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Introduction: Widespread concerns about children’s low fundamental motor skill 
(FMS) proficiency highlight the need for accurate assessment tools to support 
structured instruction. This study examined the validity and reliability of an AI-
enhanced methodology for assessing jumping rope performance within the 
Fundamental Motor Skills in Sport (FUS) test.

Methods: A total of 236 participants (126 primary school students aged 7–14; 110 
university sports students aged 20–21) completed jumping rope tasks recorded 
via the FUS mobile app integrated with an AI model evaluating five process-
oriented performance criteria. Concurrent validity and inter-rater reliability were 
examined by comparing AIgenerated assessments with scores from two expert 
evaluators. Intra-rater reliability was also assessed through reassessment of 
video trials after a 3-week interval.

Results: Results revealed excellent concurrent validity and inter-rater reliability 
for the AI model compared with expert ratings (ICC = 0.96; weighted kappa 
= 0.87). Agreement on individual criteria was similarly high (Cohen’s kappa = 
0.83–0.87). Expertadjusted AI scores further improved reliability (ICC = 0.98). 
Intrarater reliability was also excellent, with perfect agreement for AIgenerated 
scores (ICC = 1.00; kappa = 1.00).

Conclusions: These findings demonstrate that AI-based assessment offers 
objective, reliable, and scalable evaluation, enhancing accuracy and efficiency 
of FMS assessment in education and research.
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Introduction

Assessing and improving movement proficiency during childhood 
is crucial for supporting optimal physical development and building 
the foundational skills necessary for lifelong physical activity (Logan 
et al., 2015; Stodden et al., 2008). Fundamental motor skills (FMS), 
including jumping, running, and throwing, form the foundation for 
more complex motor tasks, facilitating children’s effective participation 
in diverse sports and physical activities (Logan et al., 2018). A large 
body of research indicates that proficiency in FMS is associated with 
enhanced physical fitness and a reduced risk of lifestyle-related health 
issues, including obesity and cardiovascular conditions (Barnett et al., 
2022; Robinson et al., 2015; Stodden et al., 2008). Conversely, children 
with insufficient FMS often face barriers for participation in sports 
and social play, which can negatively affect their physical, emotional, 
and social development (Robinson et al., 2015).

Process-oriented assessments are widely recognized as the 
paramount benchmark for evaluating FMS, offering detailed insights 
into how movements are performed (Logan et al., 2017; Watanabe et al., 
2024). Unlike product-oriented tools that emphasize measurable 
outcomes such as distance or speed, process-oriented evaluations focus 
on coordination, control, and other qualitative factors, providing deeper 
insights into the mechanics and efficiency of motor performance (Logan 
et al., 2018). These tools are particularly valuable for identifying deficits 
in specific movement components, which are essential for advanced skill 
proficiency. For instance, O’Brien et al. (2016) highlighted that poor 
execution of fundamental behavioral components, such as bending the 
knees and extending the arms during take-off, was a common reason for 
failure in both vertical and horizontal jumps.

Despite their predictive value for assessing FMS proficiency, 
implementing process-oriented assessments poses substantial 
challenges, even for trained experts and researchers (Hulteen et al., 
2018; Hulteen et al., 2023; Ward et al., 2020). Ensuring validity and 
reliability requires extensive training and strict adherence to protocols, 
making the process resource-intensive and time-consuming (Lander 
et al., 2015). Variability in scoring frequently arises from subjective 
interpretations of movement quality, particularly during real-time 
assessments, where observers must simultaneously track multiple 
criteria, compromising accuracy (Barnett et  al., 2014; Ward et  al., 
2020). The issue becomes more pronounced with less experienced 
evaluators, emphasizing the need to improve training procedures, 
assessment frameworks, and clearly defined evaluation criteria (Lander 
et al., 2015; Palmer and Brian, 2016). Additionally, inherent constraints 
in process-oriented assessments limit the number of performance 
criteria that human observers can reliably evaluate. For example, 
widely-used tools, such as the Test of Gross Motor Development 
(Webster and Ulrich, 2017), address this limitation by removing 
criteria during an item-analysis phase if they cannot be consistently 
scored by human observers. However, this practice may result in 
essential movement characteristics remaining unassessed. Barnett et al. 
(2014) illustrate this problem, noting that inadequately defined criteria, 
such as not specifying elbow flexion, can cause incorrect movements 
(e.g., a “fling” or “sling”) to be incorrectly scored as correct. Similarly, 
tools like the Victorian Fundamental Motor Skill Manual (Walkley 
et al., 1996) provide partial guidance but fail to fully represent the 
complexity and subtlety inherent in FMS, further complicating 
accurate assessment. These limitations collectively underscore the need 
for more comprehensive assessment strategies.

