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Assessing the quality of bovine satellite cells (BSCs) is vital for advancing
tissue engineered muscle constructs with applications in sustainable protein
research. In this study, we present a non-invasive deep learning approach
for optical imaging that predicts fluorescent markers directly from brightfield
microscopy images of BSC cultures. Using a convolutional neural network
based on the U-Net architecture, our method simultaneously predicts two
key fluorescent signals, specifically DAPI and Pax7, which serve as biomarkers
for cell abundance and differentiation status. An image preprocessing pipeline
featuring fluorescent signal denoising was implemented to enhance prediction
performance and consistency. A dataset comprising 48 biological replicates was
evaluated using statistical metrics such as the Pearson r (correlation coefficient),
the mean squared error (MSE), and the structural similarity Index (SSIM). For DAPI,
denoising improved the Pearson r from 0.065 to 0.212 and SSIM from 0.047
to 0.761 (with MSE increasing from 9.507 to 41.571). For Pax7, the Pearson r
increased from 0.020 to 0.124 and MSE decreased from 44.753 to 18.793, while
SSIM remained low, reflecting inherent biological heterogeneity. Furthermore,
enhanced visualization techniques, including color mapping and image overlay,
improved the interpretability of the predicted outputs. These findings underscore
the importance of optimized data preprocessing and demonstrate the potential
of Al to advance non-invasive optical imaging for cellular quality assessment in
tissue biology. This work also contributes to the broader integration of machine
learning and computer vision methods in biological and agricultural applications.

KEYWORDS

deep learning, fluorescence, digital staining, non-invasive optical imaging, tissue
biology, bovine satellite cells

1 Introduction

Advancements in technology are crucial for accelerating and automating the
assessment of source cell quality in tissue engineered muscle constructs designed for
sustainable protein production. Bovine satellite cells (BSCs), isolated from animal muscle
tissue, are essential for developing muscle tissues due to their ability to proliferate and
differentiate into skeletal muscle cells, driving tissue formation in engineered systems.
Ensuring efficient proliferation and differentiation of these cells is essential for producing
high-quality constructs that can serve as alternatives to conventional protein sources
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(Messmer et al., 2022; Stout et al., 2023). Traditionally, evaluation
methods have relied on immunofluorescence microscopy (Lee
et al, 2021; Kong et al, 2023). While microscopy provides
valuable insight into cell morphology, its limited contrast and
specificity for complex samples often necessitate additional
fluorescent dyes or antibodies. These techniques require invasive
sample preparation and expert annotation. Variability in cell
isolation and culture conditions can affect the metabolic state and
cellular composition, further impacting the binding efficiency and
specificity of fluorescent stains (Kong et al., 2023). This underscores
the need for non-invasive optical imaging methods to assess cell
quality, especially considering the heterogeneity present during cell
proliferation and differentiation.

Recent advances in artificial intelligence (AI) have enabled the
automation of cellular image analysis. These efforts include deep
learning segmentation of subcellular components to reduce the
burden of expert annotation (Kromp et al., 2021; Bilodeau et al,,
2022). Furthermore, predicting fluorescent signals from more cost-
effective brightfield microscopy images can minimize the need
for invasive staining (Christiansen et al., 2018; Ounkomol et al.,
2018; Cheng et al, 2021). In 2018, Google first introduced in
silico labeling, a deep learning approach that predicts fluorescent
signals from transmitted light z-stack images of unlabeled
samples (Christiansen et al., 2018). Additionally, convolutional
neural network (CNN) models based on the U-Net architecture
(Ronneberger et al, 2015) have demonstrated the ability to
predict fluorescent signals for individual subcellular components,
such as DNA, cell membranes, and mitochondria, directly from
transmitted (Ounkomol et al,, 2018) and reflective (Cheng et al.,
2021) light microscopy brightfield z-stack images. These studies
highlight the potential of Al-enabled image analysis to bridge
the gap between traditional and digital techniques, suggesting a
promising direction for improving non-invasive optical imaging
for cellular assessment. Yet, these applications have predominantly
focused on the biomedical sector, where cells are well-characterized
and homogeneous (e.g., continuously proliferating human cancer
cell lines), unlike the structurally variable BSCs that require
advanced methods for precise assessment.

