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Introduction: Widespread concerns about children’s low fundamental motor skill
(FMS) proficiency highlight the need for accurate assessment tools to support
structured instruction. This study examined the validity and reliability of an Al-
enhanced methodology for assessing jumping rope performance within the
Fundamental Motor Skills in Sport (FUS) test.

Methods: A total of 236 participants (126 primary school students aged 7-14; 110
university sports students aged 20-21) completed jumping rope tasks recorded
via the FUS mobile app integrated with an Al model evaluating five process-
oriented performance criteria. Concurrent validity and inter-rater reliability were
examined by comparing Algenerated assessments with scores from two expert
evaluators. Intra-rater reliability was also assessed through reassessment of
video trials after a 3-week interval.

Results: Results revealed excellent concurrent validity and inter-rater reliability
for the Al model compared with expert ratings (ICC = 0.96; weighted kappa
= 0.87). Agreement on individual criteria was similarly high (Cohen's kappa =
0.83-0.87). Expertadjusted Al scores further improved reliability (ICC = 0.98).
Intrarater reliability was also excellent, with perfect agreement for Algenerated
scores (ICC = 1.00; kappa = 1.00).

Conclusions: These findings demonstrate that Al-based assessment offers
objective, reliable, and scalable evaluation, enhancing accuracy and efficiency
of FMS assessment in education and research.

KEYWORDS

motor competence, fundamental movement skills, machine learning, mobile
application, physical education
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Introduction

Assessing and improving movement proficiency during childhood
is crucial for supporting optimal physical development and building
the foundational skills necessary for lifelong physical activity (Logan
et al., 2015; Stodden et al., 2008). Fundamental motor skills (FMS),
including jumping, running, and throwing, form the foundation for
more complex motor tasks, facilitating children’s effective participation
in diverse sports and physical activities (Logan et al., 2018). A large
body of research indicates that proficiency in FMS is associated with
enhanced physical fitness and a reduced risk of lifestyle-related health
issues, including obesity and cardiovascular conditions (Barnett et al.,
2022; Robinson et al., 2015; Stodden et al., 2008). Conversely, children
with insufficient FMS often face barriers for participation in sports
and social play, which can negatively affect their physical, emotional,
and social development (Robinson et al., 2015).

Process-oriented assessments are widely recognized as the
paramount benchmark for evaluating FMS, offering detailed insights
into how movements are performed (Logan et al., 2017; Watanabe et al.,
2024). Unlike product-oriented tools that emphasize measurable
outcomes such as distance or speed, process-oriented evaluations focus
on coordination, control, and other qualitative factors, providing deeper
insights into the mechanics and efficiency of motor performance (Logan
etal., 2018). These tools are particularly valuable for identifying deficits
in specific movement components, which are essential for advanced skill
proficiency. For instance, O'Brien et al. (2016) highlighted that poor
execution of fundamental behavioral components, such as bending the
knees and extending the arms during take-off, was a common reason for
failure in both vertical and horizontal jumps.