In many countries, early education (classroom) and physical 
education (PE) teachers are responsible for monitoring FMS 
development as part of the curriculum (Lander et al., 2016; Makaruk 
et al., 2024b). However, many teachers lack confidence in utilizing 
process-oriented tools, which often demand a deeper understanding 
of human movement and FMS development (Bourke et  al., 2024; 
Harris et al., 2011; Lander et al., 2015). This knowledge gap can lead to 
inconsistent evaluations and an over-reliance on simplified tools that 
fail to capture the complexities of motor skills (Morley et al., 2019). 
Additionally, limited training and professional development 
opportunities contribute to these obstacles, leaving many teachers 
unprepared to effectively assess and address movement skill deficiencies 
within the constraints of their teaching schedules (Draper et al., 2019). 
Research highlights that teachers often prioritize instructional activities 
over assessments due to the significant time and logistical burdens 
associated with administering traditional FMS tools, particularly in 
large class settings (Draper et al., 2019; Morley et al., 2019). Morley 
et al. (2019) noted that these tools are not only time-intensive but also 
require specialized expertise, making their integration into daily 
teaching routines difficult. Furthermore, limited access to updated 
FMS testing methodologies and appropriate resources frequently forces 
teachers to rely on simplified or outdated tools, which fail to capture 
the full scope of movement skills (Bourke et al., 2024; Foweather et al., 
2018; Morley et al., 2019). As a result, assessments are often infrequent 
and incomplete, reducing the effectiveness of identifying and 
addressing movement deficiencies in students.

Addressing these challenges requires innovative solutions that 
preserve the depth and accuracy of process-oriented assessments (Bisi 
et al., 2017; Hulteen et al., 2020; Ward et al., 2017) while enhancing 
their feasibility. Digital technology, such as tablet-based applications, 
has shown great potential in this regard and is well-received by primary 
school teachers. These tools provide functionalities like video recording 
and analysis, enabling educators to capture and review children’s 
performances effectively (Browne, 2015; Draper et al., 2019). Digital 
tools streamline the assessment process and provide visual evidence of 
movement execution, enabling more accurate identification of skill 
deficiencies. Embedded video demonstrations further support teachers 
with limited expertise, offering references for skill performance and 
guidance for conducting assessments (Foweather et al., 2018; Makaruk 
et  al., 2024a; O’Loughlin et  al., 2013). One such example is Meu 
Educativo®, a platform designed to evaluate FMS using an expert-
validated checklist and rating system (Garbeloto et al., 2024). The tool 
prioritizes ease of use, maintaining reliability with inter-rater reliability 
ranging from 0.63 to 0.93 and intra-rater reliability from 0.46 to 0.94. 
Another example is the FUS test app, which optimizes the evaluation 
process by providing teachers and researchers with tools to efficiently 
record, analyze, and score performances (Makaruk et  al., 2024a). 
Validation studies demonstrated strong concurrent validity (r = 0.92–
0.96) and excellent intra-rater reliability (ICC > 0.91), supporting its 
use as a reliable tool for assessing FMS.

