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Introduction: Artificial intelligence (Al), particularly deep learning (DL), offers
automated solutions for early detection of plant diseases to improve crop yield.
However, training accurate models on real-field data remains challenging due
to over fitting and limited generalization. As observed in prior studies, traditional
CNNs often struggle with real-environment variability, and transfer learning can
lead to instability in training on domain-specific leaf datasets. This study focuses
on detecting dome galls, a disease in Cordia dichotoma, by formulating a binary
classification task (healthy vs. diseased leaves) using a custom dataset of 3,900
leaf images collected from real field environments.

Methods: Initially, both custom CNNs and transfer learning models were trained
and compared. Among them, a modified ResNet-50 architecture showed
promising results but suffered from over fitting and unstable convergence.
To address this, the final sigmoid activation layer was replaced with a Support
Vector Machine (SVM), and L2 regularization was applied to reduce over fitting.
This hybrid DeepSVM architecture stabilized training and improved model
robustness. Image preprocessing and augmentation techniques were applied to
increase variability and prevent over fitting.

Results: The final model was evaluated on a separate test set of 400 images, and
the results remained stable across repeated runs. DeepSVM achieved an accuracy
of 94.50% and an Fl-score of 94.47%, outperforming other well-known models
like VGG-16, InceptionResNetv2, and MobileNet-V2.

Conclusion: These results indicate that the proposed DeepSVM approach offers
better generalization and training stability than conventional CNN classifiers,
potentially aiding in automated disease monitoring for precision agriculture.

KEYWORDS

classification, Cordia dichotoma, DeepSVM, dome galls, fine tuning, Resnet-50, SVM,
transfer learning

1 Introduction

Agriculture is a cornerstone of global food security and economic stability, yet crop
productivity remains highly vulnerable to pathogen-induced diseases. However, plants are
vulnerable to a range of illnesses caused by pests and pathogens, leading to an estimated $200
million in global economic losses annually. With the global population increasing by 1.6%
each year, the demand for food and agricultural products continues to rise (Ashwinkumar et
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al., 2022). Experts plan to adopt new methods and technologies to
detect and identify plant diseases at early stages to save the loss
caused by plant diseases (Ullah et al., 2023). However, diseases such
as dome galls in Cordia dichotoma remain understudied despite their
economic impact, necessitating dedicated data-driven detection
frameworks. After the enhancement in artificial intelligence-based
techniques, like machine learning (ML) and deep learning (DL), the
automated classification of image data, including plant diseases at
early stages, has been a hot research area for the last decade (Bhosale
etal., 2024). Various types of convolutional neural networks (CNNs)
models from scratch and with transfer learning have been trained and
deployed in real environments with satisfactory results (Altalak et al.,
2022; Zhu et al., 2024).

Compared to previous naked-eye classifications, which were time-
consuming and less satisfactory, the new automated methods produce
accurate and timely results without the involvement of field experts
because they can be used by non-expert users with a smartphone or
drone cameras (Li et al., 2019). Early identification of dome galls in
Cordia dichotoma leaves is essential due to their negative impact on
crop yields and economic losses. Conventional detection methods lack
speed and precision, necessitating a novel approach. By employing DL
models customized for dome gall detection, this research offers a
transformative solution to quickly identify and mitigate the spread of
this specific disease. This advancement is vital for preserving crop
health, ensuring sustainable agriculture, and meeting global food
demands (Bhosale et al., 2023).

In the proposed study, dome galls, a disease that occurs in Cordia
dichotoma, were addressed. The genus Cordia belongs to the family
Boraginaceae of plants (Bhattacharya and Saha, 2013). It includes about
300 species of trees and shrubs, most of which are indigenous to warmer
regions of the world. It is utilized in various industries, including
medicine, agriculture, office supplies, musical instruments, furniture,
watercraft, painting, and energy (Ferahtia, 2021; Ganjare et al., 2011;
Matias et al., 2015). Dome galls are a common disease of Cordia dichotoma
affecting the leaves in the form of multiple dome-like structures. The
literature I reviewed indicates that no one has previously addressed this
problem, and there is no publicly available dataset on the Internet.
Therefore, images were collected from real scenarios for training and
testing the DeepSVM model. Various villages in Bannu district, Khyber
Pakhtunkhwa, Pakistan, were visited, and a custom data set was created.
The image data was divided into two categories: dome galls and normal
images. Most plant leaf disease symptoms are based on color change or
wilting, but the target disease is unique in structure and has multiple
raised surface areas called dome galls. It needs more concentration to
classify the early stage of the disease because it is very close to healthy
leaves, and it is difficult for ML and DL models to classify it easily. To
increase the performance of the proposed model, training data,
preprocessing and data augmentation techniques play an important role.