Despite their predictive value for assessing FMS proficiency,
implementing process-oriented assessments poses substantial
challenges, even for trained experts and researchers (Hulteen et al.,
2018; Hulteen et al., 2023; Ward et al., 2020). Ensuring validity and
reliability requires extensive training and strict adherence to protocols,
making the process resource-intensive and time-consuming (Lander
et al., 2015). Variability in scoring frequently arises from subjective
interpretations of movement quality, particularly during real-time
assessments, where observers must simultaneously track multiple
criteria, compromising accuracy (Barnett et al., 2014; Ward et al,,
2020). The issue becomes more pronounced with less experienced
evaluators, emphasizing the need to improve training procedures,
assessment frameworks, and clearly defined evaluation criteria (Lander
etal., 2015; Palmer and Brian, 2016). Additionally, inherent constraints
in process-oriented assessments limit the number of performance
criteria that human observers can reliably evaluate. For example,
widely-used tools, such as the Test of Gross Motor Development
(Webster and Ulrich, 2017), address this limitation by removing
criteria during an item-analysis phase if they cannot be consistently
scored by human observers. However, this practice may result in
essential movement characteristics remaining unassessed. Barnett et al.
(2014) illustrate this problem, noting that inadequately defined criteria,
such as not specifying elbow flexion, can cause incorrect movements
(e.g., a “fling” or “sling”) to be incorrectly scored as correct. Similarly,
tools like the Victorian Fundamental Motor Skill Manual (Walkley
et al., 1996) provide partial guidance but fail to fully represent the
complexity and subtlety inherent in FMS, further complicating
accurate assessment. These limitations collectively underscore the need
for more comprehensive assessment strategies.
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In many countries, early education (classroom) and physical
education (PE) teachers are responsible for monitoring FMS
development as part of the curriculum (Lander et al., 2016; Makaruk
et al., 2024b). However, many teachers lack confidence in utilizing
process-oriented tools, which often demand a deeper understanding
of human movement and FMS development (Bourke et al., 2024;
Harris etal., 2011; Lander et al., 2015). This knowledge gap can lead to
inconsistent evaluations and an over-reliance on simplified tools that
fail to capture the complexities of motor skills (Morley et al., 2019).
Additionally, limited training and professional development
opportunities contribute to these obstacles, leaving many teachers
unprepared to effectively assess and address movement skill deficiencies
within the constraints of their teaching schedules (Draper et al., 2019).
Research highlights that teachers often prioritize instructional activities
over assessments due to the significant time and logistical burdens
associated with administering traditional FMS tools, particularly in
large class settings (Draper et al., 2019; Morley et al., 2019). Morley
etal. (2019) noted that these tools are not only time-intensive but also
require specialized expertise, making their integration into daily
teaching routines difficult. Furthermore, limited access to updated
FMS testing methodologies and appropriate resources frequently forces
teachers to rely on simplified or outdated tools, which fail to capture
the full scope of movement skills (Bourke et al., 2024; Foweather et al.,
2018; Morley et al., 2019). As a result, assessments are often infrequent
and incomplete, reducing the effectiveness of identifying and
addressing movement deficiencies in students.

Addressing these challenges requires innovative solutions that
preserve the depth and accuracy of process-oriented assessments (Bisi
et al,, 2017; Hulteen et al., 2020; Ward et al., 2017) while enhancing
their feasibility. Digital technology, such as tablet-based applications,
has shown great potential in this regard and is well-received by primary
school teachers. These tools provide functionalities like video recording
and analysis, enabling educators to capture and review childrens
performances effectively (Browne, 2015; Draper et al., 2019). Digital
tools streamline the assessment process and provide visual evidence of
movement execution, enabling more accurate identification of skill
deficiencies. Embedded video demonstrations further support teachers
with limited expertise, offering references for skill performance and
guidance for conducting assessments (Foweather et al., 2018; Makaruk
et al, 2024a; O'Loughlin et al.,, 2013). One such example is Meu
Educativo®, a platform designed to evaluate FMS using an expert-
validated checklist and rating system (Garbeloto et al., 2024). The tool
prioritizes ease of use, maintaining reliability with inter-rater reliability
ranging from 0.63 to 0.93 and intra-rater reliability from 0.46 to 0.94.
Another example is the FUS test app, which optimizes the evaluation
process by providing teachers and researchers with tools to efficiently
record, analyze, and score performances (Makaruk et al., 2024a).
Validation studies demonstrated strong concurrent validity (r = 0.92-
0.96) and excellent intra-rater reliability (ICC > 0.91), supporting its
use as a reliable tool for assessing FMS.