To address the complexity and variability inherent in BSC
differentiation, it is crucial to incorporate enhanced visualization
techniques into the analysis pipeline. These techniques improve
interpretability and explainability, making it easier for researchers
to understand model predictions. Recent advancements have
demonstrated how improved visualization methods can be applied
to biological image analysis, providing clearer insights and
improving the reliability of AI predictions (Samek et al., 2017).
Applying these techniques in predicting fluorescent or colorimetric
signals has shown promise in bridging the gap between traditional
and digital techniques (Binder et al, 2021; Cho et al, 2022).
Therefore, integrating enhanced visualization methods is essential
for advancing non-invasive techniques in the assessment of BSC
quality, ultimately supporting the development of reliable and
actionable AI-driven assessments.

In this study, we demonstrate a non-invasive optical imaging
approach for quality assessment of cell culture isolated from bovine
muscle tissues, employing deep learning to predict fluorescent
signals from brightfield microscopy images. Specifically, we used
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two key biomarkers to determine the abundance of BSCs in the
isolated cell culture, i.e., 4',6-diamidino-2-phenylindole (DAPI)
and paired box protein 7 (Pax7). DAPI is a widely used fluorescent
stain that binds to cell DNA in fixed cells and tissues, while
Pax7 serves as a transcription factor regulating the development
and maintenance of skeletal muscle tissue, recognized as the
most specific marker of satellite cells (Seale et al., 2000; Ding
et al., 2018). Consequently, co-staining of cell cultures with DAPI
and Pax7 is commonly utilized to monitor the proliferation and
differentiation abilities of satellite cells over time (Ding et al., 2018;
von Maltzahn et al,, 2013). We employed a deep CNN based on
the U-Net architecture, adapted from a previous study (Ounkomol
et al., 2018) with a modified image preprocessing pipeline. The
model architecture was trained on our microscopy images to
predict multiple fluorescent markers from a single brightfield image
of isolated BSCs. Overall, this deep learning approach provides
digital staining by learning the features of subcellular components
without invasive sample preparation, thereby accelerating cell
quality assessment and reducing resource demands.

2 Method

As illustrated in Figure I, image datasets were obtained
using the traditional immunofluorescence microscopy method
(Figure 1A). These datasets were used to train the CNN model
architecture for digital staining, enabling the trained model to
directly predict fluorescent markers in brightfield images without
invasive sample preparation (Figure 1B). A set of brightfield (i.e.,
input) and fluorescence (i.e., ground truth) images were collected
as detailed in Section 2.1. The technical details of AI prediction
are provided in Section 2.2, including image preprocessing, model
training and prediction, and post-processing.

2.1 Data collection

2.1.1 Cellisolation and culture

BSCs were extracted from three-month-old Holstein bull calves
(n = 3, body weight: 77.10 & 2.02 kg) processed under USDA
inspection at the Michigan State University Meat Laboratory. All
procedures were approved by the MSU Institutional Animal Care
and Use Committee (PROT0202000294), following the methods
outlined in our previously published study (Kim et al., 2023).
Following euthanization via a captive bolt, Longissimus muscle
tissue was collected and transported in phosphate-buffered saline
(PBS; Sigma Aldrich) with 3x Antibiotic-Antimycotic (Thermo
Fisher, Waltham, MA, USA). The muscle tissue was trimmed
of vasculature, connective tissue, and fat, and ground using a
sterile meat grinder. The tissue was enzymatically digested in 0.1%
Pronase (Calbiochem, La Jolla, CA, USA) with Earl’s Balanced Salt
Solution (Sigma Aldrich, St. Louis, MO, USA) at 37 °C for 1 h in
a shaking water bath. After centrifugation at room temperature at
1,500 xg for 4 min, the supernatant was discarded and the pellet
resuspended in PBS. Cells were centrifuged at room temperature
at 500 xg for 10 min, and this process was repeated to isolate a
mononucleated cell pellet.
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Schematic diagram for quality assessment of bovine cell culture: (A) Traditional immunofluorescence microscopy method; (B) digital staining
method using deep learning for predicting fluorescent markers. Brightness and contrast of the example images were adjusted for publication clarity.

