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Medical pattern classification
using a novel binary similarity
approach based on an associative
classifier

Osvaldo Velazquez-Gonzalez, Antonio Alarcón-Paredes and
Cornelio Yañez-Marquez*

Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, México

Classification is a central task in machine learning, underpinning applications
in domains such as finance, medicine, engineering, information technology,
and biology. However, machine learning pattern classification can become
a complex or even inexplicable task for current robust models due to the
complexity of objective datasets, which is why there is a strong interest in
achieving high classification performance. On the other hand, in particular cases,
there is a need to achieve such performance while maintaining a certain level of
explainability in the operation and decisions of classification algorithms, which
can become complex. For this reason, an algorithm is proposed that is robust,
simple, highly explainable, and applicable to datasets primarily in medicine
with complex class imbalance. The main contribution of this research is a
novel machine learning classification algorithm based on binary string similarity
that is competitive, simple, interpretable, and transparent, as it is clear why a
pattern is classified into a given class. Therefore, a comparative study of the
performance of the best-known state-of-the-art classification algorithms and
the proposed model is presented. The experimental results demonstrate the
benefits of the proposal in this research work, which were validated through
statistical hypothesis tests to assess significant performance differences.

KEYWORDS

binary similarity, classification algorithms, machine learning, medicine dataset, pattern
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1 Introduction

This study proposes a novel algorithm for pattern classification. The proposed
algorithm is primarily based on binary string similarity and is called the N-Similarity
Binary Classifier (n-SBC), as it uses the Hamming string similarity method and a binary-
value encoder called the reflected binary code (RBC) or Gray code. The creation, design,
implementation, and application of n-SBC support the solution-finding process for the
problem represented by the supervised case in pattern classification.

Humans can recognize objects, actions, and everyday elements (patterns); however,
what is simple for humans can be a very complex problem for a computational
algorithm. The discipline that includes in its field of study the modeling and
programming of automatic object and action recognition tasks is Pattern Recognition
(PR) (Sarker, 2021). There are four basic tasks of PR: classification, regression,
recovery, and clustering (De Sa, 2012; Rane et al., 2024). The first three are located
in the supervised learning paradigm, while the last one is the emblematic task of
the unsupervised learning paradigm (Janani and Vijayarani, 2019). In this study,
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emphasis will be placed on the first task of the supervised
learning paradigm: intelligent pattern classification, or machine
learning for pattern classification. In the state of the art, a wide
variety of conceptual bases provide theoretical support for the
task, such as Bayesian classifiers and distance-based models like
kNN. Based on decision trees (C4.5 or Random Forest), based
on and inspired by the neurons of the human brain (Multilayer
Perceptron), or based on optimization of analytical functions,
such as support vector machines (Bhargavi and Jyothi, 2009;
Cover and Hart, 1967; McCulloch and Pitts, 1943; Quinlan, 1990;
Rosenblatt, 1958; LeCun et al., 2015; Cortes, 1995). As important
assistants in the development of PR and related disciplines, there
are dataset repositories (Dua and Graff, 2019) and certain platforms
where some research groups make available to users valuable
computational tools, as well as implementations of algorithms
and methods; such is the case of WEKA (Hall et al., 2009)
and KEEL (Bhargavi and Jyothi, 2009; Cover and Hart, 1967;
McCulloch and Pitts, 1943; Quinlan, 1990; Rosenblatt, 1958; LeCun
et al., 2015; Cortes, 1995), two of the most useful, famous and
popular platforms.

Before 1997, when the No Free Lunch Theorem (De Sa,
2012; Duda et al., 2001) was published, a large number of
research groups were trying to find the best classifier; however,
this theorem resulted in researchers concluding that this search
is futile, since there is no intelligent pattern classifier that is
the best in all cases. Therefore, researchers’ efforts are currently
directed toward finding alternatives to improve the performance
of pattern classifiers, recognizing that there is no best one. One
of the main recent achievements has been the development of a
new pattern classification paradigm, Minimalist Machine Learning
(MML) (Yáñez-Márquez, 2020). It is in this context that the central
proposition of this work arises.

Recently, significant efforts have been devoted to finding
alternatives to improve the performance of intelligent pattern
classifiers, recognizing that there is no single best approach. In
these research processes, a wide variety of tools and methodologies
developed over the decades are used. Thus, one recurring theme
in the generated algorithms is the use of associative models.
These associative models are not designed for intelligent pattern
classification but rather for pattern retrieval; however, if the
designer adequately represents the output patterns, they can
perform the classification task correctly. The first associative model
recorded is the Lernmatrix, created in 1961 by Steinbuch (1961),
followed by the associative model called the Correlograph, whose
creation and publication occurred 8 years later (Willshaw et al.,
1969). The year 1972 saw the birth of one of the best-known
associative models: the Linear Associator, which emerged as the
fusion of two independent models (Kohonen, 1972; Anderson,
1972); from then on, a considerable number of associative models
have been generated in the world with successful applications
in various areas of human activity (Hopfield, 1982; Talib, 2018;
Ibrahim and Abdulazeez, 2021). It is pertinent to note that research
on the subject is ongoing (Hoffmann, 2019; Nozari et al., 2024; Zhu
et al., 2024; Bian and Priyadarshi, 2024).

Early detection of diseases has increased its relevance in recent
years due to the various benefits that have a beneficial impact on
public health, such as increasing the chances of survival in patients

suffering from severe respiratory diseases (Vayadande, 2024; Rasool
et al., 2023) and achieving a better recovery thanks to detection
at an early stage of the disease. Research focused on pre-diagnosis
of respiratory diseases has recently gained momentum worldwide,
with widespread interest in improving early detection. Currently,
both invasive and non-invasive methods are applied. However,
lately, the use of machine learning classification algorithms for
disease diagnosis has become an increasingly important area
of research globally due to their ease of implementation and
accessibility (Rana and Bhushan, 2023). This has caused frequent
research in the literature on the development of novel specialized
models for the medical pre-diagnosis of all types of diseases (Kumar
et al., 2023; Ahsan et al., 2022).

In this paper, elements of associative models have been taken in
order to create and design the main algorithm of the proposal, but
in addition to these elements, the concept of string similarity has
been used, as well as the Hamming distance and a binary pattern
encoder, the reflected binary code (RBC or Gray code). The rest
of this paper is organized as follows: Section 2 details the related
works. Section 3 describes the novel proposal algorithm, with
detailed examples of its operations in training and classification
phases. In Section 4, the experimental phase and results are
presented, and, finally, in Section 5, the conclusions and future
research are included.

2 Related research

As discussed above, assuming the existence of a universally
optimal pattern classification algorithm is unmotivated due to the
no free lunch theorem, forcing researchers in machine learning-
related areas to focus on improving the performance of existing
models and thereby reducing classification error (Bui et al., 2020;
Shehadeh et al., 2021; Misra and Yadav, 2020). Alternatively,
some studies propose entirely novel machine learning models for
pattern classification, with the aim of exploring new possibilities,
as demonstrated by Amygdalos et al. (2023) and Hissou et al.
(2023). Similarly, researchers have pioneered the development of
new algorithms based on associative memories, including those by
Moreno-Ibarra et al. (2021), Yang and Ding (2020), and Luna-Ortiz
et al. (2023).