The proposed study used the transfer learning technique with
ResNet-50 as the backbone for the plant leaf disease classification
model, using pre-trained weights from the ImageNet dataset. To adapt
the model for the specific task, three fully connected (FC) layers were
added on top of the ResNet50. SVM was used as the final/output layer
instead of the sigmoid layer to identify the leaf images as healthy or
infected. The study’s key contributions include the following:

« A novel dataset on Cordia leaves is created, comprising 3,500
images taken from a real environment and labeled into two
categories: healthy and diseased
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o The study embraces a novel approach by fusing morpho-
anatomical insight and automated computational systems to
understand the root cause of the diseases better

o The leaves were subjected to careful morpho-anatomical
examination using stereo and light microscopy. The disease was
diagnosed as the mites-induced dome-galls on the leaf surface

o The novel DeepSVM model was trained and fine-tuned based on
transfer learning to differentiate between healthy leaves and the
dome gall’s early symptoms

o The performance of the DeepSVM model was evaluated with that
of previous state-of-the-art (SOTA) models and two publicly
available datasets to identify the generalizability of the
proposed approach

The rest of the paper is arranged as follows: Section II reviews the
relevant literature, while Section III outlines the methods used in our
study. In Section IV, we present results and discussions. Finally, we
offer some concluding thoughts and suggestions for future research in
Section V

2 Related work

Due to ongoing developments in DL and computer vision,
experts are attempting to integrate these new technologies in various
fields including the agriculture industry (Zhu et al., 2025). They are
used in agriculture for multiple purposes, such as plant diseases,
identification of plant species, pest detection fruit ripeness, etc. CNN
is a type of DL used for picture classification, image segmentation,
object detection, and recognition. Most previous research work
based on automatic plant disease detection and classification utilized
CNN models with transfer learning. Pre-trained models (VGG-16,
ResNet-50, MobileNet, EfficientNet, DenseNet, Inception, etc.) are
used mostly for transfer learning because they are conducive to
generalizing an image classification model if the training dataset is
small. In contrast, training from scratch is only needed when there
are several thousand training images, which is an arduous task
(Hungilo et al., 2019).

Jakjoud et al. (2019) trained VGG-16 with various optimizers,
including SGD, Adagrad, RMSprop, and Adadelta. They used a dataset
of 13,692 images split in the ratio of 80% for training and 20% for
testing, with 100 x100 as the input size. They concluded that Adadelta
was the most accurate, while SGD was the fastest and came in second
in accuracy. Zekiwos and Bruck (2021) used a cotton leaf dataset that
contained 2,400 images with 4 classes: one healthy and three diseased.
Augmentation techniques were used to enhance the training process.
Pre-processing techniques like image resizing and normalization, were
utilized. Three convolutional layers for feature extraction and two fully
connected layers for classification were used to train a customized
CNN model. They trained the model with and without augmentation
and claimed a 15% increase in accuracy with data augmentation.
K-fold cross-validation was used. Adam and RMSprop optimizers
were used, and Adam was recommended with 96.4% accuracy.
Nandhini and Ashokkumar (2021) used a tomato leaf image dataset
of 11,942 images of one healthy class and nine diseased classes taken
from PlantVillage. In the Keras package, they created a CNN model
with three convolutional layers, max pooling, two dense layers, and
one output layer for classification. Ghosal and Sarkar (2020) built a
CNN model for rice leaf disease classification. They used VGG-16 as
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the backbone of the model for transfer learning to overcome the
drawback of a small training dataset. The model was trained using a
small custom dataset consisting of 1,649 photos divided into four
classes. Enhancing the data was utilized to lessen over-fitting and
claim 92.4% accuracy. Bhujel and Shakya (2022) used a leaf picture
data of rice taken from Kaggle containing 524 photos for each of the
4 categories. They used CNN model with transfer learning and
EfficientBO and EfficientNetB3 as base frameworks with new fine-
tuned FC layers. They used the cyclical learning rate (CLR). They
claimed 83.99 and 89.18% accuracy after 15 epochs, respectively.