Emerging technologies like artificial intelligence (AI) build on
advancements in digital tools, may offer transformative potential to
enhance the accessibility, reliability, and accuracy of FMS assessments
(Vandevoorde et al., 2022). Al-powered tools can automate labor-
intensive tasks, such as video analysis and scoring, reducing the need
for extensive training and systematic observation scoring. For
example, Zhang et al. (2024) validated the precision of AI-powered
tools in analyzing biomechanical markers, effectively detecting subtle
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deficits in balance and coordination that are often overlooked with
conventional feedback from supervisors. Similarly, Sganga et al. (2023)
confirmed the effectiveness of integrating smartphone-based inertial
motion units with AT algorithms to accurately estimate the relative
displacement between the center of mass and the center of pressure.
Another study (Hajihosseini et al., 2022) established the feasibility of
automated assessments for FMS like overhand throwing. The
Al-powered system, which employs wearable inertial measurement
units and the ‘k-nearest neighbor’ algorithm, reduced scoring time
from 5 min to less than 30 s while maintaining high accuracy, with
classification rates ranging from 76 to 93% across four specific criteria.
Al-based tools have proven effective in evaluating key rope-jumping
performance parameters, including jumping pace, flight time,
touchdown time, and jump height, achieving excellent reliability
(ICC>0.9) (Yu and Hu, 2022). Collectively, these advancements
underscore the transformative potential of Al in bridging the gap
between traditional, resource-intensive methods and scalable
solutions for fostering motor skill learning and development.
Despite increasing use of digital tools in PE, there remains a
pressing need to validate AI-powered systems capable of delivering
standardized, efficient, and scalable FMS assessments. The primary
aim of this study was to evaluate the validity and reliability of an
Al-enhanced methodology for assessing jumping rope performance
within the FUS test framework. This approach was intended to address
key limitations of traditional process-oriented methods, such as
scoring variability, time constraints, and the need for specialized
expertise, by examining the AI model’s capacity to deliver objective
and consistent movement analysis. We hypothesized that integrating
Al systems could standardize FMS evaluations, reduce logistical
barriers, and support broader implementation in both educational
and research settings. These assumptions underpin a broader vision
of improving the accessibility and quality of motor skill assessments
while through  data-

advancing evidence-based practice

driven innovation.

Methods
Participants

A total of 236 students participated in this study, comprising 126
primary school students aged 7-14 years (54% female) and 110
university sports students aged 20-21 years (45% female). Older
participants were included to validate the assessment protocol across
a broader age and skill spectrum, extending beyond the originally
targeted age range of the FUS test. Participants were eligible if they
were actively enrolled in physical activity-related educational
programs offered by their institution and had no medical conditions,
musculoskeletal injuries, or neurological disorders affecting jumping
performance. Written informed consent was obtained from all
participants or their legal guardians, and the study protocol was
approved by the institutional Research Ethics Committee.

Apparatus and technology

The FUS test app, developed for use on mobile phones and tablets,
was employed to assess proficiency in six sports-related tasks,
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including jumping rope performance. The app facilitated video
recording, analysis, and scoring based on predefined performance
criteria. To evaluate the task of jumping rope, an Al-driven assessment
system was incorporated to provide an automated and objective
evaluation of movement proficiency. The Al assessment utilized the
MoveNet model, an open-source deep neural network developed by
Google (TensorFlow, 2021). The model tracked the horizontal and
vertical coordinates of 17 body parts at a frequency of 10 frames per
second, providing precise motion data for detailed analysis. The
anatomical landmarks included the nose, left and right eyes, left and
right ears, left and right shoulders, left and right elbows, left and right
wrists, left and right hips, left and right knees, and left and right ankles.

