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Predictors of mortality among
neonates in Lusaka, Zambia: a
comparative analysis of machine
learning and traditional survival
analysis techniques
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Innocent Maposa*

Division of Epidemiology and Biostatistics, Faculty of Health Sciences, Stellenbosch University,
Cape Town, South Africa, 2Department of Pharmacy, University of Zambia, Lusaka, Zambia

Introduction: Neonatal mortality remains a critical global health issue, with
2.3 million deaths in 2022. Sub-Saharan Africa bears 57% of under five deaths
despite only 30% of global births, with Zambia ranking fourth highest in terms
of neonatal mortality among neighboring countries. While traditional survival
analysis has identified neonatal mortality risk factors, machine learning-based
prediction remains underexplored. This study aimed to identify factors associated
with neonatal mortality and compare the predictive performance of traditional
survival analysis and machine learning models among neonates in Lusaka,
Zambia (January2018-September 2019).

Methods: Demographic and clinical data from 1,018 neonates were analyzed
using seven models: Weibull, Lasso, Ridge, Elastic Net (regularized Cox), Random
Survival Forests, DeepSurv neural networks and Gradient Boosting Machines.
Model performance was evaluated using nested cross-validation with five outer
folds and three inner folds for hyperparameter tuning. Predictive accuracy was
assessed using the concordance index, time dependent area under the curve at 7,
14, and 28 days, brier scores, and calibration plots. Kaplan—Meier plots illustrated
survival probabilities over time.

Results: Of the 1,018 neonates, 757 (74.3%) died. Hypoxic-ischemic
encephalopathy (TR = 0.71, 95% Cl: 0.63-0.81) was associated with reduced
survival, while higher birthweight was protective (TR = 1.88, 95% Cl: 1.60-2.20).
Sepsis demonstrated a paradoxical association with longer survival (TR = 1.16,
95% CIl. 1.04-1.30), which persisted in sensitivity analyses. Among predictive
models, the Random Survival Forests achieved the highest discrimination (C-
index = 0.731) and consistently low Brier scores, outperforming Weibull (C-index
= 0.622) and penalized Cox models (~ 0.620). Gradient Boosting Machines were
most miscalibrated, and DeepSurv showed low discrimination (C-index = 0.553).
Feature importance analysis from Random Survival Forest identified birth weight
as the dominant predictor, followed by sex, sepsis, and necrotizing enterocolitis.
Discussion: While traditional Weibull models remain valuable for interpretability,
machine learning approaches provide enhanced predictive accuracy. Hybrid
modeling strategies may improve early risk identification and inform neonatal
care in resource-limited settings.

KEYWORDS
survival analysis, Weibull, machine learning, elastic net regression, neonatal mortality,

predictive modeling

01 frontiersin.org


https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1606245
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1606245&domain=pdf&date_stamp=2025-11-11
mailto:glandzm@gmail.com
https://doi.org/10.3389/frai.2025.1606245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1606245/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mokoena et al.

Introduction

During the neonatal period, which encompasses the first 28
days of life, neonates are particularly vulnerable, facing the highest
risk of mortality. In 2022, the global average rate of neonatal
mortality stood at 17 deaths per 1,000 live births, marking a
decrease from 18 deaths per 1,000 live births recorded in 2019
(UNICEF, 2021). The risk of mortality between the first month
and the first year of life was estimated at 11 deaths per 1,000
live births, while the probability of mortality between ages 1 and
5 was estimated at nine deaths per 1,000 live births in 2022
(UNICEF, 2021). Globally, approximately 2.3 million infants lost
their lives within the first month of birth in 2022. In the same
year, sub-Saharan Africa had the world’s highest neonatal mortality
rate at 27 deaths per 1,000 live births and accounted for 57% of
global under five deaths despite only 30% of global live births
(UNICEF, 2021). Zambia has seen a notable improvement in
its neonatal mortality rate, which has decreased to 24.1 deaths
per 1,000 live births, from 25.4 in 2019 (Child Mortality and
Causes of Death, 2024). Relative to surrounding countries such
as, Zimbabwe (24.3), Namibia (18.7), Malawi (18.7), Mozambique
(25.7), Angola (26.0), and Botswana (19.8), Zambia ranked 4th
highest out of the six in 2022 (Child Mortality and Causes of
Death, 2024). A range of policies, programs, and initiatives have
contributed to Zambia’s progress in reducing neonatal mortality.
Key interventions include the Helping Baby Breathe campaign,
Emergency Obstetric and Neonatal Care training, Saving Mothers
Giving Life, and Safe Motherhood 360+ projects (Mukosha et al.,
2021). These efforts are part of a broader strategy to achieve the
Sustainable Development Goal (SDG) target of reducing neonatal
mortality to 12 deaths per 1,000 live births by 2030 (Mukosha
et al., 2021). Traditional statistical methods, particularly survival
analysis have been a valuable tool in understanding neonatal
mortality by analyzing time-to-event data, providing insights into
the duration until an event, such as mortality, occurs. For instance,
Sania et al. (2017), utilized the Cox Proportional Hazards (CPH)
model to examine the impact of birth weight and gestational
age on neonatal mortality, revealing that lower birth weights
and shorter gestational periods significantly increase the risk of
mortality within the first 28 days. Similarly, Limaso et al. (2020)
utilized Kaplan-Meier survival curves and Cox regression to
estimate the survival probabilities of neonates to emphasize the
significance of early intervention and specialized care. In recent
years, machine learning (ML) has emerged as a powerful tool
for identifying patterns in large, complex datasets and predicting
outcomes in various domains, including healthcare (Huang et
al., 2023). However, its application in neonatal mortality remains
limited, especially in low-resource settings like Zambia (Mukosha
et al, 2021). A study by Cooper et al. (2018) demonstrated
the effectiveness of ensemble ML methods such as superlearning
in predicting 30-day postoperative neonatal mortality, achieving

Abbreviations: AUC, area under the curve; NIE, necrotizing enterocolitis;
RDS, respiratory distress syndrome; HIE, hypoxic-ischemic encephalopathy;
ANC, antenatal care; CPH, Cox proportional hazards; TRs, time ratios; ROC,
receiver operating characteristic; RSF, random survival forests; SNN, survival

neural network; GBM, gradient boosting machines; ML, machine learning.
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excellent discrimination and outperforming individual regression
models in predictive accuracy. This suggests that ML approaches
could complement traditional survival analysis techniques in
identifying neonates at highest risk of mortality. Neonatal mortality
significantly impacts the quality of life for affected families and
imposes a persistent burden on healthcare systems, leading to
heavy economic and social costs. Accurate prediction of neonatal
survival and understanding the factors driving these predictions
are critical for targeted clinical interventions. Beyond the known
risk factors for neonatal mortality, such as respiratory distress
syndrome, neonatal sepsis, maternal health, prematurity, and
congenital abnormalities as well as birth defects (Limaso et al., 2020;
Gaiva et al.,, 2016; Chiabi et al., 2014; Zeinalzadeh et al., 2017), the
study investigated additional factors such as birth weight and sex.

The study aimed to identify factors associated with neonatal
mortality and to compare the predictive performance of traditional
survival analysis with machine learning approaches, integrating
both methods to enhance prediction among neonates in
Lusaka, Zambia.

Materials and methods

Study design and population

This retrospective study used hospital records from 1st January
2018 to 30th September 2019, at the Women and Newborn
Hospital in Lusaka, Zambia. The hospital is the largest referral
hospital in Zambia for obstetric and gynecological care, receiving
referrals from over 20 clinics and five first-level hospitals from
surrounding areas of Lusaka and other parts of the country.
Annually, the hospital manages approximately 28,800 pregnant
women and records around 18,000 births, with over 4,000
neonatal admissions.

