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This work examines the integration of large language models (LLMs) into
multi-agent simulations by replacing the hard-coded programs of agents with
LLM-driven prompts. The proposed approach is showcased in the context of two
examples of complex systems from the field of swarm intelligence: ant colony
foraging and bird flocking. Central to this study is a toolchain that integrates
LLMs with the NetLogo simulation platform, leveraging its Python extension
to enable communication with GPT-4o via the OpenAI API. This toolchain
facilitates prompt-driven behavior generation, allowing agents to respond
adaptively to environmental data. For both example applications mentioned
above, we employ both structured, rule-based prompts and autonomous,
knowledge-driven prompts. Our work demonstrates how this toolchain enables
LLMs to study self-organizing processes and induce emergent behaviors
within multi-agent environments, paving the way for new approaches to
exploring intelligent systems and modeling swarm intelligence inspired by
natural phenomena. We provide the code, including simulation files and data at
https://github.com/crjimene/swarm_gpt.
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1 Introduction

1.1 From rule-based to LLM-driven agents: a new
paradigm in ABMS

In this study, we use the terms “agent” and “multi-agent” based on their foundational
meanings in agent-based modeling and simulation (ABMS, Macal and North, 2009), while
extending them through the integration of large language models (LLMs, Chang et al.,
2024). Traditionally, an agent in ABMS is an autonomous entity with localized decision-
making abilities, interacting with its environment and other agents according to predefined
rules or principles. A multi-agent system (MAS, Wooldridge, 2009) refers to a collection of
such agents operating within a shared environment, where global behaviors emerge from
their local interactions. Examples of ABMS include simulations of ecosystem dynamics,
urban development, and social interactions (Heckbert et al., 2010; Chen, 2012; Bianchi and
Squazzoni, 2015).

Beyond rule-based agents, ABMS literature also explores agents controlled by neural
networks, especially in applications that require adaptability or learning. Techniques
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like reinforcement learning and evolutionary strategies are
commonly used to optimize agent behaviors in dynamic
environments (Hecker and Moses, 2015; Ning and Xie, 2024;
Liu et al., 2024a). Other research investigates the application of
biologically inspired architectures, particularly spiking neural
networks, to develop solutions that are both energy-efficient
and computationally effective (Fang and Dickerson, 2017; Putra
et al., 2024). Within these systems, emergent behavior plays
a pivotal role, facilitating the effective handling of complex
tasks (Jimenez Romero et al., 2024).

Recently, these terms have been introduced in a different
context within artificial intelligence. Here, AI agents often represent
task-oriented entities designed to autonomously achieve specific
goals, such as generating dialogues or managing workflows. These
agents typically focus on individual task execution rather than the
emergent dynamics central to ABMS (Talebirad and Nadiri, 2023;
Kannan et al., 2024; Li et al., 2024).

In our work, we employ the terms “agent” and “multi-agent”
in the context of ABMS while integrating LLMs to guide agent
behaviors. An agent in our simulations can be either LLM-
steered or rule-based. We incorporate LLMs to guide agent
behaviors in two ways: (1) simulations consisting entirely of LLM-
steered agents, and (2) hybrid simulations where LLM-steered
agents interact with traditional rule-based agents. This means our
simulations can have populations of agents that are completely
LLM-based or a mix of LLM-based and rule-based agents within
the same environment.

We aim to explore the potential advantages of leveraging the
decision-making and pattern-generation capabilities of LLMs to
augment ABMS. Specifically, we are interested in investigating
whether integrating LLMs can help us model emergent behavior
using the language processing capabilities and the knowledge base
of LLMs.

From this point forward, when we refer to “agents,” we mean
agents within the ABMS framework that may incorporate LLM
intelligence.

1.2 Motivation

The field of agent-based simulations has rapidly evolved, driven
by advances in artificial intelligence (AI) and computational power.
These simulations, which model the interactions of autonomous
agents within a defined environment, are increasingly being
enhanced by the integration of generative AI, particularly LLMs.
In this context, LLMs—with their capacity to process and generate
human-like text—offer a novel means of guiding and influencing
agent behaviors in real-time. A critical aspect of this integration is
prompt engineering, which is the careful design of prompts that
serve as instructions for the agents, dictating how they should
respond to their environment.

The motivation and contribution of this work are found in the
presentation of a toolchain that integrates LLMs with agent-based
simulations within the NetLogo environment (Wilensky, 1999;
Tisue and Wilensky, 2004; Amblard et al., 2015), a platform widely
recognized in the complexity science community for its robustness
and versatility. NetLogo’s value as an educational tool spanning

various academic levels further underscores its importance, making
it an ideal choice for demonstrating the integration of advanced AI
methods into multi-agent simulations.

Our study investigates two distinct approaches to utilizing
LLMs within multi-agent environments, focusing on the role
of prompt engineering in shaping agent behavior. The first
approach employs detailed, structured prompts within an ant
colony simulation. These prompts are designed to specify behaviors
under clearly defined conditions, such as following pheromone
trails or retrieving food. This method allows for precise control
over agent actions, enabling a rule-based system where each agent’s
behavior is explicitly dictated by the LLM-generated instructions.

In contrast, the second approach explores the use of less
structured, principle-based prompts in a bird flocking simulation.
Here, the prompts rely on the LLM’s inherent understanding of
complex concepts such as flocking dynamics and self-organization.
Instead of requiring explicit, rule-based instructions, these prompts
allow the LLM to handle the intricate behavioral patterns that
would otherwise need numerous rules to define. This approach
leverages the LLM’s capacity to intuitively model these dynamics,
enabling behaviors that emerge naturally from agents’ interactions
with each other and their environment. As we will show, the LLM
can produce adequate and adaptive agent behaviors that realistically
reflect complex, emergent patterns within the simulation.

1.3 Research objectives

The following are the main objectives of our research:

• To assess the efficacy of structured prompts in the context
of the rule-based ant colony foraging simulation of NetLogo,
which is a classic MAS model that demonstrates swarm
intelligence principles based on how real ants find food and
communicate via pheromones. It is widely used in artificial
intelligence, complexity science, and optimization research.

• To assess the efficacy of structured prompts in NetLogo’s
knowledge-driven bird flocking simulation, which is also a
classic model demonstrating self-organizing behavior in MAS.
It is inspired by Craig Reynolds’ “Boids” model (Reynolds,
1987), which simulates how birds, fish, or other animals move
in cohesive groups without a central leader.

• To present a comprehensive toolchain that combines LLMs
with multi-agent simulation environments, offering a new
method for modeling and analyzing swarm behavior in
complex systems.

This investigation aims to explore how LLMs, through effective
prompt engineering, can be integrated into multi-agent systems to
model and guide emergent, self-organizing behaviors in simulated
environments.

1.4 Background and related work

The integration of generative AI into multi-agent systems
represents a burgeoning field that seeks to enhance the autonomy,
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adaptability, and realism of agent behaviors in simulations. This
approach leverages the vast knowledge embedded within LLMs to
influence agent interactions in ways that were previously unfeasible
with traditional rule-based systems. The use of generative AI in
multi-agent simulations has opened new avenues for exploring
complex behaviors, emergent dynamics, and adaptive systems.

In particular, the integration of LLMs with agent-based
simulations represents a significant convergence of natural
language processing (NLP) and complex systems modeling. LLMs,
with their ability to generate human-like text and understand
complex linguistic patterns, have transformed various fields within
artificial intelligence, particularly in automating and interpreting
language-based tasks. Agent-based simulations are a robust
framework for modeling complex systems where individual agents
interact with each other and their environment, potentially leading
to emergent behaviors. The use of LLMs in simulations may
hereby vary widely, from highly structured, rule-based prompts
that delineate specific actions to more generalized prompts that rely
on the LLM’s broader knowledge base. This study highlights two
distinct methodologies in applying LLM capabilities to simulate
emergent, multi-agent behaviors with varying degrees of prompt
specificity and autonomy.

Integrating LLMs with agent-based simulations presents
transformative opportunities across various domains, enhancing
the realism and complexity of simulations. This integration can
significantly improve the modeling of social systems, industrial
automation, and multi-agent interactions.

Park et al. (2023) introduce an LLM-driven agent that can
engage and converse with both humans and other AI agents.
The agent has the capability to generate text that can be
comprehended and interpreted by other agents. This facilitates
clear communication between them, fostering effective interactions
and collaboration. The simulated environment functions as a
sandbox composed of text, allowing the agent to perceive and
interpret the surrounding context effectively. This setting enables
the agent to navigate and interact with the provided information.
Inspired by the work of Park et al. (2023), Junprung (2023) presents
two LLM-driven experiments, two-agent negotiation, and a six-
agent murder mystery game to simulate human behavior. The
author describes the behavior of three categorical different LLM-
driven simulations and discusses the limitations of large-scale
language models.

Gao et al. (2023) create a framework for social network
simulation called S3. They simulate motion, attitude, and
interactive behaviors to emulate social behavior. Due to the
changing environment, the agents have to adapt and retain a
memory to utilize past experiences and adjust their behavior. They
observe the emergence of collective behavior among the agents and
conclude their environment holds potential for further exploration
in the fields of social sciences and informed decision-making. This
insight suggests that the dynamics observed could provide valuable
perspectives on group interactions and collaborative processes.

The research of Dasgupta et al. (2023) investigates the use of
LLMs to improve the decision-making abilities of AI agents that
interact with their environment. The proposed system consists of
three parts: a Planner that uses a pre-trained LLM to generate
instructions, a reinforcement-learning agent, the Actor, that carries

out these instructions, and a Reporter that provides environmental
feedback to the Planner. The Planner reads a description of the
task and breaks it down into simple instructions for the Actor,
who was trained to understand simple instructions and operates
upon them. The Reporter observes the effects of the Actor’s actions
on the environment and communicates this information in a
text-based form back to the Planner. The system is tested on
complex tasks that require reasoning and gathering information,
and the results show that it outperforms traditional reinforcement
learning methods, especially when using larger language models.
The researchers demonstrate that Large language models (70 billion
parameters) consistently outperformed smaller language models
(7 billion parameters) in the experiments, indicating that larger
models have resilience against noisy or irrelevant information
and greater capacity for the complex reasoning required to solve
these tasks. Zhu et al. (2023) present Ghost in the Minecraft
(GITM), a framework for developing general capable agents
in the Minecraft world. In contrast to previous approaches,
especially reinforcement learning algorithms, GITM uses large
language models to achieve high success rates, e.g. in the "Obtain
Diamond" task. Typical reinforcement learning-based agents often
struggle with the complexity of Minecraft due to the long time
horizon of the task, which can lead to difficulties in learning and
adapting. In contrast, Zhu et al. (2023) leverages LLMs to enable
a hierarchical decomposition of complex tasks into manageable
sub-goals and structured actions. This approach yields significantly
higher efficiency and robustness, allowing agents to better navigate
and interact with the Minecraft environment. GITM integrates the
logical reasoning and knowledge base of LLMs with text-based
knowledge and memory, enabling effective interaction with the
environment and the pursuit of intricate, long-term objectives. The
article demonstrates the potential of LLMs for the development of
generally capable agents in open, complex environments.