A pre-trained network, DenseNet-121, was used by Chakraborty
et al. (2021) to identify plant leaf ailments. For collecting training
images, a well-known platform called PlanDoc was used. Multiple
optimization techniques were used while fine-tuning the proposed
approach, but SGD was finalized due to its stable growth while
training. They claimed 92.5% accuracy after 10 epochs.
Krishnamoorthy et al. (2021) trained a CNN model with transfer
learning. InceptionResNetV2 was used as the backbone of the model.
They used 1,000 images as a training set and 300 images for validation
collected from Kaggle based on 4 classes. Image augmentation and
preprocessing techniques were used to generalize the model. Dropout,
batch normalization and global average pooling were used in the head
of the model to reduce over fitting. They claimed 95.67% accuracy on
the unseen images called test datasets. Hong et al. (2020) used transfer
learning. They trained five tomato leaf disease classification models,
including ResNet-50, Xception, MobileNet, ShuffleNet, and
DenseNet121-Xception, with nine disease classes and a healthy class.
ResNet-50 was recommended as the best model after applying image
preprocessing and data augmentation. The training set consists of
13,112 photos downloaded from PlantVillage.

Kumar and Vani (2019) trained six models, Xception, LeNet,
EfficientNet, VGG-16, VGG-19 and ResNet-50, with fine-tuning for
tomato disease classification. The models have trained on color and
grayscale segmented images separately with the SGD optimizer, and
their results were compared. They claimed that VGG-16 performed
well with color images, achieving 99.5% accuracy. Shijie et al. (2017)
used a CNN model based on transfer learning. The VGG-16 model
was used as the backbone of the model. Data augmentation techniques
were used and achieved 89% accuracy. They used a tomato leaf dataset
with 400 images per class and divided it into 65% for training, 25% for
validation, and 10% for testing. They also tested the model with SVM
as the final layer but got 1% less accuracy. They used 40 as the batch
size, a 0.001 learning rate, and an SGD optimizer with 80 epochs.

Chowdhury et al. (2021) replaced the GoogleNet backbone
with a new backbone made up of numerous convolutional layers,
batch normalization (BN), and max pooling. They trained their
custom backbone on the Plant-Village dataset and compared the
results to the GoogleNet model’s output. They claimed that their
model performed well compared to the original model.
DeepPlantNet is a novel 28-layer deep learning model that consists
of three FC layers and twenty-five convolutional layers, as
presented by Ullah et al. (2023). The distinctive and successful
Plant disease classification system uses Leaky RelU, BN, fire
modules, and a combination of 3 x3 and 1 x 1 filters. With
average accuracy rates for eight-class and three-class classification
schemes of 98.49 and 99.85%, respectively, DeepPlantNet
successfully classified plant illnesses into ten categories. This
novel method helps experts and farmers quickly detect and treat
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plant illnesses, which presents a viable way to lower agricultural
losses. In a study by Sujatha et al. (2021), several pre-built ML and
DL models were compared on a custom dataset of citrus leaves
comprising five categories. The results showed that deep learning
surpassed machine learning approaches, with random forest (RF)
producing the lowest precision and VGG-Net producing the
highest precision.

Syed-Ab-Rahman et al. (2022) employed transfer learning to
achieve 94.37 per cent accuracy by utilizing a faster RCNN model
trained on citrus leaf images accessible on Kaggle. Roy and Bhaduri
(2021) used a modified version of Yolov4 with transfer learning on a
dataset of apple leaves with a dataset of three classes and achieved
91.2% accuracy. They used image augmentation approach to expand
the training set and prepare the model for complex backdrop images.
Ullah et al. (2022) suggest using DeepPestNet, an end-to-end deep
learning network, to identify and categorize crop pests. There are 11
layers in the model, including 8 convolution layers and 3 dense layers.
The authors used image augmentation techniques such as rotation,
flipping, blurring etc. to expand the training set and evaluate the
robustness of the suggested method. Using crops dataset of Deng, they
used 10 classes of pests with a success rate of 100%, and the Kaggle
pest dataset did it with an accuracy of 98.92%.