This study focused on neonates admitted to the Neonatal
Intensive Care Unit (NICU) or the Kangaroo Mother Care
(KMC) ward. Data for this study were collected from
Neonatal Case Records (NCR), which included demographic
and clinical information on neonates and their mothers.
Neonatal outcomes were followed from birth until discharge
or death, with a complete 28-day follow-up period. The
initial dataset included 3,215 neonates, which was filtered
to include only those in the neonatal period, defined as
the first 28 days of life (Figure 1). Neonates who survived
beyond 28 days or were discharged before day 28 were right-
censored, while those who died during hospitalization were
classified as “died,” reflecting their survival status within the
study window.

Missing data handling

After applying the 28-day clinical filter, 1,018 neonates
remained in the dataset. Of these, 12 neonates (1.2%) had missing
covariate data, resulting in a final complete-case dataset of 1,006
neonates. Missing data were minimal across most variables (0.0%-
0.3%), except for employment status (21.0%; Table 1).
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Neonates admitted to
NICU during study period
(N = 3215)

Y
Applied 28-day clinical filter

(neonatal period definition)

A4
Included neonates within

28-day follow-up time
(N =1018)

Y
Missing covariate data

(n=12; 1.2%)

Y

Multiple imputation per-

formed for complete analysis

Y
Final dataset used for analyses
(N = 1018)
FIGURE 1
Flow diagram showing inclusion, exclusion, and imputation of study
cohort.

Given the low levels of missingness, complete-case analysis
was considered appropriate and unlikely to introduce meaningful
bias. To further ensure robustness and preserve statistical power,
multiple imputation using chained equations (MICE) was applied
for variables with missing values in R using “mice” package. Binary
and categorical variables were imputed using logistic regression,
while continuous variables were imputed using predictive mean
matching. Variables without missing data were included as
predictors but were not imputed (Table 1).

A predictor matrix was specified to prevent imputation of the
variables (time and status). Five imputed datasets were generated,
and the first completed dataset was used for analyses. This
approach ensured that the analysis leveraged all available data while
accounting for minimal missingness.
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TABLE 1 Missing data by variable.

Variable Missing N Total N Missing %
Employment status 214 1,018 21.02
Hypoxic-ischemic 3 1,018 0.29
encephalopathy

Necrotizing 2 1,018 0.20
enterocolitis

Sepsis 2 1,018 0.20
Birth weight 2 1,018 0.20
Sex 1 1,018 0.10
Respiratory distress 0 1,018 0.00
syndrome

Antenatal care visits 0 1,018 0.00
Mortality status 0 1,018 0.00
Time 0 1,018 0.00

Justification for population selection: the 68.3% reduction
from the original dataset (3,215 — 1,018) is attributable to the 28-
day clinical filter and reflects a deliberate focus on the neonatal
period rather than data loss. This period captures the highest
mortality risk and the most relevant clinical interventions for
NICU patients.

In addition, only intra-hospital neonatal deaths were included.
The dataset used in this study is not publicly available due to privacy
concerns. Access to the dataset may be granted upon request to the
data custodian.

The University of Zambia Biomedical Research Ethics
Committee UNZABREC approved this study (ref: UNZA-
221/2019). Additional permission was obtained from Women
and Newborn Hospital management to extract data and conduct
the study at the hospital. Data were de-identified to protect
the participants confidentiality. Furthermore, ethical approval
was obtained requested from the research ethics committee at
Stellenbosch University (Reference No: X24/06/016), with waiver
of consent granted.

Study variables

The outcome of this study was time to neonatal mortality,
measured from birth to either mortality or censoring. Independent
(HIV)
exposure, sex, sepsis, respiratory distress syndrome (RDS),

variables included human immunodeficiency virus
necrotizing enterocolitis (NEC), hypoxic-ischemic encephalopathy
(HIE), antenatal care (ANC) visits, and birth weight. These
variables, along with their coding, are summarized in Table 2.
Birth weight was categorized according to WHO standards of
neonatal risk stratification as low (<2.5 kg) or normal (>2.5
kg) (WHO, 2022). For analysis, birth weight was included as a
continuous variable in kilograms to retain full information and
maximize statistical power. These variables were selected based on
their clinical relevance and established associations with neonatal
mortality, particularly in resource-limited neonatal settings.
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TABLE 2 Description of variables included in the analysis.

Variable Coding

Time Time from birth to mortality or
censoring (days)
Mortality status Alive/died
HIV exposure HIV-negative/positive
Sex Male/female
Sepsis Absent/present
Respiratory distress syndrome Absent/present
Necrotizing enterocolitis Absent/present
Hypoxic-ischemic encephalopathy Absent/present
Antenatal care visits Attended/no attendance
Birth weight Continuous/categorical
(low/normal)

Statistical and machine learning
considerations

The survival function, S(f), represents the probability of
an event not occurring up to time t. Mathematically, it is
expressed as:

St)y=P(T >t), 0<t<oo0

This function acts as a probability distribution over
time, with ¢ theoretically ranging from 0 to infinity, and
S(t) values falling between 0 and 1 (Kleinbaum and Klein,
2012).

The survival function is typically visualized as a smooth,
decreasing curve that starts at S(0) = 1 when t = 0, indicating
that all subjects survive at the initial time (Kleinbaum and Klein,
2012).

An important characteristic of the survival function is that it is
monotonically decreasing, meaning that:

(S(t1) > S(t;)) when (t; < tp)

In practical terms, this indicates that the probability
of surviving an event generally declines as time progresses
(Kleinbaum and Klein, 2012).

Several models were developed to predict the survival outcomes
based on the variables previously mentioned. The following models
were implemented:

Weibull accelerated failure time model: the Weibull
distribution is a commonly used parametric model in survival
analysis as it generalizes the exponential model by allowing
the hazard to vary over time. For survival time ¢t > 0, the
hazard function, which represents the risk of event, is defined
as (Kleinbaum and Klein, 2012):

h(t) = ap P!
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From this definition, the survival function can be expressed as:

S(t) = exp(—atF),

where t > 0, A > 0 is the scale parameter, and p > 0 is the shape
parameter (Kleinbaum and Klein, 2012).

Cases of the Weibull model include: when p = 1, the hazard is
constant, which is equivalent to the exponential distribution; when
p > 1, the hazard increases over time; and when p < 1, the hazard
decreases over time (Kleinbaum and Klein, 2012).

Lasso, ridge, and elastic net regularized Cox models:
regularized Cox models include Lasso (o = 1), Ridge (« = 0), and
Elastic Net (« = 0.5). The models perform variable selection and
regularization by imposing an £, € and ¢; and ¢, penalty on the
coeflicients respectively. This helps prevent overfitting and reduces
model complexity by shrinking some coefficients to zero as well as
reduce multicollinearity (Hastie et al., 2017).

The formula for regularized Cox regression introduces different
penalties to the log-partial likelihood of the standard Cox model to
perform variable selection or shrinkage. In the Lasso Cox model, a
£ penalty term,

p
2y 1B
j=1

is added to the objective function, encouraging sparsity by forcing
some coefficients to zero, which effectively selects variables. In the
Ridge Cox model, a €5 penalty term,

S}

j=1

is used instead, which shrinks coefficients toward zero but does
not set any to exactly zero, making it useful for handling
multicollinearity.

