
Frontiers in Artificial Intelligence 01 frontiersin.org

Anatomical study and early 
diagnosis of dome galls in Cordia 
Dichotoma using DeepSVM 
model
Said Khalid Shah  1, Mazliham Bin Mohd Su’ud  2*, Aurangzeb Khan  1, 
Muhammad Mansoor Alam  3 and Muhammad Ayaz  1

1Department of Computer Science, University of Science and Technology, Bannu, Khyber 
Pakhtunkhwa, Pakistan, 2Department of Computer Science, Multimedia University Cyberjaye Campus, 
Persiaran Multimedia, Cyberjaya, Malaysia, 3Department of Computer Science, Riphah International 
University, Islamabad, Pakistan

Introduction: Artificial intelligence (AI), particularly deep learning (DL), offers 
automated solutions for early detection of plant diseases to improve crop yield. 
However, training accurate models on real-field data remains challenging due 
to over fitting and limited generalization. As observed in prior studies, traditional 
CNNs often struggle with real-environment variability, and transfer learning can 
lead to instability in training on domain-specific leaf datasets. This study focuses 
on detecting dome galls, a disease in Cordia dichotoma, by formulating a binary 
classification task (healthy vs. diseased leaves) using a custom dataset of 3,900 
leaf images collected from real field environments.
Methods: Initially, both custom CNNs and transfer learning models were trained 
and compared. Among them, a modified ResNet-50 architecture showed 
promising results but suffered from over fitting and unstable convergence. 
To address this, the final sigmoid activation layer was replaced with a Support 
Vector Machine (SVM), and L2 regularization was applied to reduce over fitting. 
This hybrid DeepSVM architecture stabilized training and improved model 
robustness. Image preprocessing and augmentation techniques were applied to 
increase variability and prevent over fitting.
Results: The final model was evaluated on a separate test set of 400 images, and 
the results remained stable across repeated runs. DeepSVM achieved an accuracy 
of 94.50% and an F1-score of 94.47%, outperforming other well-known models 
like VGG-16, InceptionResNetv2, and MobileNet-V2.
Conclusion: These results indicate that the proposed DeepSVM approach offers 
better generalization and training stability than conventional CNN classifiers, 
potentially aiding in automated disease monitoring for precision agriculture.
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1 Introduction

Agriculture is a cornerstone of global food security and economic stability, yet crop 
productivity remains highly vulnerable to pathogen-induced diseases. However, plants are 
vulnerable to a range of illnesses caused by pests and pathogens, leading to an estimated $200 
million in global economic losses annually. With the global population increasing by 1.6% 
each year, the demand for food and agricultural products continues to rise (Ashwinkumar et 
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al., 2022). Experts plan to adopt new methods and technologies to 
detect and identify plant diseases at early stages to save the loss 
caused by plant diseases (Ullah et al., 2023). However, diseases such 
as dome galls in Cordia dichotoma remain understudied despite their 
economic impact, necessitating dedicated data-driven detection 
frameworks. After the enhancement in artificial intelligence-based 
techniques, like machine learning (ML) and deep learning (DL), the 
automated classification of image data, including plant diseases at 
early stages, has been a hot research area for the last decade (Bhosale 
et al., 2024). Various types of convolutional neural networks (CNNs) 
models from scratch and with transfer learning have been trained and 
deployed in real environments with satisfactory results (Altalak et al., 
2022; Zhu et al., 2024).

Compared to previous naked-eye classifications, which were time-
consuming and less satisfactory, the new automated methods produce 
accurate and timely results without the involvement of field experts 
because they can be used by non-expert users with a smartphone or 
drone cameras (Li et al., 2019). Early identification of dome galls in 
Cordia dichotoma leaves is essential due to their negative impact on 
crop yields and economic losses. Conventional detection methods lack 
speed and precision, necessitating a novel approach. By employing DL 
models customized for dome gall detection, this research offers a 
transformative solution to quickly identify and mitigate the spread of 
this specific disease. This advancement is vital for preserving crop 
health, ensuring sustainable agriculture, and meeting global food 
demands (Bhosale et al., 2023).

In the proposed study, dome galls, a disease that occurs in Cordia 
dichotoma, were addressed. The genus Cordia belongs to the family 
Boraginaceae of plants (Bhattacharya and Saha, 2013). It includes about 
300 species of trees and shrubs, most of which are indigenous to warmer 
regions of the world. It is utilized in various industries, including 
medicine, agriculture, office supplies, musical instruments, furniture, 
watercraft, painting, and energy (Ferahtia, 2021; Ganjare et al., 2011; 
Matias et al., 2015). Dome galls are a common disease of Cordia dichotoma 
affecting the leaves in the form of multiple dome-like structures. The 
literature I reviewed indicates that no one has previously addressed this 
problem, and there is no publicly available dataset on the Internet. 
Therefore, images were collected from real scenarios for training and 
testing the DeepSVM model. Various villages in Bannu district, Khyber 
Pakhtunkhwa, Pakistan, were visited, and a custom data set was created. 
The image data was divided into two categories: dome galls and normal 
images. Most plant leaf disease symptoms are based on color change or 
wilting, but the target disease is unique in structure and has multiple 
raised surface areas called dome galls. It needs more concentration to 
classify the early stage of the disease because it is very close to healthy 
leaves, and it is difficult for ML and DL models to classify it easily. To 
increase the performance of the proposed model, training data, 
preprocessing and data augmentation techniques play an important role.

