitting. This observation indicates that while larger populations
can explore the prompt space more effectively within fewer
generations, they may require more robust validation strategies to
ensure generalization. Despite this limitation, the practical benefits
of faster convergence and improved parallelization potential make
the 50–10 configuration our recommended choice for prompt
optimization tasks.

3.4 Prompt generators comparison

We can now study in detail the prediction made by each
prompt generator in GAAPO. We conducted a detailed analysis
of each prompt generator’s performance in GAAPO through
two complementary perspectives. Figure 6 presents the overall
distribution of validation scores for each strategy through
boxplots, while Figure 7 tracks the improvement potential of each
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FIGURE 5

Comparison of optimization trajectories between GPT-4o-mini and LLaMA3-8B models on the ETHOS dataset for GAAPO. The plot shows the
evolution of validation scores (solid lines) and test scores (dashed lines) across generations for both models.

TABLE 3 Test and validations scores for the ETHOS dataset.

Population
size

Number of
generations

Test
score

Validation
score

Number
of LLM

calls

20 25 0.50 0.42 25,000

30 17 0.56 0.50 25,500

40 13 0.62 0.46 24,500

50 10 0.68 0.46 25,000

Comparison of different population size and number of generations for GPT-4o-mini
(Grattafiori et al., 2024).

strategy across generations, showing both mean and maximum
improvements in score relative to parent prompts.

To obtain these visualizations, we first aggregated all prompts
generated by each strategy and analyzed their validation scores
(Figure 6). Additionally, we computed the improvement in
validation score between each generated prompt and its parent
prompt across generations (Figure 7), allowing us to understand
not just absolute performance but also each strategy’s ability to
improve upon existing prompts.

The analysis reveals several key insights about strategy
effectiveness and the importance of maintaining diversity in
optimization approaches:

• Strategy effectiveness and stability: Few-shot learning
demonstrates superior performance (median ∼0.57) with
consistent results, as shown by its compact boxplot and
positive improvement scores in early generations. This aligns
with existing literature (Dong et al., 2024), highlighting the
value of example-based learning. OPRO maintains strong
and stable performance (median ∼0.55), though its evolution
plot shows diminishing improvements over generations.
role_assignment and concise_optimization show reliable
performance with tight distributions, but their improvement
potential decreases in later generations. It’s important to note
that while these patterns are observed in this dataset, the
relative effectiveness of each strategy can vary significantly
across different tasks and datasets, as each optimization
problem exists in its own unique optimization space.

• Evolution patterns: Most strategies show declining
improvement potential over generations, with negative
mean improvements in later stages, suggesting they work
best in early exploration. APO’s boxplot shows high
variability (0.10–0.35), but its evolution plot reveals strong
initial improvements followed by declining effectiveness,
supporting its potential role as an early-stage optimizer.
Few-shot learning uniquely maintains positive maximum
improvements even in later generations, indicating sustained
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FIGURE 6

Performance distribution of individual prompt generation strategies in GAAPO on the validation set. Model used: GPT-4o-mini.

ability to generate beneficial variations. These patterns
demonstrate the complementary nature of different strategies,
with each contributing to different stages of the optimization
process.

• Underperforming strategies: Several mutation strategies,
particularly structural_variation and task_decomposition,
consistently show negative improvement scores across
generations, suggesting limited effectiveness for the current
task. However, completely removing these strategies could be
counterproductive for two reasons:

Task dependency: Different tasks may benefit from
different prompt modification approaches. What appears
ineffective for one task might be crucial for another as every
optimization task is learned in a different optimization space.
The complementary nature of these strategies means they may
excel in different contexts.

Exploration value: Even seemingly underperforming
strategies contribute to maintaining genetic diversity,
potentially enabling the discovery of novel promising prompt
variations through combination with other approaches. This
complementary effect is essential for robust optimization. A
deeper analysis of the generated population results over time
is necessary to assess the noncompliance of a method with a
specific task.