Emerging technologies like artificial intelligence (AI) build on 
advancements in digital tools, may offer transformative potential to 
enhance the accessibility, reliability, and accuracy of FMS assessments 
(Vandevoorde et al., 2022). AI-powered tools can automate labor-
intensive tasks, such as video analysis and scoring, reducing the need 
for extensive training and systematic observation scoring. For 
example, Zhang et al. (2024) validated the precision of AI-powered 
tools in analyzing biomechanical markers, effectively detecting subtle 
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deficits in balance and coordination that are often overlooked with 
conventional feedback from supervisors. Similarly, Sganga et al. (2023) 
confirmed the effectiveness of integrating smartphone-based inertial 
motion units with AI algorithms to accurately estimate the relative 
displacement between the center of mass and the center of pressure. 
Another study (Hajihosseini et al., 2022) established the feasibility of 
automated assessments for FMS like overhand throwing. The 
AI-powered system, which employs wearable inertial measurement 
units and the ‘k-nearest neighbor’ algorithm, reduced scoring time 
from 5 min to less than 30 s while maintaining high accuracy, with 
classification rates ranging from 76 to 93% across four specific criteria. 
AI-based tools have proven effective in evaluating key rope-jumping 
performance parameters, including jumping pace, flight time, 
touchdown time, and jump height, achieving excellent reliability 
(ICC > 0.9) (Yu and Hu, 2022). Collectively, these advancements 
underscore the transformative potential of AI in bridging the gap 
between traditional, resource-intensive methods and scalable 
solutions for fostering motor skill learning and development.

Despite increasing use of digital tools in PE, there remains a 
pressing need to validate AI-powered systems capable of delivering 
standardized, efficient, and scalable FMS assessments. The primary 
aim of this study was to evaluate the validity and reliability of an 
AI-enhanced methodology for assessing jumping rope performance 
within the FUS test framework. This approach was intended to address 
key limitations of traditional process-oriented methods, such as 
scoring variability, time constraints, and the need for specialized 
expertise, by examining the AI model’s capacity to deliver objective 
and consistent movement analysis. We hypothesized that integrating 
AI systems could standardize FMS evaluations, reduce logistical 
barriers, and support broader implementation in both educational 
and research settings. These assumptions underpin a broader vision 
of improving the accessibility and quality of motor skill assessments 
while advancing evidence-based practice through data-
driven innovation.

Methods

Participants

A total of 236 students participated in this study, comprising 126 
primary school students aged 7–14 years (54% female) and 110 
university sports students aged 20–21 years (45% female). Older 
participants were included to validate the assessment protocol across 
a broader age and skill spectrum, extending beyond the originally 
targeted age range of the FUS test. Participants were eligible if they 
were actively enrolled in physical activity-related educational 
programs offered by their institution and had no medical conditions, 
musculoskeletal injuries, or neurological disorders affecting jumping 
performance. Written informed consent was obtained from all 
participants or their legal guardians, and the study protocol was 
approved by the institutional Research Ethics Committee.

Apparatus and technology

The FUS test app, developed for use on mobile phones and tablets, 
was employed to assess proficiency in six sports-related tasks, 

including jumping rope performance. The app facilitated video 
recording, analysis, and scoring based on predefined performance 
criteria. To evaluate the task of jumping rope, an AI-driven assessment 
system was incorporated to provide an automated and objective 
evaluation of movement proficiency. The AI assessment utilized the 
MoveNet model, an open-source deep neural network developed by 
Google (TensorFlow, 2021). The model tracked the horizontal and 
vertical coordinates of 17 body parts at a frequency of 10 frames per 
second, providing precise motion data for detailed analysis. The 
anatomical landmarks included the nose, left and right eyes, left and 
right ears, left and right shoulders, left and right elbows, left and right 
wrists, left and right hips, left and right knees, and left and right ankles.