2.1.2 DAPI and Pax7 staining

Cells were stained following our previously published method
(Kim and Kim, 2023). Briefly, cells were seeded onto 4-well Lab-
Tek chamber slides (Thermo Fisher) and incubated for 24 h at
38C in Dulbecco’s Modified Eagles Medium (Gibco, Waltham,
MA, USA) supplemented with 10% fetal bovine serum (Thermo
Fisher) and 1x Antibiotic-Antimycotic under 95% 0,/5% CO,.
Cells were then fixed in 4% paraformaldehyde (Thermo Fisher) for
15 min at room temperature, washed with PBS, and permeabilized
with 0.1% Triton X-100 (Thermo Fisher) in PBS for 15 min.
Non-specific binding was blocked using a 2% bovine serum
albumin (Thermo Fisher) in PBS for 1 h at 4 °C. Cells were
incubated overnight at 4 °C with anti-Pax7 primary antibody
(mouse monoclonal, 1:500, Developmental Studies Hybridoma
Bank, Iowa City, IA, USA), followed by Alexa Fluor 488 anti-
mouse IgG secondary antibody (1:1,000; Thermo Fisher) for
30 min at room temperature. After PBS washes, cells were
counterstained with DAPI (1:1,000; Thermo Fisher) in PBS for
5 min at room temperature. Coverslips were mounted using
Fluoromount-G Mounting Medium (Thermo Fisher) and sealed
with nail polish.

2.1.3 Brightfield and fluorescence microscopy
Slides were imaged using an EVOS M5000 inverted digital
microscope (Thermo Fisher) at 20x magnification in brightfield,
DAPI fluorescence (excitation/emission: 357/447 nm), and green
fluorescent protein (GFP) fluorescence (470/525 nm) modes.
Imaging parameters were as follows: brightfield (18.88% light
intensity, 16 ms exposure time, 1 dB gain); DAPI (7.553%
intensity, 52.2 ms exposure, 30.6 dB gain); and Pax7 (43.75%
intensity, 94.4 ms exposure time, 114 dB gain). Background
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fluorescence was recorded using blank chamber slides for
DAPI and GFP channels. For each of the 48 biological
replicates, triplicate sets of brightfield, DAPI, and Pax7 images
were collected.

2.2 Al prediction of fluorescent markers

2.2.1 Image preprocessing pipeline

The collected ground truth data consisted of single-channel,
colored fluorescence images. These images were pre-processed
to generate target fluorescent signals, as shown in Figure 2.
Since the CNN architecture used supports only grayscale images,
the raw TIF images were first converted into grayscale. Next,
background noise was reduced by subtracting the average of the
background fluorescence scans during the fluorescence denoising
step. This process helped remove random bright spots and
normalize areas of high brightness, ensuring uniform identification
of subcellular structures. Finally, PyTorch normalization transform
was applied by scaling pixel intensities to zero mean and
unit variance using statistics computed from the training
set.
the randomness of noise and the placement of subcellular

Standard averaging techniques were ineffective due to

components. The processed images were then split into training
and testing datasets.

2.2.2 Model training and prediction

The PyTorch-fnet framework originally developed for human
cells by Ounkomol et al. (2018), is a CNN model based on
the U-Net architecture for fluorescence prediction and was
employed in this study. The U-Net variation used consists of
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FIGURE 2
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Image preprocessing pipeline for generating target fluorescent signals from ground truth fluorescence images. (A) Original ground truth data
obtained by fluorescence microscopy were converted into (B) grayscale images, followed by (C) fluorescence denoising, and then (D) final
normalization to enhance the target fluorescent signals for model training. Brightness and contrast of the example images were adjusted for