Jump rope proficiency was evaluated by analyzing five key
movement characteristics aligned to the FUS (reference) scoring
criterion, each assessed using a machine learning model specifically
developed for the corresponding criterion: continuity (criterion 1),
rhythmicity (criterion 2), arm and wrist positioning (criterion 3), hip
and knee flexion (criterion 4), and central positioning (criterion 5).
Continuity was modeled using the Extra Trees Classifier (Geurts et al.,
2006), an ensemble learning algorithm that analyzed temporal
patterns to identify whether jumps were performed continuously
without interruptions. Rhythmicity, representing the consistency and
timing of jumps, was evaluated with a Gradient Boosting Classifier
(Friedman, 2001) designed to detect deviations in timing across
consecutive cycles. Arm and wrist positioning was assessed using
another Gradient Boosting Classifier, which analyzed the spatial and
temporal precision of arm and wrist movements during the swinging
phase. Hip and knee flexion was modeled using a Multilayer
Perceptron Neural Network Classifier (Rumelhart et al., 1986), a
network capable of detecting subtle variations in joint angles. Finally,
central positioning was assessed with a Gradient Boosting Classifier,
which evaluated spatial alignment and postural control to ensure
jumps were executed within the designated area while maintaining an
upright trunk position. Each of these models was designed to provide
automated, objective assessments of movement proficiency, scoring
individual criteria on a binary scale where 1 indicated correct
execution and 0 indicated incorrect execution. In cases where the AI
system failed to detect the participant’s movements with sufficient
confidence, such as poor video quality issues or obstruction, a score
vector of (—1, —1, —1, —1, —1) was returned, indicating a failed
recognition attempt. The AI model assessment utilized open-source
libraries, including TensorFlow (2021), licensed under Apache 2.0,
and scikit-learn (Pedregosa et al, 2011), licensed under the
BSD License.

Data collection was conducted using a Lenovo Tab P11 (2nd Gen)
tablet, equipped with a 13 MP high-resolution camera capable of
recording 1080p HD videos at 30 frames per second. The tablet’s
2,000 x 1,200 resolution screen provided high-quality playback,
supporting accurate video analysis.

Procedure

The jumping rope task in the FUS test required participants to
perform rhythmic and continuous jumps over the rope for 10 s. The
app, however, allowed for a 15-s video recording, capturing both the
preparation phase (1-2s) and the task execution. The following
standardized procedure was implemented to ensure consistency across
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trials. At the start of each trial, the participant stood directly in front of
the test administrator, positioned approximately 4 m from the camera,
which was aligned to face the center of the “X” marked on the floor.
The administrator provided clear instructions: “Jump to the rhythm of
the rope hitting the ground,” and ensured the participant was prepared
to proceed. Upon confirmation, the administrator activated the
recording function in the application and instructed the participant to
begin the task by saying “Go.” The app automatically stopped recording
after 15 s, ensuring standardized durations across all trials.

Before beginning the warm-up trial, participants were instructed
to adopt an upright stance, holding the handles of the rope behind their
body. Arms were positioned close to the trunk, with elbows bent and
externally abducted. The length of the rope was adjusted according to
the participant’s height, ensuring that, when folded in half, it extended
from the floor to the shoulder. All jumps were performed on a flat
wooden surface to ensure safety and consistency in testing conditions.
To preserve optimal video analysis and minimize potential distractions,
no other individuals were permitted near or in the background of the
participant during the task. Additionally, the background was required
to provide sufficient contrast with the participant’s clothing (e.g., light-
colored clothing against a dark background) to enhance visibility and
ensure accuracy in movement assessment.

To ensure clarity and correct execution, the test supervisor presented
the task before the trials commenced. Participants observed the
demonstration from a position directly in front of the supervisor.
Following the instructional phase, each participant completed a warm-up
trial to familiarize themselves with the task. Subsequently, two test trials
were conducted, with a minimum rest interval of 3 min between trials to
mitigate fatigue. No feedback was provided during testing.

The criteria for jumping rope are as follows: criterion 1. jumps are
performed continuously (without stopping); criterion 2. jumps are
rhythmic and single, with short ground contact time and landing on the
ball of the feet; criterion 3. arms are bent and held close to the trunk, and
the rope is moved using the rotation of forearms and wrists; criterion 4.
knees and hips are slightly bent during flight and landing; criterion 5.
jumps are performed vertically with jumps initiating in the same
designated area, with the trunk upright, feet parallel at a hip width apart.

Each criterion was scored as “1” if met or “0” if unmet, with points
awarded only when performance clearly satisfied the respective
criterion. The higher-scoring attempt was considered for further analysis.