The proposed study used the transfer learning technique with 
ResNet-50 as the backbone for the plant leaf disease classification 
model, using pre-trained weights from the ImageNet dataset. To adapt 
the model for the specific task, three fully connected (FC) layers were 
added on top of the ResNet50. SVM was used as the final/output layer 
instead of the sigmoid layer to identify the leaf images as healthy or 
infected. The study’s key contributions include the following:

	•	 A novel dataset on Cordia leaves is created, comprising 3,500 
images taken from a real environment and labeled into two 
categories: healthy and diseased

	•	 The study embraces a novel approach by fusing morpho-
anatomical insight and automated computational systems to 
understand the root cause of the diseases better

	•	 The leaves were subjected to careful morpho-anatomical 
examination using stereo and light microscopy. The disease was 
diagnosed as the mites-induced dome-galls on the leaf surface

	•	 The novel DeepSVM model was trained and fine-tuned based on 
transfer learning to differentiate between healthy leaves and the 
dome gall’s early symptoms

	•	 The performance of the DeepSVM model was evaluated with that 
of previous state-of-the-art (SOTA) models and two publicly 
available datasets to identify the generalizability of the 
proposed approach

The rest of the paper is arranged as follows: Section II reviews the 
relevant literature, while Section III outlines the methods used in our 
study. In Section IV, we present results and discussions. Finally, we 
offer some concluding thoughts and suggestions for future research in 
Section V

2 Related work

Due to ongoing developments in DL and computer vision, 
experts are attempting to integrate these new technologies in various 
fields including the agriculture industry (Zhu et al., 2025). They are 
used in agriculture for multiple purposes, such as plant diseases, 
identification of plant species, pest detection fruit ripeness, etc. CNN 
is a type of DL used for picture classification, image segmentation, 
object detection, and recognition. Most previous research work 
based on automatic plant disease detection and classification utilized 
CNN models with transfer learning. Pre-trained models (VGG-16, 
ResNet-50, MobileNet, EfficientNet, DenseNet, Inception, etc.) are 
used mostly for transfer learning because they are conducive to 
generalizing an image classification model if the training dataset is 
small. In contrast, training from scratch is only needed when there 
are several thousand training images, which is an arduous task 
(Hungilo et al., 2019).

Jakjoud et al. (2019) trained VGG-16 with various optimizers, 
including SGD, Adagrad, RMSprop, and Adadelta. They used a dataset 
of 13,692 images split in the ratio of 80% for training and 20% for 
testing, with 100 ×100 as the input size. They concluded that Adadelta 
was the most accurate, while SGD was the fastest and came in second 
in accuracy. Zekiwos and Bruck (2021) used a cotton leaf dataset that 
contained 2,400 images with 4 classes: one healthy and three diseased. 
Augmentation techniques were used to enhance the training process. 
Pre-processing techniques like image resizing and normalization, were 
utilized. Three convolutional layers for feature extraction and two fully 
connected layers for classification were used to train a customized 
CNN model. They trained the model with and without augmentation 
and claimed a 15% increase in accuracy with data augmentation. 
K-fold cross-validation was used. Adam and RMSprop optimizers 
were used, and Adam was recommended with 96.4% accuracy. 
Nandhini and Ashokkumar (2021) used a tomato leaf image dataset 
of 11,942 images of one healthy class and nine diseased classes taken 
from PlantVillage. In the Keras package, they created a CNN model 
with three convolutional layers, max pooling, two dense layers, and 
one output layer for classification. Ghosal and Sarkar (2020) built a 
CNN model for rice leaf disease classification. They used VGG-16 as 
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the backbone of the model for transfer learning to overcome the 
drawback of a small training dataset. The model was trained using a 
small custom dataset consisting of 1,649 photos divided into four 
classes. Enhancing the data was utilized to lessen over-fitting and 
claim 92.4% accuracy. Bhujel and Shakya (2022) used a leaf picture 
data of rice taken from Kaggle containing 524 photos for each of the 
4 categories. They used CNN model with transfer learning and 
EfficientB0 and EfficientNetB3 as base frameworks with new fine-
tuned FC layers. They used the cyclical learning rate (CLR). They 
claimed 83.99 and 89.18% accuracy after 15 epochs, respectively.

A pre-trained network, DenseNet-121, was used by Chakraborty 
et al. (2021) to identify plant leaf ailments. For collecting training 
images, a well-known platform called PlanDoc was used. Multiple 
optimization techniques were used while fine-tuning the proposed 
approach, but SGD was finalized due to its stable growth while 
training. They claimed 92.5% accuracy after 10 epochs. 
Krishnamoorthy et al. (2021) trained a CNN model with transfer 
learning. InceptionResNetV2 was used as the backbone of the model. 
They used 1,000 images as a training set and 300 images for validation 
collected from Kaggle based on 4 classes. Image augmentation and 
preprocessing techniques were used to generalize the model. Dropout, 
batch normalization and global average pooling were used in the head 
of the model to reduce over fitting. They claimed 95.67% accuracy on 
the unseen images called test datasets. Hong et al. (2020) used transfer 
learning. They trained five tomato leaf disease classification models, 
including ResNet-50, Xception, MobileNet, ShuffleNet, and 
DenseNet121-Xception, with nine disease classes and a healthy class. 
ResNet-50 was recommended as the best model after applying image 
preprocessing and data augmentation. The training set consists of 
13,112 photos downloaded from PlantVillage.

Kumar and Vani (2019) trained six models, Xception, LeNet, 
EfficientNet, VGG-16, VGG-19 and ResNet-50, with fine-tuning for 
tomato disease classification. The models have trained on color and 
grayscale segmented images separately with the SGD optimizer, and 
their results were compared. They claimed that VGG-16 performed 
well with color images, achieving 99.5% accuracy. Shijie et al. (2017) 
used a CNN model based on transfer learning. The VGG-16 model 
was used as the backbone of the model. Data augmentation techniques 
were used and achieved 89% accuracy. They used a tomato leaf dataset 
with 400 images per class and divided it into 65% for training, 25% for 
validation, and 10% for testing. They also tested the model with SVM 
as the final layer but got 1% less accuracy. They used 40 as the batch 
size, a 0.001 learning rate, and an SGD optimizer with 80 epochs.