Recently, researchers incorporated LLM into swarm systems
to leverage the reasoning and knowledge capabilities of these
models (Gao et al., 2024; Qu, 2024). Strobel et al. (2024)
integrate LLMs into robot swarms to enhance their reasoning,
planning, and collaboration abilities. They exchange the robot
programming controller by proposing two changes: (1) An indirect
integration uses LLMs to generate and validate the programming
of the controller before or during the deployment. This approach
improves efficiency and reduces human error by automating the
design process. (2) A direct integration implements a separate LLM
for each robot during deployment, enabling the robot to plan,
reason, and collaborate using natural language. The LLM-driven
robots can detect and respond to unexpected behaviors and are
more resilient in dynamic environments without prior information.

Feng et al. (2024) present an algorithm aimed at adapting
LLM experts using collaborative search techniques inspired by
swarm intelligence. This method allows several LLMs to collaborate
in exploring the weight space to optimize a specific utility
function without the need for extensive fine-tuning data or strong
assumptions about the models involved. In their work, each LLM
can be treated as a particle within a swarm navigating within the
weight space and adjusting its position based on its best or worst-
found solutions. The algorithm demonstrates flexibility in different
single or multi-task objectives. Due to their collaborative search
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approach the LLM experts can discover unseen capabilities, which
enables the transition from weak to strong performance levels.

In their work, called Swarm-GPT, Jiao et al. (2023) integrate
LLMs with motion-based planning to automate Unmanned Aerial
Vehicle (UAVs) swarm choreography. Users are able to generate
synchronized drone performance via language commands. Swarm-
GPT is able to utilize LLMs to create UAVs formations and
movements which are synchronized to music. The system includes
a trajectory planner that utilizes waypoints generated by the LLM,
guaranteeing that the drone movements are both collision-free
and feasible. Swarm-GPT has been effectively demonstrated at live
events, highlighting its practical application and ability to perform
in real time.

Liu et al. (2024c) explore the application of multimodal
LLMs to control the formation of UAVs using image and text
inputs. The researchers first pre-trained an LLM on a single
UAV, demonstrating the LLM’s potential to interpret and execute
commands effectively. Then they expanded their approach to
coordinate multiple UAVs in formation. The multimodal LLM
recognizes environmental signals from the images captured by the
primary drone (via a camera). Then, the pre-trained LLM analyzes
the data and generates instructions for managing the UAV to attain
a specified formation.

Another application in language-guided formation control is
presented by Liu et al. (2024b). The authors propose a framework
called Language-Guided Pattern Formation (LGPF) for swarm
robotics. Their system employs an LLM to translate a high-level
pattern description into specific actions for a swarm of robots,
integrating multi-agent reinforcement learning for detailed control.
The LGPF framework allows for intuitive and flexible control
of robot swarms, enabling them to achieve complex formations
guided by natural language instructions.

Most existing MAS and swarm intelligence simulations rely
on explicitly programmed, rule-based behaviors that are often
domain-specific and lack flexibility. While several recent works
have explored LLMs for planning or social agent interactions, such
as role-playing agents or virtual societies, these typically focus on
human-like reasoning, not swarm intelligence or nature-inspired
collective behavior. In contrast to existing literature, our paper
makes the following contributions. (1) We investigate how LLMs
can be integrated into swarm intelligence. This is one of the
first works to use LLMs as decentralized behavioral engines for
non-human and non-verbal, swarm-like agents. We demonstrate
our framework on two classical swarm intelligence scenarios–ant
colony foraging and bird flocking–each involving different sensory
inputs and emergent outcomes. In both cases, agents receive
localized information about their environment and act based
on LLM-generated decisions. (2) We introduce a generalizable
toolchain for integrating LLMs with OpenAI’s GPT models
via Python, enabling agents to act based on prompt-generated
decisions rather than fixed procedural logic. This framework
decouples agent logic from hardcoded rules, enabling behavior to
be modified or extended via natural language prompts. (3) Our
work compares two categories of LLM prompt - structured rule-
based and autonomous knowledge-driven - to show how different
prompt designs affect emergent behavior in collective systems.
While the structured prompts encode rule-based logic in natural

language, the autonomous prompts rely on the LLM’s internal
knowledge and general reasoning. This comparison provides
insight into the design space of LLM-based agent prompts and their
effect on emergent system dynamics.

2 Materials and methods

In this study, we employed two distinct simulations of the
behavior of social insects to explore the integration of LLMs
in guiding agent behaviors within multi-agent systems. The
experiments were designed to investigate the effectiveness of
structured, rule-based prompts in one scenario and principle-
based, knowledge-driven prompts in the other one. Both
simulations utilize the LLM to process environmental inputs and
generate agent actions, providing insights into how LLMs can
be leveraged to model complex behaviors such as foraging and
flocking.

Structured rule-based prompts are designed with explicit,
predefined instructions that guide the LLM to generate
deterministic agent actions. These prompts specify exact conditions
and responses, ensuring consistent and predictable agent behaviors.
For example, in a foraging scenario, structured prompts might
include direct rules for following pheromone trails or picking up
food when encountered.

Knowledge-driven prompts, on the other hand, rely on the
LLM’s inherent understanding of broader behavioral concepts
and principles. These prompts are less rigid and provide the

TABLE 1 Comparative analysis of structured, rule-based prompts versus
knowledge-driven prompts, highlighting their distinctive design criteria,
operational characteristics, and intended use within agent-based
simulations.

Criterion Structured,
rule-based
prompts

Knowledge-
driven
prompts

Prompt design Clearly defined rules,
explicit instructions

Flexible guidelines,
open-ended knowledge
requests

Nature of guidance Deterministic,
prescriptive

Non-deterministic,
explorative

Task scope Narrowly defined,
specific tasks

Broadly defined, general
objectives

Output variability Limited, predictable
outputs

High variability, adaptive
outputs

Agent autonomy Low autonomy; actions
explicitly guided by rules

High autonomy; agents
independently reason
and adapt

Dependency on
predefined rules

High; relies strictly on
pre-specified
instructions

Low; leverages intrinsic
knowledge of the model

Adaptability to new
scenarios

Limited; requires manual
adjustment of rules

High; readily adapts
using implicit knowledge

Complexity of
prompt structure

Structured, fixed
templates

Dynamic, context-driven
structures

Use case examples Specific simulations,
controlled experiments

Explorative tasks, novel
scenario discovery
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LLM with general guidelines, enabling more adaptive and flexible
agent behaviors. In the context of a bird flocking simulation,
such prompts might encourage behaviors based on principles
like alignment, cohesion, and separation without specifying exact
actions, allowing the LLM to synthesize responses that foster
emergent, self-organizing dynamics.

To clearly illustrate the conceptual differences between the
two types of prompts employed in this study: structured, rule-
based prompts and knowledge-driven prompts, Table 1 presents
a comparative analysis outlining their defining criteria and
characteristics.

2.1 Toolchain for LLM-driven multi-agent
simulations with NetLogo

Figure 1 illustrates the toolchain for LLM-driven multi-agent
simulations with NetLogo, showing the integration between
NetLogo, GPT-4o, and the Python extension. The following
enumeration describes each step of the workflow:

1. Environment encoding: The simulation toolchain leverages
NetLogo to capture real-time environmental states, including
agent positions, inter-agent interactions, and other relevant
environmental variables depending on the simulation (e.g.
pheromone concentrations). These data are encoded into
structured prompts that convey a comprehensive environmental
context to the LLM. This encoding ensures that the LLM receives
timely, accurate input representing dynamic changes in the
environment.

2. Python extension integration: NetLogo uses its Python
extension to facilitate communication with GPT-4o via the
OpenAI API. This extension allows NetLogo to send encoded
environmental data as prompts to the LLM and receive
structured responses, enabling the interaction between the
simulation platform and the LLM.

3. LLM processing: The structured prompts are processed by GPT-
4o, which interprets the input data and generates agent behavior
suggestions based on encoded environmental information. The
LLM’s ability to process complex, context-rich data allows it to
infer and propose actions that adhere to predefined rules (for
structured prompts) or leverage general behavioral principles
(in principle-based prompts). This stage ensures that agent
responses align with the overall objectives of the simulation, be
it foraging success or cohesive flocking.

4. Decoding LLM output: The LLM output, formatted as a
structured JSON or Python dictionary, is translated into
executable actions predefined within the NetLogo simulation.
This step converts the structured actions generated by the
LLM into precise instructions for agents, such as movement
vectors, state transitions, or pheromone release behaviors. The
Python extension facilitates this process by receiving the LLM
responses from the OpenAI API and converting them into a
NetLogo-compatible data structure. This translation mechanism
ensures both syntactic and semantic alignment between the
LLM’s output and the data format required by the simulation.

5. Agent action execution and iterative process: The decoded
commands are executed by the agents in NetLogo, updating

their states and behaviors in response to the LLM’s instructions.
This action directly modifies the simulation environment,
forming a closed-loop system where each action feeds back into
the environmental context for the next iteration. The iterative
process ensures that agent behaviors continuously respond to
evolving environmental conditions and LLM feedback, fostering
emergent behaviors and adaptive responses.

The following sections detail the setup, LLM integration, and
procedures used in each experiment.

3 Experiment 1: ant colony foraging
simulation

As mentioned above, this experiment is based on the ant
foraging model implemented in the NetLogo library (Wilensky,
1997, see https://ccl.northwestern.edu/netlogo/models/Ants). It
takes place in a two-dimensional foraging area consisting of
designated food sources scattered throughout the environment and
a central nest where the ants must return to deposit the food they
collect. The environment is designed to mimic natural foraging
conditions, where agents (ants) must navigate to find food and
return it to the nest while interacting with environmental cues such
as pheromone trails and nest scents; see Figure 2.