Section 2 is divided into three parts. Section 2.1 describes
the Hamming Distance algorithm, a fundamental concept for our
novel pattern classification algorithm. Section 2.2 explores the RBC
(Reflected Binary Code), another crucial element of our novel
method for converting the original dataset into binary strings.
Finally, Section 2.3 provides an overview of the state-of-the-art
machine learning algorithms, including both well-known models
and associative memories used for classification tasks, as well as a
deep dive into current research on Hamming Distance and RBC in
machine learning.

2.1 Hamming distance

The Hamming distance, the most used metric with binary
strings and a natural similarity measure on binary codes, can be
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TABLE 1 Example of the single distance of the Gray binary code (RBC).

Decimal Binary code RBC (gray code)

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

computed with just a few machine instructions per comparison
(Pappalardo et al., 2009). The computational effort required to
calculate the Hamming distance linearly depends on the size of the
string, and it is often used to quantify the extent to which two bit-
strings of the same dimension differ (Norouzi et al., 2012; Bookstein
et al., 2002).

The distance is defined as the minimum number of errors that
could transform a pattern A into a pattern B, i.e., it measures the
minimum number of values that must be changed to transform a
string into another target string (Zhang et al., 2013).

Another way to define it could be the number of positions at
which the corresponding bits are different, that is, express it as the
following (Gaitanis et al., 1993):

D (A, B) =
n∑

i=1

|Ai − Bi| , Ai, Bi ∈ {0, 1} , (1)

where Ai and Bi are the bits at the i-th position of the
respective strings. And the subtraction refers to the XOR logic gate
operation. The use of the Hamming distance has many applications,
the most relevant being in coding theory, the electronics field,
and term clustering (Norouzi et al., 2012). It has been shown
that one can perform exact nearest-neighbor search in Hamming
space significantly faster than linear search, achieving sublinear
run times.

2.2 Reflected Binary Code (RBC)

The Gray encoder, also known as Reflected Binary Code
(RBC), was invented by Frank Gray in 1953 in a Bell Telephone
Laboratories patent (Agrell et al., 2004; Doran, 2007; Goodall,
1951). It is a binary numbering system in which the main property
is that two adjacent values differ by only a single digit. For example,
value 2 differs from values 1 and 3 in RBC by a single digit. Table 1
is an illustrative example.

In this case, unlike the classic binary encoder, the bit difference
between an adjacent decimal value is only one digit. In this
sense, this advantage helps preserve similarity between neighboring
patterns, unlike standard binary encoding, which can cause
adjacent values to differ across multiple bits, creating more complex
relationships between close patterns. Therefore, this helps and
supports the performance of our proposed classifier, as explained
in Section 3, since it is based on string binary simultaneities.

This system binary code is commonly used to refer to any
single distance. Its unique characteristics make it very useful

across different domains, especially for error correction, position
encoders, genetic algorithms, and digital communication (Agrell
et al., 2004; Bhat and Savage, 1996).

To obtain a binary string using RBC, it can be done as
follows: First, convert the decimal value to classic binary code,
and subsequently convert from binary code to RBC, applying XOR
(exclusive OR) to each bit with the right bit, excluding the most
significant bit. For example, let us say we want to convert the
number 5 into RBC. First, the binary value of 5 is 101, and the MSB
in this case is 1. Now, applying the XOR operation, starting from
the right to the left but going on the right side, taking the second
bit (0) and applying XOR with the first bit (1), the result is 1; then
taking the third bit (1) and applying XOR with the second bit (0),
the result is 1; and finally, concatenating the MSB as the first bit of
the resulting string after the XOR operations; therefore, the RBC of
the number 5 is 111 (Bhat and Savage, 1996).

Before converting decimal values to binary strings using the
RBC method, the dataset values are preprocessed: the minimum
value per feature is computed; if required, the decimals are
truncated to 2 decimal places; and finally, the values are rounded
to integers. This aims to obtain only positive integer values.

To illustrate the conversion to integer values and truncation,
the following example is provided. Consider a continuous
numeric feature:

{1.131, −0.010, 1.351, −0.110, 0.660, 1.411} (2)

In this case, to obtain only positive numbers, the minimum
value is the sum of all the values of the feature array, which in this
case is −0.11, obtaining the following result:

{1.241, 0.100, 1.461, 0.000, 0.770, 1.521} (3)

Then, it is truncated to two decimals only:

{1.24, 0.10, 1.46, 0.00, 0.77, 1.52} (4)

Subsequently, all the values of the feature are escalated to
integer values, such as

{124, 10, 146, 0, 77, 152} (5)

Finally, using these feature values, the RBC binary string is
computed. Table 2 shows an example of how the binary codes look
after RBC encoding.

2.3 Pattern classification algorithms

In the current state of the art, many machine learning
algorithms focus on classification tasks. Some of them are based
on distance, such as the kNN (k-nearest neighbors) model (Zhang,
2021), while others are based on optimization, such as SVM
(support vector machines) (Abdullah and Abdulazeez, 2021).
Others are based on decision trees (Costa and Pedreira, 2023),
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such as C4.5, or bagging approaches such as the random forest
algorithm. In more recent literature, models are inspired by
biological concepts, such as the human brain. For instance, the
multilayer perceptron (an artificial neural network) falls into this
category. Currently, the most widely used are deep learning models
(Sharifani and Amini, 2023), which are neural networks with
many layers and additional specialized preprocessing stages, such
as CNNs (convolutional neural networks) for image processing
and transformers and embedding approaches for natural language
processing tasks (Galli et al., 2024).

2.3.1 Associative memories
An associative memory M is a pattern-input/output system

whose primary purpose is to learn to correctly retrieve complete
patterns from inputs that may be corrupted by several sources of
noise. Can be expressed as x→ M→ y. The input and output
patterns are represented by the column vectors x and y, respectively.
Each input is associated with a corresponding output pattern; such
an association is expressed as (x, y). Memory M is represented
by a matrix. This matrix is formed from a finite set of previously
known associations, known as the fundamental set (considered as
the learning stage).

Finally, the retrieval process (which could be known as the
classification stage if the designer made adequate changes) consists
of performing the memory M with the given steps for that
phase, with the aim of finding enough conditions to obtain the
fundamental output pattern y from the pattern x (Nozari et al.,
2024).

In the state of the art, there are pioneers of associative
memory with their original purpose as retrieval machines, such
as Steinbuch’s Lernmatrix and Linear Associator (Steinbuch,
1961; Nozari et al., 2024). In these models, learning is typically
implemented by updating a memory matrix with a set of rules.
For example, in a Lernmatrix, each association (x, y) contributes an
update of the form M ← M + yx. During inference, the unknown
pattern x is projected through the learned memory, y = Mx, and
a non-linear function (e.g., thresholding) produces the retrieved
output pattern. If class labels are encoded as output vectors (e.g.,
one-hot) and the decision is taken from y by a winner-take-all rule,
the same associative mechanism can be used as a classifier. This idea
is exploited in modern associative classifiers (Velazquez-Rodriguez
et al., 2020), which extend the classical Lernmatrix with a novel
mathematical transformation that makes the matrix updates and
recall rule suitable for supervised pattern classification rather than
only for pattern completion.