Chowdhury et al. (2021) replaced the GoogleNet backbone 
with a new backbone made up of numerous convolutional layers, 
batch normalization (BN), and max pooling. They trained their 
custom backbone on the Plant-Village dataset and compared the 
results to the GoogleNet model’s output. They claimed that their 
model performed well compared to the original model. 
DeepPlantNet is a novel 28-layer deep learning model that consists 
of three FC layers and twenty-five convolutional layers, as 
presented by Ullah et al. (2023). The distinctive and successful 
Plant disease classification system uses Leaky RelU, BN, fire 
modules, and a combination of 3 × 3 and 1 × 1 filters. With 
average accuracy rates for eight-class and three-class classification 
schemes of 98.49 and 99.85%, respectively, DeepPlantNet 
successfully classified plant illnesses into ten categories. This 
novel method helps experts and farmers quickly detect and treat 

plant illnesses, which presents a viable way to lower agricultural 
losses. In a study by Sujatha et al. (2021), several pre-built ML and 
DL models were compared on a custom dataset of citrus leaves 
comprising five categories. The results showed that deep learning 
surpassed machine learning approaches, with random forest (RF) 
producing the lowest precision and VGG-Net producing the 
highest precision.

Syed-Ab-Rahman et al. (2022) employed transfer learning to 
achieve 94.37 per cent accuracy by utilizing a faster RCNN model 
trained on citrus leaf images accessible on Kaggle. Roy and Bhaduri 
(2021) used a modified version of Yolov4 with transfer learning on a 
dataset of apple leaves with a dataset of three classes and achieved 
91.2% accuracy. They used image augmentation approach to expand 
the training set and prepare the model for complex backdrop images. 
Ullah et al. (2022) suggest using DeepPestNet, an end-to-end deep 
learning network, to identify and categorize crop pests. There are 11 
layers in the model, including 8 convolution layers and 3 dense layers. 
The authors used image augmentation techniques such as rotation, 
flipping, blurring etc. to expand the training set and evaluate the 
robustness of the suggested method. Using crops dataset of Deng, they 
used 10 classes of pests with a success rate of 100%, and the Kaggle 
pest dataset did it with an accuracy of 98.92%.

Jamjoom et al. (2023) used conventional ML methods for plant 
leaf disease classification. For data preprocessing, discrete cosine 
transformation (DCT) and color space conversions were used. To 
segment the training images, a famous approach known as K-means 
clustering was used, and local binary pattern (LBP) feature grey level 
co-occurrence matrix (GLCM) was used for feature extraction. Radial 
base kernel and polynomial kernel approaches were used for feature 
classification, and SVM was used for disease type identification. 
Arshad et al. (2023) used preprocessing techniques including data 
augmentation and the U-Net model for region-of-interest 
segmentation. CNN models Vgg-19 and Inception v3 as ensemble 
learning were used for feature extraction, and transformers were used 
for the identification of potato diseases. CNN is considered to be the 
building block of recent computer vision applications. Bhatti et al. 
(2023) used a custom CNN model equipped with preprocessing and 
data augmentation for feature extraction and transfer learning based 
on Inception-V3 for disease identification. The proposed study used 
a hybrid training dataset taken from Plant-Village and Plant-DOC 
with sixty classes and claimed 99% testing accuracy.

The design of a good model for early diagnosis of plant leaf 
diseases requires a great knowledge of related literature to know the 
hardness of the area. Except for a few diseases for which datasets are 
available on the internet, there is a scarcity of dataset images for plant 
diseases. Collecting target disease leaf images from real-world 
environments is time-consuming and labor-intensive. Training a 
generalized model for such a new disease requires deep knowledge of 
CNN structure and parameters and their role in training a model. In 
the next section, all these issues are addressed systematically.

3 Methodology

The proposed approach comprises two main steps, i.e., anatomical 
and computational studies. The anatomical study foresees the root 
causes of possible diseases in the plant leaves. Similarly, the 
computational study uses fine-tuned CNN with SVM to classify the 
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Cordia dichotoma leaves into healthy and diseased. The details of each 
methodological study are elaborated below:

3.1 Anatomical studies

A sharp blade was used to cut the galled leaf segments 
anatomically, and the thinnest pieces were dyed. The protocol listed 
below was chosen. Fresh solutions of safranin and methyl blue, each 
5% in water, were combined in an equal ratio. The portions of galled 
segments were submerged in the combination for 10–20 min before 
being transferred to a solution of 50% alcohol. The sections were 
moved to 95% alcohol for 5 min, washed with pure alcohol for 5 min, 
mounted in a drop of glycerol, and dried. Different resolutions of an 
optical microscope (Lebomed LB-201) were used to observe the 
sections, and photos were taken using a Vivo S1 Pro camera 
(Verhertbruggen et al., 2017).

3.2 Computational studies

In this study, a novel model named DeepSVM was developed to 
identify Cordia dichotoma leaf images as healthy or diseased. Transfer 
learning was utilized by using ResNet-50 as the backbone for the 
model, which allowed us to leverage the pre-trained weights of the 
ResNet50 model previously trained on a large dataset (ImageNet) for 
feature extraction. On top of the ResNet50 backbone, three FC layers 
were added to learn higher-level representations specific to domain 
image set. Finally, SVM was used for classification as the output layer, 
a popular choice for classification tasks. The results showed that the 
proposed approach achieved high accuracy in classifying plant leaf 
images as healthy or diseased, demonstrating the effectiveness of using 
transfer learning and SVM in this context. The flow of the model is 
shown in Figure 1.