Jump rope proficiency was evaluated by analyzing five key 
movement characteristics aligned to the FUS (reference) scoring 
criterion, each assessed using a machine learning model specifically 
developed for the corresponding criterion: continuity (criterion 1), 
rhythmicity (criterion 2), arm and wrist positioning (criterion 3), hip 
and knee flexion (criterion 4), and central positioning (criterion 5). 
Continuity was modeled using the Extra Trees Classifier (Geurts et al., 
2006), an ensemble learning algorithm that analyzed temporal 
patterns to identify whether jumps were performed continuously 
without interruptions. Rhythmicity, representing the consistency and 
timing of jumps, was evaluated with a Gradient Boosting Classifier 
(Friedman, 2001) designed to detect deviations in timing across 
consecutive cycles. Arm and wrist positioning was assessed using 
another Gradient Boosting Classifier, which analyzed the spatial and 
temporal precision of arm and wrist movements during the swinging 
phase. Hip and knee flexion was modeled using a Multilayer 
Perceptron Neural Network Classifier (Rumelhart et  al., 1986), a 
network capable of detecting subtle variations in joint angles. Finally, 
central positioning was assessed with a Gradient Boosting Classifier, 
which evaluated spatial alignment and postural control to ensure 
jumps were executed within the designated area while maintaining an 
upright trunk position. Each of these models was designed to provide 
automated, objective assessments of movement proficiency, scoring 
individual criteria on a binary scale where 1 indicated correct 
execution and 0 indicated incorrect execution. In cases where the AI 
system failed to detect the participant’s movements with sufficient 
confidence, such as poor video quality issues or obstruction, a score 
vector of (−1, −1, −1, −1, −1) was returned, indicating a failed 
recognition attempt. The AI model assessment utilized open-source 
libraries, including TensorFlow (2021), licensed under Apache 2.0, 
and scikit-learn (Pedregosa et  al., 2011), licensed under the 
BSD License.

Data collection was conducted using a Lenovo Tab P11 (2nd Gen) 
tablet, equipped with a 13 MP high-resolution camera capable of 
recording 1080p HD videos at 30 frames per second. The tablet’s 
2,000  ×  1,200 resolution screen provided high-quality playback, 
supporting accurate video analysis.

Procedure

The jumping rope task in the FUS test required participants to 
perform rhythmic and continuous jumps over the rope for 10 s. The 
app, however, allowed for a 15-s video recording, capturing both the 
preparation phase (1–2 s) and the task execution. The following 
standardized procedure was implemented to ensure consistency across 
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trials. At the start of each trial, the participant stood directly in front of 
the test administrator, positioned approximately 4 m from the camera, 
which was aligned to face the center of the “X” marked on the floor. 
The administrator provided clear instructions: “Jump to the rhythm of 
the rope hitting the ground,” and ensured the participant was prepared 
to proceed. Upon confirmation, the administrator activated the 
recording function in the application and instructed the participant to 
begin the task by saying “Go.” The app automatically stopped recording 
after 15 s, ensuring standardized durations across all trials.

Before beginning the warm-up trial, participants were instructed 
to adopt an upright stance, holding the handles of the rope behind their 
body. Arms were positioned close to the trunk, with elbows bent and 
externally abducted. The length of the rope was adjusted according to 
the participant’s height, ensuring that, when folded in half, it extended 
from the floor to the shoulder. All jumps were performed on a flat 
wooden surface to ensure safety and consistency in testing conditions. 
To preserve optimal video analysis and minimize potential distractions, 
no other individuals were permitted near or in the background of the 
participant during the task. Additionally, the background was required 
to provide sufficient contrast with the participant’s clothing (e.g., light-
colored clothing against a dark background) to enhance visibility and 
ensure accuracy in movement assessment.

To ensure clarity and correct execution, the test supervisor presented 
the task before the trials commenced. Participants observed the 
demonstration from a position directly in front of the supervisor. 
Following the instructional phase, each participant completed a warm-up 
trial to familiarize themselves with the task. Subsequently, two test trials 
were conducted, with a minimum rest interval of 3 min between trials to 
mitigate fatigue. No feedback was provided during testing.

The criteria for jumping rope are as follows: criterion 1. jumps are 
performed continuously (without stopping); criterion 2. jumps are 
rhythmic and single, with short ground contact time and landing on the 
ball of the feet; criterion 3. arms are bent and held close to the trunk, and 
the rope is moved using the rotation of forearms and wrists; criterion 4. 
knees and hips are slightly bent during flight and landing; criterion 5. 
jumps are performed vertically with jumps initiating in the same 
designated area, with the trunk upright, feet parallel at a hip width apart.

Each criterion was scored as “1” if met or “0” if unmet, with points 
awarded only when performance clearly satisfied the respective 
criterion. The higher-scoring attempt was considered for further analysis.