Jamjoom et al. (2023) used conventional ML methods for plant
leaf disease classification. For data preprocessing, discrete cosine
transformation (DCT) and color space conversions were used. To
segment the training images, a famous approach known as K-means
clustering was used, and local binary pattern (LBP) feature grey level
co-occurrence matrix (GLCM) was used for feature extraction. Radial
base kernel and polynomial kernel approaches were used for feature
classification, and SVM was used for disease type identification.
Arshad et al. (2023) used preprocessing techniques including data
augmentation and the U-Net model for region-of-interest
segmentation. CNN models Vgg-19 and Inception v3 as ensemble
learning were used for feature extraction, and transformers were used
for the identification of potato diseases. CNN is considered to be the
building block of recent computer vision applications. Bhatti et al.
(2023) used a custom CNN model equipped with preprocessing and
data augmentation for feature extraction and transfer learning based
on Inception-V3 for disease identification. The proposed study used
a hybrid training dataset taken from Plant-Village and Plant-DOC
with sixty classes and claimed 99% testing accuracy.

The design of a good model for early diagnosis of plant leaf
diseases requires a great knowledge of related literature to know the
hardness of the area. Except for a few diseases for which datasets are
available on the internet, there is a scarcity of dataset images for plant
diseases. Collecting target disease leaf images from real-world
environments is time-consuming and labor-intensive. Training a
generalized model for such a new disease requires deep knowledge of
CNN structure and parameters and their role in training a model. In
the next section, all these issues are addressed systematically.

3 Methodology

The proposed approach comprises two main steps, i.e., anatomical
and computational studies. The anatomical study foresees the root
causes of possible diseases in the plant leaves. Similarly, the
computational study uses fine-tuned CNN with SVM to classify the
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Cordia dichotoma leaves into healthy and diseased. The details of each
methodological study are elaborated below:

3.1 Anatomical studies

A sharp blade was used to cut the galled leaf segments
anatomically, and the thinnest pieces were dyed. The protocol listed
below was chosen. Fresh solutions of safranin and methyl blue, each
5% in water, were combined in an equal ratio. The portions of galled
segments were submerged in the combination for 10-20 min before
being transferred to a solution of 50% alcohol. The sections were
moved to 95% alcohol for 5 min, washed with pure alcohol for 5 min,
mounted in a drop of glycerol, and dried. Different resolutions of an
optical microscope (Lebomed LB-201) were used to observe the
sections, and photos were taken using a Vivo S1 Pro camera
(Verhertbruggen et al., 2017).

3.2 Computational studies

In this study, a novel model named DeepSVM was developed to
identify Cordia dichotoma leaf images as healthy or diseased. Transfer
learning was utilized by using ResNet-50 as the backbone for the
model, which allowed us to leverage the pre-trained weights of the
ResNet50 model previously trained on a large dataset (ImageNet) for
feature extraction. On top of the ResNet50 backbone, three FC layers
were added to learn higher-level representations specific to domain
image set. Finally, SVM was used for classification as the output layer,
a popular choice for classification tasks. The results showed that the
proposed approach achieved high accuracy in classifying plant leaf
images as healthy or diseased, demonstrating the effectiveness of using
transfer learning and SVM in this context. The flow of the model is
shown in Figure 1.