3.3 Data collection

Developing real-time applications using DL necessitates a dataset 
comprising images for training the model. Unfortunately, there is no 

online dataset currently available on Cordia leaves to train and 
validate a DL model aiming to identify healthy and unhealthy Cordia 
leaves. Therefore, a custom dataset containing 3,500 images was 
collected carefully for model training, with an additional set of 400 
images allocated for testing. A detailed distribution of the dataset is 
provided in Table 1. The leaf images were manually annotated with 
binary class labels: Healthy and Dome Galls. The leaves of Cordia 
dichotoma show variations in shape due to several factors, including 
soil type, overall plant health, climatic conditions, water availability, 
pest attacks, and nutrient deficiencies. Therefore, the images were 
collected from diverse locations, including urban and rural areas 
within the Bannu district of Khyber Pakhtunkhwa (KP), Pakistan, 
ensured that the dataset accurately reflected real-world scenarios. 
Most of these images were captured in the semi-hilly Baka Khel 
subdivision of district Bannu. The original image resolution was 
2016 × 4,704 pixels, captured using a TECNO Camon 20 camera (64 
MP, f/1.7 wide lens, 2 MP depth sensors). Images were collected under 
real field conditions at different times of the day (morning, noon, 
afternoon, and evening) to ensure variability. All images were resized 
to 256 × 256 pixels for model training. The dataset was split into 80% 
for training, 20% for validation, and 400 independent test images (200 
per class). Importantly, it should be emphasized that employing 
authentic, real-world images as opposed to pre-existing internet 
datasets can significantly enhance the performance of DL systems 
(Nagaraju and Chawla, 2020). A sample of the pictures gathered for 
the suggested work is shown in Figure 2. The dataset is available on 
request for the researchers to experiment with the data and further 
improve the model accuracy.

3.4 Pre-processing

Image preprocessing is crucial step in training a DL classifier for 
computer vision tasks. Removing inadequate images, including those 
of poor quality, blurry, or low contrast, from a training dataset is 
essential in preparing the data for training a DL model. Inadequate 
images can negatively affect the model’s accuracy and result in poor 
performance (Li et al., 2025). Each image must be inspected manually 
to assess its quality and remove inadequate images. It is a time-
consuming process, especially if the dataset is large but removing 

FIGURE 1

Workflow of the suggested method.
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these images can improve the model’s accuracy, ensuring that it’s 
trained on high-quality data. Image resizing is essential in preparing 
images for feeding into a DL model. Similarly, CNN-based 
approaches are sensitive to the shape and size of the input photos. 
Therefore, all images should be resized to a standard size before being 
fed into the model. All input images were downsized to 256 by 256 
for the proposed study. This resizing is performed using bilinear 
interpolation, a common method that estimates the pixel value at a 
non-integer coordinate (x, y) by considering the weighted average of 
the four nearest neighboring pixels. The interpolated value is 
computed using Equation (1) as follows:

	

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 1 0

0 1 1 1

, 1 1 . , 1 . ,
1 . , . ,

I x y a b I x y a b I x y
a b I x y ab I x y
≈ − − + −

+ − +
	

(1)

Where:
x₀ = ⌊x⌋, x₁ = ⌈x⌉.
y₀ = ⌊y⌋, y₁ = ⌈y⌉.
a = x − x₀, b = y − y₀.
I(x, y): interpolated pixel intensity.
I(x₀, y₀), etc.: intensities of the four neighboring pixels.
Image normalization is a method used in image processing to 

bring an image’s pixel values into a predetermined range or scale. For 
many deep learning (DL) algorithms, like Convolutional Neural 
Networks (CNNs), to learn effectively, the pixel values must fall within 
a similar range, which is typically achieved through normalization. In 
the proposed approach, each image was normalized to fall between 0 
and 1 by dividing each pixel value by 255, i.e., using the transformation 
(rescale = 1./255). This converts the original 8-bit pixel values (ranging 
from 0 to 255) into floating-point values between 0 and 1. These image 
preparation methods help increase the model’s accuracy and improve 
its generalization to unseen data.

3.5 Data augmentation

Data augmentation is a strategy employed to expand the size of a 
training dataset by applying different modifications to the original 
images, such as rotation, mirror imaging, cropping, and scaling. 
Subsequently, the augmented data is employed for training the 
proposed model. The significance of data augmentation in CNN 
model training is rooted in its capacity to enhance the model’s ability 
to generalize. By introducing variations to the source images, the 
model can learn to identify the same object in diverse configurations 
and orientations, thereby enhancing its resilience to input variations. 
Moreover, data augmentation can serve as a countermeasure against 
over-fitting. Data augmentation reduces the possibility of over-fitting 

by adding a variety of changes to the data used for training, creating a 
more relevant and diverse image set. In the proposed approach, 
transformations like brightness (0.4–1.5), horizontal and vertical 
flipping, adjustments in height (0.2) and width (0.2), zooming and 
rotation (30), zooming (0.2) were employed. Some sample images 
post-augmentation are illustrated in Figure 3.

3.6 Proposed DeepSVM approach

The DeepSVM model proposed in this study integrated the 
Resnet-50 as its pre-trained backbone, augmented with three FC 
layers and an SVM as the output layer. ResNet-50 is a famous 
pre-trained model developed by Microsoft researchers in 2015. The 
general architecture of Resnet-50 is depicted in Figure 4. Its 
architecture starts with a convolutional layer having 64 feature maps 
with a 7×7 kernel size, followed by a max pooling layer. It adds sixteen 
residual blocks with 48 convolutional layers, with three in each block, 
followed by a global average pooling layer. The number of feature 
maps in convolutional layers is continuously increasing, going from 
top to bottom. Convolutional layers operate by applying a filter or 
kernel to an input matrix or image, performing element-wise 
multiplication followed by summation, to produce an output matrix 
known as a feature map. It extracts the features from the input images 
and then sends them to the FC layers for feature classification which 
is described as follows:

Let ( ),i j c d
I a

×
 =    be the input matrix of order c × d and 

( ),m n k k
K k

×
 =    be the filter of order k (k is odd) is a smaller matrix. 