The Elastic Net Cox model combines both ¢; and ¢, penalties,

P P
ed iBl+a-a)) B
j=1 j=1

allowing for a balance between variable selection and shrinkage by
tuning o (with @ = 1 yielding the Lasso and « = 0 the Ridge).
This flexibility makes Elastic Net advantageous in datasets with
correlated predictors (Deng et al., 2023).

Lasso Cox formula:

B = argmin{ - Xn: |:8,- (,BTX,-
B i=1
—10g< x eXP(,BTXj)>>:|
JER(t:)
P
A |.Bj|}
j=1

In this formula, 8 denotes the estimated coefficients that
minimize the objective function. The first term represents the
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negative log partial likelihood from the Cox model, accounting

for event indicators §; and the risk set R(t;). The second term,

A Zle |Bjl, is the Lasso penalty, where A controls the strength of

regularization and encourages sparsity in the coefficient estimates.
Ridge Cox formula:

/§ = argmﬂin{ — i |:8,'<13TX,'
i=1

—log ( > exp(ﬁTXj)))i|
JER(ti)

P
+2 Zﬁf}

j=1

Elastic Net Cox formula:

/§ = argmﬂin{ — i |:8i<ﬂTXi
i=1

—log ( > exp(ﬁTXj)))i|
JER(t:)

)
+X (a > 18l
=

Random Survival Forests: Random Survival Forests (RSFs) are
an extension of the random forest method specifically designed
for analyzing time-to-event data in survival analysis. As a tree-
based ensemble model, RSFs construct multiple survival decision
trees during training, capturing relationships between predictors
and survival outcomes. Known for their robustness, random forests
effectively handle high-dimensional data by averaging predictions
from individual trees, which improves accuracy and reduces the
risk of overfitting.

The RSFs regression:

R 1 2.
fo0 =4 ;ﬁ,(x)

In RSFs, base trees are typically grown to significant
depths using bootstrapped samples, and the nodes are split by
randomly selecting features. A key enhancement of RSFs is the
incorporation of censoring information into the splitting criteria,
enabling the model to create branches that reflect meaningful
differences in survival outcomes. Various splitting criteria exist,
such as conservation-of-events, log-rank score, and log-rank
approximation; however, the log-rank splitting rule is the most
widely used. This approach maximizes the log-rank test statistic,
ensuring that the resulting splits reveal substantial disparities in
survival between groups, thus enhancing the model’s effectiveness
in survival analysis (Hastie et al., 2017).

Survival Neural Network: Survival Neural Networks (SNNs)
can feature one or more hidden layers connected to the preceding
layer. Signals progress to the output layer, which is the final layer of
units, producing the desired predictions (Hastie et al., 2017).
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The SNN model we used in this study is based on DeepSurv, a
type of Survival Neural Network specifically designed for survival
analysis. DeepSurv is a neural network model that extends the CPH
model by using a neural network to estimate the underlying hazard
function, allowing for non-linear relationships between predictors
and the hazard.

Key features of DeepSurv include its architecture, which
consists of a feedforward neural network that takes covariates
as inputs, passes them through one or more hidden layers, and
outputs a single risk score analogous to the linear predictor in the
Cox model. Its objective function minimizes the negative partial
log-likelihood used in Cox models, thereby preserving the CPH
framework (Wiegrebe et al., 2024).

DeepSurv can learn non-linear relationships, making it
suitable for datasets with complex interactions among covariates.
Additionally, DeepSurv offers flexibility in risk estimation through
the inclusion of regularization techniques such as dropout and
weight decay, which help to avoid overfitting; particularly beneficial
for high-dimensional data.

SNN equations (Deng et al., 2023):

Input layer:

x = [x1,%2, ..., %n]
where x is the input vector containing features and # is the number
of input features.

Hidden layer:

z=0(Wx+b)

where W is the weight matrix, b is the bias vector, o is the activation
function and z is the output of the hidden layer.
Output layer:

h(t; z) = A(t) - exp(— exp(zT B) - 1)

where h(t; z) is the hazard function at time t, A(f) is the baseline
hazard function, g is the parameter vector for the output layer.

Loss function: The loss function for training a survival neural
network often involves the Cox partial likelihood:

L:—Z zI'p —log ZeZJTﬂ

ieD JER;

where D is the set of events, R; is the risk set at time of event for
individual i.

Survival function: The survival function can be derived from
the hazard function:

S(t) = exp (— /Ot h(u; z) du)

where S(t) is the survival function.

Gradient Boosting Machines: Gradient Boosting Machines
(GBMs) extend naturally by minimizing a loss function adapted
for censored data, most commonly the negative Cox partial
log-likelihood. At each iteration m, a weak learner (typically a
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regression tree) is fit to the negative gradient of the loss, and the
additive model is updated as:

Fu(x) = Fp1(x) + v - hyp(x),

where F,,(x) is the cumulative risk score at iteration m, h,(x) is
the base learner, and v € (0,1] is the learning rate (shrinkage
parameter). For the Cox model, the loss function is given by:

L(B) = — Z B xi— logzeﬁT"f

ii6i=1 jeR;

where §; is the event indicator and R; is the risk set at time
ti. This framework allows GBMs to capture nonlinearities and
interactions in survival data, but its sequential nature makes it
prone to overfitting if the number of boosting iterations is too large,
the learning rate too high, or trees too deep. Optimizing model
performance requires careful tuning of shrinkage, sub-sampling,
and cross-validation parameters (Bithlmann and Hothorn, 2007;
Ridgeway, 2007).

Statistical models

Descriptive statistics were used to summarize the baseline
characteristics of the cohort using frequencies and percentages for
all binary and categorical variables. Medians and inter-quartile
ranges were reported for continuous variables. Kaplan-Meier
overall survival curve was plotted to estimate survival probabilities
against time.

Traditional survival methods

The CPH model was used as a baseline model in the study
as a traditional survival analysis method. The Variance Inflation
Factor (VIF) was used to assess multicollinearity. The VIF
reflects how much the variance of the estimated coefficient for
the variable is increased compared to what it would be if the
predictor variables were uncorrelated. Values above 5 were noted
as potential indicators of multicollinearity, suggesting the presence
of redundant predictors. The proportional hazards assumption was
formally tested using Schoenfeld residuals, examining both global
and individual covariate tests. Variables violating the assumption
were identified, and a stratified CPH model was fit by stratifying
on the problematic covariates. However, the stratified model
still violated the assumption, prompting the use of alternative
parametric survival models. Two parametric models;Weibull and
log-logistic accelerated failure time (AFT) models, were fit to
account for the assumption violations. Model selection was guided
by Akaike Information Criterion (AIC) and log-likelihood to assess
model fit. Weibull model had a lower AIC value as well as higher
log-likelihood values, and was therefore used as the final model.
The Weibull model was assessed using a graphical check: Plot
of log(-log(Survival)) vs. log(time); where a linear relationship
indicates consistency with the Weibull assumption.
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For both univariate and multivariate final models, coefficients
were transformed into time ratios (TRs) for interpretability.
Models were fit using the “survreg” function from the survival
package in R(v4.4.0). For each predictor, we reported the
estimated time ratio with corresponding 95% confidence intervals
(CIs) and p-values. A TR > 1 indicates longer survival
time, while a TR < 1 indicates shorter survival time (risk
factor) (Hastie et al, 2017). A p-value of 0.05 was considered
statistically significant.

Machine learning models

A range of machine learning models was selected
based on their wuse in survival analysis and ability
to manage non-linear relationships, interactions, and

censored data.