Concurrent validity and inter-rater 
reliability between FMS experts and AI 
model

In this study, concurrent validity evaluated how well the AI model 
replicated expert evaluations, recognized as the benchmark for jumping 
rope proficiency. Inter-rater reliability analyzed the consistency of 
scores between the AI model and human assessors. Both psychometric 
evaluations employed the same statistical measures. Two experienced 
assessors independently scored 236 video-recorded performances, 
resolving disagreements through a consensus process to ensure 
accuracy. Prior to consensus, the assessors achieved at least 90% 
agreement on total scores. A third assessor utilized the AI model to 
independently evaluate the same performance criteria. The 
AI-generated scores, produced automatically by the software’s 
predefined algorithms, were then directly compared with scores 

assigned by the human experts. This comparison allowed for an 
evaluation of both the validity and reliability of the AI assessment system.

Inter-rater reliability between FMS experts 
correcting AI-generated scores

A second analysis was conducted to assess the inter-rater reliability 
of the AI model after adjustments by human experts. Two independent 
evaluators reviewed the AI-generated scores for the same set of video-
recorded performances (n = 236). When the AI-generated scores differed 
from the expert’s judgment, the experts manually adjusted (corrected) 
these scores to align them with their expert evaluation. Corrections were 
made only when the expert was clearly satisfied that the AI-generated 
point did not accurately reflect the actual observed performance.

Intra-rater reliability of the AI model and 
intra-rater reliability between FMS experts 
correcting AI-generated scores

The intra-rater reliability of the AI model, operated independently 
by an expert, and the AI model corrected by two expert raters was 
independently evaluated by comparing scores from the initial and 
follow-up assessments of the same video-recorded jumping rope 
performances (n = 236) after a three-week interval. Corrections were 
applied only when the expert was fully confident that a point should 
or should not be awarded for a specific criterion.

Statistical analysis

Descriptive statistics were reported as means and standard deviations 
for all variables. Concurrent validity, inter-rater and intra-rater reliability 
were assessed using the percentage of observed agreements, Cohen’s 
kappa coefficients for individual criteria, and weighted kappa coefficients 
for total points, along with intraclass correlation coefficients (ICCs). 
Cohen’s kappa values were interpreted based on the classification 
proposed by Landis and Koch (1977), where values <0 indicate poor 
agreement, 0.01–0.20 indicate slight agreement, 0.21–0.40 indicate fair 
agreement, 0.41–0.60 indicate moderate agreement, 0.61–0.80 indicate 
substantial agreement, and 0.81–1.00 indicate almost perfect agreement. 
ICC values were interpreted as follows: values <0.5 indicate poor 
reliability, 0.5–0.75 indicate moderate reliability, 0.75–0.9 indicate good 
reliability, and >0.9 indicate excellent reliability (Koo and Li, 2016). For 
both Cohen’s kappa and ICC values, 95% confidence intervals (CIs) were 
calculated to provide a measure of precision. The statistical significance 
threshold was set at alpha = 0.05 for all analyses. Data were analyzed 
using SPSS Statistics version 27 for Windows (SPSS Inc., Chicago, USA).

Results

Concurrent validity and inter-rater 
reliability

The total scores for the jumping rope assessment were nearly 
identical between the FMS experts (3.12 ± 1.80) and the AI model 
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(3.12 ± 1.77). As presented in Table 1, the observed agreement for 
individual performance criteria ranged from 92.8% (criteria 4 and 5) 
to 94.5% (criterion 2). Cohen’s kappa values ranged from 0.83 
(criterion 5) to 0.87 (criterion 2), indicating almost perfect inter-rater 
agreement. The total score demonstrated strong consistency between 
raters, with an observed agreement of 77.1%, a Cohen’s kappa of 0.87 
(95% CI: 0.84–0.91), and an excellent ICC of 0.96. Minor discrepancies 
between expert and AI scores occurred evenly across all criteria, with 
no consistent direction of bias.