Concurrent validity and inter-rater
reliability between FMS experts and Al
model

In this study, concurrent validity evaluated how well the AI model
replicated expert evaluations, recognized as the benchmark for jumping
rope proficiency. Inter-rater reliability analyzed the consistency of
scores between the Al model and human assessors. Both psychometric
evaluations employed the same statistical measures. Two experienced
assessors independently scored 236 video-recorded performances,
resolving disagreements through a consensus process to ensure
accuracy. Prior to consensus, the assessors achieved at least 90%
agreement on total scores. A third assessor utilized the AI model to
independently evaluate the same performance criteria. The
Al-generated scores, produced automatically by the softwares
predefined algorithms, were then directly compared with scores
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assigned by the human experts. This comparison allowed for an
evaluation of both the validity and reliability of the Al assessment system.

Inter-rater reliability between FMS experts
correcting Al-generated scores

A second analysis was conducted to assess the inter-rater reliability
of the AI model after adjustments by human experts. Two independent
evaluators reviewed the Al-generated scores for the same set of video-
recorded performances (1 = 236). When the Al-generated scores differed
from the expert’s judgment, the experts manually adjusted (corrected)
these scores to align them with their expert evaluation. Corrections were
made only when the expert was clearly satisfied that the AI-generated
point did not accurately reflect the actual observed performance.

Intra-rater reliability of the Al model and
intra-rater reliability between FMS experts
correcting Al-generated scores

The intra-rater reliability of the AI model, operated independently
by an expert, and the AI model corrected by two expert raters was
independently evaluated by comparing scores from the initial and
follow-up assessments of the same video-recorded jumping rope
performances (n = 236) after a three-week interval. Corrections were
applied only when the expert was fully confident that a point should
or should not be awarded for a specific criterion.

Statistical analysis

Descriptive statistics were reported as means and standard deviations
for all variables. Concurrent validity, inter-rater and intra-rater reliability
were assessed using the percentage of observed agreements, Cohen’s
kappa coefficients for individual criteria, and weighted kappa coefficients
for total points, along with intraclass correlation coeflicients (ICCs).
Cohen’s kappa values were interpreted based on the classification
proposed by Landis and Koch (1977), where values <0 indicate poor
agreement, 0.01-0.20 indicate slight agreement, 0.21-0.40 indicate fair
agreement, 0.41-0.60 indicate moderate agreement, 0.61-0.80 indicate
substantial agreement, and 0.81-1.00 indicate almost perfect agreement.
ICC values were interpreted as follows: values <0.5 indicate poor
reliability, 0.5-0.75 indicate moderate reliability, 0.75-0.9 indicate good
reliability, and >0.9 indicate excellent reliability (Koo and Li, 2016). For
both Cohen’s kappa and ICC values, 95% confidence intervals (Cls) were
calculated to provide a measure of precision. The statistical significance
threshold was set at alpha = 0.05 for all analyses. Data were analyzed
using SPSS Statistics version 27 for Windows (SPSS Inc., Chicago, USA).

Results

Concurrent validity and inter-rater
reliability

The total scores for the jumping rope assessment were nearly
identical between the FMS experts (3.12 + 1.80) and the AI model
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(3.12 £ 1.77). As presented in Table 1, the observed agreement for
individual performance criteria ranged from 92.8% (criteria 4 and 5)
to 94.5% (criterion 2). Cohen’s kappa values ranged from 0.83
(criterion 5) to 0.87 (criterion 2), indicating almost perfect inter-rater
agreement. The total score demonstrated strong consistency between
raters, with an observed agreement of 77.1%, a Cohen’s kappa of 0.87
(95% CI: 0.84-0.91), and an excellent ICC of 0.96. Minor discrepancies
between expert and Al scores occurred evenly across all criteria, with
no consistent direction of bias.

Concurrent validity and inter-rater
reliability between FMS experts correcting
Al-generated scores

Table 2 summarizes the results for AI-generated scores adjusted
by FMS experts. Observed agreements were consistently high, ranging
from 96.6% (criterion 4) to 98.7% (criterion 1). Cohen’s kappa
coeflicients varied between 0.93 (criteria 4 and 5) and 0.97 (criterion
1), consistently reflecting almost perfect agreement. For the total
score, observed agreement was 89.0%, Cohen’s kappa was 0.94, and
the ICC for the total score was excellent at 0.98 (95% CI: 0.98-0.99).
The two evaluators showed strong consistency across all criteria, with
minor discrepancies evenly distributed and no consistent scoring bias
identified. Differences between evaluators ranged from 3 to 8 cases per
criterion, with total score agreement in 210 of 236 assessments.