Associative memories are relevant because the proposed n-SBC
classifier was inspired by them. In n-SBC, training patterns are
stored as rows in a kind of memory matrix. Then, given a test
or unknown pattern, similarity is computed as the bitwise overlap
under bipolar coding, which amounts to an affine transformation
of an inner product, unlike classic associative memories that learn
from projections. Thus, our novel model is conceptually linked
to associative memories but implements a different representation
(RBC codes) and a Hamming-based decision rule tailored to
pattern classification.

TABLE 2 Illustration of RBC after preprocessing.

Decimal Binary code RBC (gray code)

124 01111100 01000010

20 00011000 00010100

146 10010010 11011011

0 00000000 00000000

77 01001101 01101011

152 10011000 11010100

2.3.2 Hamming distance and RCB in pattern
classification

After an extensive documentary search, it was found that,
throughout history, there have been very few attempts to create
intelligent pattern classification algorithms based on the Hamming
distance. Regarding the RBC code, no impactful work has been
found; therefore, this proposal uses the Hamming distance and
the RBC code simultaneously within the same pattern classifier
algorithm. At the same time, the proposal’s novelty and originality
are ensured. The closest is a work using RBC codes, published
in 2017 (Šarkovskis et al., 2017), the authors Šarkovskis, Jeršovs,
Kolosovs and Grabs describe the functionality of a real-time
classifier useful for the computation of statistical parameters of data
streams, the detection of symbols of different modulation types
and other applications where the fastest possible association of
a sample of input signals with one of the predefined categories
is required.

While explicit RBC and Hamming classifiers are rare in the
literature, some frameworks and methodologies encode data into
binary codes and perform comparisons, mainly in hashing and
ECOC-style multiclass reduction. In the ECOC (error-correcting
output codes) methodology, each class is assigned a binary
codeword, and a bank of binary base learners (e.g., C4.5, SVM)
is trained, one per code column, as described by Dietterich and
Bakiri (1994). Then, to perform classification, the column outputs
are concatenated, and the label is chosen as the nearest class
codeword, typically via the Hamming distance. Thus, ECOC is
an ensemble framework, not a classifier per se: it improves the
underlying learners but does not replace them (Dietterich and
Bakiri, 1994).

On the other hand, in learning-to-hash or supervised hashing,
features are transformed into compact binary codes by a
learned encoder, and classification is commonly implemented via
Hamming space (e.g., k-NN or ranking codes); this establishes that
distance is an effective similarity for large-scale prediction when
inputs are binary encoded (Norouzi et al., 2012). Thus, supervised
hashing is not a classifier per se but a representation-learning
method whose downstream machine-learning models operate on
the learned bits. This approach offers fast lookups once trained,
but it introduces training complexity, and results depend on
the codebook.

Our contribution to n-SBC differs from these strands in two
quantitative ways. First, unlike supervised hashing, which learns
codebooks and then delegates prediction to a classic classifier (e.g.,
k-NN), n-SBC uses a deterministic RBC mapping per feature and
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classifies by Hamming distance, removing the encoder learning
stage while preserving fast bit-wise comparisons. In supervised
hashing, performance depends on the learned encoder; in n-SBC,
performance hinges on the RBC representation and Hamming
aggregation. Second, whereas ECOC emphasizes maximizing inter-
class Hamming separations between class codewords and requires
training a bank of binary base learners (e.g., C4.5, SVM), thus
acting as a framework rather than a classifier per se, n-SBC
treats the entire RBC binary string instance as the object of
comparison, performing instance Hamming matching rather than
decoding to a fixed class codeword. In short, both models are
enabling methods that rely on baseline models (C4.5, SVM, k-
NN, etc.), whereas n-SBC is the classifier itself. Together with our
operational unification of RBC and Hamming, these distinctions
place n-SBC at a different point in the design space (Xiao
et al., 2022). A summary of the main differences is shown in
Table 3.

To make these differences concrete, a compact
comparison table covering code construction and decision
rule, along with a small ablation replacing RBC with a
fixed-width standard binary encoding to isolate RBC’s
contribution. As discussed, RBC improves n-SBC because
adjacent codes differ by only one bit, preserving similarity
between neighboring values; in contrast, standard binary
encodings may flip multiple bits between consecutive
values, distorting local neighborhoods and weakening
bit-wise interpretability.

Therefore, unlike ECOC and supervised hashing, and unlike
classical k-NN in feature space, n-SBC is an associative classifier
whose decision rule operates directly in Hamming space.

3 Our proposal model

In this section, the main idea of the N-Similarity Binary
Classifier (n-SBC) algorithm is explained, along with its
operation; the learning phase and, finally, the classification
phase of the proposed algorithm are addressed. The
proposed algorithm is primarily based on the Hamming
string similarity method and the reflected binary code (RBC)
encoder, also known as the Gray Code, both of which
are fundamental components of the model. The purpose
of this study is to improve the performance of associative
approach classifiers across several medical datasets to enhance
disease detection.

To address the issue of missing values and categorical
data, our proposed method requires preprocessing the
dataset to address this complexity beforehand. To handle
missing values, the classic imputation method was applied,
replacing missing values with the mean for numerical
data and the mode for categorical data. This resulted in
datasets without missing values when present. Finally, the
categorical variables were converted using the classic label
encoding method, which assigns each category a unique
numeric value.

Then, the RBC method is applied to the entire dataset. In
this case, every feature of the input patterns xμ is converted to
their equivalent binary RBC code to obtain a p-dimensional binary

string, where p represents the maximum length of the largest
converted value, denoted as bμ

i = RBC(xμ
i ).

In order to obtain a single binary string, we concatenate each
transformed feature together, expressed as follows:

bμ = (bμ
1 , bμ

2 , . . . , bμ
i ) (6)

Let us assume that there is a dataset D, divided into two subsets:
L and T, for learning and testing, respectively.

3.1 Learning phase for the proposed
approach

The learning phase of the n-SBC model has only one step.
It consists of creating a memory matrix, denoted by M, which
contains every transposed binary string pattern of the learning
dataset L, generated previously by applying the RBC code to each
pattern. Finally, on the matrix M, each element corresponds to the
entire binary string representation of bμ, expressed as follows:

M =

⎛
⎜⎜⎜⎜⎝

b1T

b2T

...
bLT

⎞
⎟⎟⎟⎟⎠ (7)

Input: dataset L = {(xμ, yμ)}|L|μ=1; per-feature quantizer Q; RBC
bit lengths {bi}d

i=1.
Output: Memory M = {(bμ, yμ)} with RBC-encoded strings
bμ;class index sets {Lc}C

c=1; encoding parameters (Q, {bi}, {Gk}).
1 : For each sample μ = 1..|L| :
2 : bμ ← empty bitstring
3 : For i = 1..d :

4 : q ← quantize(xi
μ)

5 : g ← RBC(q)
6 : append g to bμ

7 : Store (bμ, yμ) in M
8 : For each class c in {1..C} : Lc ← {μ : yμ = c }
9 : Return M, {Lc}

Algorithm 1. Training of n-SBC with RBC coding.