Concurrent validity and inter-rater 
reliability between FMS experts correcting 
AI-generated scores

Table 2 summarizes the results for AI-generated scores adjusted 
by FMS experts. Observed agreements were consistently high, ranging 
from 96.6% (criterion 4) to 98.7% (criterion 1). Cohen’s kappa 
coefficients varied between 0.93 (criteria 4 and 5) and 0.97 (criterion 
1), consistently reflecting almost perfect agreement. For the total 
score, observed agreement was 89.0%, Cohen’s kappa was 0.94, and 
the ICC for the total score was excellent at 0.98 (95% CI: 0.98–0.99). 
The two evaluators showed strong consistency across all criteria, with 
minor discrepancies evenly distributed and no consistent scoring bias 
identified. Differences between evaluators ranged from 3 to 8 cases per 
criterion, with total score agreement in 210 of 236 assessments.

Intra-rater reliability for AI model and 
intra-rater reliability between FMS experts 
correcting AI-generated scores

The AI model exhibited perfect consistency, achieving 100% 
observed agreement and a kappa coefficient of 1.00 across all criteria 
and the total score (Table  3). After correction by FMS experts, 

intra-rater agreement remained high, with observed agreements 
ranging from 98.3 to 99.1% for individual criteria and from 92.4 to 
94.5% for the total score. Kappa coefficients ranged from 0.95 to 0.98 
for individual criteria and were 0.97 and 0.96 for the total score, 
depending on the expert. The ICC for the total score was consistently 
excellent, reaching 0.99 for both experts.

Both experts maintained high consistency between initial and 
subsequent assessments across all criteria, with only minor, 
non-systematic discrepancies observed. Differences between sessions 
ranged from 2 to 5 cases per criterion, and total score consistency was 
high (expert 1: 223 out of 236 cases; expert 2: 218 out of 236 cases).

Discussion

This study confirmed the validity and reliability of an AI-enhanced 
methodology for assessing jumping rope performance within the FUS 
test framework. The AI model closely aligned with expert evaluations, 
as shown by high correlation coefficients and near-perfect agreement 
across both individual criteria and total scores. When refined by 
expert input, the model’s inter-rater reliability improved further, 
demonstrating its capacity for iterative enhancement. Intra-rater 
reliability was consistently high, with the AI model alone achieving 
perfect agreement (kappa = 1.00, ICC = 1.00); after expert corrections, 
reliability remained robust, with only a minor reduction. These results 
support the use of AI systems as accurate, consistent tools for FMS 
evaluation, with clear implications for research and PE practice.

First, the strong agreement between the AI model and expert 
scores demonstrates its capacity to replicate expert evaluations with 
high accuracy and consistency. This advancement addresses long-
standing limitations of traditional assessment methods, such as 
evaluator bias, fatigue-induced errors, and inter-rater variability 
(Hulteen et al., 2023). The AI system applies standardized criteria 
uniformly, thereby reducing the influence of subjective judgment and 
eliminating inconsistencies across evaluators. This is especially 

TABLE 1  Concurrent validity and inter-rater reliability for jumping rope assessment between FMS experts and AI model (n = 236).

Jumping rope Percentage of observed agreements (%) Cohen’s kappa (95% CI)

Criterion 1 93.2 0.86 (0.79–0.92)

Criterion 2 94.5 0.87 (0.81–0.94)

Criterion 3 93.6 0.87 (0.80–0.93)

Criterion 4 92.8 0.86 (0.79–0.92)

Criterion 5 92.8 0.83 (0.76–0.91)

Total score 77.1 0.87 (0.84–0.91)

TABLE 2  Inter-rater reliability for jumping rope assessment between experts correcting AI-generated scores (n = 236).

Jumping rope Percentage of observed agreements (%) Cohen’s kappa (95% CI)

Criterion 1 98.7 0.97 (0.94–1.00)

Criterion 2 97.5 0.94 (0.90–0.99)

Criterion 3 97.5 0.94 (0.90–0.99)

Criterion 4 96.6 0.93 (0.88–0.98)

Criterion 5 97.0 0.93 (0.88–0.98)

Total score 89.0 0.94 (0.92–0.97)
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valuable in multi-site studies and large-scale educational settings, 
where consistent conditions are essential (Barnett et  al., 2014). 
Moreover, the model supports post-hoc analysis of video recordings, 
enhancing transparency and reliability in performance evaluations 
(Atkinson and Nevill, 1998; Leukel et al., 2023; Ward et al., 2020). 
These features position the AI model as a viable and scalable 
alternative to traditional human-led assessments, particularly in 
contexts where time, training, and resources are constrained.