3.3 Data collection

Developing real-time applications using DL necessitates a dataset
comprising images for training the model. Unfortunately, there is no

10.3389/frai.2025.1558358

online dataset currently available on Cordia leaves to train and
validate a DL model aiming to identify healthy and unhealthy Cordia
leaves. Therefore, a custom dataset containing 3,500 images was
collected carefully for model training, with an additional set of 400
images allocated for testing. A detailed distribution of the dataset is
provided in Table 1. The leaf images were manually annotated with
binary class labels: Healthy and Dome Galls. The leaves of Cordia
dichotoma show variations in shape due to several factors, including
soil type, overall plant health, climatic conditions, water availability,
pest attacks, and nutrient deficiencies. Therefore, the images were
collected from diverse locations, including urban and rural areas
within the Bannu district of Khyber Pakhtunkhwa (KP), Pakistan,
ensured that the dataset accurately reflected real-world scenarios.
Most of these images were captured in the semi-hilly Baka Khel
subdivision of district Bannu. The original image resolution was
2016 x 4,704 pixels, captured using a TECNO Camon 20 camera (64
MBP, {/1.7 wide lens, 2 MP depth sensors). Images were collected under
real field conditions at different times of the day (morning, noon,
afternoon, and evening) to ensure variability. All images were resized
to 256 x 256 pixels for model training. The dataset was split into 80%
for training, 20% for validation, and 400 independent test images (200
per class). Importantly, it should be emphasized that employing
authentic, real-world images as opposed to pre-existing internet
datasets can significantly enhance the performance of DL systems
(Nagaraju and Chawla, 2020). A sample of the pictures gathered for
the suggested work is shown in Figure 2. The dataset is available on
request for the researchers to experiment with the data and further
improve the model accuracy.

3.4 Pre-processing

Image preprocessing is crucial step in training a DL classifier for
computer vision tasks. Removing inadequate images, including those
of poor quality, blurry, or low contrast, from a training dataset is
essential in preparing the data for training a DL model. Inadequate
images can negatively affect the model’s accuracy and result in poor
performance (Li et al., 2025). Each image must be inspected manually
to assess its quality and remove inadequate images. It is a time-
consuming process, especially if the dataset is large but removing

FIGURE 1
Workflow of the suggested method.
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TABLE 1 Distribution of Cordia dichotoma leaf images across training,
validation, and test sets.

Image Set ‘ Healthy ‘ Dome galls ‘ Total
Training 1,400 1,400 2,800
Validation 350 350 700
Testing 200 200 400
Total 1950 1950 3,900

these images can improve the model’s accuracy, ensuring that it’s
trained on high-quality data. Image resizing is essential in preparing
images for feeding into a DL model. Similarly, CNN-based
approaches are sensitive to the shape and size of the input photos.
Therefore, all images should be resized to a standard size before being
fed into the model. All input images were downsized to 256 by 256
for the proposed study. This resizing is performed using bilinear
interpolation, a common method that estimates the pixel value at a
non-integer coordinate (x, y) by considering the weighted average of
the four nearest neighboring pixels. The interpolated value is
computed using Equation (1) as follows:

I(x,y) ~ (l—a)(l—h).l (xo,yo )+a(1—b).l(x1,y0)
+(1—a)b.1(x0,y1)+ub.l (xl,yl) (1)

Where:

Xo = |x], x1 = [x].

yo= Lyl yi= Iyl

a=X—Xo,b=Y— Yo

I(x, y): interpolated pixel intensity.

I(xo, Yo), etc.: intensities of the four neighboring pixels.

Image normalization is a method used in image processing to
bring an image’s pixel values into a predetermined range or scale. For
many deep learning (DL) algorithms, like Convolutional Neural
Networks (CNNs), to learn effectively, the pixel values must fall within
a similar range, which is typically achieved through normalization. In
the proposed approach, each image was normalized to fall between 0
and 1 by dividing each pixel value by 255, i.e., using the transformation
(rescale = 1./255). This converts the original 8-bit pixel values (ranging
from 0 to 255) into floating-point values between 0 and 1. These image
preparation methods help increase the model’s accuracy and improve
its generalization to unseen data.

3.5 Data augmentation

Data augmentation is a strategy employed to expand the size of a
training dataset by applying different modifications to the original
images, such as rotation, mirror imaging, cropping, and scaling.
Subsequently, the augmented data is employed for training the
proposed model. The significance of data augmentation in CNN
model training is rooted in its capacity to enhance the model’s ability
to generalize. By introducing variations to the source images, the
model can learn to identify the same object in diverse configurations
and orientations, thereby enhancing its resilience to input variations.
Moreover, data augmentation can serve as a countermeasure against
over-fitting. Data augmentation reduces the possibility of over-fitting
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by adding a variety of changes to the data used for training, creating a
more relevant and diverse image set. In the proposed approach,
transformations like brightness (0.4-1.5), horizontal and vertical
flipping, adjustments in height (0.2) and width (0.2), zooming and
rotation (30), zooming (0.2) were employed. Some sample images
post-augmentation are illustrated in Figure 3.