3.2 Classification phase for the proposed
approach

The classification phase of the n-SBC model has four stages;
the first is the calculation of the Hamming Distance between the
unknown pattern xω to each pattern of the dataset L. To calculate it,
first let us assume that the unknown pattern has already undergone
the RBC transformation, yielding bω . Therefore, the Hamming
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TABLE 3 Comparison between n-SBC and related research.

Method Representation Decision rule Distance metric Explicability Key distinction

ECOC Class codewords (binary)
+ any base classifier
model

Nearest class codeword
from trained base models

Hamming Bits reflect learned columns,
not original features

Framework to improve
baseline classifiers with
Hamming and encoders

Supervised hashing Learned binary codes k-NN, ranking in
Hamming space

Hamming Hash bits are opaque codes,
so each feature is not
accessible

Methodology to improve
baseline classifiers with
Hamming and encoders

Associative
Memories

Learned binary codes Linear projection None Shows which stored patterns
are recalled but not
feature-influenced

Classical associative
retrieval

k-NN Raw or normalized real
values

k-NN in real space Euclidean, Chebyshev,
Manhattan, Minkowski

Show neighbors who
influenced the decision

A classifier supporting
different distance metrics

n-SBC Deterministic RBC per
feature, then full binary
string

Instance-level Hamming
over RBC encode

Hamming Bit maps to feature segments
and show similar patterns
influenced by the decision

Classifier model using
simple RBC and
Hamming

distance, H(bω , bμ), represents the number of positions at which
the corresponding bits are different. The above is expressed
as follows:

H
(
bω , bμ

) = u∑
j=1

∣∣∣bω
j − bμ

j

∣∣∣ , (8)

where u is the dimensionality of the patterns. bω
j and bμ

j
represent the j-th elements of the pattern bω and the training
dataset pattern bμ.

This first step resulted in a vector distance, denoted as Z, which
contains the result of the subtraction of the cardinality per dataset,
denoted as u, with the computed Hamming distance of each pattern
for the dataset L to the interested pattern bω . The dimension of Z
is equivalent to the cardinality of the dataset L, we can represent it
with the following expression:

Zω =

⎛
⎜⎜⎜⎜⎝

u − H
(
bω , b1)

u − H
(
bω , b2)

...
u − H

(
bω , bμ

)

⎞
⎟⎟⎟⎟⎠ (9)

The second stage of the classification phase consists of handling
the generated vector Zω to determine the class.

First, let C be the set of all the classes, such that: C ={
k1, k2, . . . , kc

}
, where c is the number of classes. Then, let us

introduce Ki to denote the number of patterns present within the i-
th class, expressed as Ki =

∣∣ki
∣∣ , ∀i ∈ {1, . . . , c}. Now, we determine

the smallest pattern count across all the classes, termed Kmin, such
as follows:

Kmin = (Ki) (10)

Subsequently, for any integer n satisfying 1 ≤ n ≤ Kmin, we
extract the n-th largest component from the vector Zω of each
class, represented as Zn

i . The hyperparameter n controls how many
of the largest components are aggregated, and different values

of n correspond to different versions of the classifier. Finally, a
vector yn is created by applying a sum to the selected n-th largest
components, therefore, yn is calculated by the following expression:

yn =

⎛
⎜⎜⎜⎜⎝

∑s
i=1 Z1

(i)∑s
i=1 Z2

(i)
...∑s

i=1 Zj
(i)

⎞
⎟⎟⎟⎟⎠ , (11)

where in this case s represents the number of samples of each
i-class in the dataset. The third step consists of assigning to the
unknown pattern xω his corresponding class yω . For that, we update
the vector yn with the following rule:

yω
i =

{
1 if yn

i ≥ ∨p
j=1 yn

j
0 otherwise

(12)

Finally, the fourth stage consists of calculating the predicted
class of the unknown pattern xω using the one-hot vector created
in stage three. Therefore, the class is assigned based on the position
of the hot value, which indicates the predicted class, because each
row of the vector corresponds to a class in the dataset. Meeting the
following expression yω = ∑C

i= 1 i∗yω
i .

One of the advantages of the n-SBC is that it aggregates only
the top similar n components per class, so additional majority
of samples do not grow a class’s evidence unboundedly. Besides,
the RBC encoding preserves similarity structure (adjacent numeric
values differ by one bit), so compact minority clusters remain
coherent in Hamming space and can dominate the selected top n
samples. Consequently, decisions are driven by local match quality
rather than by class prevalence, thereby mitigating the typical bias
toward the majority class. This can enhance model performance
with imbalanced complexity data.

Regarding the scope of applicability, n-SBC tends to perform
well when classes exhibit locally coherent neighborhoods in feature
space and when similarity is meaningfully captured by RBC. It
may underperform when features are highly non-monotonic or
noisy, when classes strongly overlap, or when B is inflated by many
irrelevant bits.
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Input: Query xω ; memory M; encoding parameters (Q, {bi}, {Gk});
top-n policy (global nor per-class {nc}).
Output: Predicted class y.
1 : bω ← encode xω

2 : For each class c in {1..C} :
3 : For k = 1..K :

4 : sc, k ← 0
5 : For each μ in Lc :

6 : For k = 1..K :

7 : u ← bits of bω in Gk
8 : v ← bits of b̂μ in Gk
9 : sc, k ← sc, k + ( |Gk| − Haming (u, v) )
10 : Tc ← indices of the n (or nc) largest values in {sc, 1.. sc, K}
11 : Sc ← sum < uscore > {k ∈ Tc} sc, k
12 : y ← argmaxc Sc
13 : Return y, along with {Tc} for explanation

Algorithm 2. Classification of n-SBC.

3.3 Example of the train and classification
phase for n-SBC

Below, a simplified example of the operation process of the
learning and classification phases of our proposed classifier, the
n-SBC model, is presented in detail. The patterns used for this
practical example are detailed, where x1 and x2 belong to class A,
while patterns x3, x4 and x5 belong to class B.

x1 =
(

0.28
0.17

)
; x2 =

(
0.21
0.09

)
x3 =

(
0.06
−0.15

)
; x4 =

(−0.24
0.01

)
;

x5 =
(

0.07
−0.28

)
(13)

After applying the reflected binary code (RBC) and in order to
maintain a column vector when concatenating the binary strings
obtained, the following patterns result:

b1 = RBC
(
x1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
; b2 = RBC

(
x2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
;

b3 = RBC
(
x3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
;

TABLE 4 Example of explicability of n-SBC.