Intra-rater reliability for Al model and
intra-rater reliability between FMS experts
correcting Al-generated scores

The AI model exhibited perfect consistency, achieving 100%
observed agreement and a kappa coeflicient of 1.00 across all criteria
and the total score (Table 3). After correction by FMS experts,

10.3389/frai.2025.1611534

intra-rater agreement remained high, with observed agreements
ranging from 98.3 to 99.1% for individual criteria and from 92.4 to
94.5% for the total score. Kappa coefficients ranged from 0.95 to 0.98
for individual criteria and were 0.97 and 0.96 for the total score,
depending on the expert. The ICC for the total score was consistently
excellent, reaching 0.99 for both experts.

Both experts maintained high consistency between initial and
subsequent assessments across all criteria, with only minor,
non-systematic discrepancies observed. Differences between sessions
ranged from 2 to 5 cases per criterion, and total score consistency was
high (expert 1: 223 out of 236 cases; expert 2: 218 out of 236 cases).

Discussion

This study confirmed the validity and reliability of an Al-enhanced
methodology for assessing jumping rope performance within the FUS
test framework. The AI model closely aligned with expert evaluations,
as shown by high correlation coefficients and near-perfect agreement
across both individual criteria and total scores. When refined by
expert input, the model’s inter-rater reliability improved further,
demonstrating its capacity for iterative enhancement. Intra-rater
reliability was consistently high, with the AT model alone achieving
perfect agreement (kappa = 1.00, ICC = 1.00); after expert corrections,
reliability remained robust, with only a minor reduction. These results
support the use of Al systems as accurate, consistent tools for FMS
evaluation, with clear implications for research and PE practice.

First, the strong agreement between the AI model and expert
scores demonstrates its capacity to replicate expert evaluations with
high accuracy and consistency. This advancement addresses long-
standing limitations of traditional assessment methods, such as
evaluator bias, fatigue-induced errors, and inter-rater variability
(Hulteen et al.,, 2023). The AI system applies standardized criteria
uniformly, thereby reducing the influence of subjective judgment and
eliminating inconsistencies across evaluators. This is especially

TABLE 1 Concurrent validity and inter-rater reliability for jumping rope assessment between FMS experts and Al model (n = 236).

Jumping rope

Percentage of observed agreements (%)

Cohen'’s kappa (95% ClI)

Criterion 1 93.2 0.86 (0.79-0.92)
Criterion 2 94.5 0.87 (0.81-0.94)
Criterion 3 93.6 0.87 (0.80-0.93)
Criterion 4 92.8 0.86 (0.79-0.92)
Criterion 5 92.8 0.83 (0.76-0.91)
Total score 77.1 0.87 (0.84-0.91)

TABLE 2 Inter-rater reliability for jumping rope assessment between experts correcting Al-generated scores (n = 236).

Jumping rope

Percentage of observed agreements (%)

Cohen’s kappa (95% Cl)

Criterion 1 98.7 0.97 (0.94-1.00)
Criterion 2 97.5 0.94 (0.90-0.99)
Criterion 3 97.5 0.94 (0.90-0.99)
Criterion 4 96.6 0.93 (0.88-0.98)
Criterion 5 97.0 0.93 (0.88-0.98)
Total score 89.0 0.94 (0.92-0.97)
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TABLE 3 Intra-rater reliability for jumping rope assessment for Al model and experts correcting Al-generated scores.