The filter slides across the input matrix, and at each position, it 
performs an element-wise multiplication with the corresponding 
region of the input. The results are then summed to generate the 
output matrix, as defined in Equation 2:

	
( ) ( ) ( ), , ,

, 1

k

i j i m j n m n
m n

C a k+ +
=

= ∗∑
	

(2)

Where “m” and “n” denote the positions of the kernel indices, and 
the sum is computed across these indices.

The ResNet (Residual Network) models are famous for tackling 
the challenge of vanishing gradients within intricate neural networks 
by incorporating skip connections. There are two types of skip 
connections, identity blocks or identity skip connections and 
convolutional blocks or projection skip connections. Identity skip 
connections are the basic skip connections where the input to a layer 
is added directly to its output as shown in Figure 4c. In ResNet-50, 
these connections are used in the residual blocks where the input and 
output dimensions are the same. Projection skip connections are 
utilized when the dimensions of the output and input of a residual 
component are not equal. In such cases, a 1×1 convolutional layer is 
employed to adjust the dimensionality of the input so that it matches 
the output dimension shown in Figure 4b. These connections are used 
in certain residual blocks within ResNet-50 where down sampling is 
required. The skip connections, alternatively labeled as shortcut 
connections, serve as a mechanism within deep neural networks to 
mitigate the vanishing gradient issue. In a neural network, gradients 

TABLE 1  Distribution of Cordia dichotoma leaf images across training, 
validation, and test sets.

Image Set Healthy Dome galls Total

Training 1,400 1,400 2,800

Validation 350 350 700

Testing 200 200 400

Total 1950 1950 3,900
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are employed for weight updates during training. However, as the 
gradient is propagated through the network, it can become very small, 
especially in deep networks, making it difficult to update the weights 
effectively. This can lead to slower convergence or the network 
becoming stuck in a local minimum. Skip connections aim to solve 
this issue by providing an alternate, more direct way for the gradient 
to pass via the network. This is achieved by adding a connection that 
skips one or more layers in the network. It works as follows:

	 ( )Y F x x= +
	

(3)

Equation 3 shows how a neural network layer works: x is the 
input, and Y is the output. The function F(x) processes the input to 

extract useful information, and then the original input x is added back 
to the result of F(x), piece by piece. This helps the network learn more 
effectively by keeping some of the original information.

ResNet-50, having undergone extensive training on the ImageNet 
dataset with over 1.2 million images across 1,000 classes, brings a 
wealth of diverse features to the model. This pre-training on ImageNet 
establishes ResNet-50 as a popular choice for transfer learning in 
various computer vision tasks such as object detection, image 
segmentation, and classification. Transfer learning exploits the 
knowledge gained during pre-training, allowing fine-tuning on a new 
dataset or task with limited labeled examples. This approach often leads 
to enhanced performance and faster convergence, especially when 
dealing with smaller datasets. The transfer learning process involves 
using the pre-trained model’s weights as a starting point, replacing the 

FIGURE 2

Sample images from training dataset. (a) Healthy; (b) diseased; (c) diseased; (d) healthy.

FIGURE 3

Augmentation methods used in the proposed work. (a) Original; (b) brightness; (c) horizontal flip; (d) vertical flip; (e) width shift; (f) height shift; (g) 
rotation (h) zooming.
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final layer(s) with task-specific ones, and then training these new layers 
on the new dataset. In contrast, the pre-trained layers are frozen or 
fine-tuned with a reduced learning rate. In the proposed study, three 
FC layers were used for feature classification. Each FC layer was 
followed by a drop-out layer to reduce over fitting. SVM was used as 
the output layer for disease identification with L2 regularization.

SVM is the final/output layer for classifying the disease called 
dome galls. SVM, an ML technique, is employed for classification and 
regression analysis tasks. In classification, SVM endeavors to segregate 
data instances into distinct categories by identifying the hyper plane 
that optimizes the separation margin between these categories. This 
hyper plane serves as the boundary, ensuring the greatest possible gap 
between data instances of disparate classes. SVM is a potent algorithm 
that addresses linear and nonlinear classification and regression 
quandaries. Its widespread adoption spans diverse domains, including 
image classification, textual categorization, and bioinformatics. In the 
proposed approach, SVM is employed for binary classification using 
the hinge loss function along with L2 regularization. The mathematical 
representation is provided in Equation 4 below:

	
( )( )21: max 0,1

2
xiT

iminimize C y bω ω + ∑ − + 
  	

(4)

In this context, ω represents the weight vector, b is the bias term, and 
C is the regularization parameter that controls the trade-off between 

maximizing the margin and minimizing classification errors. yᵢ denotes 
the binary class label for the ith training example, while xᵢ is its 
corresponding feature vector. The symbol ∑ indicates summation over 
all training examples. With these definitions, the hinge loss function used 
in the L2-regularized binary SVM is expressed in Equation 5 as follows:

	
( )( )max 0,1 xiT

iy bω− +
	

(5)

This loss function imposes a penalty on the model when a training 
sample is misclassified or falls on the wrong side of the decision 
boundary. If the model correctly classifies a sample with sufficient 
confidence, the loss becomes zero. The hinge loss is a convex function, 
meaning it has a single global minimum, and while it is not 
differentiable exactly at the point where the argument of the max 
function is zero, it remains smooth and manageable for optimization 
elsewhere. Table 2 contains the architecture and training configuration 
of the proposed DeepSVM Framework.

4 Results and discussion

4.1 Training environment

In this study, Google Colab was used to develop and train the 
models. Google Colab offers a cost-effective alternative, providing a free 

FIGURE 4

(a) General architecture of ResNet-50 (b) skip connection (Conv Block) (c) skip connection.
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GPU-enabled environment. Integrated with Google services like Gmail 
and Drive, it allows easy access to datasets and models. Its interactive 
notebooks, equipped with pre- installed libraries, streamline coding, 
saving time on setup. The Tesla T4 GPU, with 12 GB of RAM, powers 
Colab, accelerating model training for faster convergence and improved 
results. Keras library was used for developing the CNN models. This 
combination democratizes advanced hardware access, empowering 
researchers in image analysis with an efficient, collaborative platform.