Second, the AI model shows strong potential for iterative 
refinement, leveraging performance data to continuously improve 
its scoring accuracy—an advantage over human experts, who often 
rely on fixed methods and experiential judgment (Song et al., 2021; 
Vandevoorde et al., 2022). Unlike human raters, whose perceptual 
limitations may lead to inconsistency in identifying nuanced 
movement errors, AI systems can detect subtle deficits with 
precision. Barnett et al. (2014) illustrated this limitation in their 
analysis of complex motion sequences like the overhand throw, 
where evaluators frequently disagreed during rapid movement 
phases such as the wind-up or follow-through. These discrepancies, 
compounded by the cognitive load of observing multi-joint actions 
in real time, underscore the limits of human perception. In 
contrast, AI systems can process detailed kinematic data objectively 
and without fatigue, ensuring greater accuracy and consistency in 
movement evaluation.

Third, the alignment between AI-derived evaluations and expert 
assessments highlights the system’s adaptability to applied settings, 
including PE classes. For teachers with limited time or specialized 
training, the AI model offers a practical and efficient solution, 
providing consistent evaluations without reliance on subjective 
judgment. By addressing scoring variability and logistical constraints, 
it facilitates timely, individualized interventions based on accurate 
performance feedback. Morley et al. (2019) similarly observed that 
digital tools enhance assessment efficiency and reduce resource 
demands, enabling educators to prioritize evidence-based instruction. 
These benefits position AI-enhanced tools as valuable assets for 
improving the quality, accessibility, and standardization of motor skill 
assessments, ultimately supporting physical literacy and motor 
competence development.

Finally, the validated AI model offers new opportunities to 
democratize access to high-quality FMS assessments, particularly in 
resource-limited educational contexts. While this study provides an 
initial demonstration of the model’s utility, broader implementation 
could transform PE by enabling scalable, AI-powered evaluation systems. 
Kok et al. (2020) showed that digital tools, such as self-controlled video 
feedback, enhance motor learning and self-efficacy by promoting 
autonomy and self-regulation. Building on this foundation, AI systems 
may empower students to assess and reflect on their performance 
independently, reducing reliance on direct teacher instruction while 

TABLE 3  Intra-rater reliability for jumping rope assessment for AI model and experts correcting AI-generated scores.

Jumping rope Percentage of observed 
agreements (%)

Cohen’s kappa (95% CI) ICC (95% CI)

Criterion 1

AI model 100.0 1.00 (1.00–1.00)

Corrected AI-Expert 1 99.1 0.98 (0.96–1.00)

Corrected AI-Expert 2 98.7 0.97 (0.94–1.00)

Criterion 2

AI model 100.0 1.00 (1.00–1.00)

Corrected AI-Expert 1 98.7 0.97 (0.94–1.00)

Corrected AI-Expert 2 98.3 0.96 (0.93–1.00)

Criterion 3

AI model 100.0 1.00 (1.00–1.00)

Corrected AI-Expert 1 98.3 0.96 (0.93–1.00)

Corrected AI-Expert 2 98.7 0.97 (0.94–1.00)

Criterion 4

AI model 100.0 1.00 (1.00–1.00)

Corrected AI-Expert 1 98.3 0.97 (0.93–1.00)

Corrected AI-Expert 2 97.9 0.96 (0.92–0.99)

Criterion 5

AI model 100.0 1.00 (1.00–1.00)

Corrected AI-Expert 1 99.1 0.98 (0.95–1.00)

Corrected AI-Expert 2 97.9 0.95 (0.91–0.99)

Total

AI model 100.0 1.00 (1.00–1.00) 1.00 (1.00–0.1.00)

Corrected AI-Expert 1 94.5 0.97 (0.96–0.99) 0.99 (0.99–0.99)

Corrected AI-Expert 2 92.4 0.96 (0.94–0.98) 0.99 (0.98–0.99)
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sustaining accuracy and engagement. Moreover, such tools can support 
peer-to-peer assessments through structured, video-based applications 
enriched with instructional cues. This collaborative model fosters a 
motivating, student-centered learning environment and helps 
accommodate challenges like limited instructional capacity and large 
class sizes. Through the refinement of traditional assessment practices, 
AI-enhanced tools have the potential to promote both physical literacy 
and educational equity. Future research should explore the integration of 
adaptive feedback features to optimize motor learning and encourage 
student agency in FMS development.