Model specifications and tuning
Regularized Cox models

The Lasso, Ridge and Elastic Net regularized Cox models were
implemented via penalized maximum likelihood estimation using
the “glmnet” package in R. This was to assess survival outcomes
and perform variable selection. Nested cross-validation was used
for hyperparameter tuning and model evaluation. Specifically,
the dataset was split into #n outer folds. Each outer fold served
as a held-out test set, while the remaining folds were used for
training. Within each outer training set, inner cross-validation
was performed to select the optimal regularization parameter A
by minimizing the cross-validated partial likelihood. The Lasso
model used an ¢; penalty (0« = 1), the Ridge model used an ¢
penalty (¢« = 0), and the Elastic Net model used a combination
(¢ = 0.5).

Random survival forests

RSFs were used to model survival outcomes using the
“RandomForestSRC” package. For each outer fold of the nested
cross-validation, the RSF model was trained on the outer
training set, including all features and survival outcomes (time-
to-event and censoring status). Each forest consisted of 100
trees to ensure stable estimates. Predictions for the held-out
test set included the estimated mortality, which was used to
calculate the C-index for survival discrimination. Short-term
predictive performance was also evaluated with the area under
the receiver operating characteristic curve (AUC) for 28-day
mortality, computed only when a sufficient number of events
was observed.

Survival neural networks

The DeepSurv architecture was implemented to model
nonlinear relationships between features and survival outcomes.
DeepSurv was fit using “survivalmodels” package. The network
architecture included an input layer corresponding to the number
of covariates, one or more hidden layers with rectified linear
unit activation functions, and a linear output layer that produced
risk scores proportional to the log-hazard function. To enhance
generalizability and mitigate overfitting, several regularization
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techniques were applied. These included dropout regularization
(with a dropout rate of 0.3), weight decay

»=10"%

and early stopping with a patience of 50 epochs to monitor
improvements in validation loss.

Gradient boosting machines

Nested cross-validation was used to optimize hyper-parameters
and evaluate model performance. GBM was fit using “XGBoost”
package. The dataset was split into n outer folds, with each fold
serving as a held-out test set and the remaining folds used for
training. Within each outer training set, inner cross-validation was
employed to tune model-specific hyper-parameters. The number of
boosting rounds was evaluated over candidate values (50, 100, 150),
selecting the value that maximized the mean area under the AUC
across inner folds.

The best-tuned model from each outer fold was trained on
the full outer training set and used to generate predictions for
the held-out test set, including linear predictors for survival
discrimination (concordance index) and predicted probabilities
for short-term classification performance for all models. To assess
model stability and correct for overfitting, bootstrap resampling
(R = 500) was performed. For each bootstrap sample, features
were prepared as numeric matrices, models were refitted using
the selected hyper-parameters, and the C-index was calculated.
Ninety-five percent confidence intervals were derived from the
percentile distribution of bootstrap C-indices, providing robust,
optimism-corrected estimates of model discrimination and short-
term predictive accuracy.

Model evaluation metrics

After tuning and validation, the predictive performance
of each model was assessed in terms of predictive survival
times, discrimination, and calibration. Three key metrics were
estimated;namely, the Concordance Index (C-index), Area Under
the receiver operating characteristic (ROC) Curve and the
Integrated Brier Score (IBS). In addition, calibration plots
were presented.

Concordance index

By determining the percentage of correctly ordered patient
pairs, the C-index assesses predictive accuracy of the predicted
survival times and shows how closely projections match actual
results. It is related to rank correlation techniques like Kendall’s tau
and may be used to a variety of outcomes, including continuous,
binary, ordinal, and time-to-event (Park et al., 2021). A C-index
of 0.5 in survival analysis indicates random predictions, but values
near 1 signify perfect predictive power. This index aids in the
efficient assessment of the model variables’ predictive information
(Park et al., 2021).
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Time-dependent AUC

A common tool for assessing how well sensitivity and
specificity are balanced in classification models is the receiver
operating characteristic curve. As a classification rule’s parameters
are changed, it charts sensitivity against specificity. Stronger
predictive performance is shown by greater AUC values, which
quantitatively quantify the model’s ability to discriminate between
various outcomes, such as survival vs. event occurrence. The
curve is expanded linearly to span [0, 100] to guarantee that it
encompasses the whole range (Heagerty et al, 2000). For each
time point, a binary outcome was created indicating whether an
event occurred by that day. Time-dependent discrimination was
assessed by comparing the linear predictor from the Cox model
to this binary outcome using ROC analysis. To ensure reliable
estimation, AUC was computed only when there were at least five
events and at least five non-events at the respective time point.
Bootstrap resampling with 500 iterations was applied to calculate
95% confidence intervals for the AUC values at relevant time
points: 7, 14, and 28 days. These time points were selected to
capture early, intermediate, and late outcomes, reflecting critical
periods during which mortality events are most likely to occur and
intervention decisions are often made.

Integrated brier score

Calibration of the models was assessed using the Brier score at
fixed time points (7, 14, and 28 days), defined as the mean squared
difference between observed event status and predicted probability
of the event (Yang et al., 2022). Predicted probabilities at each time
point were obtained from the Cox model using the baseline survival
function and the individual’s linear predictor:

P(T < £) = 1 = Sp()ptp)

where Sy(#) is the estimated baseline survival probability at time ¢
and Ip is the linear predictor. Predicted probabilities were truncated
between 0 and 1 to avoid extreme values. To quantify uncertainty,
bootstrap resampling was performed with 500 iterations. In each
iteration, a bootstrap sample of the same size as the test dataset was
drawn with replacement, and the Brier score was recalculated. The
95% confidence interval (CI) was then computed as the 2.5th and
97.5th percentiles of the resulting Brier score distribution.

Calibration analysis

Calibration of the predictive models was assessed at the same
time points used for discrimination and Brier score evaluation
(7, 14, and 28 days). Predicted risk scores were first normalized
to a 0-1 scale then divided into deciles. Within each decile, the
mean predicted probability and the observed event proportion
were computed to summarize model calibration across low to high
risk groups.

At each time point, a logistic regression of the observed binary
event indicator on the predicted probabilities was performed to
estimate the calibration slope and intercept. The calibration slope
measures the agreement between predicted and observed risks, with
a slope of 1 indicating perfect calibration (Austin et al., 2020). The
intercept represents systematic over or underestimation of risk,
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with an ideal value of 0. Bootstrapped 95% confidence intervals of
both slope and intercept were calculated to quantify uncertainty in
calibration estimates.

Calibration plots were generated by plotting the mean predicted
probabilities against the observed event rates across deciles. A 45-
degree reference line representing perfect calibration was included,
along with a smoothed loess curve. Facets were used to show
calibration at each specified time point, allowing visual assessment
of calibration over time.

Results

Baseline characteristics
Among the 1,018 neonates included in the analysis, 261
survived and 757 died. Maternal characteristics showed the

TABLE 3 Demographic characteristics by neonatal mortality.

10.3389/frai.2025.1606245

median age of mothers whose neonates survived was 27 years
(IQR: 22-33), compared to 26 years (IQR: 21-32) among those
whose neonates died (Table 3). The slight difference may indicate
that neonates born to younger mothers may have experienced
higher mortality. The median birth weight among the cohort
was 1.22 kg (IQR: 1.0-1.6 kg) among neonates who died,
compared with 1.64 kg (IQR: 1.1-1.9 kg) among survivors
(Table 3).