4.2 Performance measurement metrics

To assess the model’s effectiveness, we employed a quartet of 
distinct metrics: accuracy, precision, recall, and the F1-score (Srinivasu 
et al., 2025). Accuracy is a conventional measure, gauging the global 
accuracy of the model’s predictions, shown in Equation 6. On the other 
hand, precision and recall gauge the model’s aptitude in accurately 
distinguishing positive and negative samples, shown in Equations 7, 8, 
respectively. The F1-score, a harmonic amalgamation of precision and 
recall, furnishes a harmonious gauge of the model’s performance, 
shown in Equation 9. Specificity, which measures the proportion of 
correctly identified negative samples, is shown in Equation 10.

	  
TN TPAccuracy

Total Samples
+

=
	

(6)

	
Precision TP

TP FP
=

+ 	
(7)

	
( ) TPSensitivity recall

TP FN
=

+ 	
(8)

	
1 Score 2 Precision RecallF

Precision Recall
× − =  +  	

(9)

	

TNSpecificity
TN FP

=
+ 	

(10)

Where true positives (TP) show the correct classification of 
dome galls; true negatives (TN) show the correct classification of 
healthy leaves; false positives (FP) show the wrong classification of 
dome galls, i.e., healthy leaves as dome galls; and false negatives (FN) 
show the wrong classification of healthy leaves as dome galls.

4.3 Experiments and results

4.3.1 Anatomical results for dome galls
A tiny mite (Tyrophagus putrescentiae) was isolated from 

galled tissues in Cordia dichotoma, as shown in Figure 5. The mite 
may be the possible inducer of dome galls in C. dichotoma. A 
diversity of calcium oxalate crystals in mites-induced gall tissues in 
Cordia was observed Figure 6. These crystals are proposed to be 
released by the plant tissues as a defense against mites-induced 
stress. Anatomical observations of transverse sections of the leaves 
indicated the development of various trichomes. The trichomes are 
proposed to be developed by the plant as physical barriers to the 
mites. Irregular extensions of vascular tissues were noticeable 
(Figure 7).

In plants, Galls are anomalous fleshy or woody outgrowths that 
are sometimes referred to as warts and tubercles when they are 
small or knots when they are large, usually with a web of complex 
and branched vascular tissues distributed irregularly (Lu et al., 
2019). During tumor induction, cell hypertrophy is usually the 
initial noticeable response of the host plant organ (dos Santos 
Isaias et al., 2014). The presence of calcium oxalate crystals of 
varying shapes and dimensions within gall tissues is illustrated in 
Figure 8.

The gall tissues are often accompanied by trichomes and other 
modified cells, which act as physical barriers to possibly, protect the 
tissues from further damage (Ferreira and dos Santos Isaias, 2014). 
Plant galls are usually distinct structures often induced by the 
invasion of pathogenic organisms, like insects, mites, nematodes 
and microbes on plants (Anand and Ramani, 2021). The initiation 
of a gall is accompanied by the rapid cell division and differentiation 
of parenchyma cells in order to provide supplementary vasculature 
to the growing gall. Dolzblasz et al. (2018) reported that leafy galls 
develop a complex network of vascular tissues in order to ensure 
the transport of water and dissolved minerals to the growing apices 
of gall. Karabourniotis et al. (2020) have reported anatomical and 
chemical modification in trichomes and structural diversity in 
trichomes as a plant’s strategy to overcome biotic and abiotic 
stresses. Moreover, they also reported that trichomes function as 
physical barriers to protect plant tissues against foreign invaders. 
While Nakata (2012) reports that plant synthesizes a diversity of 
calcium oxalate crystals when they are under stress. These crystals 
have been reported to play a vital role in regulating cellular calcium 
and protecting plants from biotic and abiotic stresses (Gómez-
Espinoza et al., 2021).

TABLE 2  Model architecture and training configuration of the proposed 
DeepSVM framework.

S. 
No

Layer Neurons/
Value

Parameter Value

1 Backbone 

(ResNet-50)

Transfer 

Learning

Input Image Size 256 × 256

2 Flatter Layer Activation 

Function

ReLU

3 FC layer 512 Optimizer SGD

4 Dropout 0.3 Momentum Value 0.9

5 FC Layer 256 Number of 

Classes

2 (Healthy, 

Dome 

Galls)

6 Dropout 0.3 Batch Size 32

7 FC Layer 128 Training Epochs 98

8 Dropout 0.3 Loss Function Hinge

9 Final Layer 

(SVM)

1 Regularization L2, (Used 

in final 

layer only)

10 Learning Rate 0.0001

11 Early Stopping Yes
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4.3.2 Results with the proposed DeepSVM 
framework

In this study, a novel model, DeepSVM, was trained and fine-
tuned, leveraging a dataset of 3,500 images for the accurate 
identification of early symptoms related to dome galls, a prevalent leaf 
disease in Cordia plants. The early symptoms of dome galls are similar 
to those of healthy leaves and require more concentration to classify. 
The model’s architecture culminated in a powerful configuration 
featuring Resnet-50 as its backbone, three FC layers, and an SVM as 
the final output layer. Training extended to 98 epochs, implementing 
the effective technique of early stopping to mitigate over-fitting risks 
by discontinuing training upon validation set performance 
degradation. Rigorously evaluated on 400 previously unseen images, 
the model showcased high performance with an accuracy of 94.50%. 
Comprehensive results are presented in Table 3. The results 
demonstrate that the model achieved high accuracy, precision, recall, 
and F1-score, indicating its effectiveness in classifying plant leaves as 
healthy or diseased. These findings suggest that the developed model 
could be an invaluable tool for diagnosing plant disease, helping 
farmers and agricultural experts identify and treat diseased 
plants promptly.