() (D)

three types of convolutional layers with varying kernel sizes and
strides, each followed by batch normalization and a rectified
linear unit (ReLU) activation function. While the original model
architecture was used without modification, this study applies it
to bovine satellite cell imaging, where structural heterogeneity
and signal variability required a tailored preprocessing and post-
processing pipeline to ensure reliable prediction. Built on the
PyTorch library (Paszke et al., 2019), the fnet model supports
both single-channel and multi-channel data and allows for
flexible configuration of data transformations and evaluation
metrics through JSON files. The funet_nn_2d model architecture
was selected, and training was performed using the Adam
optimizer with a learning rate of 0.001. The loss function was
a weighted mean squared error. A CSV file containing paths to
the paired brightfield and fluorescence images for the training
dataset was used as input. The model was trained to predict
fluorescence images corresponding to DAPI and Pax7 staining
using paired brightfield-fluorescence image sets. DAPI serves as
a nuclear marker by binding to DNA, while Pax7 is a nuclear
transcription factor that marks satellite cells. The model thus learns
to infer the spatial distribution of these subcellular structures
directly from transmitted light images, without explicit structural
annotations. Following training, the model was applied to an
unseen festing dataset. Prediction parameters were configured to
match training conditions.

2.2.3 Post-processing of model prediction results

To enhance the interpretability of the AI model predictions,
post-processing steps were employed. While the original ground
truth data were colored, the model was designed to use
grayscale brightfield images as input and produce grayscale
outputs, following the approach by Ounkomol et al. (2018).
These model prediction outputs, initially in TIF format, were
converted from grayscale to RGB and then to JPG format for
visualization. Post-processing also involved color mapping, a
standard digital image enhancement technique (Faridul et al,
2014). The original ground truth data were used to devise a
color palette that maps the colorized output images closest
to the original image selection. This step made the predicted
images more consistent with traditional ground truth data and
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enhanced the visibility of subcellular components, particularly for
noisy outputs.

The final step involved merging the output predictions for
DAPI and Pax7 markers to produce the desired result of combined
fluorescent markers. This was accomplished using scripts for
image overlay and transparency adjustment, resulting in a more
accurate prediction of the location and density of satellite cells. By
merging the colorized predictions, we created a comprehensive
that
fluorescence microscopy.

visualization resembles  traditional = multi-channel

2.2.4 Model performance evaluation

Evaluating a model is essential for determining its effectiveness.
However, establishing evaluation metrics or error values that
accurately reflect model performance can be challenging.
To address this, multiple standard statistical performance
metrics were employed to assess model performance from
various perspectives.

The Pearson r (correlation coefficient) (Nettleton, 2014), also
used in the study by Ounkomol et al. (2018), measures the
normalized covariance between the target and predicted images,
with values ranging from -1 to 1. Values closer to 1 indicate higher
correlation and image similarity. Mathematically, the absolute
value of the Pearson r is given by:

E (i x_)()’i )_’)
r=
\/§ (xi x‘)2 § (yz )_’)2

where x; and y; are the individual data points, and x and y are the

respective means.

In addition, other widely used metrics such as the mean
squared error (MSE) and the structural similarity index (SSIM)
(Wang et al., 2004) were calculated. MSE, one of the most general
measures of error, was computed by taking the average squared
difference between the pixels of the target and predicted images.
SSIM considers image texture and granularity, providing a more
refined measure than simple MSE. Mathematically, the absolute
value of SSIM is given by:

SSIM(x, y) = |[1(x, 1)1* x [c(x, )P x [s(x, )] |
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FIGURE 3
Representative examples of Al-enabled prediction of multiple fluorescent markers from a single BF image: (A) Preprocessed target fluorescence
signals for DAPI (top) and Pax7 (bottom), which were measured experimentally and used as labels during training. These were generated from ground
truth fluorescence microscopy images through the preprocessing pipeline shown in Figure 2 and used as training labels, but included in model
prediction. (B) Corresponding model predictions for DAPI and Pax7, shown with post-processing and overlaid as a composite for qualitative
interpretation.

where

] _ 2pxity + (O
W)= a e
xTHy
(x.y) 20x0y + G
(xy) = ————
J o t+o;+C
s(x,y) = L—'—Q
V= 0x0y + C3

Here, 1y and My are the pixel sample means, o, and oy are the
standard deviations, Oyy is the covariance, and C;, C,, and C; are
constants to stabilize the division with weak denominators.

To evaluate the significance of observed changes in model
performance due to fluorescence denoising, a paired t-test was
conducted for each metric (MSE, SSIM, and Pearson r) across all
test samples. Metric values computed with and without denoising
were compared for both DAPI and Pax7 predictions. All statistical
tests were performed using the SciPy library, with a significance
threshold of p < 0.05.