Pattern
number

Class Patterns
in Train

bL

Hamming
difference

vector
against bω

Value of
Zω

b1 A 101111 100010 2

b2 A 111110 110011 4

b3 B 010001 011100 3

b4 B 000010 001111 4

b5 B 110000 111101 5

b4 = RBC(x4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
; b5 = RBC(x5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Following the Equation 2, the matrix M is created, which
contains every transposed binary string representation pattern that
will be handled in the classification phase, in this case, is expressed
as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1T

b2T

b3T

b4T

b5T

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

At this point, the learning phase is complete. We have all
the binary strings from the learning dataset ready to manipulate
and proceed with the following steps for inference. Then, for the
classification phase, the vector Zω is created based on the Hamming
distances of each pattern and the unknown pattern xω . However,
before obtaining the distance matrix, we define xω as follows:

xω =
(

0.16
0.05

)
→ bω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(16)

Therefore, the Zω is denoted as follows. In this case, u = 6
because the dimensionality of each pattern is six.

Zω =

⎛
⎜⎜⎜⎜⎜⎝

u − H
(
bω , b1) = 6 − 4

u − H
(
bω , b2) = 6 − 2

u − H
(
bω , b3) = 6 − 3

u − H
(
bω , b4) = 6 − 2

u − H
(
bω , b5) = 6 − 1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

2
4
3
4
5

⎞
⎟⎟⎟⎟⎟⎠ (17)
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At this stage, we must define the value of n, which in this
example we define as n = 2. Having established the necessary
parameters, we instantiate the vector yn following Equation 11.

yn =
(

4 + 2 = 6
5 + 4 = 9

)
, (18)

where the n largest components for each class are summed
to create the column vector yn. These components correspond
to positions 1 and 2 in class A, and to positions 3, 4, and 5 in
class B. Therefore, since the components with a higher Zω vector,
which means they have greater similarity to the unknown pattern,
suggest that they are similar to those samples that belong to class B.
This information can be used to clarify the model’s explainability.
Finally, based on the rule defined previously in Equation 12, we
update the vector yn obtaining yω .

yω =
(

0
1

)
(19)

In this example, due to the result of the one-hot encoding
vector, we can see the value of 1 in the second position, indicating
that the pattern xω belongs to the second-class B.

To understand the explainability and the reason why the
unknown pattern xω was classified as class B. Considering the
unknown pattern xω after RBC conversion is: {110010}. Table 4
illustrates the samples and features that influenced the decision of
the n-SBC model.

Since n = 2, the two closest samples from each class are
selected, which means that bω is classified as class B because they
are very similar to patterns b4, and b5, which belong to class B.
Moreover, since in the string bω and bi, in this case, each feature of
the dataset is represented by 3 bits of the vector; it can be observed
that the pattern bω is similar to bω because it matches with the
second feature, and it is similar to b5 because it matches the first
feature in totality. In this way, we can understand why the model
decided to classify this pattern into its corresponding class.

4 Results and discussion

In this part, we present the detailed analysis of the experimental
stage of our proposed algorithm against well-known state-of-
the-art classification models. Subsection 4.1 describes the dataset
selected in the experimental stage. Subsection 4.2 explains the
validation method used, while 4.3 describes the performance
measures. Subsection 4.4 shows the results obtained using the
experimental methods and metrics described, and subsection 4.5
discusses the statistical significance results comparison.

4.1 Datasets

For the experimental phase of the present work, 20 datasets
were selected, each representing a variety of diseases, with a focus
on chronic conditions.

These data sets were mainly obtained from three widely
known repositories: the KEEL repository (available at https://
sci2s.ugr.es/keel/index.php), the UCI Machine Learning repository
(accessible at https://archive.ics.uci.edu/ml/index.php), and the
Kaggle repository (found at https://www.kaggle.com/datasets).
To facilitate a deeper understanding, a complete description of
each selected data set has been compiled. This compilation is
summarized in Table 5, which provides information on the dataset’s
features, including the nature of the diseases it represents, the data
structure, and the class imbalance index.

The imbalance index for each dataset was calculated as follows:

IR = number of minority class patterns
number of majority class patterns

(20)

In the following, we provide a brief description of the
selected datasets.

Appendicitis: This dataset was collected at https://www.kaggle.
com/datasets/timrie/appendicitis from the Kaggle repository. The
dataset comprises seven medical measures for 106 patients, with
classes indicating whether each patient has appendicitis. Kaggle
Snapshot: appendicitis/timrie, downloaded 2024-09-18.

Exasens COPD: This data set aims (based on demographic
information from saliva) to classify patients into four classes
according to their membership: chronic obstructive pulmonary
disease (COPD), asthma, respiratory infections, and completely
healthy patients. The dataset was collected from the UCI
Machine Learning Repository at https://archive.ics.uci.edu/ml/
datasets/Exasens. Downloaded 2024-06-14.

Acute Inflammations D1 and Acute Inflammations D2:
These datasets are from a study aimed at detecting two urinary
system diseases. Both datasets were obtained from the UCI
Machine Learning repository at https://archive.ics.uci.edu/ml/
datasets/Acute+Inflammations. Downloaded 2024-03-14.

ACPs Lung Cancer: This dataset was obtained from the UCI
repository at https://archive.ics.uci.edu/ml/datasets/Anticancer+
peptides, which contains information on peptides (amino acid
codes) and their anticancer activity in lung cancer cell lines.
Downloaded 2024-03-14.

Vertical Column: This dataset aims to detect if a patient
has some vertebral column disease. It was recovered from the
UCI Machine Learning repository at http://archive.ics.uci.edu/ml/
datasets/vertebral+column. In vertebral Column 2C, the classes
Disk Hernia and Spondylolisthesis were merged into a single class,
labeled Abnormal. Downloaded 2024-03-14.

Contraceptive: This dataset was collected from the UCI
Machine Learning repository at http://archive.ics.uci.edu/dataset/
30/contraceptive+method+choice. It is used to predict the current
contraceptive method from demographic and socioeconomic
information. Downloaded 2024-03-14.

Cryotherapy: This dataset was collected from the UCI
Machine Learning repository at https://archive.ics.uci.edu/dataset/
429/cryotherapy+dataset, which contains treatment outcomes for
90 patients who underwent cryotherapy. It has two classes:
successful and unsuccessful. Downloaded 2024-03-14.

Dermatology: This dataset was obtained from the UCI
Machine Learning repository at https://archive.ics.uci.edu/dataset/
33/dermatology, whose main aim is to determine the type of
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TABLE 5 Datasets description.