In this experiment, a comprehensive exploration of model 
training strategies for the early symptom identification of dome galls 
was undertaken. Employing deep and shallow architectures, 
experiments ranged from training models from scratch to utilizing 
transfer learning. The customized CNN model, featuring seven 
convolutional layers with BN after each block, two FC layers, dropout 
layers, and an output layer, served as the baseline for the proposed 
research, with detailed results in Table 4.

The concept of training oscillation in DL, denoting erratic 
fluctuations in metrics like loss or accuracy during training, was 
elucidated. This phenomenon often arises from issues such as 
inappropriate learning rates or model architecture, impeding the 
convergence of the training procedure. Incorporating L2 regularization 
in the final layer effectively aligned results with the research objectives. 
Visual representations of the training and validation performance, 
encompassing accuracy and loss functions, are depicted in Figure 9. 
Additionally, MobileNet-v2 (Sandler et al., 2018), VGG-16 (Simonyan 
and Zisserman, 2014), InceptionResNet-V2 (Naveenkumar et al., 
2021) and VGG-19 (Simonyan and Zisserman, 2014) were trained 
with the same parameters and FC layers, and their respective results 
are outlined in Table 4. Instead of three FC layers, the custom CNN 
model showed good performance with two FC layers. The confusion 

matrix of the proposed model showing detailed of TPs, TNs, FPs and 
FN is depicted in Figure 10.

The DeepSVM, employing ResNet-50 as a backbone, 
demonstrated strong performance in classifying Cordia dichotoma leaf 
images as healthy or infected. The utilization of ReLU activation, SGD 
optimizer with momentum (0.9), and hinge loss function contributed 
to the model’s success. ResNet-50’s deep architecture with 50 layers 
allowed it to learn complex features, addressing the vanishing gradient 
issue through residual connections. These connections facilitated 
efficient gradient propagation and reduced the risk of over-fitting. The 
model incorporated three FC layers, progressively reducing neurons 
(512, 256, and 128) toward the output layer, with dropout layers 
(dropout ratio of 0.3) and L2 regularization in each FC layer. This 
design enabled the model to capture intricate nonlinear relationships 
between features and class labels. The final layer employed SVM, 
outperforming sigmoid, showcasing SVM’s effectiveness in handling 
complex data and generalizing well to unseen instances. The 
DeepSVM with ResNet-50 as a backbone and SVM as the final layer 
presented a robust solution for accurate leaf image classification tasks 
(Tang, 2013).

4.4 Ablation study

The proposed model, DeepSVM, underwent a series of iterative 
experiments involving continuous adjustments to its architecture and 
hyper parameters. In the proposed study, transfer learning was used, 
and the main focus was on the head (FC layers) of the CNN model, 
changing the number of FC layers followed by the number of neurons 
per layer. The model was initially trained with a single fully connected 
(FC) layer containing 1,024 neurons, followed by experiments with 
two FC layers comprising 512 and 256 neurons, respectively. The best 
results, however, were achieved using three FC layers with 512, 256, 
and 128 neurons, respectively. Most of the previous literature used 
various optimizers, including Adam and stochastic gradient descent 
(SGD). In this study both of them were used, but SGD with 
momentum (0.9) performed well compared to Adam. The learning 
rate was adjusted multiple times during experimentation, with the 
optimal performance achieved at a finalized value of 0.0001. To reduce 
over fitting, the L2 regularizer was used in the final layer with a 
sigmoid activation function. After incorporating three fully connected 
(FC) layers with SGDM (momentum = 0.9), a loss value of 0.0001, a 
sigmoid activation function, and an L2 regularizer, a notable 
improvement was observed in training and validation accuracy as well 
as loss values. However, a non-negligible amount of oscillation 
persisted in the training and validation curves, potentially affecting 
the model’s generalization in real-world applications. To overcome 
this issue, the sigmoid activation function was replaced by SVM which 
greatly enhanced the results with reduced oscillation. Therefore, a 
model that contained a backbone of 50 convolutional layers, three FC 
layers and an SVM as an output layer was named DeepSVM.

4.5 Performance evaluation of the 
DeepSVM on public datasets

The results of the suggested model on two publicly accessible 
datasets show that it is somewhat more adaptable and performs 

FIGURE 5

(a) Mite, surface morphology (b) side view.
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TABLE 3  Shows the outcomes of DeepSVM on the test images.

Serial No Metric Value (%) SD%

1 Accuracy 94.50 1.50

2 Precision 96.00 –

3 Recall 93.00 –

4 Specificity 96.00 –

5 F1-Score 94.47 1.40

better in a couple of areas. The model demonstrated an improved 
precision in classifying plant leaf illnesses using the Potato Leaf 
Disease (PLD) dataset, which consists of 4,072 images spanning 
the healthy, early blight, and late blight classes. On the pulmonary 
X-ray image dataset, which comprises 6,432 medical images 
classified into three classes—normal, COVID-19, and 
pneumonia—the model’s stated accuracy of 98.00% was similarly 
intriguing. This improved performance revealed the model’s 
capacity to recognize intricate patterns within radiography images, 

FIGURE 6

(a) Healthy leaf section (b) initiation of dome gall (c) transverse section of leaf gall segment (d) trichome (e) trichome, closer view (f) Multiple 
trichomes.

FIGURE 7

(a) A trichome with its secretion (b) irregular xylem vessel (C) multiple trichomes (d) multiple.
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creating intriguing opportunities to enhance medical diagnostic 
processes. By carefully assessing its performance metrics, as 
indicated in Table 5, the model’s versatility and efficacy in 

addressing the unique issues presented by detecting plant diseases 
and analyzing medical images were brought to light. These findings 
demonstrated the improved generalizability of the suggested 

FIGURE 8

Calcium oxalate crystals of various dimensions.