• Strategic implications: The analysis suggests implementing a
dynamic, task-adaptive strategy:

Early generations: Leverage APO and mutation strategies
for broad exploration;

Mid-generations: Emphasize few-shot learning and OPRO
for stable improvements;

Later generations: Focus on strategies showing consistent
positive improvements (few-shot, role_assignment) for
refinement.

However, it remains fundamental to maintain a minimum
weight for all strategies to preserve optimization flexibility
across different tasks. The complementary nature of these
strategies means that while their relative effectiveness may
vary across tasks, their combined presence ensures robust
optimization capabilities across diverse optimization spaces.

This comprehensive analysis reinforces the value of GAAPO’s
adaptable framework, which can accommodate varying strategy
effectiveness across different tasks while maintaining the potential
benefits of diverse optimization approaches. The framework’s
ability to dynamically adjust strategy weights while preserving all
methods makes it particularly robust for general-purpose prompt
optimization across diverse applications.

It should be notice that optimization methods tend to have
descending curves which is logical: as we compare new prompts
with their parent prompts, the task is more and more difficult
(given that the reference prompt improves with the generations).
Moreover, studies on other datasets tend to highlight the fact
that different prompt optimization methods can perform very
differently between tasks, highlighting the importance to keep
methods in a general framework and the risk to select optimizers
based on their results on a unique dataset.
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FIGURE 7

Evolution of improvement scores for each prompt generation strategy across generations. For each strategy, we track both mean improvement
(blue) and maximum improvement (red) relative to parent prompts. Mean improvement represents the average score difference between generated
prompts and their parents, while maximum improvement shows the best improvement achieved in each generation. Negative values indicate that
generated prompts performed worse than their parents. Model used: GPT-4o-mini.

3.5 Model generators comparison

The comparison of different language models as prompt
optimizers reveals striking patterns (which can be seen in Figure 8
in both performance and generalization capabilities. Most notably,
reasoning-specialized models (QwQ32B and deepseek-R1) and O1

demonstrate superior performance compared to general-purpose
models like GPT-4o-mini.

QwQ32B emerges as the top performer, showing consistent
improvement in validation scores from an initial 0.28 to a
remarkable 0.70 by generation 10. Its learning trajectory is
particularly stable, with steady increases and minimal fluctuations.
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FIGURE 8

Comparison of different LLMs as prompt optimizers in GAAPO. The plot shows validation (solid lines) and test (dashed lines) scores across
generations for four models: QwQ32B, DeepSeek-R1, O1, and GPT-4o-mini. While reasoning-specialized models achieve higher absolute scores,
O1 demonstrates better generalization with smaller gaps between validation and test performance.

However, its test scores (dashed line) plateau around 0.55,
indicating a significant generalization gap of approximately
0.15 points.

A particularly interesting comparison emerges between
DeepSeek-R1 and O1 models. While both achieve strong final
validation scores (0.68 and 0.65 respectively), O1 demonstrates
notably better generalization characteristics. By generation 10, O1
maintains test scores around 0.55, nearly matching its validation
performance, while DeepSeek-R1 shows a larger disparity with test
scores around 0.45. This suggests that O1’s optimization process,
while slightly lower in absolute validation performance, produces
more robust and generalizable prompts.

In contrast, GPT-4o-mini shows notably inferior performance.
While it achieves quick initial improvement, its validation scores
stagnate around 0.45–0.50 after generation 2, with minimal
subsequent improvement. However, like O1, it maintains a smaller
generalization gap between validation and test scores, suggesting
more robust, if modest, optimization capabilities.

The evolution of scores across generations reveals an
interesting pattern: while reasoning models continue to improve
validation performance until the final generations, o1 maintains
a more balanced improvement in both validation and test scores.
This suggests that o1 might be particularly valuable for applications

where generalization reliability is crucial, even if peak performance
is slightly lower than specialized reasoning models.