Although the number of deaths was higher among male
neonates (1 = 409) compared to female neonates (n = 348),
the mortality rate was higher in females (78.6%) than in
males (71.0%). This suggests that female neonates had a
higher risk of mortality relative to the number of females
in the study, indicating that female neonates in this cohort
may have experienced worse survival outcomes compared
to males.

Variable Overall (N = 1,018) Died (n = 757) Alive (n = 261) Mortality rate (%)
Birth weight (kg), median (IQR) - 1.22 (1.0-1.6) 1.64 (1.1-1.9) -
Age (years), median (IQR) - 27 (22-33) 26 (21-32) -
Sex

Female 443 348 95 78.6
Male 575 409 166 71.0
HIV exposure

No 822 622 200 75.7
Yes 196 135 61 68.9
Necrotizing enterocolitis

No 962 712 250 74.0
Yes 56 45 11 80.4
Sepsis

No 672 496 176 73.9
Yes 346 261 85 75.4
Respiratory distress syndrome

No 554 398 156 71.8
Yes 464 359 105 77.4
Hypoxic-ischemic encephalopathy

No 707 493 214 69.8
Yes 311 264 47 84.9
Antenatal care visits

No 15 9 6 60.0
Yes 1003 748 255 74.6
Employment status

No 936 596 153 63.7
Yes 82 44 11 53.7
Birth weight category

Normal 361 216 145 59.8
Low 656 541 116 82.5
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TABLE 4 Log-rank test results for survival by key variables.
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TABLE 5 Univariate analysis.

Variable Chi-square p-value Predictor TR 95% ClI p-value
HIV exposure 0.1 0.7 HIV exposure 1.038 0.90-1.19 0.60
Necrotizing enterocolitis 0.4 0.5 Sex L.15 1.03-1.28 0.01
Sepsis 5.4 0.02 Antenatal care visits 0.95 0.58-1.55 0.83
Respiratory distress syndrome 4.8 0.03 Necrotizing 1.06 0.85-1.32 0.63
enterocolitis
Hypoxic-ischemic 7.3 <0.01
encephalopathy Sepsis 1.11 1.00-1.24 0.06
Sex 6 <0.01 Respiratory distress 0.92 0.83-1.02 0.11
syndrome
Birth weight 212 <0.001
Hypoxic-ischemic 0.84 0.75-0.94 <0.01
Antenatal care visits 0.9 0.3 encephalopathy
Birth weight 1.69 1.47-1.95 <0.001

Mortality was higher among HIV-negative neonates (n = 622)
compared to HIV-positive neonates (n = 135). The mortality rate
was higher in the negative group (75.7%) compared to the positive
group (68.9%). This may indicate better clinical management of
HIV-positive neonates. Neonates without necrotizing enterocolitis
accounted for most deaths (n = 712), while neonates with the
condition had fewer deaths (n = 45). However, the mortality rate
was higher among neonates with necrotizing enterocolitis (80.4%)
compared to those without (74.0%), suggesting a possible trend
toward worse outcomes. Sepsis showed an unusual pattern, with
similar mortality rates between affected neonates and those without
sepsis, despite its clinical relevance as a common cause of neonatal
mortality. A higher number of deaths was observed in neonates
with sepsis (n = 260) than those without (n = 496). Mortality rates
were comparable between the two groups, with 75.4% of mortality
in neonates with sepsis and 73.9% in those without sepsis.

Mortality among neonates diagnosed with respiratory distress
syndrome (n = 359) slightly exceeded those without the condition
(n = 398). The mortality rate was higher in neonates with
respiratory distress syndrome (77.4%) than those without (71.8%).

While the number of deaths was higher among neonates
without hypoxic-ischemic encephalopathy (n = 493) compared
to those affected (n = 264), the mortality rate was substantially
higher in neonates with the condition (84.8%) compared to those
without (69.8%). In addition, a higher number of deaths occurred
in neonates whose mothers attended antenatal care (n = 748),
compared to those whose mothers did not attend (n = 9). Neonates
whose mothers did not attend antenatal care visits had a lower
mortality rate (60.0%) than those whose mothers attended (74.6%).
Lastly, neonates of unemployed mothers experienced more deaths
(n = 596) than those of employed mothers (n = 44). Mortality rates
were similar between the groups (63.7% vs. 53.7%, respectively).

Bivariate analysis

Log-rank tests were conducted to compare survival
distributions across several neonatal clinical and demographic
variables (Table 4).

There was no statistically significant difference in survival times

between HIV-positive and negative neonates (x* = 0.1, p = 0.70),
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indicating that HIV exposure alone may not have a significant effect
on neonatal survival in this cohort.

Survival differed significantly between neonates with and
without sepsis (x> = 5.4, p = 0.02), indicating that the presence
of sepsis is likely a determinant of mortality. Similarly, a significant
association was observed between RDS and survival (2 = 4.8, p=
0.03), suggesting that RDS may negatively impact neonatal survival.

A strong association was found between hypoxic-ischemic
encephalopathy and survival outcomes (x> = 7.3, p < 0.01),
with neonates affected by HIE showing lower survival probabilities.
Survival times differed significantly across birth weight categories
(x> = 212, p < 0.001), confirming that low birth weight
is a major determinant of neonatal mortality. A statistically
significant difference in survival time was observed between male
and female neonates (x> = 6.0, p = 0.01), suggesting that sex is
associated with neonatal survival, with females experiencing lower
survival probabilities.

Finally, no statistically significant difference in survival was
observed based on antenatal clinic attendance (x% = 0.9, p=0.30),
suggesting that antenatal attendance alone may not significantly
affect neonatal survival in this cohort.

Univariate analysis

In the univariate analyses, several clinical factors were
significantly associated with neonatal mortality risk (Table 5). Birth
weight was a protective factor, with neonates of higher weight
1.69, 95% CI: 1.47-1.95,
p < 0.001). Being male was also significantly associated with

showing longer survival times (TR =

15% longer survival compared to females (TR = 1.15, 95% CI:
1.03-1.28, p = 0.01). In contrast, HIE was a significant predictor,
associated with shorter survival (TR = 0.84, 95% CI: 0.75-0.94,
p < 0.001).

Among the other predictors, sepsis (TR = 1.11, 95% CI: 1.00—
1.24, p = 0.06), HIV exposure status (TR = 1.04, 95% CI: 0.90-
1.19, p = 0.60), ANC visits (TR = 0.95, 95% CI: 0.58-1.55,
p = 0.83), NE (TR = 1.06, 95% CI: 0.85-1.32, p = 0.63), and RDS
(TR = 0.92, 95% CI: 0.83-1.02, p = 0.11) were not significantly
significant (Table 5).
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FIGURE 2
Plot of log(-log (survival)) vs. log(time).

Multivariable analysis

After adjusting for all covariates, interestingly, sepsis was
significantly associated with longer survival times (TR = 1.16,
95% CI: 1.04-1.30, p < 0.01), suggesting that neonates with
sepsis survived approximately 16% longer compared to those
without sepsis. Hypoxic-ischemic encephalopathy was associated
with reduced survival, with affected neonates surviving 29% less
time compared to those without HIE (TR = 0.71, 95% CI: 0.63-0.81,
p < 0.001). Higher birth weight was a protective factor, associated
with an 88% increase in survival time (TR = 1.88, 95% CI: 1.60-2.20,
p < 0.001).

Other predictors, including HIV exposure (TR = 1.05, 95% CI:
0.91-1.20, p = 0.51), antenatal clinic visits (TR = 1.05, 95% CI: 0.65—
1.71, p = 0.84), necrotizing enterocolitis (TR = 0.93, 95% CI: 0.74-
1.16, p = 0.51), and respiratory distress syndrome (TR = 0.95, 95%
CI: 0.84-1.07, p = 0.38), remained not significant after adjustment.