3.6 Proposed DeepSVM approach

The DeepSVM model proposed in this study integrated the
Resnet-50 as its pre-trained backbone, augmented with three FC
layers and an SVM as the output layer. ResNet-50 is a famous
pre-trained model developed by Microsoft researchers in 2015. The
general architecture of Resnet-50 is depicted in Figure 4. Its
architecture starts with a convolutional layer having 64 feature maps
with a 7x7 kernel size, followed by a max pooling layer. It adds sixteen
residual blocks with 48 convolutional layers, with three in each block,
followed by a global average pooling layer. The number of feature
maps in convolutional layers is continuously increasing, going from
top to bottom. Convolutional layers operate by applying a filter or
kernel to an input matrix or image, performing element-wise
multiplication followed by summation, to produce an output matrix
known as a feature map. It extracts the features from the input images
and then sends them to the FC layers for feature classification which
is described as follows:

Let I=[a(- ; ]

i) be the input matrix of order c¢xd and
J) dexd

K=|k be the filter of order k (k is odd) is a smaller matrix.
(m,n) kxk

The filter slides across the input matrix, and at each position, it
performs an element-wise multiplication with the corresponding
region of the input. The results are then summed to generate the
output matrix, as defined in Equation 2:

k
C(iJ) = Z a(i+m,j+n) *k(m,n) (2)

m,n=1

Where “m” and “n” denote the positions of the kernel indices, and
the sum is computed across these indices.

The ResNet (Residual Network) models are famous for tackling
the challenge of vanishing gradients within intricate neural networks
by incorporating skip connections. There are two types of skip
connections, identity blocks or identity skip connections and
convolutional blocks or projection skip connections. Identity skip
connections are the basic skip connections where the input to a layer
is added directly to its output as shown in Figure 4c. In ResNet-50,
these connections are used in the residual blocks where the input and
output dimensions are the same. Projection skip connections are
utilized when the dimensions of the output and input of a residual
component are not equal. In such cases, a 1x1 convolutional layer is
employed to adjust the dimensionality of the input so that it matches
the output dimension shown in Figure 4b. These connections are used
in certain residual blocks within ResNet-50 where down sampling is
required. The skip connections, alternatively labeled as shortcut
connections, serve as a mechanism within deep neural networks to
mitigate the vanishing gradient issue. In a neural network, gradients
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Sample images from training dataset. (a) Healthy; (b) diseased; (c) diseased; (d) healthy.

(b) Brightness

(a) Original

(e) Width Shift

(f) Height Shift

FIGURE 3

rotation (h) zooming.
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(C) Horizontal Flip (d) Vertical Flip

(h) Zooming

(g) Rotation

Augmentation methods used in the proposed work. (a) Original; (b) brightness; (c) horizontal flip; (d) vertical flip; (e) width shift; (f) height shift; (g)

are employed for weight updates during training. However, as the
gradient is propagated through the network, it can become very small,
especially in deep networks, making it difficult to update the weights
effectively. This can lead to slower convergence or the network
becoming stuck in a local minimum. Skip connections aim to solve
this issue by providing an alternate, more direct way for the gradient
to pass via the network. This is achieved by adding a connection that
skips one or more layers in the network. It works as follows:

F(x)+x 3)

Equation 3 shows how a neural network layer works: x is the
input, and Y is the output. The function F(x) processes the input to
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extract useful information, and then the original input x is added back
to the result of F(x), piece by piece. This helps the network learn more
effectively by keeping some of the original information.