• Agents: The simulation features stateless ants, each operating
as an independent agent without memory of past actions.
These ants rely entirely on real-time environmental inputs and
LLM-generated prompts to determine their behaviors. The
agents are designed to follow explicit, rule-based instructions
derived from the LLM, ensuring that their actions are
predictable and consistent with predefined conditions.

• LLM integration: OpenAI GPT-4o is employed to process
structured prompts that define the ants’ behaviors. The
default API parameters are used, with the exception of the
temperature, which is set to 0.0 to ensure deterministic results
based on the provided inputs. The LLM receives real-time
environmental information and generates actions according
to a predefined set of rules. These structured prompts ensure
that the ants’ responses are clearly defined and predictable,
enabling systematic analysis of their behavior. Nevertheless,
there is still a small chance that the LLM may occasionally
generate responses that deviate from the specified rules.

3.1 Procedure

3.1.1 Prompt design
The prompt is structured as a zero-shot prompt, requiring

the LLM to generate accurate responses without relying on
prior examples or contextual memory from previous interactions.
This intentional design maintains stateless prompts to control
the agents. We employed an API function that does not retain
conversation context between prompts, making each interaction
independent and requiring the LLM to interpret and respond
solely based on the current input. The final prompt used in

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1593017
https://ccl.northwestern.edu/netlogo/models/Ants
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jimenez-Romero et al. 10.3389/frai.2025.1593017

FIGURE 1

Diagram illustrating the toolchain for LLM-driven multi-agent simulations, integrating NetLogo and GPT-4o via the Python extension and OpenAI API.
The workflow showcases a closed-loop process where environmental states are encoded into structured prompts, processed by GPT-4o to
generate behavior suggestions, decoded into executable actions, and iteratively executed by agents within the NetLogo simulation environment.

FIGURE 2

Ant foraging simulation in NetLogo. The central circle depicts the nest area, while the three blue circles nearby indicate food sources.

our experiments resulted from several iterations in a trial-and-
error process to ensure the LLM could effectively understand the
environment and rules and execute the expected tasks accordingly.
For this experiment, precise behavioral rules were provided for

the ants within the simulation, including instructions such as
following pheromone trails when searching for food, picking
up food when encountered, and releasing pheromones to mark
food sources.
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3.1.2 Tuning process
Our initial approach utilized minimal instructions, providing

a general description of the foraging task to assess how effectively
ants could perform without specific guidance: finding food,
marking paths to food sources using pheromones, and utilizing nest
scent to navigate back to the nest when carrying food. This minimal
instruction set was intentionally selected based on fundamental
biological principles described in ecological literature related to
ant foraging behavior, particularly focusing on pheromone-based
communication and nest-scent navigation. The primary rationale
was to evaluate the inherent capacity of LLM-driven agents to
manifest realistic collective foraging behavior without extensive,
explicitly detailed instructions. Through this initial generalization
attempt, we aimed to determine whether the LLM required
more detailed or structured instructions to accurately reproduce
emergent ant colony behaviors.

Following the initial evaluation, it became clear that more
explicit rules were essential for consistent and realistic ant
behavior. Throughout this iterative process, the language model
offered valuable feedback by highlighting misunderstandings or
ambiguities in the prompts. This feedback was instrumental in
refining the prompts to enhance the ants’ performance. Below, we
present an analysis of how these prompts evolved, focusing on
specific improvements and the reasoning behind each iteration.

Iteration 1

• Prompt Text

1 You a r e an a n t i n a 2D s i m u l a t i o n t a s k e d w i t h
f i n d i n g food , marking t h e p a t h t o food
w i t h t r a i l s o f pheromones , and u s i n g n e s t
s c e n t t o n a v i g a t e back t o t h e n e s t when
c a r r y i n g food .

2

3 Format your a c t i o n s a s a Python d i c t i o n a r y
w i t h t h e s e k e y s and o p t i o n s :

4 ‘ ‘ move−forward ’ ’ : True or F a l s e ,
5 ‘ ‘ r o t a t e ’ ’ : ‘ ‘ l e f t ’ ’ , ‘ ‘ r i g h t ’ ’ , or ‘ ‘ none

’ ’ ,
6 ‘ ‘ p i c k−up−food ’ ’ : True or F a l s e ,
7 ‘ ‘ drop−pheromone ’ ’ : True or F a l s e ,
8 ‘ ‘ drop−food ’ ’ : True or F a l s e .
9

10 You w i l l be p r o v i d e d w i t h e n v i r o n m e n t
i n f o r m a t i o n . Keep your r e s p o n s e c o n c i s e ,
under 3 5 t o k e n s .

11

12 C u r r e n t e n v i r o n m e n t :
13 −Pheromone c o n c e n t r a t i o n ( L e f t : 0 , F r o n t :

0 , R i g h t : 0 ) ,
14 −Nest p r e s e n c e : True ,
15 −Nest s c e n t ( L e f t : 1 9 6 . 8 4 , F r o n t : 1 9 6 . 3 9 ,

R i g h t : 1 9 5 . 7 6 ) ,
16 −Food c o n c e n t r a t i o n a t your l o c a t i o n : 0 ,
17 −C a r r y i n g food s t a t u s : True

• Observed behavior
In this first attempt, we provided general instructions

to establish a baseline for ant behavior. The ants were
tasked with finding food, marking paths with pheromones,
and using nest scent to return home when carrying
food. However, simulations revealed inconsistencies.
Ants often failed to follow pheromone and nest scent

gradients effectively, sometimes moving away from stronger
cues. Some ants released pheromones unexpectedly,
while others exhibited random movement patterns. This
inconsistency prevented the colony from displaying an
organized foraging behavior, indicating that clearer rules
were needed for actions such as pheromone release and
gradient follow-up.

• Analysis
While this prompt established the basic framework for

the simulation, it lacked specific guidance on how ants
should interpret and prioritize environmental cues or resolve
conflicting signals. The absence of detailed instructions led to
ambiguous behaviors, including inconsistencies in following
pheromone and nest scent gradients. This highlighted the
need for more explicit rules to ensure consistent and organized
swarm behavior.

Iteration 2

• Prompt text
We add an instruction to the prompt to prioritize nest

scent over pheromone trails when carrying food.

1 You a r e an a n t i n a 2D s i m u l a t i o n t a s k e d w i t h
f i n d i n g food , marking t h e p a t h t o food w i t h
pheromone t r a i l s , and u s i n g n e s t s c e n t t o
n a v i g a t e back t o t h e n e s t when c a r r y i n g food .
P r i o r i t i z e n e s t s c e n t o v e r pheromone t r a i l s
when c a r r y i n g food .

2 . . .

• Observed behavior
To address the issues from the first prompt, we added

a directive for ants to prioritize nest scent over pheromone
trails when carrying food, aiming to better mimic foraging
ant behavior. Despite this improvement, ants still exhibited
inconsistencies in following pheromone and nest scent
gradients. When nest scent and pheromone trails had similar
strengths, ants demonstrated conflicting actions. Additionally,
the prompt did not specify behaviors for ants not carrying
food, leading to inefficient exploration. Ants tended to
rotate aimlessly near the nest and were slow to venture
outward, showing the need for clearer guidance to improve
exploration efficiency.

• Analysis
Introducing prioritization helped align the ants’ actions

when carrying food, but inconsistencies in following scent
gradients persisted. Ants not carrying food and not sensing
any pheromones tended to remain near the nest without
effectively exploring the environment. This emphasized
the necessity for comprehensive guidance covering all
possible states and clearer instructions on responding to
environmental cues to enhance exploration efficiency.

Iteration 3

• Prompt text
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As before, with added clarifications in the current
environment:

1 . . .
2 −Nest p r e s e n c e : True ( You a r e c u r r e n t l y a t

t h e n e s t ) ,
3 −C a r r y i n g food s t a t u s : True ( You a r e

c u r r e n t l y c a r r y i n g food )
4 . . .

• Observed behavior
We observed that ants sometimes failed to pick up food

or drop it at the nest, possibly due to a lack of awareness of
their current state. To rectify this, we explicitly stated their
status in the prompt, such as whether they were at the nest or
carrying food. This redundancy ensured that ants performed
correct actions in these situations. However, inconsistencies
in following pheromone and nest scent gradients remained.
Ants continued to exhibit limited exploration when not
carrying food, tending to stay near the nest rather
than venturing into new areas or effectively following
pheromone trails.

• Analysis
Explicitly stating the ants’ status improved decision-

making by providing clear context, leading to better execution
of actions like picking up and dropping food. Yet, the lack of
specific instructions on following scent gradients meant ants
still showed inconsistencies in navigating toward pheromone
trails or nest scent. Their inefficient exploration highlighted
the need for clearer guidance to enhance movement away from
the nest.

Iteration 4

• Prompt text
We add an instruction to the prompt to use the highest

pheromone scent to navigate to food when not carrying any.

1 You a r e an a n t i n a 2D s i m u l a t i o n . Your t a s k
i s t o p i c k up food and r e l e a s e i t a t t h e
n e s t . Use n e s t s c e n t t o n a v i g a t e back t o
t h e n e s t when c a r r y i n g food , p r i o r i t i z i n g
n e s t s c e n t o v e r pheromones . Use h i g h e s t
pheromone s c e n t t o n a v i g a t e t o food when
not c a r r y i n g any .

2 . . .

• Observed behavior
To guide ants not carrying food, we specified that

they should navigate toward food using the highest
pheromone concentration. Their ability to find food
sources when pheromone trails were present was
clearly improved in this way. However, inconsistencies
in following pheromone gradients persisted. In
the absence of pheromones or nest scents, ants
tended to remain near the nest, exhibiting inefficient
exploration behaviors.

• Analysis
By distinguishing between the states of carrying and

not carrying food, we enhanced the ants’ foraging efficiency

when environmental cues were available. Nonetheless,
inconsistencies in following pheromone gradients indicated
that ants needed clearer instructions on interpreting and
acting upon varying scent intensities. The lack of an effective
exploration strategy, when cues were absent, remained
a challenge.