Inter-rater reliability results confirmed the AI model’s capacity to 
replicate expert judgments with high consistency, with near-perfect 
agreement across criteria and excellent ICC values. These outcomes were 
comparable to or exceeded inter-rater reliability levels reported in studies 
involving human experts (Makaruk et al., 2023; Zamani et al., 2024), 
underscoring the system’s potential as a standardized evaluation tool. 
Notably, previous research has highlighted difficulties even among 
trained assessors. For instance, Hulteen et al. (2023) reported component-
level agreement as low as 40.5%, particularly for tasks like skipping, while 
Ward et al. (2020) observed criterion-level accuracy ranging from 35 to 
100%, often due to attentional lapses and inconsistent interpretation of 
scoring criteria. Incorporating expert oversight into the AI model 
improved inter-rater reliability further, suggesting that a hybrid 
approach—combining algorithmic precision with expert refinement—
can elevate assessment quality. This process reduces subjective biases and 
ensures consistent application of criteria, thereby enhancing both the 
reliability and scalability of motor skill evaluations in research and 
applied settings.

Intra-rater reliability analysis reinforced the robustness of the AI 
model, particularly for longitudinal monitoring of motor skill 
development. The system achieved perfect agreement across all criteria 
and total scores, with kappa and ICC values reaching 1.00—a level 
virtually impossible to attain for human experts in intra-rater FMS 
assessments. This level of precision supports the use of AI tools for 
progress tracking, timely intervention, and performance optimization in 
educational and developmental contexts. Even after expert corrections, 
reliability remained high, exceeding benchmarks reported in prior 
studies (Makaruk et al., 2023; Zamani et al., 2024). These findings suggest 
that AI-assisted assessment can enhance data-driven decision-making in 
both research and applied practice, while maintaining consistency 
over time.

Discrepancies between the AI model and expert evaluations were 
generally minor and varied across criteria, indicating non-systematic 
biases rather than consistent directional errors. For instance, the AI 
model occasionally overestimated performance in Criterion 1 by 
assigning higher scores when participants quickly resumed jumping after 
an error, overlooking brief interruptions in continuity. In contrast, it 
adopted a more conservative approach in Criterion 2, underestimating 
performance due to prolonged ground contact. This bidirectional pattern 
indicates stochastic variation rather than a systematic scoring bias. 
Additionally, slight inconsistencies across repeated expert assessments 
suggest that some variation may stem from the subjective nature of 
human judgment rather than model limitations. These findings reinforce 
the importance of ongoing algorithmic refinement to better align with 
expert standards and ensure robust applicability in real-world 
assessment contexts.

Several limitations should be  acknowledged. First, the model’s 
accuracy depends on controlled testing conditions, including precise 

camera alignment, sufficient lighting, and a contrast-enhancing 
background—which may be challenging to reproduce in certain PE class 
environments. Second, the study focused solely on jumping rope, which, 
while informative, limits the generalizability of findings to other FMS with 
differing biomechanical and coordination demands. Future research 
should extend the framework to a broader range of skills. Lastly, minor 
over-and underestimations by the AI in specific criteria highlight the need 
for continued algorithmic refinement to improve sensitivity to nuanced 
movement variations and ensure alignment with expert standards.

Conclusion

This study provides robust evidence supporting the validity and 
reliability of an AI-enhanced methodology for assessing jumping rope 
performance within the FUS test framework. The AI model effectively 
replicated expert-level evaluations, and its performance was further 
strengthened through expert refinement. These results highlight the 
system’s potential to overcome key limitations of traditional assessment 
methods by offering scalable, objective, and consistent evaluations. Beyond 
its research value, the model presents a practical solution for educational 
and sport contexts, particularly in settings with limited resources. With 
further development, such tools may help democratize access to high-
quality motor skill assessments and support broader efforts to enhance 
motor competence and health outcomes across populations.
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