In contrast, sex (TR = 1.07, 95% CI: 0.96-1.19, p = 0.21) was no
longer a significant predictor in the multivariate model, indicating
that their initial univariate effect may be confounded by other
clinical factors (Table 5).

Graphical assessment of the Weibull assumption

The Weibull AFT model fit was assessed graphically using a log-
minus-log transformation of the Kaplan-Meier survival estimates.
The survival function S(t) was estimated for the entire cohort
using the Kaplan-Meier method. To evaluate the appropriateness
of the Weibull model, a plot of log(—log(S(¢))) vs. log(t) was
generated. A linear trend seen in this plot indicates that the Weibull
distribution is a reasonable approximation for the survival times. A
fitted regression line overlaid visually assesses linearity and confirm
the suitability of the Weibull parametric model (Figure 2).

Investigation of the sepsis paradox

To explore the apparent paradoxical association between sepsis
and survival, in the multivariate model (TR = 1.16, 95% CI: 1.04-
1.30,p < 0.01), a series of analyses was conducted. First, descriptive
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TABLE 6 Mortality by sepsis status.

Sepsis Survived Died
No sepsis ‘ 176 ‘ 496
Sepsis ‘ 85 ‘ 261

statistics were computed to summarize mortality rates and survival
times by sepsis status. The distribution of mortality by sepsis status
was examined. Table 6 shows that mortality was high in both
groups: 496 of 672 (73.8%) neonates without sepsis died, compared
to 261 of 346 (75.4%) with sepsis.

In addition, Figure 3 presents the distribution of survival times
stratified by sepsis status, with histograms highlighting shorter
survival among neonates with sepsis compared to those without.

Mortality rates and survival times by sepsis status are presented
in Table 7. Mean survival times were similar between groups.

Timing analysis: immortal time bias

To assess potential immortal time bias, early deaths (<2 days)
were compared between neonates with and without sepsis (Table 8).
A lower number of early deaths occurred among those with sepsis
(n = 180) compared to those without sepsis (n = 320).

This pattern suggests that some neonates classified as “non-
sepsis” may have died before sepsis could be clinically diagnosed,
potentially contributing to the paradoxical association of sepsis
with longer survival observed in the multivariable analysis
(Table 9).

Association with severity markers

Table 10 shows the association between neonatal sepsis and
selected clinical severity markers. Sepsis was significantly associated
with RDS, but not with HIE or NEC, indicating that neonates with
sepsis were more likely to present with RDS, while the occurrence
of HIE and NEC appeared independent of sepsis status.

Stratified analysis by birth weight

Sepsis was stratified by birth weight (Table 11). Mortality
remained high in all strata, but differences between sepsis and
non-sepsis groups were reduced within strata. Among low birth
weight neonates, mortality was comparable between those with
sepsis (82%) and those without (80%). Similarly, in the normal birth
weight group, mortality rates were nearly identical between sepsis
(72%) and non-sepsis (71%) cases.

Weibull regression analyses

The unadjusted analysis suggested an association between
sepsis and lower mortality (TR > 1), consistent with the observed
sepsis paradox. Adjusting for birth weight and severity markers
(RDS, HIE) revealed a more robust effect (TR = 1.16), indicating
that the association in unadjusted models was partially due to
confounding. Sensitivity analyses excluding early deaths (<24 h
and <48 h) produced similar TRs, suggesting that immortal time
bias did not fully explain the paradox (Table 12).

Performance metrics
The time-dependent predictive performance of the seven
models were compared (Table 13). The RSF model demonstrated
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FIGURE 3
Sepsis status by survival status.
TABLE 7 Mortality rates and survival times by sepsis status. TABLE 9 Multivariable analysis.
Sepsis N Deaths Mortality Mean (SD) Predictor TR 95% ClI p-value
rate survival time
(days) HIV exposure 1.05 0.91-1.20 0.51
0 672 496 0.738 52(3.1)/4 Sex 1.07 0.96-1.19 021
1 346 261 0.754 5.0 (3.0)/4 Antenatal care visits 1.05 0.65-1.71 0.84
Necrotizing 0.93 0.74-1.16 0.51
enterocolitis
TABLE 8 Early deaths (< 2 days) by sepsis status. Sepsis 116 1.04-1.297 <001
Early death No sepsis Sepsis Respiratory distress 0.95 0.84-1.07 0.38
syndrome
<2 days 320 180
Hypoxic-ischemic 0.71 0.63-0.81 <0.001
>2 days 176 81 encephalopathy
Birth weight 1.88 1.60-2.20 <0.001

the highest overall discriminative ability, with a C-index of 0.73
(95% CI: 0.72-0.748), outperforming all other models. Its time-
dependent AUCs remained consistently strong across time points;
0.76 at 7 days, 0.66 at 14 days and 0.73 at 28 days (Figure 4),
with low Brier scores (<0.238), indicating good short and medium
term calibration and reliable prediction accuracy. These findings
highlight its ability to capture complex nonlinear relationships and
interactions between predictors.

Frontiersin Artificial Intelligence 11

The Weibull model achieved moderate performance (C-index
= 0.62; 95% CI: 0.60-0.65) with improving discrimination over
time (AUC = 0.70 — 0.73) but relatively higher Brier scores,
suggesting slightly poorer calibration. Similarly, the penalized Cox
models (Lasso, Ridge, Elastic Net) showed comparable and stable
performance across all time points (C-index = 0.620). Their AUCs
improved from approximately 0.68 at 7 days to 0.73 at 28 days,
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TABLE 10 Association between sepsis and severity markers.

Severity p-value Cramér's V
marker

Respiratory distress 16.2 <0.001 0.13
syndrome

Hypoxic-ischemic 3.6 0.06 0.06
encephalopathy

Necrotizing 0.4 0.52 0.02
enterocolitis

TABLE 11 Mortality by sepsis status, stratified by birth weight category.

Birth weight Sepsis N Deaths  Mortality
category rate
Low 0 200 160 0.80
Low 1 110 90 0.82
Normal 0 472 336 0.71
Normal 1 236 171 0.72

TABLE 12 Time ratio estimates for sepsis from Weibull regression under
different model specifications.

Analysis TR (sepsis) 95% ClI
Unadjusted 1.11 1.00-1.24
Adjusted (RDS, HIE, birth weight) 1.16 1.04-1.30
Excluding (<24 h deaths) 1.09 0.99-1.21
Excluding (<48 h deaths) 1.11 0.99-1.24

accompanied by decreasing Brier scores approximately 0.27 to 0.20,
indicating better long-term predictive accuracy but limited ability
to model nonlinear relationships.

The GBM model achieved a modest C-index of 0.596 (95% CI:
0.61-0.67) and showed improvement in discrimination over time
(AUC = 0.683 to 0.707), but it exhibited poor early calibration
(7-day Brier = 0.47), suggesting over-fitting at shorter follow-
up durations.

In contrast, DeepSurv yielded the lowest overall discrimination
(C-index = 0.55; 95% CI: 0.40-0.58), with inconsistent time-
dependent performance-excellent early discrimination (AUC =
0.82 at 7 days) but substantially reduced calibration at 28 days (Brier
=0.47). These fluctuations likely reflect model overfitting relative to
the neural network’s complexity.

Overall, the RSF model provided the best balance of
discrimination and calibration across all time points, making it
the most reliable for early risk stratification. Penalized Cox models
offered interpretable and reasonably accurate alternatives, while the
performance of GBMs and DeepSurv models may improve with
larger datasets or hyperparameter tuning.