Iteration 5

• Prompt text
Environmental information about pheromone

concentration and nest scent presented with directional
cues instead of quantities:

1 . . .
2 C u r r e n t e n v i r o n m e n t :
3 −Higher Pheromone C o n c e n t r a t i o n : F r o n t ,
4 −Nest P r e s e n c e : F a l s e ( You a r e not

c u r r e n t l y a t t h e n e s t ) ,
5 −S t r o n g e r Nes t S c e n t : L e f t ,
6 −Food C o n c e n t r a t i o n a t your l o c a t i o n : 0 ,
7 −C a r r y i n g Food S t a t u s : True ( You a r e

c u r r e n t l y c a r r y i n g food ) }

• Observed behavior
Recognizing the need for better interpretation of

environmental cues, we modified how information was
presented by using directional descriptions instead of
numerical values—e.g., “Higher Pheromone Concentration:
Front” and “Stronger Nest Scent: Left.” This adjustment
significantly improved the ants’ ability to follow pheromone
and nest scent gradients. Ants became more consistent in
moving toward stronger cues, enhancing their navigation and
foraging efficiency.

However, when no scents were detected, ants still
showed limited exploration, often remaining near the
nest rather than actively searching new areas. This
indicated that while gradient following had improved,
the exploration strategy was still inefficient in the absence of
sensory cues.

• Analysis
Using directional cues provided clearer guidance

on responding to environmental gradients, resolving
many inconsistencies observed in previous prompts.
From Prompt 5 onward, ants became more adept
at following pheromone and nest scent gradients,
leading to a more organized foraging behavior. Despite
these improvements, ants’ exploration remained
inefficient when no sensory cues were present,
indicating a need for further instructions to promote
effective exploration.

Iteration 6

• Prompt text
We add an instruction to the prompt to

release pheromones on food sources and while
carrying food.
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1 You a r e an a n t i n a 2D s i m u l a t i o n . Your t a s k i s t o
p i c k up food and r e l e a s e i t a t t h e n e s t .

R e l e a s e pheromone on food s o u r c e and w h i l e you
a r e c a r r y i n g food . Use n e s t s c e n t t o n a v i g a t e
back t o t h e n e s t when c a r r y i n g food ,

p r i o r i t i z i n g n e s t s c e n t o v e r pheromones . Use
h i g h e s t pheromone s c e n t t o n a v i g a t e t o food
when not c a r r y i n g any .

2 . . .

• Observed behavior
To encourage trail formation back to the nest, we

instructed ants to release pheromones while carrying food.
This led to stronger trails and improved the efficiency of other
ants in locating food sources. With the improved gradient-
following ability from Prompt 5, ants were more consistent
in navigation.

Nevertheless, in the absence of pheromones and nest
scents, ants still exhibited limited exploration behaviors,
tending to stay near the nest. This indicated that their
exploration strategy was still inefficient and required
refinement.

• Analysis
By enhancing pheromone deposition during food

transport and improving gradient following, we boosted
colony cooperation and foraging success. However,
the persistent issue of limited exploration in scent-
free areas indicated that additional instructions were
necessary to promote outward movement and enhance
exploration efficiency.

Iteration 7

• Prompt text
We added the word “only” in the prompt as follows:

1 You a r e an a n t i n a 2D s i m u l a t i o n . Your t a s k
i s t o p i c k up food and r e l e a s e i t a t t h e
n e s t . R e l e a s e pheromone on food s o u r c e and

w h i l e you a r e c a r r y i n g food . Use n e s t
s c e n t t o n a v i g a t e back t o t h e n e s t o n l y
when c a r r y i n g food , p r i o r i t i z i n g n e s t
s c e n t o v e r pheromones . Use h i g h e s t
pheromone s c e n t t o n a v i g a t e t o food when
not c a r r y i n g any .

2 . . .

• Observed behavior
In earlier iterations, ants sometimes prioritized

nest scent over pheromones even when not carrying
food, leading them to return to the nest unnecessarily.
With this clarification, the ants began to prioritize the
nest scent appropriately, using it only when they were
carrying food. However, ants still exhibited limited
exploration when no sensory cues were present, tending
to remain near the nest rather than actively searching
new areas.

• Analysis
Adding “only” to the instruction text was crucial

to ensure that the ants did not prioritize the scent

of the nest when they were looking for food. This
eliminated unnecessary returns and improved foraging
efficiency.

Iteration 8

• Prompt text
We added an instruction to the prompt to move away from

the nest and rotate randomly if not carrying any food and not
sensing any pheromone.

1 You a r e an a n t i n a 2D s i m u l a t i o n . Your t a s k
i s t o p i c k up food and r e l e a s e i t a t t h e
n e s t . R e l e a s e pheromone on food s o u r c e and

w h i l e you a r e c a r r y i n g food . Use n e s t
s c e n t t o n a v i g a t e back t o t h e n e s t o n l y
when c a r r y i n g food , p r i o r i t i z i n g n e s t
s c e n t o v e r pheromones . Use h i g h e s t
pheromone s c e n t t o n a v i g a t e t o food when
not c a r r y i n g any . Move away from n e s t and
r o t a t e randomly i f you a r e not c a r r y i n g
any food and you a r e not s e n s i n g any
pheromone .

2 . . .

• Observed behavior
In previous iterations, we observed limited exploratory

behavior of the ants in areas without scents. To address
this, we introduced a directive for proactive exploration. This
approach improved exploration, with ants venturing further
from the nest and discovering food sources in fewer simulation
steps. However, a noticeable bias concerning the rotation
remained, particularly around the nest, indicating that the
randomness was not functioning as efficiently as intended.

• Analysis
By instructing ants to move away from the nest and

rotate randomly when not carrying food and not sensing
pheromones, we encouraged them to explore new areas more
effectively. This change increased the likelihood of ants finding
food, as they ventured further from the nest rather than
lingering nearby.

Iteration 9

• Prompt text
We expanded the rotation options to include “random”:

1 . . .
2 ‘ ‘ r o t a t e ’ ’ : ‘ ‘ l e f t ’ ’ , ‘ ‘ r i g h t ’ ’ " , ‘ ‘ none ’ ’ ,

or ‘ ‘ random ’ ’
3 . . .

• Observed behavior
With this adjustment, ants demonstrated more varied and

unpredictable movement patterns during exploration. They
effectively moved away from the nest and searched a wider
area, increasing their chances of encountering food sources
more quickly and efficiently.

• Analysis
To enhance the randomness of the ants’ exploration, we

expanded their rotation options to include “random.” This
meant that when the LLM selected “random” as the rotation
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action, it was making a high-level decision to delegate the
choice of direction to chance. In the simulation, this “random’
’ option was implemented at a programming level in NetLogo
to randomly choose the direction of rotation either left or
right.

Through iterative tuning, we significantly enhanced the
simulated ants’ behavior, making it more consistent with the ant
foraging dynamics observed in the rule-based NetLogo model. Each
prompt iteration addressed specific issues identified in simulations,
with language model feedback guiding some of the adjustments.

3.1.3 Prompt deployment
The prompts are presented in a format that the LLM

can process and output as a series of actionable commands.
Communication with the LLM is facilitated through the OpenAI
API, specifically using the chat.completions mechanism,
which allows context-free messages to be passed at each step. This
setup involves sending a system prompt that outlines the overall
task and rules, followed by user prompts that provide real-time
environmental information.

At each simulation step, NetLogo translates the agent’s
perception of its environment into the input variables described in
the prompt. This ensures that the LLM has an accurate and up-to-
date representation of the environment on which its decisions can
be based. The LLM then generates a response formatted as a Python
dictionary, containing specific actions the agent should take. The
following example prompt illustrates the process:

• System prompt

1 You a r e an a n t i n a 2D s i m u l a t i o n . Your t a s k
i s t o p i c k up food and r e l e a s e i t a t t h e
n e s t . R e l e a s e pheromone on food s o u r c e and

w h i l e you a r e c a r r y i n g food . Use n e s t
s c e n t t o n a v i g a t e back t o t h e n e s t o n l y
when c a r r y i n g food , p r i o r i t i z i n g n e s t
s c e n t o v e r pheromones . Use h i g h e s t
pheromone s c e n t t o n a v i g a t e t o food when
not c a r r y i n g any . Move away from n e s t and
r o t a t e randomly i f you a r e not c a r r y i n g
any food and you a r e not s e n s i n g any
pheromone . Format your a c t i o n s a s a Python

d i c t i o n a r y w i t h t h e s e k e y s and o p t i o n s :
2

3 ‘ ‘ move−forward ’ ’ ( o p t i o n s : True , F a l s e )
4 ‘ ‘ r o t a t e ’ ’ ( o p t i o n s : ‘ ‘ l e f t ’ ’ , ‘ ‘ r i g h t ’ ’ ,

‘ ‘ none ’ ’ , ‘ ‘ random ’ ’ )
5 ‘ ‘ p i c k−up−food ’ ’ ( o p t i o n s : True , F a l s e )
6 ‘ ‘ drop−pheromone ’ ’ ( o p t i o n s : True , F a l s e )
7 ‘ ‘ drop−food ’ ’ ( o p t i o n s : True , F a l s e ) .
8

9 You w i l l be p r o v i d e d w i t h e n v i r o n m e n t
i n f o r m a t i o n . Keep your r e s p o n s e c o n c i s e ,
under 4 5 t o k e n s .

• Possible user prompt

1 T h i s i s your c u r r e n t e n v i r o n m e n t :
2 −H i g h e s t Pheromone C o n c e n t r a t i o n : None ,
3 −Nest P r e s e n c e : True ( You a r e c u r r e n t l y a t

t h e n e s t ) ,
4 −S t r o n g e r Nes t S c e n t : F r o n t ,

5 −Food C o n c e n t r a t i o n a t your
6 l o c a t i o n : 0 ,
7 −C a r r y i n g Food S t a t u s : F a l s e ( You a r e not

c u r r e n t l y c a r r y i n g food ) .

• Possible response from the LLM

1 {
2 ‘‘move-forward’’: True,
3 ‘‘rotate’’: ‘‘none’’,
4 ‘‘pick-up-food’’: False,
5 ‘‘drop-pheromone’’: False,
6 ‘‘drop-food’’: False
7 }

3.2 System monitoring

The simulation monitors the ants’ efficiency in navigating
the environment, specifically their ability to locate food, follow
pheromone trails, and return food to the nest. Key metrics
include the time taken to find and return food, the consistency of
pheromone trail usage, and the accuracy of following the nest scent
when carrying food. The observed behaviours and performance
analysis are documented in the result section.

4 Experiment 2: bird flocking
simulation

As mentioned before, the bird flocking model of NetLogo
(Wilensky, 1998, see https://ccl.northwestern.edu/netlogo/models/
Flocking) is an implementation of the famous Boids model
from Reynolds (1987). The simulation takes place in two-
dimensional airspace. Although this environment is relatively
simple, it effectively replicates key flocking behaviors like group
cohesion, allowing for the observation of flocking dynamics under
varying conditions. By adjusting specific parameters, the simulation
provides insights into how changes in the environment influence
flocking behavior.