3 Results and discussion

3.1 Evaluation of model performance with
enhanced visual interpretability

To evaluate model performance, the predicted fluorescence
images were qualitatively compared to the farget fluorescent
signals. The use of post-processing techniques, including color
mapping and image overlay, facilitated a clearer interpretation of
the fluorescent signals. These techniques provided vital contextual
information, enhancing the perceptual quality of the predictions.
The merged predictions of DAPI and Pax7 markers enabled precise
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localization of BSCs on input brightfield images, demonstrating
the model’s capability in digital staining for cell culture quality
assessment. Because DAPI binds strongly to DNA, its fluorescence
signal corresponds to nuclear localization and overall cell density.
Pax7 is a transcription factor expressed in the nuclei of satellite
cells, making its fluorescence signal a marker of satellite cell identity
and differentiation status. The model learns to approximate these
subcellular distributions based on structural features observed in
brightfield images.

3.1.1 DAPI predictions exhibit better
performance compared to Pax7

As shown in Figure 3, the model predictions for DAPI achieved
better performance compared to Pax7. The DAPI predictions
displayed less background noise and variability, attributed to
the uniform staining and distribution of DAPI, which binds
to DNA. In contrast, Pax7 predictions were more variable due
to the inconsistent expression and localization of Pax7 in cells.
This observation suggests that the fnet model architecture is
particularly well-suited for predicting DAPI fluorescence, aligning
with its original design for subcellular structures like DNA and cell
membranes (Ounkomol et al., 2018).

3.1.2 Biological implications in improving model
performance

The use of DAPI and Pax7 in this study was intended to
assess the proliferation and differentiation capabilities of BSCs.
These fluorophores target specific cellular components, enhancing
contrast and resolution. However, biological samples often exhibit
noisy backgrounds and diffuse signals, particularly with Pax7, due
to the heterogeneity in myogenic differentiation of BSCs (Kong
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FIGURE 4
Statistical performance evaluation of Al-predicted DAPI and Pax7 fluorescence signals from BF images using models trained on different targets. (A)
Model trained using unprocessed ground truth fluorescence images. (B) Model trained using preprocessed fluorescence signals (as in Figure 2).
Metrics shown from left to right are Pearson correlation coefficient (higher indicates better correlation), structural similarity index (SSIM; higher
indicates greater similarity), and mean squared error (MSE; lower indicates better accuracy) between predicted and ground truth images.

et al,, 2023). This variability poses significant challenges for signal
quantification and automated analysis.

Deep learning techniques rely heavily on high-quality data and
tend to underperform when such data are scarce. This issue is
particularly relevant in predicting immunofluorescent signals like
Pax7, where the limited availability of labeled data exacerbates
the challenge. Rather than training a model from scratch, fine-
tuning a pre-trained model with local data has been shown to
be a more effective strategy (Tajbakhsh et al., 2016; Moen et al.,
2019). Thus, future studies should focus on improving pre-training
strategies specifically for Pax7 with heterogeneous biological states.
This could involve using attention-based networks to segment
subcellular components with varying health states (Wang et al.,
2023), or incorporating deep learning-based identification of cell
differentiation (Zhu et al.,, 2021). Enhancing the handling of Pax7
signals is crucial for advancing the reliability of deep learning
models in predicting these markers.

3.2 Improved consistency of predictions
through fluorescence denoising

In addition to the individual visual assessment of model

performance, its consistency was investigated using selected
statistical performance evaluation metrics: Pearson r, SSIM, and

Frontiersin Artificial Intelligence

06

MSE. The top row of Figure 4 illustrates the performance of the
model trained on target fluorescent signals derived from raw data
without fluorescence denoising. All three metrics showed similar
trends for both DAPI and Pax7 predictions, with slightly higher
values for DAPI predictions in the Pearson r. The average Pearson
r for DAPI was 0.065, SSIM was 0.047, and MSE was 9.507. For
Pax7, the average Pearson r was 0.020, SSIM was 0.022, and MSE
was 44.753. The bottom row Figure 4 shows the changes in these
evaluation metric values after applying our image preprocessing
pipeline for fluorescence denoising, as depicted in Figure 2. This
preprocessing resulted in higher values for SSIM and Pearson r
metrics, indicating an overall improvement in model performance.
For MSE, we got lower values for Pax7 indicating an improvement,
but values for DAPI increased. After denoising, the average Pearson
r for DAPI increased to 0.212, SSIM to 0.761, and MSE to 41.571.
For Pax7, the average Pearson r increased to 0.124, SSIM to 0.023,
while MSE decreased to 18.793.