Calibration plots

Calibration analysis revealed distinct patterns of prediction
bias across models and time points (Table 14). The Weibull
model consistently overpredicted risk at early time points, with
negative intercepts and slopes well below 1 (day 7: intercept -1.17,
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slope -0.73), indicating both systematic bias and overestimation.
Although its intercept improved by day 28 (1.10), the slope
remained suboptimal (-0.56), suggesting persistent miscalibration
(Figure 5a).

Regularized models (Lasso, Ridge, Elastic Net) showed similar
behavior: intercepts changed from negative to positive over time,
reflecting reduced bias, while slopes remained below 1, indicating
overestimation. For example, Lasso’s slope increased from 0.25 at
day 14 to 0.53 at day 28, with intercepts shifting from -0.73 to
0.70. Ridge and Elastic Net followed comparable trajectories, with
modest slope recovery and intercepts approaching zero by day 28
(Figures 5b-d).

RSF demonstrated progressive improvement, with intercepts
moving from -1.55 to 0.89 and slopes from 0.62 to 0.64 across
time points. While not perfectly calibrated, RSF showed the most
consistent trend toward reliability (Figure 5e¢). In contrast, GBM
exhibited miscalibration throughout: intercepts were negative (-
3.86 at day 7), and slopes remained extremely low (0.13 at day 14),
indicating overestimation and biased predictions (Figure 5f).

DeepSurv displayed the most favorable calibration at day 7,
with intercept —0.79 and slope 0.79, closely approximating ideal
values. However, its calibration deteriorated at later time points,
with a reversed slope at day 28 (-0.51) and a high intercept
(1.75), suggesting that its probability estimates were not consistent
over time. Overall, while most models exhibited some degree of
miscalibration, RSF and DeepSurv demonstrated comparatively
better alignment between predicted and observed risks (Figure 5g).

Feature importance analysis

Since the RSF model was the overall best machine learning
model, the importance of its features was interpreted (Table 15).
The model demonstrated rapid convergence of error rates,
stabilizing after approximately 300 trees, indicating adequate
ensemble size for robust prediction. The analysis identified birth
weight as the most important feature of neonatal survival, with
a relative importance set to 1.00. This variable contributed
substantially more to model performance than any other feature.

Neonatal sex, sepsis, and necrotizing enterocolitis emerged
as the next most important predictors, each explaining roughly
one-quarter to one-third of the predictive contribution of birth
weight. Hypoxic-ischemic encephalopathy also demonstrated a
meaningful effect, though of slightly lower magnitude. In contrast,
respiratory distress, HIV exposure, and antenatal care visits
were associated with lower importance values, indicating weaker
contributions to overall model discrimination. These findings
highlight the dominant role of birth weight in determining
neonatal outcomes, while also highlighting the relevance of key
clinical complications such as sepsis, necrotizing enterocolitis, and
hypoxic-ischemic encephalopathy.

Discussion

The high mortality rate (74.3%), reflects the vulnerability of this
neonatal population and consistent with prior reports from low and
middle income settings (Liu et al., 2016; Lawn et al., 2005).

Birth weight consistently remained as a strong predictor and
confirmed the well established association between low birth weight
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TABLE 13 Overall and time-dependent predictive performance metrics of the survival models.

C-index 95% ClI Time (days) AUC 95% ClI 95% ClI

Weibull 0.62 (0.60-0.65) 7 0.70 (0.62-0.77) 0.32 (0.29-0.35)
14 0.65 (0.57-0.72) 0.33 (0.30-0.37)

28 0.73 (0.66-0.81) 0.38 (0.35-0.41)

Lasso 0.62 (0.60-0.64) 7 0.68 (0.60-0.76) 0.27 (0.25-0.30)
14 0.64 (0.56-0.72) 0.25 (0.22-0.28)

28 0.73 (0.66-0.81) 0.20 (0.18-0.23)

Ridge 0.62 (0.60-0.64) 7 0.68 (0.59-0.76) 0.27 (0.25-0.30)
14 0.64 (0.56-0.71) 0.26 (0.23-0.28)

28 0.73 (0.65-0.80) 0.20 (0.18-0.23)

Elastic Net 0.62 (0.60-0.64) 7 0.68 (0.60-0.76) 0.26 (0.24-0.29)
14 0.65 (0.57-0.73) 0.25 (0.22-0.28)

28 0.74 (0.66-0.81) 021 (0.18-0.24)

RSF 0.73 (0.72-0.75) 7 0.76 (0.67-0.82) 0.20 (0.17-0.22)
14 0.66 (0.59-0.74) 0.24 (0.22-0.26)

28 0.73 (0.65-0.80) 021 (0.16-0.25)

GBM 0.60 (0.61-0.67) 7 0.68 (0.61-0.76) 047 (0.41-0.52)
14 0.62 (0.54-0.70) 0.40 (0.34-0.45)

28 071 (0.63-0.78) 0.22 (0.18-0.26)

DeepSurv 0.55 (0.40-0.58) 7 0.82 (0.76-0.88) 0.16 (0.14-0.19)
14 0.60 (0.52-0.68) 0.26 (0.22-0.30)

28 0.77 (0.70-0.83) 0.47 (0.43-0.51)
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FIGURE 4
ROC curve at 28 days time point.

and neonatal mortality (Lee et al., 2013). Neonates who died
had a median birth weight of 1.22 kg compared to 1.64 kg
among survivors. Although more male neonates died in numbers,
the mortality rate was higher among females (78.6% vs. 71.0%),
supporting prior reports of sex specific vulnerability (Kent et al.,
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2012), though the literature remains mixed (Mondal et al., 2014).
The consistency of birth weight as a significant factor highlights
its effect as a more robust marker of neonatal vulnerability.
Conversely, a study in Botswana by Kitt et al. (2022), found low
birth weight to be protective factor. HIE was associated with
reduced survival (TR = 0.71, p < 0.001), consistent with its
known role in neonatal morbidity and mortality (Shankaran et
al., 2005). RDS and NEC were associated with high mortality
rates, though their effects were reduced in adjusted models, likely
reflecting overlapping clinical pathways and limited sample size for
NEC cases.

On the contrary, sepsis was associated with a reduced
risk of mortality in adjusted models. This unusual finding
challenges clinical assumptions and merits careful interpretation. A
counterintuitive finding was that sepsis was associated with reduced
mortality risk in multivariate models, with affected neonates
surviving 16% longer than those without sepsis (TR = 1.16, 95%
CI: 1.04-1.30). This “sepsis paradox” has been described in other
critical care contexts (Seymour et al., 2016). Investigation showed
that mortality rates were similar between septic and non septic
neonates (75.4% vs. 73.8%), and Kaplan-Meier curves revealed
overlapping survival distributions. Stratified analyses by birth
weight reduced differences, suggesting confounding by growth
restriction. Sepsis was also significantly associated with RDS,
indicating clustering with other severity markers. Importantly,
sensitivity analyses excluding early deaths (< 24h and < 48h)
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TABLE 14 Calibration intercept and slope estimates with 95% confidence intervals across models and time points.