Jumping rope
agreements (%)

Percentage of observed

Cohen's kappa (95% Cl) ICC (95% ClI)

Criterion 1

Al model 100.0 1.00 (1.00-1.00)

Corrected AI-Expert 1 99.1 0.98 (0.96-1.00)

Corrected AI-Expert 2 98.7 0.97 (0.94-1.00)

Criterion 2

Al model 100.0 1.00 (1.00-1.00)

Corrected AI-Expert 1 98.7 0.97 (0.94-1.00)

Corrected AI-Expert 2 98.3 0.96 (0.93-1.00)

Criterion 3

Al model 100.0 1.00 (1.00-1.00)

Corrected AI-Expert 1 98.3 0.96 (0.93-1.00)

Corrected AI-Expert 2 98.7 0.97 (0.94-1.00)

Criterion 4

Al model 100.0 1.00 (1.00-1.00)

Corrected AI-Expert 1 98.3 0.97 (0.93-1.00)

Corrected AI-Expert 2 97.9 0.96 (0.92-0.99)

Criterion 5

Al model 100.0 1.00 (1.00-1.00)

Corrected AI-Expert 1 99.1 0.98 (0.95-1.00)

Corrected AI-Expert 2 97.9 0.95 (0.91-0.99)

Total

AT model 100.0 1.00 (1.00-1.00) 1.00 (1.00-0.1.00)
Corrected AI-Expert 1 94.5 0.97 (0.96-0.99) 0.99 (0.99-0.99)
Corrected AI-Expert 2 92.4 0.96 (0.94-0.98) 0.99 (0.98-0.99)

valuable in multi-site studies and large-scale educational settings,
where consistent conditions are essential (Barnett et al., 2014).
Moreover, the model supports post-hoc analysis of video recordings,
enhancing transparency and reliability in performance evaluations
(Atkinson and Nevill, 1998; Leukel et al., 2023; Ward et al., 2020).
These features position the AI model as a viable and scalable
alternative to traditional human-led assessments, particularly in
contexts where time, training, and resources are constrained.

Second, the AI model shows strong potential for iterative
refinement, leveraging performance data to continuously improve
its scoring accuracy—an advantage over human experts, who often
rely on fixed methods and experiential judgment (Song et al., 2021;
Vandevoorde et al., 2022). Unlike human raters, whose perceptual
limitations may lead to inconsistency in identifying nuanced
movement errors, Al systems can detect subtle deficits with
precision. Barnett et al. (2014) illustrated this limitation in their
analysis of complex motion sequences like the overhand throw,
where evaluators frequently disagreed during rapid movement
phases such as the wind-up or follow-through. These discrepancies,
compounded by the cognitive load of observing multi-joint actions
in real time, underscore the limits of human perception. In
contrast, Al systems can process detailed kinematic data objectively
and without fatigue, ensuring greater accuracy and consistency in
movement evaluation.

Frontiers in Artificial Intelligence

Third, the alignment between Al-derived evaluations and expert
assessments highlights the system’s adaptability to applied settings,
including PE classes. For teachers with limited time or specialized
training, the AI model offers a practical and efficient solution,
providing consistent evaluations without reliance on subjective
judgment. By addressing scoring variability and logistical constraints,
it facilitates timely, individualized interventions based on accurate
performance feedback. Morley et al. (2019) similarly observed that
digital tools enhance assessment efficiency and reduce resource
demands, enabling educators to prioritize evidence-based instruction.
These benefits position Al-enhanced tools as valuable assets for
improving the quality, accessibility, and standardization of motor skill
assessments, ultimately supporting physical literacy and motor
competence development.

Finally, the validated AI model offers new opportunities to
democratize access to high-quality FMS assessments, particularly in
resource-limited educational contexts. While this study provides an
initial demonstration of the models utility, broader implementation
could transform PE by enabling scalable, AI-powered evaluation systems.
Kok et al. (2020) showed that digital tools, such as self-controlled video
feedback, enhance motor learning and self-efficacy by promoting
autonomy and self-regulation. Building on this foundation, Al systems
may empower students to assess and reflect on their performance
independently, reducing reliance on direct teacher instruction while
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sustaining accuracy and engagement. Moreover, such tools can support
peer-to-peer assessments through structured, video-based applications
enriched with instructional cues. This collaborative model fosters a
motivating, student-centered learning environment and helps
accommodate challenges like limited instructional capacity and large
class sizes. Through the refinement of traditional assessment practices,
Al-enhanced tools have the potential to promote both physical literacy
and educational equity. Future research should explore the integration of
adaptive feedback features to optimize motor learning and encourage
student agency in FMS development.