3.2.1 Feasibility of evaluation metrics in digital
staining

As shown in Figure 4, MSE values increased with fluorescence
denoising in our image preprocessing pipeline, suggesting greater
errors in pixel-wise predictions. Despite this, visual assessment
of the final outputs showed improved model performance with
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TABLE 1 Paired t-test results across the three different evaluation metrics with and without denoising.

Pearson r
t-value p-value t-value p-value t-value
DAPI 9.76 x 107* -3.68 259 x 1071 -15.56 5.76 x 10710 -9.21
Pax7 552 x 1077 6.45 0.829 -0.218 1.73 x 107 3.47

MSE, Mean squared error; SSIM, Structural similarity index measure; Pearson r, Pearson correlation coefficient; p-value, probability under the null hypothesis; t-value, test statistic from paired

t-test.

our image preprocessing. This improvement is consistent with
the increase in the Pearson r and SSIM values, indicating better
correlation and structural similarity between the target and
predicted signals. This discrepancy suggests that MSE may not be
the most appropriate metric for evaluating model performance
in this context. While MSE measures pixel-wise accuracy, it may
not fully capture perceptual quality, spatial context, or signal-to-
noise ratio. Perceptual quality, relating to human visual perception,
is better captured by metrics like SSIM that consider structural
information (Wang et al, 2004). SSIM evaluates luminance,
contrast, and structure, making it more sensitive to visual
perception than MSE. Spatial context is crucial in biological
imaging, where the arrangement and relationship of cellular
structures matter more than exact pixel values. SSIM captures
spatial information and provides a better understanding of image
quality (Wang and Bovik, 2002). Furthermore, the signal-to-noise
ratio is critical in microscopy images, where high background
noise can obscure meaningful signals. MSE does not account for
noise distribution, whereas SSIM can provide a more nuanced
assessment of image quality by considering noise levels and their
impact on structural similarity (Brunet et al., 2012). Overall, while
MSE measures pixel-wise accuracy, it falls short in capturing
the perceptual quality, spatial context, and signal-to-noise ratio
essential for evaluating digital staining in cell microscopy.

Additionally, the Pearson r measures the linear relationship
between target and predicted signals, providing insights into overall
trend alignment rather than pixel-wise accuracy. The average
Pearson r obtained in this study was lower than in the original
study of the fnet model (Ounkomol et al., 2018), where the value
for DNA was over 0.6. This discrepancy can be attributed to
differences in the input data. The previous study used 3D z-stacks
of brightfield images or 2D electron micrographs, which provide
more comprehensive information about subcellular structures and
thus achieved higher correlation values. In contrast, our study
used only single focal plane data, which may lack some spatial
context. Despite this, our model still performed reasonably well,
demonstrating the robustness of our approach in predicting
fluorescent signals from 2D brightfield data. This adaptation
underscores the practical applicability of deep learning in image-
based quality assessment of BSC culture, enabling cost-effective
digital staining in cell imaging.

3.2.2 Statistical validation of metric
improvements

To assess whether the observed differences in evaluation
metrics before and after fluorescence denoising were statistically
meaningful, a paired f-test was performed on the metric values
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across all test images. The p-values indicate whether the observed
differences are statistically significant, and the corresponding ¢-
values reflect the direction and magnitude of change in each metric.
As shown in Table 1, the p-values indicate statistically significant
differences for most tests, except the SSIM metric for Pax7. For
DAPI, the t-values indicate that both SSIM and Pearson r increased
with denoising, thereby improving prediction. While the average
SSIM and Pearson r for Pax7 also increased slightly, these changes
were not statistically significant, in line with the findings discussed
in Section 3.1.1. The MSE metric showed inconsistent changes
across replicates, with differing signs in the t-values for DAPI
and Pax7, further supporting the limitations of using MSE in this
context, as discussed in Section 3.2.1.