Model Time (days) Intercept 95% CI Slope 95% ClI
Weibull 7 -1.17 (-1.71 to -0.75) -0.73 (-1.34to -0.44)
14 -0.32 (~0.82 t0 0.09) -0.27 (-0.95 to -0.03)
28 1.10 (0.64 to 1.47) -0.56 (-1.44 to -0.12)
Lasso 7 -1.57 (-1.98 to -1.21) 0.66 (0.37 to 1.24)
14 -0.73 (-1.12 to -0.40) 025 (0.03 to 0.89)
28 0.70 (0.38 to 1.01) 0.53 (0.12 to 1.31)
Ridge 7 -1.60 (-2.00 to -1.23) 0.64 (0.36 to 1.23)
14 -0.75 (-1.14 to -0.42) 025 (0.03 to 0.87)
28 0.69 (0.36 t0 0.99) 0.51 (0.11 to 1.27)
Elastic Net 7 -1.52 (-1.95 to -1.16) 0.66 (0.38 to 1.20)
14 -0.68 (~1.08 to ~0.35) 0.26 (0.04 to 0.85)
28 0.77 (0.45 to 1.08) 0.54 (0.12 to 1.28)
RSF 7 -1.55 (-1.95 to -1.20) 0.62 (0.36 to 1.12)
14 -0.65 (~1.06 to ~0.32) 0.44 (0.24 t0 0.73)
28 0.89 (0.51 to 1.19) 0.64 (0.38 to 1.01)
GBM 7 -3.86 (~4.50 to -3.42) 0.22 (0.11 to 0.45)
14 -2.74 (-3.32t0 -2.27) 0.13 (0.01 to 0.31)
28 -0.68 (-1.20 to -0.22) 032 (0.20 to 0.48)
DeepSurv 7 -0.79 (-1.27 to -0.42) 0.79 (0.51 to 1.19)
14 0.17 (-0.33 t0 0.57) 0.22 (0.06 to 0.45)
28 1.75 (1.29 t0 2.19) -0.51 (~1.02 to -0.18)

yielded similar time ratios, suggesting that immortal time bias did
not fully explain the paradox. Instead, the paradox may reflect
that neonates who survived long enough to be diagnosed with
sepsis also survived long enough to receive targeted treatment,
therefore improving outcomes. This highlights the importance of
considering timing of diagnosis and treatment effects in neonatal
survival analyses (Fleischmann et al., 2021). In one large multi-
center African analysis, a history of sepsis did not independently
increase the risk of in-hospital neonatal death after adjusting for
birth weight and prematurity (Ballot et al., 2010).

Factors such as the use of maternal antibiotics, negative repeat
cultures within 72 h, and aggressive monitoring in neonatal care
units may contribute to this observation. Singh’s findings suggest
that, in certain contexts, sepsis may signal a condition that has been
rapidly identified and treated, leading to favorable outcomes (Singh
et al., 2022). This aligns with observations by Batista et al. (2021),
emphasizing the positive impact of intensive neonatal care in
enhancing outcomes. Though similar patterns were noted in Singh
et al, the discussion in that context also lacked a critical synthesis.

Additionally, retrospective data often lack precise timing of
diagnosis, illness severity, or treatment initiation, which limits
accurate interpretation. Similar patterns have been observed in
other retrospective cohorts (Singh et al., 2022), emphasizing the
need for caution when interpreting unusual associations from
observational data. Future research should incorporate time-
varying variables as well as sepsis severity to better account for such
biases in observational data.

Frontiersin Artificial Intelligence

Analysis demonstrated that the Random Survival Forest
achieved the highest discriminative ability (C-index = 0.73),
outperforming traditional Weibull AFT and penalized Cox
models. This aligns with prior work showing that RSF effectively
captures nonlinearities and interactions in survival data, often
outperforming Cox-based approaches in biomedical applications
(Ishwaran et al., 2008).

Recent neonatal survival studies also highlight the promise
of machine learning. For example, Li et al. (2024) demonstrated
that Random Forest models improved prediction of survival in
extremely premature neonates compared to traditional scoring
systems. Similarly, external validation studies in high-mortality
neonatal settings emphasize the importance of calibration
alongside discrimination, showing that models often require
updating to maintain accuracy across populations (Tuti et al,
2022).

Regularized Elastic Net
provided moderate discrimination but demonstrated stable

regression models such as
calibration, consistent with their theoretical advantage in
handling correlated predictors (Zou and Hastie, 2005). The
DeepSurv model performed well initially but calibration and
discrimination declined overtime, likely due to limited sample
size, supporting prior findings that deep learning requires
large-scale data to achieve stable generalization (Katzman et
al., 2018). In addition, GBMs showed persistent miscalibration
across all time points, reflecting over-prediction and poor
probability scaling.
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TABLE 15 Variable importance: random survival forest model.

Variable Importance _ Relative
importance

Birth weight 0.15 1.00
Sex 0.05 0.33
Sepsis 0.04 0.29
Necrotizing enterocolitis 0.04 0.24
Hypoxic-ischemic 0.03 0.21
encephalopathy

Respiratory distress syndrome 0.02 0.13
HIV exposure 0.02 0.12
Antenatal care visits 0.01 0.10

RSF feature analysis confirmed birth weight as the most
influential feature. Neonatal sex, sepsis, and NEC followed. HIE
also contributed meaningfully, while RDS, maternal HIV exposure,
and antenatal care attendance were weaker predictors. Feature
importance analyses in neonatal machine learning models have
similarly highlighted birth weight, gestational age, and infection-
related complications as key drivers of mortality risk (Li et al,
2024).

This study has several important limitations that must be
acknowledged to contextualize the findings and interpret the results
appropriately. First, because this was a retrospective study relying
on routine clinical records, there’s a possibility of bias due to data
misclassification, missing variables that could not be measured, or
simple inaccuracies. Notably, a large proportion of the original
dataset, nearly 70% had to be excluded due to interest in specific
variables, and ultimately based the analysis on complete cases only.

Secondly, the number of predictor variables used was limited
to clinical variables and therefore had no access to time-updated
clinical indicators such as vital signs or treatment changes.

Thirdly, the study was conducted at a single center, and it
focused only on in-hospital outcomes. There was no follow-up
on what happened to neonates after discharge, such as post-
hospital mortality or readmission. This, combined with relatively
short follow-up time, limits how broadly our findings can be
applied to different settings or neonatal populations. In addition,
although multiple imputation was performed, pooled estimates
were not fully reported, and adherence to standardized reporting
frameworks would strengthen reproducibility. The absence of time-
specific data for sepsis also limited assessment of its temporal
effects, which may explain the unexpected associations observed.
Finally, the risk factors identified are rooted in the context of
this particular neonatal group. Its entirely possible that these
insights may not apply as well in other health systems or
regions. Because of that, external validation in other hospitals,
ideally across multiple centers and settings, will be essential.
This kind of validation would allow assessment on whether
findings in this study are robust, reproducible, and meaningful
beyond this context. Despite these limitations, the results suggest
potential integration points for ML in neonatal care. To bridge
the gap between model development and clinical translation,
future tools should prioritize both interpretability and predictive
precision. Model transparency remains essential in sensitive
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clinical domains such as neonatal care, where decisions carry
significant consequences.

Conclusion

This study emphasizes the significant role of neonatal factors,
particularly birth weight, sepsis and HIE in predicting mortality,
with select socio-demographic factors such as sex also contributing
to mortality risk. The comparison between Weibull and ML models
highlights that while the Weibull model remains a reliable baseline
model, RSF model demonstrated better predictive accuracy and
feature selection flexibility. Ultimately, the choice of model should
consider dataset size, variable model complexity, and clinical
needs, as ML models, when used appropriately, can enhance
predictive outcomes in neonatal health research. Future studies
should explore hybrid approaches combining traditional and ML
models to maximize both interpretability and predictive accuracy.
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