Datasets Features Patterns IR Classes

Categorical Numerical

Appendicitis 0 7 106 4.04 2

Exasens COPD 0 7 80 1.00 2

Acute Inflammations D1 5 1 120 1.03 2

Acute Inflammations D2 5 1 120 1.40 2

ACPs Lung Cancer 38 0 901 31.25 4

Vertical Column 2C 0 6 310 2.1 2

Contraceptive 5 4 1,473 1.88 3

Cryotherapy 0 6 90 1.14 2

Dermatology 1 33 366 5.6 6

Hepatitis 12 7 155 3.84 2

Mammographic Masses 0 5 961 1.15 2

Wisconsin 0 9 683 1.85 2

HCC Survival 0 50 165 1.61 2

Autism Adolescent 8 12 104 1.29 2

Autism Child 8 12 292 1.07 2

Survey Lung Cancer 14 1 309 6.90 2

Breast Cancer Coimbra 0 9 116 1.23 2

Saheart 1 8 462 1.88 2

Cirrhosis 0 44 267 3.85 3

Multiple Sclerosis 16 4 273 1.18 2

Eryhemato-Squamous Disease based on 34 patient attributes.
Downloaded 2024-03-14.

Hepatitis: This dataset aims to detect hepatitis using simple
tabular data from patients, most of whom have categorical data.
Furthermore, the dataset has two classes and was collected from
the UCI Machine Learning repository at http://archive.ics.uci.edu/
dataset/46/hepatitis. Downloaded 2024-02-03.

Mammographic Masses: This dataset aims to distinguish
between benign and malignant mammographic masses using
BI-RADS attributes and patient age. The dataset was collected from
https://archive.ics.uci.edu/dataset/161/mammographic+mass, in
the UCI Machine Learning repository. Downloaded 2024-01-21.

Wisconsin: This dataset was collected from the UCI Machine
Learning repository at https://archive.ics.uci.edu/ml/datasets/
breast+cancer+wisconsin+(diagnostic), which describes cases from
a study conducted at the University of Wisconsin Hospitals in
Madison involving patients who had undergone surgery for breast
cancer. The classification task is to determine if the detected tumor
is benign or malignant. Downloaded 2024-02-24.

HCC Survival: This dataset was obtained from https://archive.
ics.uci.edu/dataset/423/hcc+survival, in the UCI Machine Learning
repository. It contains real clinical data from 165 patients diagnosed
with HCC, with the aim of predicting 1-year survival after
diagnosis. Downloaded 2024-03-28.

Autism adolescent and Child: These datasets were collected
from the UCI Machine Learning repository at https://archive.

ics.uci.edu/dataset/420/autistic+spectrum+disorder+screening+
data+for+adolescent and https://archive.ics.uci.edu/dataset/
419/autistic+spectrum+disorder+screening+data+for+children,
respectively. The idea of both datasets is to detect Autistic Spectrum
Disorder. Downloaded 2024-04-02.

Survey Lung Cancer: The classification task in this dataset is
to determine whether a given patient has lung cancer, based on
variables collected via a survey. The set was obtained from the
Kaggle repository at https://www.kaggle.com/mysarahmadbhat/
lung-cancer. Kaggle Snapshot: Lung Cancer/Mysar Ahmad Bhat,
downloaded 2024-04-13.

Breast Cancer Coimbra: This dataset was collected from
https://archive.ics.uci.edu/dataset/451/breast+cancer+coimbra, in
the UCI Machine Learning Repository. The dataset comprises
clinical features from 64 patients. Downloaded 2024-02-22.

Saheart: This dataset aims to detect patients with heart
diseases but was built for Stanford University and was collected
at https://web.stanford.edu/$\sim$hastie/ElemStatLearn//datasets/
SAheart.data. Downloaded 2024-02-24.

Cirrhosis: This dataset comprises 17 clinical features for
predicting patient survival in patients with liver cirrhosis, collected
from the UCI Machine Learning repository at https://archive.
ics.uci.edu/dataset/878/cirrhosis+patient+survival+prediction+
dataset-1. Downloaded 2024-02-22.

Multiple Sclerosis: The classification task in this dataset is
to detect multiple sclerosis using patient information, such as
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personal data, symptoms, and metrics from medical tests. The
dataset was collected from https://www.kaggle.com/datasets/
desalegngeb/conversion-predictors-of-cis-to-multiple-sclerosis/
data, the Kaggle repository. Kaggle Snapshot: Multiple Sclerosis
Disease/A Legacy Grandmaster!, downloaded 2024-04-11.

4.2 Validation methods

In this section, we describe the validation method used in the
experimentation stage. To obtain reliable results when measuring
classifier performance during the experimentation stage, it is
necessary to have previously implemented a validation method that
divides the original dataset into two sets: a test set and a learning set.

One of the most widely used methods is k-fold cross-validation,
which randomly divides the original set into k equal-sized subsets
(folds), using one fold as the test set and the rest as the training set.
This process is repeated k times in order to use all folds at least once
as test sets (Wong, 2015; Sarker, 2021). On the other hand, there is
a stratified version of this validation method, called stratified k-fold
cross-validation, which is highly recommended for data sets with
class imbalance, since it attempts to preserve approximate class
proportions within each fold. In this way, the test sets created in
each iteration present as much as possible the class distribution of
the original set, which helped mitigate errors caused by class bias
(Derrac et al., 2015; Nakatsu, 2020). Figure 1 shows the operations
of the stratified k-fold cross-validation when k = 5.

Given the class-imbalanced datasets used in the current study,
stratified k-fold cross-validation with k = 10 has been employed
to maintain approximately equal proportions of patterns per class
across folds.

4.3 Performance measures

The evaluation of classifier performance is a crucial area of
interest in specialized literature. The most popular and naturally
simple way to measure performance is to use the accuracy metric,
which calculates the percentage of patterns in the test set that are
correctly classified; that is, it counts the total number of correctly
classified patterns with respect to the total number of patterns.
However, there is a way to more completely represent the results
of the classifier’s performance, which is called a confusion matrix,
as shown in Figure 2, which consists of four possible cases within
a two-class classification problem (García et al., 2010a), where each
cell in the confusion matrix represents TP (true positive), TN (true
negative), FP (false positive), and FN (false negative).

As mentioned above, one of the most popular metrics for
measuring classifier performance is accuracy. In the case of bi-class
problems, and using the confusion matrix as a basis, the metric can
be expressed as in the equation:

Accuracy = TP + TN
TP + FN + FP + TN

(21)

However, more robust metrics have emerged in the literature
to mitigate the limitations of the accuracy metric, which is not
suitable for class-imbalanced datasets, a common data complexity

mainly found in medical datasets. This data complexity harms the
evaluation of the classifier’s performance, yielding metrics that do
not truly reflect the algorithm’s capacity (López et al., 2013).

First, the sensitivity metric will be described, which measures
the probability that the classifier returns a positive result when the
instance is a true positive. The sensitivity metric can be expressed
as follows (García et al., 2010b).

Sensitivity = TP
TP + FN

(22)

On the other hand, there is another crucial metric, the
counterpart of the sensitivity metric: the specificity metric. This
metric estimates the probability that the classifier will return a
negative result when the instance is actually negative (García et al.,
2010b).