• Agents: The agents in this simulation are modeled as birds,
each operating under principle-based prompts. Unlike rule-
based systems, these birds are guided by general principles
of flocking dynamics, that is, by alignment, separation, and
cohesion (Reynolds, 1987). These principles help the birds
navigate their environment by adjusting their headings in
response to the positions and headings of neighboring birds.

• LLM integration: The prompts provided to the LLM leverage
its inherent knowledge of flocking dynamics, requiring it to
apply these general principles to guide the behavior of each
bird. The LLM is responsible for interpreting environmental
data and generating responses that ensure the birds align with
their flockmates, maintain an appropriate distance to avoid
collisions, and stay cohesive as a group.
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4.1 Procedure

4.1.1 Prompt design
Similar to the setup in the case of ant foraging, prompts

for the flocking task are structured as zero-shot prompts,
meaning they operate without prior examples or contextual
memory from previous interactions. The final prompt was
tuned through several iterations (see subsubsection 4.1.2) in
a trial-and-error process to ensure the LLM could effectively
interpret the environment and calculate heading directions
according to flocking principles. Each prompt guiding a bird
is designed to determine its heading based on the three core
principles of flocking dynamics as implemented in the NetLogo
library: Separation (steering to avoid crowding neighbors),
Alignment (steering towards the average heading of nearby
birds), and Cohesion (steering towards the average position of
nearby flockmates).

4.1.2 Tuning process
The initial rules were inspired by well established principles

from flocking theory, notably the classical alignment, cohesion, and
separation behaviors introduced in Reynolds (1987) Boids model.
These basic principles were intended to produce generalized
flocking patterns that could be broadly applicable across
scenarios. However, as will be shown below, it was crucial to
explicitly state in the prompt that the compass convention is
used in the simulation. This alignment with NetLogo’s world
representation, where headings are measured in degrees—0
degrees pointing north, 90 degrees east, 180 degrees south,
and 270 degrees west—was essential. Clearly defining this
convention ensured that the LLM could accurately compute
and adjust the birds’ headings according to flocking dynamics,
maintaining consistency in the agents’ behavior within NetLogo’s
simulation environment.

Iteration 1

• Prompt Text

1

2 You a r e an a g e n t i n a 2D s i m u l a t i o n . Your t a s k
i s t o d e t e r m i n e your new h e a d i n g b a s e d on
t h e f l o c k i n g p r i n c i p l e s o f s e p a r a t i o n

t u r n , a l i g n m e n t t u r n ( a v e r a g e h e a d i n g o f
n e i g h b o r s ) , and c o h e r e n c e t u r n ( a v e r a g e
h e a d i n g t o w a r d s f l o c k m a t e s ) . The
p a r a m e t e r s f o r t h e s e p r i n c i p l e s a r e :
maximum−s e p a r a t e −t u r n , maximum−a l i g n −t u r n ,

maximum−c o h e r e−t u r n , minimum−s e p a r a t i o n −
d i s t a n c e . The s i m u l a t i o n p r o v i d e s t h e
f o l l o w i n g i n f o r m a t i o n : C u r r e n t h e a d i n g ,
N e i g h b o r s i n v i s i o n r a d i u s .

3

4 P r o v i d e your f i n a l new h e a d i n g a f t e r a p p l y i n g
t h e s e r u l e s , e x p r e s s e d a s an a n g l e i n
d e g r e e s . The r e s u l t s h o u l d be i n JSON
f o r m a t , w i t h t h e key and v a l u e : " new−
h e a d i n g " ( v a l u e : h e a d i n g i n d e g r e e s ) .
Summarize your answer i n no more t h a n 1 2 0
words .

5

6 These a r e t h e f l o c k i n g p a r a m e t e r s :

7

8 Maximum s e p a r a t e t u r n : 1 . 5
9 Maximum a l i g n t u r n : 5

10 Maximum c o h e r e t u r n : 3
11 Minimum s e p a r a t i o n : 1
12

13 T h i s i s your c u r r e n t e n v i r o n m e n t :
14

15 C u r r e n t h e a d i n g : 1 3 8 deg
16 N e i g h b o r s i n v i s i o n r a d i u s : n e i g h b o r _ 1 : x :

0 . 5 3 , y : −3 . 6 9 , h e a d i n g : 2 4 8 deg

• Observed behavior
In this initial attempt, we provided general instructions

to establish a baseline for flocking behavior. The agents were
instructed to determine their heading based on the principles
of separation, alignment, and coherence. However, most of
the LLM-generated responses were not interpretable by the
simulation, as they did not adhere to the expected format.
Additionally, even when successfully parsed, inconsistencies
in the agents’ behavior were observed, preventing the
emergence of flocking.

• Analysis
While this prompt defined the basic framework for the

simulation, it lacked constraints to enforce a structured
response. In many cases, the LLM’s output included extended
textual and mathematical explanations before or alongside the
JSON object, which interfered with proper parsing.

Iteration 2

• Prompt text
An explicit instruction was added to limit the response to

the JSON object only.

1 . . .
2 P r o v i d e your f i n a l new h e a d i n g a f t e r a p p l y i n g

t h e s e r u l e s , e x p r e s s e d a s an a n g l e i n
d e g r e e s . The r e s u l t s h o u l d be i n JSON
f o r m a t o n l y , w i t h t h e key and v a l u e : " new−
h e a d i n g " ( v a l u e : h e a d i n g i n d e g r e e s ) .
Summarize your answer i n no more t h a n 1 2 0
words .

3 . . .

• Observed behavior
To address the issues from the first iteration, we added a

directive restricting the response format to a JSON object only.
This modification successfully constrained the output, making
it more reliable and compatible with the simulation. However,
while some flocking behavior emerged, it was inconsistent.
Small clusters formed briefly, but overall alignment and
coherence were weaker than expected.

• Analysis
We compared the resulting headings with those produced

by a rule-based model. While some calculated headings were
numerically similar, they often pointed in opposite directions.
This suggested ambiguity in the LLM’s coordinate system.
Since NetLogo employs a compass convention for heading
calculations, we decided to explicitly specify this convention
in the next iteration.
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Iteration 3

• Prompt text
An instruction was added to specify that the compass

convention should be used.

1 You a r e an a g e n t i n a 2D s i m u l a t i o n . F o l l o w i n g
t h e compass c o n v e n t i o n , your t a s k i s t o

d e t e r m i n e your new h e a d i n g b a s e d on t h e
f l o c k i n g p r i n c i p l e s o f s e p a r a t i o n t u r n ,
a l i g n m e n t t u r n ( a v e r a g e h e a d i n g o f
n e i g h b o r s ) , and c o h e r e n c e t u r n ( a v e r a g e
h e a d i n g t o w a r d s f l o c k m a t e s )

2 . . .

• Observed behavior
By explicitly specifying the compass convention for

heading calculations, flocking behavior improved. Larger
clusters formed compared to previous iterations. However,
flocking remained inconsistent, as some agents moved in
seemingly random directions.

• Analysis
Examining the erratic headings, we requested the

LLM to explain its calculations. When generating a
reasoning process before outputting the final heading,
the LLM produced correct answers. However, errors
occurred when providing only the numerical result.
This highlighted the need for a structured reasoning
process, or “chain of thought,” to ensure accurate
heading calculations.

Iteration 4

• Prompt text
A new key, “rationale”, was added to the JSON

output to encourage reasoning before determining the
final heading.

1 . . .
2 P r o v i d e your f i n a l new h e a d i n g a f t e r a p p l y i n g

t h e s e r u l e s , e x p r e s s e d a s an a n g l e i n
d e g r e e s . The r e s u l t s h o u l d be i n JSON
f o r m a t o n l y , w i t h t h e k e y s and v a l u e s : "
r a t i o n a l e " ( v a l u e : your e x p l a n a t i o n ) and "
new−h e a d i n g " ( v a l u e : h e a d i n g i n d e g r e e s ) .

3 . . .

• Observed behavior
Introducing the “rationale” key significantly improved

flocking behavior. The agents demonstrated more consistent
heading adjustments, enhancing the emergence of flocking
dynamics. However, occasional errors persisted, particularly
when agents needed to turn counterclockwise to reach a
nearby target heading.

• Analysis
The “rationale” key enabled the LLM to engage

in a structured thought process, substantially
improving flocking behavior. However, some agents
still moved in the opposite direction when making
small adjustments, particularly for counterclockwise
turns. This suggested that additional guidance was

necessary to ensure agents always chose the shortest
rotation path.

Iteration 5

• Prompt text
An explicit instruction was added to ensure

the shortest rotational path (clockwise or
counterclockwise) was always chosen when adjusting
the heading.

1 You a r e an a g e n t i n a 2D s i m u l a t i o n . F o l l o w i n g
t h e compass c o n v e n t i o n , your t a s k i s t o

d e t e r m i n e your new h e a d i n g b a s e d on t h e
f l o c k i n g p r i n c i p l e s o f s e p a r a t i o n t u r n ,
a l i g n m e n t t u r n ( a v e r a g e h e a d i n g o f
n e i g h b o r s ) , and c o h e r e n c e t u r n ( a v e r a g e
h e a d i n g t o w a r d s f l o c k m a t e s ) . The
p a r a m e t e r s f o r t h e s e p r i n c i p l e s a r e :
maximum−s e p a r a t e −t u r n , maximum−a l i g n −t u r n ,

maximum−c o h e r e−t u r n , minimum−s e p a r a t i o n −
d i s t a n c e . The s i m u l a t i o n p r o v i d e s t h e
f o l l o w i n g i n f o r m a t i o n : C u r r e n t h e a d i n g ,
N e i g h b o r s i n v i s i o n r a d i u s . When
c a l c u l a t i n g t h e a l i g n m e n t t u r n , a l w a y s
c h o o s e t h e s h o r t e s t p a t h ( c l o c k w i s e or
c o u n t e r c l o c k w i s e ) t o a l i g n w i t h t h e
a v e r a g e h e a d i n g o f n e i g h b o r s .

2 . . .

• Observed behavior
By explicitly instructing the model to select the

shortest path to the target heading, flocking behavior
improved significantly. The LLM-driven agents
formed larger, more stable flocking clusters, achieving
performance comparable to the original, rule-based
NetLogo model.

• Analysis
Including the shortest-path directive ensured that

LLM-based agents correctly aligned their heading
adjustments with both LLM-based and rule-based
agents. This modification resolved the previously
observed issues, leading to a more coherent and emergent
flocking behavior.