These findings indicate that while reasoning-specialized models
achieve higher absolute performance, o1 offers an attractive
compromise between performance and generalization stability,
potentially making it more suitable for practical applications where
robust generalization is essential.

3.6 Applications on other datasets

The experimental results across multiple datasets demonstrate
both the effectiveness of our approach and the varying potential
for prompt optimization across different tasks. Table 4 presents
validation scores for four distinct datasets, revealing several
important patterns.

We can see on Table 4 that our method achieves superior
performance on datasets where prompt engineering shows
significant potential for improvement. For the ETHOS multilabel
classification task, we observe a substantial improvement from the
initial score of 0.28 to 0.46, outperforming all baseline methods
including APO (0.44), OPRO (0.38), and Mutator (0.40). Similarly,
on the MMLU-Pro engineering dataset, our approach reaches 0.48,
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TABLE 4 Validations scores for different datasets.

Dataset ETHOS
multilabel

MMLU-Pro
engineering

MMLU-
pro

business

GPQA

Initialization 0.28 0.39 0.72 0.38

APO 0.44 0.45 0.73 0.42

OPRO 0.38 0.44 0.76 0.43

Mutator 0.40 0.43 0.735 0.43

OURS 0.46 0.48 0.74 0.43

Models used: Deepseek-R1 as Prompt Generator and GPT-4o-mini as Optimizer. The bold
values correspond to the best scores obtained.

showing meaningful improvement over the initialization score of
0.39 and competing methods.

However, the results also reveal that not all tasks benefit equally
from prompt optimization. The MMLU-Pro Business dataset,
with its high initialization score of 0.72, shows minimal room
for improvement, with our method and the Mutator achieving
only marginal gains (0.73 and 0.735 respectively). This suggests
that some tasks may already be well-aligned with LLMs’ base
capabilities, limiting the potential impact of prompt optimization.
The GPQA dataset presents another interesting case where all
optimization methods, including ours, achieve similar modest
improvements (from 0.38 to 0.43), indicating that some tasks may
have inherent complexity barriers that prompt optimization alone
cannot overcome.

The varying effectiveness of prompt optimization across
tasks can be attributed to multiple underlying factors. First, the
overlap between an LLM’s training data and the target dataset
can create a ceiling effect—if similar examples were present
in the training corpus, the model may already demonstrate
near-optimal performance with simple prompts. Second, task-
specific characteristics such as domain specificity and reasoning
complexity influence the optimization potential; technical domains
often benefit more from structured prompting than general
knowledge tasks. Third, the nature of the required output
(e.g., multiple-choice vs. multi-label classification) affects the
scope for improvement through prompt engineering. Finally, the
fundamental alignment between the task’s requirements and the
model’s learned representations determines whether performance
limitations can be addressed through prompt optimization alone
or require more substantial interventions such as fine-tuning.

3.7 Selection method comparison

We conducted a comparative analysis of the three selection
methods on the ETHOS dataset, evaluating their efficiency and
performance trade-offs. The computational requirements varied
significantly across methods: for a test set of 50 samples, the
complete evaluation (“all”) requires 2,500 LLM calls per generation,
the bandit approach approximately 1,500 calls, while successive
halving (SH) uses only 1,500 calls per generation.

To ensure fair comparison, we also plotted results where the
number of calls are equivalent between all methods. We adjusted

the test size to 110 samples to obtain the right number of calls for
both bandit and SH selection methods.

Figure 9 presents the evaluation for both validation and test
scores for the 5 mentioned processes: “all,” “bandit” with 50
samples, “bandit” with 110 samples, “SH” with 50 samples and “SH”
with 110 samples.