Specificity = TN
TN + FP

(23)

There are different metrics for different purposes, such as
the area under the ROC curve (AUC), precision, F1 score, and
balanced accuracy (BA), but the majority of them are calculated
from the confusion matrix (García et al., 2010b). Because the
datasets selected for this study exhibit class imbalance, it was
decided to use the Balanced Accuracy (BA) performance metric,
which is recommended for such cases (López et al., 2013; García
et al., 2010b). The BA metric is calculated from the performance
metrics Sensitivity and Specificity, which represent the average of
both measures.

BA = Sensitivity + Specificity
2

(24)

On the other hand, the value of BA in multi-class datasets, for k
classes, is calculated as follows:

BA = 1
k

k∑
i=1

Ti

Ni
, (25)

where Ti is the number of patterns correctly classified in class i,
and Ni represents the total number of patterns within the dataset of
class i.

Example. Figure 3 shows a confusion matrix for an unbalanced
dataset, with 170 patterns in class A and 30 in class B. Therefore,
the similar dataset has a very severe class imbalance; its imbalance
index is IR = 5.6.

For class i ∈ {A, B, C} sensitivity (Ti/N):

SensitivityA = TPA

TPA + FNA
= 50

50 + 1 + 1
= 0.96 (26)

SensitivityB = TPB

TPB + FNB
= 70

70 + 8 + 12
= 0.77 (27)

SensitivityC = TPC

TPC + FNC
= 24

24 + 10 + 26
= 0.40 (28)
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FIGURE 1

Stratified five-fold cross-validation method.

FIGURE 2

Confusion matrix for a bi-class dataset.

In this example, the Balance Accuracy (BA) value of the
confusion matrix is as follows:

BA = 1
3

(0.96 + 0.77 + 0.40) = 0.713 (29)

4.4 Time complexity analysis

Table 6 compares the time complexities of the classification
algorithms used in the present study and of the proposed n-SBC
model.

Notation. nsv: Number of support vectors in SVM; T: Number
of trees in Random Forest; H: Number of hidden units in MLP;
I: Number of epochs in MLP; |L|: Total number of patterns
(instances) in the training dataset; C: Number of classes in the

FIGURE 3

Example of a confusion matrix for a multi-class dataset.

TABLE 6 Comparison of time complexities between algorithms.

Algorithm Spatial Time

Training Inference

n-SBC O(|L| ∗B) O(|L| ∗B)a O(|L| ∗B)

k-NN O(|L| ∗B) O(1) O(|L| ∗B)

SMO O(nsv∗B) O(|L|2 ∗B) O(nsv∗B)

Naïve Bayes O(C∗B) O(|L| ∗B) O(C∗B)

C4.5 O(|L|) O(|L| ∗B∗ log |L|) O(log |L|)

Random
Forest

O(T∗ |L|) O(T∗ |L| ∗B∗ log |L|) O(T∗ log |L|)

MLP O(B∗H + H∗C) O(I∗ |L| ∗(B∗H +
H∗C))

O(B∗H + H∗C)

aTime complexity for converting all dataset features to their RBC binary strings and
concatenating them to create the memory M (preparing the training process in the n-
SBC classifier).

data set; Xω: Unknown pattern (test) to be classified; d: number
of features; bi: RBC bit-length of feature i; B = ∑d

i=1 bi (total bits
per encoded pattern); B: Length of each pattern in the binary string
generated by the RBC encoder.
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TABLE 7 Results of the balanced accuracy measurement obtained by the classifiers.

Dataset Naïve
Bayes

IB1 IB3 MLP SMO C4.5 Random
Forest

3-SBC 5-SBC

Appendicitis 0.786 0.745 0.738 0.75 0.744 0.732 0.744 0.703 0.746

Exasens_copd 0.9 0.937 0.875 0.95 0.887 0.887 0.912 0.898 0.9

Acute
inflammation d1

0.992 1 1 1 1 1 0.933 1 1

Acute
inflammation d2

1 1 1 1 1 1 0.958 1 1

ACPs lung cancer 0.695 0.683 0.648 0.707 0.707 0.559 0.645 0.984 0.984

Column 2c 0.801 0.809 0.751 0.807 0.704 0.77 0.82 0.712 0.735

Contraceptive 0.514 0.417 0.42 0.54 0.488 0.488 0.507 0.637 0.636

Cryotherapy 0.841 0.9 0.911 0.879 0.879 0.936 0.936 0.934 0.941

Dermatology 0.976 0.952 0.969 0.968 0.971 0.955 0.958 0.967 0.971

Hepatitis 0.83 0.736 0.763 0.755 0.807 0.85 0.835 0.818 0.835

Mammographic
Masses

0.828 0.754 0.763 0.822 0.796 0.822 0.797 0.84 0.834

Wisconsin 0.964 0.94 0.964 0.939 0.965 0.937 0.963 0.939 0.941

HCC Survival 0.677 0.6 0.584 0.6 0.711 0.546 0.668 0.828 0.822

Autism
Adolescent

0.959 0.882 0.841 0.887 0.891 1 1 0.923 0.902

Autism Child 0.827 0.748 0.784 0.798 0.829 0.819 0.812 0.969 0.976

Survey lung
cancer

0.688 0.758 0.745 0.802 0.782 0.747 0.754 0.792 0.765

Breast Cancer
Coimbra

0.63 0.67 0.674 0.651 0.663 0.688 0.735 1 1

Saheart 0.655 0.58 0.619 0.63 0.658 0.657 0.622 0.577 0.57

Cirrhosis 0.515 0.429 0.444 0.525 0.52 0.549 0.524 0.642 0.617

Multiple Sclerosis 0.902 0.788 0.802 0.907 0.812 0.783 0.786 0.984 0.983

Times Best BA 3 2 2 4 4 4 2 9 7

They were used with the class-imbalance complexity specified in Table 5 across all classifiers, and the results were compared in Table 7. The results that achieve competitive performance relative
to the other classifiers for each dataset are highlighted in bold.

4.5 Classification results

Table 7 compares the performance of the proposed algorithm
with that of different classifiers across the 20 datasets described
earlier. The algorithms used for comparison were run in Weka
version 3.8.2, using the tool’s default hyperparameters. The results
of the n-SBC algorithm were obtained using MATLAB R2021b
with a random seed of 1. For the experimental process, we
evaluated two pre-specified SBC variants with n ∈ {3, 5}.
These values were pre-selected once from a preliminary sweep
n ∈ {1, 2, 3, 4, 5} using training-only validation and were then
held fixed across all datasets. To ensure a fair comparison, the
study does not cherry-pick the best n values in the classification
results; instead, those are explicitly excluded from the Friedman
and Holm statistical tests to avoid inflating the number of
comparisons.

No preprocessing other than handling missing values and
converting categorical values to numeric was applied, as explained
in Section 3. No samples were removed from the datasets, nor

were synthetic samples added; they also kept the original sizes
and format.

The proposed algorithm achieved competitive performance
across nine of the twenty-one datasets. For example, it performed
well on Acute Inflammation d1 and d2, ACP lung cancer,
contraceptive use, mammographic masses, HCC survival, breast
cancer Coimbra, cirrhosis, and multiple sclerosis.