4.1.3 Prompt deployment
This task uses the same prompt deployment

mechanism as Experiment 1. Communication with
the LLM is handled via the OpenAI API using the
chat.completions mechanism, which supports context-
free messaging. A system prompt defines the task and
rules, followed by a user prompt providing real-time
environmental data.

At each simulation step, NetLogo translates the agent’s
perception into the input variables in the prompt, including the
heading and position of other agents within its vision radius, into
the input variables used in the prompt. This ensures the LLM
has an accurate, up-to-date view of the environment. The LLM
then generates a response formatted in JSON, specifying the agent’s
actions. The following example prompt illustrates this process:
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• System prompt

1 You a r e an a g e n t i n a 2D s i m u l a t i o n . F o l l o w i n g
t h e compass c o n v e n t i o n , your t a s k i s t o

d e t e r m i n e your new h e a d i n g b a s e d on t h e
f l o c k i n g p r i n c i p l e s o f s e p a r a t i o n t u r n ,
a l i g n m e n t t u r n ( a v e r a g e h e a d i n g o f
n e i g h b o r s ) , and c o h e r e n c e t u r n ( a v e r a g e
h e a d i n g t o w a r d s f l o c k m a t e s ) . The
p a r a m e t e r s f o r t h e s e p r i n c i p l e s a r e :
maximum−s e p a r a t e −t u r n , maximum−a l i g n −t u r n ,

maximum−c o h e r e−t u r n , minimum−s e p a r a t i o n −
d i s t a n c e . The s i m u l a t i o n p r o v i d e s t h e
f o l l o w i n g i n f o r m a t i o n : C u r r e n t h e a d i n g ,
N e i g h b o r s i n v i s i o n r a d i u s . When
c a l c u l a t i n g t h e a l i g n m e n t t u r n , a l w a y s
c h o o s e t h e s h o r t e s t p a t h ( c l o c k w i s e or
c o u n t e r c l o c k w i s e ) t o a l i g n w i t h t h e
a v e r a g e h e a d i n g o f n e i g h b o r s .

2

3 P r o v i d e your f i n a l new h e a d i n g a f t e r a p p l y i n g
t h e s e r u l e s , e x p r e s s e d a s an a n g l e i n
d e g r e e s . The r e s u l t s h o u l d be i n JSON
f o r m a t o n l y , w i t h t h e k e y s and v a l u e s : ’
r a t i o n a l e ’ ( v a l u e : your e x p l a n a t i o n ) and ’
new−heading ’ ( v a l u e : h e a d i n g i n d e g r e e s ) .

• Possible user prompt

1 These a r e t h e f l o c k i n g p a r a m e t e r s :
2 −Maximum s e p a r a t e t u r n : 1 . 5 ,
3 −Maximum a l i g n t u r n : 5 ,
4 −Maximum c o h e r e t u r n : 3 ,
5 −Minimum s e p a r a t i o n : 1 . 5 ;
6

7 T h i s i s your c u r r e n t e n v i r o n m e n t :
8 −C u r r e n t h e a d i n g : 1 3 8 deg ,
9 −N e i g h b o r s i n v i s i o n r a d i u s : n e i g h b o r _ 1 : x :

0 . 5 3 , y : −3 . 6 9 , h e a d i n g : 2 4 8 deg ;

• Possible Response of the LLM

1 {
2 " r a t i o n a l e " : Given t h e c u r r e n t h e a d i n g o f 1 3

8 d e g r e e s and one n e i g h b o r a t ( 0 . 5 3 , −3 .
6 9 ) w i t h a h e a d i n g o f 2 4 8 d e g r e e s , we
f i r s t c a l c u l a t e t h e s e p a r a t i o n t u r n . The

d i s t a n c e t o t h e n e i g h b o r i s s q r t ( 0 . 5 3^2
+ (−3 . 6 9 ) ^2 ) = 3 . 7 3 , which i s g r e a t e r

t h a n t h e minimum s e p a r a t i o n d i s t a n c e o f
1 . 5 , so no s e p a r a t i o n t u r n i s needed .
For a l i g n m e n t , t h e a v e r a g e h e a d i n g o f
t h e n e i g h b o r i s 2 4 8 d e g r e e s . The
s h o r t e s t p a t h t o a l i g n w i t h 2 4 8 d e g r e e s
from 1 3 8 d e g r e e s i s c l o c k w i s e , which i s
a t u r n o f 1 1 0 d e g r e e s . However , t h e
maximum a l i g n t u r n i s 5 d e g r e e s , so we
t u r n 5 d e g r e e s c l o c k w i s e t o 1 4 3 d e g r e e s .

For c o h e r e n c e , s i n c e t h e r e i s o n l y one
n e i g h b o r , t h e a v e r a g e h e a d i n g t o w a r d s
t h e n e i g h b o r i s t h e same a s t h e n e i g h b o r
’ s h e a d i n g , 2 4 8 d e g r e e s . The s h o r t e s t

3 p a t h t o a l i g n w i t h 2 4 8 d e g r e e s from 1 4 3
d e g r e e s i s c l o c k w i s e , which i s a t u r n
o f 1 0 5 d e g r e e s . However , t h e maximum
c o h e r e t u r n i s 3 d e g r e e s , so we t u r n 3
d e g r e e s c l o c k w i s e t o 1 4 6 d e g r e e s . The
f i n a l new h e a d i n g i s 1 4 6 d e g r e e s . ,

4 " new−h e a d i n g " : 1 4 6
5 }

4.2 Monitoring Behavior

Key metrics include the degree of separation maintained
between agents, the consistency of alignment with the average
heading of nearby birds, and the effectiveness of cohesion in
moving toward the flock’s center of mass. The observed behaviors
and performance analyses are documented in the results section.

5 Results

5.1 Experiment 1: ant foraging with
structured rule-based prompting

The following three variants of the ants foraging simulation
were applied:

1. The original NetLogo model (henceforth simply called
“NetLogo”).

2. The model in which the rule-governed ants of the original model
are replaced by LLM-governed ants (henceforth called “LLM”).

3. A hybrid model in which half of the ants are rule-governed and
the other half are LLM-governed (henceforth called “Hybrid”).

In all simulations, we used a colony of 10 ants, three food
patches to be exploited, and a stopping criterion of 1000 simulation
steps. Moreover, each experiment was repeated five times (with
different seeds). The efficacy of each model was assessed by
quantifying the total amount of food gathered within these 1000
simulation steps.

5.1.1 Food collection behavior
Figure 3 shows the total amount of food collected over 1,000

simulation steps for the three different model variants. NetLogo and
LLM perform similarly in terms of the ants’ success in bringing food
back to the nest, with both models accumulating approximately 85
units of food by the end of the simulation. However, the standard
deviation for NetLogo is around 20, whereas LLM displays a much
lower standard deviation of about 7.

In contrast, the Hybrid model outperforms the other two
variants, collecting an average of approximately 95 units of
food with a standard deviation of about 12. This superior
performance is due to the combination of the behavioural
differences between LLM-guided ants and rule-based ants. The
zoomed inset in Figure 3, for example, shows that Hybrid starts
returning food to the nest at around 20 simulation steps, whereas
LLM and NetLogo begin this process at about 40 steps. This means
that, for some reason, the Hybrid variant is more efficient in quickly
finding food sources.

To better understand the significance of the observed
performance differences in the food collection, we analyzed the
variations in standard deviations between the models utilizing
various tests. These tests are depicted in Figure 4 as groups
corresponding to the models. The Levene and Brown-Forsythe
tests assess the homogeneity of variances between the groups,
with the Levene test utilizing the mean and the Brown-Forsythe
test employing the median. Cohen’s d quantifies the effect size,
indicating the magnitude of the difference between two groups.
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FIGURE 3

Comparison of the total food collected across the three tested models: NetLogo (represented by the orange line), LLM (green line), and Hybrid (blue
line). This visualization highlights the food collection performance differences among the different models over five runs with different seeds. The
lines represent the means, while the shaded areas indicate the standard deviations.

FIGURE 4

Comparison of performance metrics of the food collection among LLM, NetLogo, and Hybrid. The Levene, Brown-Forsythe, and Kruskal-Wallis tests
indicate significant differences between Hybrid and the other models, while the LLM and NetLogo show no meaningful shifts in central tendency or
overall distribution. For details, see the text.

The Kurskal-Wallis test (referred to as Kruskal in the plot)
assesses whether there are statistically significant differences in the
distributions, serving as a non-parametric test for medians.

The Levene and Brown-Forsythe tests for the LLM vs. NetLogo
group yielded p-values around 0.0045, indicating a significant
difference in variance and suggesting that the groups have an
unequal spread. In contrast, the Cohen’s d value of 0.006 reflects
a small effect size, suggesting nearly identical group means. The
Kruskal-Wallis test produces a high value of 0.99 (truncated in the
figure for improved visibility) indicating no statistical difference in
the distributions. In summary, there are no practical or statistical
differences observed between the LLM and NetLogo groups
regarding the outcome. While the variances differ slightly, there
is no meaningful shift in central tendency or overall distribution.
The Levene, Brown-Forsythe, and Kruskal p-values for the LLM vs.
Hybrid group are all close to zero, indicating statistically significant
differences. Additionally, Cohen’s d effect size is approximately 0.2,
suggesting a small yet meaningful effect. This analysis reveals a

statistically significant and practically noticeable difference between
the LLM and Hybrid groups. While the effect size is small, it is
still meaningful, indicating that Hybrid performs differently from
LLM, albeit not drastically. The differing variances further support
the notion that their behaviors are not merely a shift in location.
The NetLogo vs. Hybrid group shows a notable and statistically
supported difference between the two models. The variances differ
significantly, and although the effect size is modest at 0.23, it
remains consistent across analyses. This suggests that there is
a meaningful distinction in performance between NetLogo and
Hybrid.

We were also interested in evaluating the effectiveness of the
three model variants regarding individual ants. Figure 5 depicts the
average number of simulation steps taken by an ant to return to
its nest after picking up food, presented as boxplots. Generally,
ants in NetLogo (rule-governed ants) require fewer steps than
those controlled by the LLM. The LLM-guided ants demonstrate
consistent foraging behavior across the different experiments,
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FIGURE 5

The average number of steps taken by an ant to return to its nest after picking up food (for food patches 1–3). The green boxplots represent the
simulations of LLM, the orange boxplots those of NetLogo, while the blue boxplots show the results of Hybrid. Each boxplot spans from the first to
the third quartile, with the vertical line within the box indicating the median. The whiskers extend to represent the minimum and maximum number
of steps taken, while the circles denote outliers.