The comparison of different selection strategies reveals
compelling insights about the trade-offs between sample size,
computational efficiency, and performance stability. The complete
evaluation method (“all”), using 50 samples, achieves the highest
validation scores (peaking at 0.68) but requires significantly more
computational resources. However, our analysis demonstrates that
increasing the sample size from 50 to 110 samples for alternative
strategies does not necessarily lead to better performance,
suggesting that efficient sampling is more crucial than sample size.

The bandit method emerges as particularly noteworthy,
showing remarkable stability in both its 50 and 110 sample
configurations. Despite using 40% fewer LLM calls, it maintains
consistent performance around 0.45–0.50 validation score with
minimal fluctuations between generations. More importantly, the
bandit approach exhibits a smaller generalization gap between test
and validation scores, indicating better resistance to overfitting.
However, we can observe a certain drop of performance between
this selection method and “all.”

In contrast, successive halving (SH) displays considerable
volatility, especially evident in its performance spikes and drops
across generations. While SH occasionally matches or exceeds
the bandit’s performance (reaching peaks around 0.60–0.70), its
inconsistency makes it less reliable for practical applications.
Interestingly, increasing the sample size for SH from 50 to 110
samples does not significantly mitigate this volatility, nor does it
critically improve performances.

These findings suggest that while complete evaluation with
50 samples provides the highest absolute performance, the bandit
approach with its reduced computational footprint and stable
optimization trajectory offers an interesting alternative. The
stability and efficiency of the bandit method, combined with its
robust generalization characteristics, make it a choice for resource-
conscious prompt optimization scenarios.

4 Discussion

4.1 Key findings

Our results reveal fundamental aspects of prompt optimization
that have significant implications for the field. GAAPO’s integration
of multiple optimization strategies proves more robust than single-
strategy approaches, consistently outperforming baseline methods
across different tasks. The framework’s ability to leverage diverse
techniques while mitigating their individual limitations represents
a significant advancement in prompt optimization. This hybrid
approach particularly shines in complex tasks where single-strategy
methods often struggle to maintain consistent performance.

However, the effectiveness of prompt optimization varies
significantly across tasks, with performance improvements ranging
from marginal (MMLU-Pro Business: 0.72 to 0.74) to substantial
(ETHOS: 0.28 to 0.46). This variability emphasizes the importance
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FIGURE 9

Comparison of different prompt selection strategies during GAAPO optimization. The plot shows the evolution of validation (solid lines) and test
(dashed lines) scores across generations for different selection methods. Model used: GPT-4o-mini.

of maintaining diverse optimization strategies and suggests
that prompt optimization’s utility depends heavily on task
characteristics and initial model performance. Furthermore, our
analysis reveals crucial trade-offs between absolute performance
and generalization. While specialized reasoning models achieve
higher peak performance, models like O1 demonstrate better
generalization characteristics, highlighting the importance of
balanced optimization approaches.

From a technical perspective, our study yields several
important insights. Population dynamics significantly impact
optimization outcomes, with larger populations in fewer
generations proving more effective than smaller, longer-running
configurations. Selection methods present distinct trade-offs
between computational efficiency and performance stability,
with bandit-based approaches offering an attractive balance.
Additionally, the choice of LLM for prompt generation critically
affects both performance and generalization, with different models
showing varying aptitudes for prompt optimization tasks.

4.2 Limitations

Despite GAAPO’s promising results, several limitations
warrant discussion.

First, computational constraints limited our ability to
conduct comprehensive statistical validation across all
experiments. This constraint necessitated the use of a fixed-
size dataset and selective statistical analysis, which may introduce
unknown biases.

Second, the framework’s effectiveness demonstrates
task-dependent variability, indicating the need for deeper
understanding of task characteristics that influence optimization
potential. The observed generalization gaps, particularly in
larger population configurations, suggest opportunities for
improved validation strategies. Additionally, the computational
overhead associated with prompt evaluation remains a
significant bottleneck, highlighting the need for more efficient
selection methodologies.