Inter-rater reliability results confirmed the AT model’s capacity to
replicate expert judgments with high consistency, with near-perfect
agreement across criteria and excellent ICC values. These outcomes were
comparable to or exceeded inter-rater reliability levels reported in studies
involving human experts (Makaruk et al., 2023; Zamani et al., 2024),
underscoring the system’s potential as a standardized evaluation tool.
Notably, previous research has highlighted difficulties even among
trained assessors. For instance, Hulteen et al. (2023) reported component-
level agreement as low as 40.5%, particularly for tasks like skipping, while
Ward et al. (2020) observed criterion-level accuracy ranging from 35 to
100%, often due to attentional lapses and inconsistent interpretation of
scoring criteria. Incorporating expert oversight into the AI model
improved inter-rater reliability further, suggesting that a hybrid
approach—combining algorithmic precision with expert refinement—
can elevate assessment quality. This process reduces subjective biases and
ensures consistent application of criteria, thereby enhancing both the
reliability and scalability of motor skill evaluations in research and
applied settings.

Intra-rater reliability analysis reinforced the robustness of the Al
model, particularly for longitudinal monitoring of motor skill
development. The system achieved perfect agreement across all criteria
and total scores, with kappa and ICC values reaching 1.00—a level
virtually impossible to attain for human experts in intra-rater FMS
assessments. This level of precision supports the use of Al tools for
progress tracking, timely intervention, and performance optimization in
educational and developmental contexts. Even after expert corrections,
reliability remained high, exceeding benchmarks reported in prior
studies (Makaruk et al., 2023; Zamani et al., 2024). These findings suggest
that Al-assisted assessment can enhance data-driven decision-making in
both research and applied practice, while maintaining consistency
over time.

Discrepancies between the AI model and expert evaluations were
generally minor and varied across criteria, indicating non-systematic
biases rather than consistent directional errors. For instance, the Al
model occasionally overestimated performance in Criterion 1 by
assigning higher scores when participants quickly resumed jumping after
an error, overlooking brief interruptions in continuity. In contrast, it
adopted a more conservative approach in Criterion 2, underestimating
performance due to prolonged ground contact. This bidirectional pattern
indicates stochastic variation rather than a systematic scoring bias.
Additionally, slight inconsistencies across repeated expert assessments
suggest that some variation may stem from the subjective nature of
human judgment rather than model limitations. These findings reinforce
the importance of ongoing algorithmic refinement to better align with
expert standards and ensure robust applicability in real-world
assessment contexts.

Several limitations should be acknowledged. First, the models
accuracy depends on controlled testing conditions, including precise
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camera alignment, sufficient lighting, and a contrast-enhancing
background—which may be challenging to reproduce in certain PE class
environments. Second, the study focused solely on jumping rope, which,
while informative, limits the generalizability of findings to other FMS with
differing biomechanical and coordination demands. Future research
should extend the framework to a broader range of skills. Lastly, minor
over-and underestimations by the Al in specific criteria highlight the need
for continued algorithmic refinement to improve sensitivity to nuanced
movement variations and ensure alignment with expert standards.

Conclusion

This study provides robust evidence supporting the validity and
reliability of an Al-enhanced methodology for assessing jumping rope
performance within the FUS test framework. The AT model effectively
replicated expert-level evaluations, and its performance was further
strengthened through expert refinement. These results highlight the
system’s potential to overcome key limitations of traditional assessment
methods by offering scalable, objective, and consistent evaluations. Beyond
its research value, the model presents a practical solution for educational
and sport contexts, particularly in settings with limited resources. With
further development, such tools may help democratize access to high-
quality motor skill assessments and support broader efforts to enhance
motor competence and health outcomes across populations.
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