ResNet-50, having undergone extensive training on the ImageNet
dataset with over 1.2 million images across 1,000 classes, brings a
wealth of diverse features to the model. This pre-training on ImageNet
establishes ResNet-50 as a popular choice for transfer learning in
various computer vision tasks such as object detection, image
segmentation, and classification. Transfer learning exploits the
knowledge gained during pre-training, allowing fine-tuning on a new
dataset or task with limited labeled examples. This approach often leads
to enhanced performance and faster convergence, especially when
dealing with smaller datasets. The transfer learning process involves
using the pre-trained model’s weights as a starting point, replacing the
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(a) General architecture of ResNet-50 (b) skip connection (Conv Block) (c) skip connection.

final layer(s) with task-specific ones, and then training these new layers
on the new dataset. In contrast, the pre-trained layers are frozen or
fine-tuned with a reduced learning rate. In the proposed study, three
FC layers were used for feature classification. Each FC layer was
followed by a drop-out layer to reduce over fitting. SVM was used as
the output layer for disease identification with L2 regularization.

SVM is the final/output layer for classifying the disease called
dome galls. SVM, an ML technique, is employed for classification and
regression analysis tasks. In classification, SVM endeavors to segregate
data instances into distinct categories by identifying the hyper plane
that optimizes the separation margin between these categories. This
hyper plane serves as the boundary, ensuring the greatest possible gap
between data instances of disparate classes. SVM is a potent algorithm
that addresses linear and nonlinear classification and regression
quandaries. Its widespread adoption spans diverse domains, including
image classification, textual categorization, and bioinformatics. In the
proposed approach, SVM is employed for binary classification using
the hinge loss function along with L2 regularization. The mathematical
representation is provided in Equation 4 below:

minimize %”w”z +C2(max(0,1—yi (a)T + b))) (4)

In this context, w represents the weight vector, b is the bias term, and
C is the regularization parameter that controls the trade-off between
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maximizing the margin and minimizing classification errors. y; denotes
the binary class label for the ith training example, while x; is its
corresponding feature vector. The symbol )" indicates summation over
all training examples. With these definitions, the hinge loss function used
in the L2-regularized binary SVM is expressed in Equation 5 as follows:

max(O,l—y,-(a)Txx +b)) (5)

This loss function imposes a penalty on the model when a training
sample is misclassified or falls on the wrong side of the decision
boundary. If the model correctly classifies a sample with sufficient
confidence, the loss becomes zero. The hinge loss is a convex function,
meaning it has a single global minimum, and while it is not
differentiable exactly at the point where the argument of the max
function is zero, it remains smooth and manageable for optimization
elsewhere. Table 2 contains the architecture and training configuration
of the proposed DeepSVM Framework.

4 Results and discussion
4.1 Training environment

In this study, Google Colab was used to develop and train the
models. Google Colab offers a cost-effective alternative, providing a free
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TABLE 2 Model architecture and training configuration of the proposed
DeepSVM framework.

S. Layer Neurons/ Parameter Value
No Value
1 Backbone Transfer Input Image Size 256 x 256
(ResNet-50) Learning
2 Flatter Layer Activation ReLU
Function
3 FC layer 512 Optimizer SGD
4 Dropout 0.3 Momentum Value = 0.9
5 FC Layer 256 Number of 2 (Healthy,
Classes Dome
Galls)
6 Dropout 0.3 Batch Size 32
7 FC Layer 128 Training Epochs 98
8 Dropout 0.3 Loss Function Hinge
9 Final Layer 1 Regularization L2, (Used
(SVM) in final
layer only)
10 Learning Rate 0.0001
11 Early Stopping Yes

GPU-enabled environment. Integrated with Google services like Gmail
and Drive, it allows easy access to datasets and models. Its interactive
notebooks, equipped with pre- installed libraries, streamline coding,
saving time on setup. The Tesla T4 GPU, with 12 GB of RAM, powers
Colab, accelerating model training for faster convergence and improved
results. Keras library was used for developing the CNN models. This
combination democratizes advanced hardware access, empowering
researchers in image analysis with an efficient, collaborative platform.

4.2 Performance measurement metrics

To assess the models effectiveness, we employed a quartet of
distinct metrics: accuracy, precision, recall, and the F1-score (Srinivasu
etal., 2025). Accuracy is a conventional measure, gauging the global
accuracy of the model’s predictions, shown in Equation 6. On the other
hand, precision and recall gauge the model’s aptitude in accurately
distinguishing positive and negative samples, shown in Equations 7, 8,
respectively. The F1-score, a harmonic amalgamation of precision and
recall, furnishes a harmonious gauge of the model’s performance,
shown in Equation 9. Specificity, which measures the proportion of
correctly identified negative samples, is shown in Equation 10.