Finally, while it would be interesting to evaluate our
hybrid optimization framework across all existing NLP tasks to
establish comprehensive generalizability, such extensive testing
was beyond the scope of our current investigation. Our
research objectives focused on developing and validating the
hybrid approach specifically for knowledge assessment and
reasoning tasks, which represent critical applications in prompt
optimization research. Testing across additional domains such as
summarization, translation, and text generation would require
substantial computational resources and falls outside the scope of
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this manuscript where our primary goal was to demonstrate the
effectiveness of combining multiple optimization strategies.

4.3 Future work

Looking forward, several promising research directions emerge.
Future work should address the statistical validation limitation
through expanded experimental runs to ensure robust statistical
validation. Additionally, research should focus on developing
adaptive weighting schemes for optimization strategies based
on task characteristics and investigating more sophisticated
generalization metrics for prompt evaluation. Exploring methods
to reduce computational overhead while maintaining optimization
effectiveness remains crucial: this could go through a deeper
analysis of the algorithms performance in GAAPO to better
understand the repartition and evolution of those performances.
A complete comparison of those evaluation strategies and how the
different optimizations depends on them will be critical to deeply
understand optimizations made by models. Moreover, the potential
for extending the framework to handle more complex, multi-step
reasoning tasks also presents an exciting avenue for future research.

A particularly important direction for future work involves the
application domain of hate speech detection. A deeper exploration
of ethical concerns, such as potential bias amplification during
prompt evolution, is necessary. This investigation would contribute
significantly to the responsible development and deployment of
prompt optimization techniques in sensitive applications, ensuring
that our methods not only improve performance but also uphold
ethical standards and promote fairness in AI systems.

While fairness evaluation represents a crucial consideration
in hate speech detection systems (and are necessary in order to
deeply understand the behavior of LLMs), it falls outside the
scope of the current paper, which focuses on prompt optimization
methodologies rather than comprehensive fairness assessment.
Our study employs the ETHOS multilabel dataset with strict
accuracy as the primary evaluation metric, where predictions
are considered correct only when the predicted label set exactly
matches the true label set. This evaluation framework is designed
to assess the effectiveness of prompt optimization techniques
in improving classification performance, rather than to evaluate
demographic fairness or bias mitigation. An interesting follow-up
study and comparison of prompt optimization algorithms could
be a comparison of bias evolution through the evaluations of
those algorithms. The link between fairness evaluation studies
(Bouchard, 2025; Gallegos et al., 2024) and prompt optimization
would ensure that performance improvements do not come at the
cost of fairness degradation.

Furthermore, the rapid pace of development in prompt
optimization research necessitates continuous benchmarking
against emerging methodologies. An updated evaluation using
more recent benchmarks such as MIPRO (Opsahl-Ong et al., 2024)
would provide additional validation of GAAPO’s effectiveness and
ensure our results remain relevant within the evolving landscape
of prompt optimization techniques. This would also enable direct
comparison with the latest advances in the field and strengthen the
generalizability of our findings.

5 Conclusion

Genetic Algorithm Applied to Prompt Optimization (GAAPO)
represents a significant step forward in automated prompt
optimization, offering a flexible, robust framework that can adapt to
various tasks while maintaining strong performance characteristics.
The framework’s ability to combine multiple optimization strategies
while managing their individual limitations provides a promising
direction for future developments in prompt engineering. As
language models continue to evolve, frameworks like GAAPO
will become increasingly important for efficiently leveraging their
capabilities across diverse applications.

Our findings contribute to both the practical implementation
of prompt optimization systems and the theoretical understanding
of how different strategies interact in hybrid optimization
frameworks. This work lays the groundwork for more sophisticated
approaches to prompt optimization, potentially leading to more
efficient and effective use of language models across a broader
range of applications. The demonstrated success of GAAPO’s
hybrid approach suggests that future developments in prompt
optimization should continue to explore the integration of diverse
strategies while focusing on maintaining generalization capabilities
and computational efficiency.
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