TABLE 2 Statistics concerning the average amount of steps taken by an ant to return food to the nest.

Food patch Model variant Mean Std Min 20% 50% 75% Max

LLM 23.04 3.34 16.0 21.0 23.0 25.0 48.0

1 NetLogo 21.0 5.3 13.0 17.0 20.0 24.0 46.0

Hybrid 21.98 4.32 13.0 19.0 22.0 25.00 48.0

LLM 32.3 3.41 25.0 31.0 32.0 34.0 49.0

2 NetLogo 30.16 4.93 22.0 27.0 29.0 32.0 45.0

Hybrid 29.46 3.90 24.0 26.0 29.0 31.00 41.0

LLM 39.29 2.36 36.0 37.5 40.0 41.0 42.0

3 NetLogo 38.11 2.02 35.0 37.0 38.0 39.0 42.0

Hybrid 38.75 0.96 38.0 38.0 38.5 39.25 40.0

particularly for food patches 1 and 2. Notably, food patch 1 is
the closest to the nest, while food patch 3 is the farthest away.
Detailed statistics, including the three quartiles, mean, standard
deviation, and minimum and maximum amounts of food collected,
are provided in Table 2.

Furthermore, we investigated the average number of steps taken
by an ant from leaving the nest until finding a food source, which
is represented in Figure 6. We specifically track and count ants
that are not carrying food and are exploring their environment
until they start to carry the food. Hybrid demonstrates consistent
performance in finding food patches 1 and 2. In contrast, LLM and
NetLogo display a more variable behavior during food searches.
Notably, concerning food patch 1, the models exhibit a higher
number of outliers, which can be attributed to the ants’ initial
exploration of the environment before encountering the food. A
notable outlier is observed in the context of NetLogo and food
patch 2, where an ant required 720 steps to find food. Detailed
statistics are listed in Table 3.

5.2 Experiment 2: bird flocking simulation
with knowledge-driven prompts

The following two model variants were experimentally tested
and evaluated:

1. The original NetLogo model (henceforth simply called
“NetLogo”, like in the ant foraging case).

2. The model in which some of the rule-governed birds of the
original model are replaced by LLM-governed birds (henceforth
called “Hybrid”).

In all simulations, we used a flock of 30 birds and a simulation
length of 800 steps. In the case of Hybrid, five of 30 rule-based birds
are replaced by LLM-guided birds. Moreover, each experiment
was repeated five times (with different seeds). The effectiveness
of the flocking behavior is evaluated by measuring the distances
and angular disparities between birds across the entire simulation.
Figure 7 depicts the flocking simulation executed in the NetLogo
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FIGURE 6

Average number of steps taken by an ant from leaving the nest to finding a food source. Each boxplot spans from the first to the third quartile, with
the vertical line within the box indicating the median. The whiskers extend to represent the minimum and maximum number of steps taken, while the
circles denote outliers.

TABLE 3 Statistics for the average amount of steps taken by an ant to find and collect food.

Food patch Model variant Mean Std Min 20% 50% 75% Max

LLM 79.65 63.25 25.0 43.0 53.0 92.0 342.0

1 NetLogo 71.48 72.77 12.0 22.0 39.0 99.0 464.0

Hybrid 71.42 68.88 12.0 31.0 47.0 86.0 466.0

LLM 79.44 50.04 36.0 51.0 60.0 83.0 299.0

2 NetLogo 93.74 102.09 21.0 33.0 56.0 116.50 720.0

Hybrid 73.81 74.81 22.00 32.75 42.00 78.50 326.0

LLM 92.29 36.53 39.0 66.50 105.0 112.50 144.0

3 NetLogo 123.33 142.92 37.0 41.0 47.0 86.0 432.0

Hybrid 61.25 6.18 53.0 58.25 63.0 66.0 66.0

environment, featuring a heterogeneous population of 25 rule-
based and 5 LLM-guided birds.

5.2.1 Flocking behavior
Figure 8 compares the differences in the birds’ heading

directions between two model variants, as outlined above. However,
note that the heading differences between the rule-based birds and
all other birds in model variant Hybrid (orange line) are separated
from the heading differences between the LLM-guided birds and all
other birds of Hybrid (green line).

The results shown in Figure 8 allow to make the following
observations. While the two bird types of Hybrid show a similar
evolution of the heading differences, the rule-based birds of the
original NetLogo model show somewhat lower heading differences.
We anticipate that with longer simulation runs, the heading
differences of the two model variants would converge to similar
values. We also observed that the LLM-guided birds tend to

congregate at the outer peripheries of the flocks, positioning
themselves further away from the flocks’ center. An example of this
behavior is visualized in Figure 7 (see the flock on the right) and
also illustrated in Figure 9 which indicates the average distances
between birds. We hypothesize that this rather “conservative”
behavior of the LLM-guided birds contributes to greater heading
differences among the rule-based birds of Hybrid, as this behavior
introduces slight perturbations in the flocking dynamics. Another
possible interpretation involves the internal representation of
distance within the LLM. Although we define distance in Euclidean
space and provide these distances as float values to the language
model, it may interpret and represent distances in a different
manner.

Figure 10 illustrates the statistical analysis of the heading
differences between Hybrid (LLM and rule-driven birds) and
NetLogo, which reveals disparities in the distributional properties
of the experiments. Although the observed mean difference is
relatively small, as indicated by a Cohen’s d of 0.16–suggesting
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FIGURE 7

Bird flocking simulation in the NetLogo environment: yellow birds follow rule-based behavior, while red birds are guided by the LLM.

FIGURE 8

Comparison of bird flocking heading differences across two simulation approaches: original NetLogo (blue line) and Hybrid (orange and green lines).
In fact, the orange line shows the behavior of the 25 rule-based birds of Hybrid, while the green line presents the behavior of the 5 LLM-guided birds
of Hybrid. The lines represent the means, while the shaded areas indicate the standard deviations.

a minor effect size, the variance-based tests provide strong
evidence of heterogeneity. Specifically, both Levene’s test and the
Brown-Forsythe test return extremely low p-values, indicating
that the assumption of homogeneity of variances is violated.
Furthermore, the Kruskal-Wallis test yields a p-value close to zero
as well, signifying statistically significant differences in the overall
distributions of the groups. In summary, these results suggest
that although central tendencies may be similar, the variance and
distributional shape differ, indicating that the underlying behavior
of the models diverges substantially.

We further investigated the behavior of rather staying at
the border of flocks by examining collisions between birds,
which are defined as occasions in which the Euclidean distance
between two birds is smaller than one. In fact, it turns out
that, throughout a simulation, the LLM-guided birds try to avoid
collisions; see Figure 11. In contrast, the rule-based birds from
Hybrid and those from NetLogo, exhibit a much higher number
of collisions.

Furthermore, triggered by our earlier observations, we
examined the average number of neighbors of a bird, as shown
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FIGURE 9

Comparison of average bird distances across the two tested model variants.

FIGURE 10

Boxplot comparing different test metrics of heading differences between Hybrid and NetLogo. Despite a small effect size, significant differences in
variance and distribution are evident. For details, see the text.

TABLE 4 Statistics for the average number of flocking neighbors. The values are aggregated over all steps and experiments.

Model
variant

Mean Median Std Min 20% 50% 75% Max

Hybrid (LLM) 6.27 5.40 4.23 1.00 2.75 5.40 8.63 17.80

Hybrid
(NetLogo)

9.23 9.44 4.30 1.04 6.44 9.44 12.25 16.76

NetLogo 11.42 11.24 6.27 1.04 6.02 11.24 16.87 22.56

in Figure 12. Hereby, we define two birds as neighbors if they are
at a distance greater than one (no collision) and within a distance
d of at most five (that is, 1 < d ≤ 5). Moreover, we require a
heading difference of h ≤ 15. As expected, rule-based birds exhibit
the highest number of neighbors, while the LLM-guided birds
display the lowest number, a result of their conservative behavior.
Statistics on the average number of flocking neighbors can be found
in Table 4.

5.3 Simulation length and experimental
runs

In the bird flock simulation, we empirically observed that
collective behaviors stabilized after approximately 500 steps, with
cluster formations remaining relatively unchanged in subsequent
simulation steps. Therefore, extending the simulations beyond
the chosen limit of 800 steps would likely have provided
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FIGURE 11

Collisions between birds. A collision occurs when the distance d between birds is at most one (that is, d ≤ 1).

FIGURE 12

Average number of neighbors: A neighbor is defined as any entity within a distance d such that 1 ≤ d ≤ 5, thereby excluding collisions. Furthermore,
we establish a heading difference criterion of h ≤ 15.

minimal additional information on emergent dynamics or
system stability.

In contrast, for the ant foraging scenario, we acknowledge
that a longer simulation would have been beneficial to
comprehensively explore long-term emergent behaviors,
particularly since complete depletion of food resources
typically occurs around 2000 steps. Our choice to limit
the simulations to 1000 steps was primarily motivated
by computational costs and practical time constraints.
Thus, we strongly recommend that future studies consider
longer simulation durations to more fully capture and
characterize long-term emergent behaviors and overall
system stability.

6 Discussion

6.1 Prompt strategies

We explored two complementary strategies for integrating
Large Language Models (LLMs) into multi-agent simulations: (i)
a structured, rule-based approach in an ant foraging context, and
(ii) a principle-based, knowledge-driven approach in a bird flocking
scenario. In both cases, our experiments demonstrated how LLMs
can support swarm-like behaviors: guiding ants to locate and
retrieve food by following pheromone trails, and prompting “birds”
to coordinate alignment according to core flocking principles.
Overall, the LLM-driven agents performed comparably to their
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fully rule-based counterparts, but they sometimes displayed notable
differences in how they interpreted and prioritized local cues when
relying on text-based decision-making.

A key theme across both simulations was the importance
of iterative prompt-tuning, which proved essential for producing
consistent and context-appropriate responses. In the ant foraging
simulations, early prompts did not specify what ants should do if
no pheromone or nest scent was present, leading to confusion or
inaction. Through multiple rounds of tuning, we added directives,
such as “move away from the nest when no pheromone signals
are detected” that encouraged exploration. Similarly, clarifying that
nest scent should take precedence over pheromone while carrying
food helped ants more reliably locate and deposit resources.
Following these refinements, the foraging performance of the LLM-
driven ants nearly matched that of the standard NetLogo model.