Furthermore, Table 7 shows some cases where the classifiers
achieved 1 on the balanced accuracy metric. This indicates that it
was perfect, i.e., the classifier made zero errors. Thus, if we count the
frequency at which classifiers obtained these cases, our proposed
model was one of the highest-performing BA in both versions
(3-SBC and 5-SBC), receiving it in 3 out of 21 datasets.

Similarly, the algorithm that performed best across the majority
of datasets was our proposed 3-SBC model, which was the best in 9
of 20 datasets, followed by our other model, 5-SBC, which was the
best in 7 of 20 datasets.

Nevertheless, datasets with high data complexity that obtained
inadequate scores were Cirrhosis, Saheart, HCC Survival, and
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Contraceptive, among which our proposed models achieved the
highest performance in 3 out of 5 cases. This happens due to the
No Free Lunch theorem; therefore, it is expected that our proposed
models will not be the best-performing classifiers across all datasets.
This theorem indicates that no classifier is capable of being the
best on all types of problems (Wolpert and Macready, 1997; Adam
et al., 2019). Furthermore, the classifier with the best performance
also performed poorly, such as Saheart, which achieved 0.658
on SMO.

However, in favor of our proposal, it can be noted that, in
most cases, the performances of the 3-SBC classifier do not vary
overly from the high balanced accuracy values obtained by other
classifiers; such is the case of the Survey lung cancer, Dermatology,
and Wisconsin datasets in which our proposed model 3-SBC
obtained very similar results against the best models in those cases,
such as SMO or Naïve Bayes.

4.6 Statistical analysis

Comparing various machine learning algorithms and selecting
a final model or algorithm as the winner is a common practice
in machine learning, model research, and applications. Models
in relation to a set of experiments are evaluated using a
validation method, e.g., k-fold cross-validation or leave-one-out
cross-validation (a particular case of k-fold cross-validation where
k equals the number of instances in the dataset), and the results
are directly compared by calculating a performance measure. While
this is a simple and somewhat intuitive approach, it is difficult
to determine whether a difference is due to the algorithm’s real
capability or a statistical fluke.

It is crucial to distinguish genuine performance differences
from statistical flukes. Therefore, it is necessary to apply
statistical hypothesis testing, which addresses this issue by
quantifying the probability of observing score differences under
the null hypothesis that scores are drawn from the same
distribution. Rejection of this null hypothesis indicates that the
observed differences are statistically significant, rather than due
to chance.

In this context, to conduct a more reliable comparative analysis,
it was proposed to use Friedman’s test (Friedman, 1937) to
determine whether there are significant differences in the yields
observed during the experiment.

Table 8 shows the performance obtained by the different
classification algorithms proposed. After performing Friedman’s
statistical test, the null hypothesis was rejected at the 95%
confidence level (p-value = 0.000516), indicating statistically
significant differences among the classifiers.

The proposed models (5-SBC and 3-SBC) rank first in the
Friedman mean rank calculation concerning the remaining seven
algorithms, while the k-NN family algorithms rank last in the
Friedman mean rank table.

On the other hand, a post-hoc test, the Holm test (Holm,
1979), was applied. The results in Table 9 reject the hypothesis at
an adjusted p-value of ≤0.05. Therefore, significant performance
differences between the two versions of the proposed algorithm
and the remaining state-of-the-art algorithms used in the

TABLE 8 Friedman’s means ranks table.

Algorithm Mean ranksa

5-SBC 3.2143

3-SBC 3.7857

Naïve Bayes 4.5952

MLP 4.8095

SVM 4.881

Random Forest 5.1429

C4.5 5.4762

1-NN 6.4762

3-NN 6.619

asorted from best ranked to worst.

study are demonstrated. In particular, it can be observed that,
considering the best algorithm according to the Friedman test,
the 5-SBC algorithm, it has significant differences above the
95% confidence level for the 1-NN and 3-NN algorithms; on
the other hand, the SVM, MLP, and Naïve Bayes algorithms
obtained p-values (although higher than the corrected threshold)
that indicate a possible significant difference to the 5-SBC
model, which could be interpreted as marginal evidence in
exploratory contexts.

After presenting the experiments, it was observed that the
proposed algorithm obtained competitive results. This conclusion
is supported by statistically significant differences in the n-SBC
algorithm’s observed performance across two of the seven selected
classifiers on the same set of classification datasets.

Consequently, the results corroborate the hypothesis that the
proposed n-SBC algorithm is indeed competitive for classification
and disease prediction, as the majority of the datasets used focus on
detecting different diseases.

5 Conclusion and future research

In this research work, a new proposed model, n-SBC
(n Similarity Binary Classifier), was presented, along with an
experimental analysis to verify its effectiveness against other state-
of-the-art algorithms on datasets related to medicine.

Similarly, the advantages of the proposed model were
described, as were its simplicity, explainability, and its ability to
address imbalance, a data complexity that is very common in
the literature.

The detailed results in this research, presented in Section
4, highlight the capacity of the proposed algorithm, specifically
the version 5-SBC, due to its competitive performance compared
to other popular classification algorithms in the literature.
Similarly, this research explores and presents in detail a new
approach that uses the similarity between binary strings as
the basis for a machine learning model while maintaining
simplicity and effectiveness. Above all, the proposed novel
algorithm promotes the research and application of explainable
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TABLE 9 Results obtained by Holm’s post-hoc test.

i. Algorithm z= (R0−Ri)/SE p Holm

8 3-NN 3.695042 0.000220 0.00625

7 1-NN 3.579572 0.000344 0.00714

6 C4.5 2.540341 0.011074 0.00833

5 Random Forest 2.078461 0.037667 0.01000

4 SVM 1.876388 0.060602 0.01250

3 MLP 1.616581 0.105969 0.01666

2 Naïve Bayes 1.587713 0.112351 0.02500

1 3-SBC 0.692820 0.488422 0.05000

AI, which is of great contribution to specific areas, such as health
or finance.

The proposed model has a limitation in handling pattern
cardinality, as it converts patterns to binary strings, which can
increase computational complexity during classification. Therefore,
as future research, it is proposed to develop a method or
pursue a completely new approach that can solve the problem
identified in the proposed model while maintaining its simplicity,
explainability, and performance. It is under consideration for
implementation and demonstrates a novel similarity measure
that can improve the model’s performance while maintaining
the algorithm’s simplicity and explainability. On the other hand,
an important objective is to apply the proposed n-SBC model
to image classification tasks, specifically to medical images (x-
ray mainly), due to its ease in preprocessing to adapt it and
be able to use the n-SBC model with evolutionary algorithms
or metaheuristic processes, with the goal of optimizing the
model’s performance. Another aspect to consider in future
studies is analyzing the model’s behavior on datasets with
outliers to evaluate its robustness and adaptability to more
complex, noisy scenarios. Finally, we plan to extend n-SBC by
incorporating the three-way decision (3WD) rule based on model
margin to explicitly handle classification uncertainty, compare
granular 3WD variants, and report risk-coverage improvements on
medical data.
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