TABLE 4  Performance comparison of DeepSVM with other models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score 
(%)

Parameters 
(millions)

GFLOPs

MobileNetV2 91.33 93.76 88.23 90.91 3.40 0.30

VGG-16 90.87 92.37 87.00 89.60 14.7 15.0

VGG-19 91.80 92.44 90.74 91.58 20.0 19.0

InceptionResNet-v2 92.65 94.77 92.88 93.79 55.9 12.5

Custom-CNN 87.41 87.74 83.37 85.49 3.34 2.00

DeepSVM 94.50 96.00 93.00 94.47 25.6 3.80

FIGURE 9

Shows training performance of the proposed DeepSVM (a) accuracy (b) loss.

https://doi.org/10.3389/frai.2025.1558358
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Shah et al.� 10.3389/frai.2025.1558358

Frontiers in Artificial Intelligence 12 frontiersin.org

TABLE 5  Performance assessment of the DeepSVM on public datasets.

Dataset Source Accuracy (%) Precision (%) Recall (%) F1-Score (%)

PLD Kaggle 97.50 98.50 96.53 97.42

Chest X-Ray Kaggle 98.00 97.25 97.50 97.37

TABLE 6  Comparison of DeepSVM method with previous work on a public dataset.

Study Method Dataset Year Accuracy (%)

Islam et al. (2017) CNN Potato Leaves 2017 92.00

Rozaqi and Sunyoto (2020) ANN Potato Leaves 2020 96.50

Sanjeev et al. (2021) Segmentation + MSVM Potato Leaves 2021 95.00

Singh and Kaur (2021) K-Means + MSVM Potato Leaves 2021 95.99

Kurmi et al. (2022) CNN Potato Leaves 2022 95.35

Mahum et al. (2023) Efficient-Net DenseNet Potato Leaves 2023 97.20

Ashikuzzaman et al. (2024) DenseNet201 Potato Leaves 2024 96.00

DeepSVM CNN + SVM Potato Leaves – 97.50

approach and not only demonstrated its adaptability but also it’s 
potential to make a substantial contribution to healthcare 
and agriculture.

4.6 Comparison of the DeepSVM with 
other SOTA methods

The proposed approach is evaluated on a novel dataset curated for 
the dome galls. We cannot find related studies to evaluate and compare 
the performance of the proposed approach with the SOTA approaches 
concentrating on similar datasets. Therefore, to identify the 
effectiveness and performance of the proposed DeepSVM approach, 
it is evaluated against the publicly available dataset. The DeepSVM was 
trained and tested on the PLD dataset to create a solid foundation for 
the work. The detailed results are shown in Table 6. The model 
exhibited better performance, achieving a test accuracy of 97.50%. 
This achievement served as a testament to the efficacy of the novel 
approach. A meticulous comparative analysis was conducted to 
provide a comprehensive perspective, pitting the model against prior 

research that employed the same publicly available dataset. The 
detailed outcomes of this comparative evaluation are meticulously 
outlined in Table 4, offering valuable insights into the significant 
advancements made by the suggested model (Table 6).

4.7 Limitations of the study

In the context of our proposed study, DeepSVM, a novel model 
meticulously crafted for the early symptom identification of dome 
galls, showcased better results by achieving a better accuracy of 
94.50% on the test dataset. This accomplishment represented a 
significant stride forward in the domain of plant leaf disease 
classification. However, an avenue for improvement lies in enhancing 
computational efficiency. DeepSVM necessitated a longer training 
duration than contemporaneously trained models, particularly those 
employing the sigmoid activation function as the final layer and Adam 
optimizer. The forthcoming research endeavors will optimize the 
DeepSVM training process and explore alternative optimization 
strategies, including optimizers and other parameters. This pursuit 
aims to strike an optimal equilibrium between elevated accuracy and 
diminished computational time, thereby fortifying the model’s 
practical applicability in real-world scenarios. Moreover, the proposed 
DeepSVM approach is a black box, which takes dome galls images as 
inputs and predicts whether the input image is healthy or unhealthy. 
To better understand the results of the proposed DeepSVM approach, 
we aim to introduce eXplainble Artificial Intelligence (XAI) with the 
proposed approach to reduce its complexity and results fairness.

5 Conclusion and future work

This study aimed to create a model that can spot early signs of 
dome galls, a leaf ailment that affects Cordia plants, and introduced a 
new method called DeepSVM. The model was built using ResNet-50 
as the backbone, three FC layers, and the final layer contained SVM 

FIGURE 10

Shows confusion matrix of the proposed model.
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instead of the sigmoid activation function. A custom dataset 
containing 3,500 images of healthy and diseased leaves with class 
balancing was used for training the model, equipped with 
preprocessing and data augmentation techniques to enhance 
generalization and reduce over fitting, resulting in a test accuracy of 
94.50%. The study highlighted the model’s potential for improving 
plant disease detection by highlighting its effectiveness in early 
symptom classification for plant leaf diseases. The proposed approach 
offers a reliable tool for early plant disease detection, enhancing crop 
productivity and outperforming traditional algorithms. It encourages 
the integration of anomalous histological feature extraction with the 
DeepSVM model to enhance performance further. This framework 
can be extended to other agricultural applications, improving existing 
machine and deep learning methods. Ultimately, it supports farmers 
in selecting effective pesticides, reducing costs, and maintaining crop 
quality through timely diagnosis.

There is scope for further research to improve the performance of 
the proposed approach. The accuracy may be increased, and the 
training time may be reduced without compromising accuracy. 
Collaborating with domain experts to amass a more comprehensive 
and diverse dataset, stratified into subcategories such as initial, mature, 
and severe dome gall cases, would enhance method evaluation. 
Expanding the proposed method to encompass various plant species 
for early leaf disease symptom identification holds promise. Moreover, 
exploring an extension of this approach to classify human diseases 
could broaden its applicability, fostering advancements in plant and 
human disease classification techniques.
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