A new insight arose from the hybrid simulations, in which
a portion of the ant colony was rule-based while the rest
was LLM-driven. These mixed colonies often outperformed
both purely rule-based and purely LLM-based groups. One
possible explanation is that deterministic if-then logic efficiently
manages well-understood aspects of foraging, while LLM-driven
exploration provides adaptability in more uncertain situations.
Thus, combining traditional rules with text-based reasoning can
yield more robust foraging strategies. However, this seemingly
better performance of the hybrid populations warrants further
investigation. We recommend running the simulations for longer
durations so that the colony has enough time to collect any
remaining pieces of food, which may help clarify the mechanisms
driving this performance advantage.

In the bird flocking simulations, using longer prompts that
highlighted alignment, separation, and cohesion improved stability.
Early prompts did not define heading conventions (e.g., 0◦ = north,
90◦ = east), causing erratic turns and reversals. After establishing
the conventions and clarifying the short-turn logic (which favored
minimal angular adjustments), the flocks became more cohesive.
However, LLM-driven birds generally stayed slightly farther from
the flock center and experienced fewer collisions than their rule-
based counterparts, indicating that LLMs can interpret spatial cues
in subtly different ways while still maintaining coherent swarm
behavior.

In both scenarios, we observed that LLM decision-making
can function effectively in a “stateless” manner, relying on
complete contextual details at every step. This guarantees that
the model consistently acts on relevant information but also
necessitates highly detailed prompts. Failing to include key
details—like pheromone intensity or heading conventions—
can result in ambiguous or incorrect actions. Expanding this
approach to incorporate short-term memory or more sophisticated
environmental representations could enable LLM-driven agents
to maintain internal states that more closely resemble those in
traditional agent-based models.

Together, these results confirm that LLMs can serve as flexible
engines for agent behaviors that align with swarm principles,
offering adaptive, context-driven responses. They also highlight
how prompt design and iterative refinement are central to achieving
the desired outcomes. Even small changes in the prompts, such as
specifying the angle to rotate or how to handle conflicting signals,

can significantly influence emergent group-level patterns. This
underscores both the potential and the complexity of integrating
LLMs into agent-based simulations, where subtle details of agent
logic can greatly affect collective behavior.

6.2 Challenges

Finally, regarding potential drawbacks of our approach, two key
issues must be noted, computation time and cost:

First, the interaction between an agent (such as an ant or bird)
and the remote LLM at each iteration of a simulation requires
significantly more computation time compared to executing
simple rules within NetLogo. This increase primarily stems
from API latency, the computational complexity of large-scale
language model inference, and the associated natural language
processing operations. It is important to clarify, however, that
when using an external API (such as the OpenAI API), much
of this computational burden is offloaded to the AI service
provider, thereby alleviating the direct computational cost from the
simulation user’s perspective.

In our specific experiments, we observed that each step
involving an LLM-driven agent interaction typically required
processing times on the order of seconds due to network latency
and model response times, whereas conventional rule-based
simulations executed agent interactions within milliseconds
or less per simulation step. Thus, although significantly
more computationally intensive per agent-step, the method
remains practically feasible for smaller-scale exploratory
simulations and conceptual validations, as demonstrated in
this paper.

Second, utilizing GPT-4o through the OpenAI API inherently
introduces token-based costs and dependencies associated with
external model access, which may affect simulation scalability,
cost-efficiency, and reliability. To mitigate these potential issues,
the computational overhead could be significantly reduced by
deploying smaller, locally hosted LLMs, particularly after targeted
fine-tuning tailored to specific simulation tasks.

At the outset of this research (prior to June 2024), we
experimented with multiple LLMs. Among those evaluated, GPT-
4o emerged as the most efficient and successful in handling tasks,
consistently achieving the expected behavior. Other tested models
often exhibited unreliable and erratic behavior, including ants
randomly dropping food and failing to demonstrate expected self-
organizing capabilities.

However, it is crucial to emphasize that our framework is
not inherently tied to GPT-4o or the OpenAI API. Rather,
we explicitly designed our methodological framework to ensure
adaptability and generality, allowing straightforward integration
with alternative LLMs, including open-source and locally deployed
solutions. Although the experiments presented in this study utilized
a single external model, our methodological approach is fully
extendable and compatible with a variety of language models.
Given the rapid progress in performance and resource efficiency of
LLMs, we anticipate future developments will further enhance the
feasibility and effectiveness of locally deployed language models for
the simulation of swarm behaviors.
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TABLE 5 Summary of strengths and weaknesses of the proposed
LLM-driven multi-agent simulation approach across relevant evaluation
criteria.

Criterion Strengths Weaknesses

Adaptability High flexibility; agents
quickly adapt to novel
scenarios without
explicit reprogramming.

Increased variability may
lead to unpredictability
in agent behaviors,
requiring careful
monitoring.

Cognitive
complexity

Enhanced reasoning
capabilities, enabling
nuanced,
principle-driven
decision-making in
agents.

Reduced transparency
and limited
explainability of agent
decision-making
processes.

Prompt design Allows intuitive,
natural-language
instructions, simplifying
agent interaction and
task specification.

High sensitivity to
prompt wording; subtle
changes can significantly
affect outcomes.

Generalization Strong potential for
transfer learning due to
extensive knowledge
base, enabling
applicability across
diverse scenarios.

Dependence on external
AI services constrains
scalability and incurs
higher latency and usage
costs.

Computational cost Computational burden
shifted to external
service provider; low
local computational
demands.

Higher total
computational overhead,
latency, and API
dependency compared to
conventional rule-based
methods.

Scalability Conceptually scalable for
cognitively complex
tasks, exploiting
general-purpose
knowledge.

Practically limited
scalability due to
external API call
constraints, latency, and
associated costs.

7 Conclusion

By applying LLMs to two classic multiagent models, ant
foraging and bird flocking, this study shows that LLMs can serve
as a viable alternative or complement to traditional rule-based logic
in achieving effective swarm-like dynamics.

In ant foraging simulations, LLM-guided ants gathered food
at rates comparable to ants of the standard NetLogo model, as
long as their instructions were meticulously designed. Moreover,
hybrid colonies that integrated LLM-driven and rule-based ants
showed a promising trend of improved performance compared to
uniform groups, suggesting that the combination of deterministic
efficiency and text-based reasoning can be mutually beneficial and
warrants further investigation. In bird flocking, LLM-driven agents
adhered to the separation, alignment, and cohesion principles to
form cohesive flocks. While heading convergence sometimes lagged
behind purely rule-based simulations, the resulting formations
remained visually coherent. In particular, LLM-based birds
adopted slightly more peripheral positions, indicating that nuanced
differences in textual instructions, such as how distance and turning
are interpreted, can shape global flock patterns.

These two experimental cases were used to explore our
main research objectives: to demonstrate how structured, rule-
based prompts and knowledge-driven prompts could be effectively
incorporated into simulations of collective emergent behavior.

Although our results show promise even in these relatively simple
swarm contexts, we believe that the true potential and comparative
advantage of integrating LLMs into agent-based systems would
be most pronounced in scenarios requiring agents with higher
levels of cognitive complexity or sophisticated principle-driven
decision making. In such contexts, whether modeling complex
social systems, strategic economic behavior, or adaptive ecological
interactions, the flexible knowledge representation, contextual
understanding, and general reasoning capabilities of LLMs could
significantly outweigh the additional computational costs. We
summarize the strengths and weaknesses of our approach
in Table 5.

These advantages manifest particularly in enabling agents
to autonomously adapt to novel, dynamic, and cognitively
demanding scenarios without requiring extensive reprogramming
or domain-specific rule engineering, a persistent challenge with
traditional hard-coded systems. Furthermore, LLMs’ ability to
integrate multiple knowledge domains and leverage implicit world
knowledge offers the potential for more nuanced and contextually
appropriate agent behaviors that would otherwise require more
complex rule systems.

Additionally, in line with our research objectives, the toolchain
we present, integrating NetLogo simulations with LLM interactions
via Python extension and the OpenAI API, offers a practical
contribution in terms of accessibility and pedagogical potential.
NetLogo, widely recognized for its educational utility and intuitive
interface, provides a suitable platform for exploring complex
multi-agent systems. By incorporating LLMs into this familiar
and user-friendly environment, our approach facilitates the study
of cognitively richer and more adaptive agent behaviors, while
also lowering the barrier to entry for researchers, educators, and
students interested in experimenting with advanced AI techniques
in agent-based modeling. We believe that this integration can
support broader engagement with simulation-based research and
teaching, especially in interdisciplinary contexts where accessibility
and interpretability are essential.

It is important to acknowledge certain practical considerations
that accompany our LLM-based approach to multi-agent systems.
The integration of LLMs into agent-based simulations introduces
significant computational overhead compared to traditional rule-
based implementations, with each agent-LLM interaction requiring
network communication and remote inference that substantially
increases simulation time. Additionally, accessing commercial
LLM APIs like GPT-4o incurs token-based costs that scale with
simulation complexity, agent population, and runtime duration.
These resource implications must be weighed against the benefits
of enhanced agent capabilities and behavioral sophistication.

Future implementations might mitigate computational costs
through optimizations such as local model deployment, periodic
rather than continuous LLM consultation, or the distillation of
LLM-derived insights into more efficient specialized models that
maintain key behavioral characteristics while reducing inference
requirements.

Taken together, these considerations not only illustrate the
potential of LLMs in agent-based systems, but also remind us
of the importance of thoughtful design when bringing these
technologies into simulation contexts. Our findings highlight the
central role of iterative prompt tuning in shaping how LLMs
behave within multi-agent environments. Careful attention to the
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length, structure, and clarity of the prompts is essential to achieve
consistent, context-aware responses. At the same time, this need
for well-crafted prompts opens up exciting possibilities for future
work. More complex simulations could benefit from increased
LLM adaptability, especially if supported by mechanisms such as
partial memory, contextual awareness, or reinforcement signals
that allow agents to go beyond stateless behavior and respond in
more nuanced, dynamic ways.

Ultimately, this work underscores the potential for advanced
language models, guided by carefully designed prompts, to
enrich or even extend the capabilities of traditional agent-based
models, offering new perspectives on swarm intelligence, self-
organization, and emergent behaviors. Beyond simulation, these
insights could also inform real-world applications, particularly in
swarm robotics, where the ability to generate flexible, context-
aware behavior on the fly may open new possibilities for
autonomous coordination, exploration, and collective problem
solving in dynamic environments.
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