3.2.3 Importance of preprocessing in addressing
biological heterogeneity

To effectively utilize existing models and fine-tune them
to specific datasets, data preprocessing is essential, especially
in managing inconsistent data quality and mitigating the risk
of overfitting. In our approach to fluorescence denoising,
background fluorescence scans were subtracted from the raw
data. Standard normalization techniques were ineffective due
to randomly scattered noise, which often removed the actual
areas of interest. This noisy fluorescence background in the raw
data necessitated optimization of brightness parameters, such as
light intensity, exposure time, and gain for each fluorescence
channel, as described in Section 2.1.3, resulting in inadvertently
elevated non-specific background fluorescence. To address this
issue, a fluorescence denoising technique for each channel was
implemented in our preprocessing pipeline (Figure2), which
substantially improved the consistency of model predictions,
as demonstrated in Figure 4. This adjustment enhances the
reliability of results by accommodating variability in brightness
parameters across different fluorescence channels. Moreover,
researchers have explored various experimental approaches to
improve staining methods and reduce non-specific binding
(Zaqout et al., 2020). Additionally, algorithms have been developed
to digitally remove autofluorescent signals (Wang et al., 2022).
These efforts underscore the ongoing need to improve fluorescence
specificity in the quantitative assessment of microscopy images.
Continued research is essential to enhance the quality of training
data, thereby advancing the application of deep learning for
precise fluorescent marker prediction in cell imaging. Beyond
improving prediction consistency in this study, the tailored
preprocessing and post-processing visualization pipeline offers a
generalizable strategy for adapting deep learning architectures to
biologically complex systems. Although the original U-Net-based
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fnet model was developed for standardized cell types and imaging
conditions (Ounkomol et al., 2018), applying it directly to primary
bovine satellite cells, which exhibit structural variability and high
background noise, highlighted the need for such pipeline-level
adjustments. These findings demonstrate that careful data handling
can extend the applicability of existing models to new biological
domains, enabling more robust and interpretable predictions in less
controlled settings.

3.3 Limitations and future directions

While this study demonstrated the feasibility of predicting
fluorescent markers from brightfield images using deep learning,
several limitations should be acknowledged. Although the dataset
included triplicate images per biological replicate (totaling 144
images), the number of unique biological samples was limited
to 48. This restricts the range of biological and experimental
variability represented in the training set, which may affect
model generalizability to new datasets. Additionally, while we
focused on two biologically relevant markers (DAPI and Pax7)
commonly used in muscle tissue analysis, further validation
using additional fluorescent markers and imaging conditions is
necessary to assess the broader utility of this approach. Given
the variability observed in Pax7 predictions, expanding this
method to other markers, including those capturing different
stages of myogenic differentiation or derived from different
cell types, will be important for evaluating generalizability and
robustness. Future work should also consider transfer learning
or attention-based architectures to better accommodate signal
heterogeneity across marker types (Tajbakhsh et al, 20165
Papanastasiou et al., 2024). Moreover, although we evaluated
prediction performance using biological replicates and standard
image similarity metrics, future studies should incorporate
ablation analyses to isolate the contributions of preprocessing
steps,
model performance.

architectural components, or specific markers to

4 Conclusions

In summary, our study presents a non-invasive method for
assessing BSC cultures using deep learning to predict multiple
fluorescent signals from a single brightfield image. Using DAPI and
Pax7 as biomarkers and employing a CNN model based on U-Net
with an optimized preprocessing pipeline, we achieved substantial
improvements in prediction performance and consistency.
Evaluation using the Pearson r and SSIM demonstrated that
these metrics capture perceptual quality and spatial context
more effectively than pixel-wise error measurements. Enhanced
visualization techniques further increased the interpretability of
the predicted signals. These findings highlight the critical role of
data preprocessing and demonstrate the potential of Al-driven
non-invasive methods for cellular quality assessment in tissue-
engineered muscle constructs. Our approach offers promising
prospects for integrating advanced machine learning techniques in
cell biology applications and improving resource management in
agricultural and biotechnological systems.
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