Accurac __INFTP (6)
4 Total Samples

Precision = T—P (7)
TP+ FP
TP
Sensitivity (recall) = ———— 8
y (recall) TP+ FN ®

Frontiers in Artificial Intelligence

10.3389/frai.2025.1558358

Precisi
F, —Score =2 recision x Recall ©)
Precision+ Recall
TN
Specificity =—— 10
pecificity TN + FP (10)

Where true positives (TP) show the correct classification of
dome galls; true negatives (TN) show the correct classification of
healthy leaves; false positives (FP) show the wrong classification of
dome galls, i.e., healthy leaves as dome galls; and false negatives (FN)
show the wrong classification of healthy leaves as dome galls.

4.3 Experiments and results

4.3.1 Anatomical results for dome galls

A tiny mite (Tyrophagus putrescentiae) was isolated from
galled tissues in Cordia dichotoma, as shown in Figure 5. The mite
may be the possible inducer of dome galls in C. dichotoma. A
diversity of calcium oxalate crystals in mites-induced gall tissues in
Cordia was observed Figure 6. These crystals are proposed to be
released by the plant tissues as a defense against mites-induced
stress. Anatomical observations of transverse sections of the leaves
indicated the development of various trichomes. The trichomes are
proposed to be developed by the plant as physical barriers to the
mites. Irregular extensions of vascular tissues were noticeable
(Figure 7).

In plants, Galls are anomalous fleshy or woody outgrowths that
are sometimes referred to as warts and tubercles when they are
small or knots when they are large, usually with a web of complex
and branched vascular tissues distributed irregularly (Lu et al.,
2019). During tumor induction, cell hypertrophy is usually the
initial noticeable response of the host plant organ (dos Santos
Isaias et al., 2014). The presence of calcium oxalate crystals of
varying shapes and dimensions within gall tissues is illustrated in
Figure 8.

The gall tissues are often accompanied by trichomes and other
modified cells, which act as physical barriers to possibly, protect the
tissues from further damage (Ferreira and dos Santos Isaias, 2014).
Plant galls are usually distinct structures often induced by the
invasion of pathogenic organisms, like insects, mites, nematodes
and microbes on plants (Anand and Ramani, 2021). The initiation
of a gall is accompanied by the rapid cell division and differentiation
of parenchyma cells in order to provide supplementary vasculature
to the growing gall. Dolzblasz et al. (2018) reported that leafy galls
develop a complex network of vascular tissues in order to ensure
the transport of water and dissolved minerals to the growing apices
of gall. Karabourniotis et al. (2020) have reported anatomical and
chemical modification in trichomes and structural diversity in
trichomes as a plant’s strategy to overcome biotic and abiotic
stresses. Moreover, they also reported that trichomes function as
physical barriers to protect plant tissues against foreign invaders.
While Nakata (2012) reports that plant synthesizes a diversity of
calcium oxalate crystals when they are under stress. These crystals
have been reported to play a vital role in regulating cellular calcium
and protecting plants from biotic and abiotic stresses (Gomez-
Espinoza et al., 2021).

frontiersin.org


https://doi.org/10.3389/frai.2025.1558358
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Shah et al.

FIGURE 5
(a) Mite, surface morphology (b) side view.

4.3.2 Results with the proposed DeepSVM
framework

In this study, a novel model, DeepSVM, was trained and fine-
tuned, leveraging a dataset of 3,500 images for the accurate
identification of early symptoms related to dome galls, a prevalent leaf
disease in Cordia plants. The early symptoms of dome galls are similar
to those of healthy leaves and require more concentration to classify.
The models architecture culminated in a powerful configuration
featuring Resnet-50 as its backbone, three FC layers, and an SVM as
the final output layer. Training extended to 98 epochs, implementing
the effective technique of early stopping to mitigate over-fitting risks
by discontinuing training upon validation set performance
degradation. Rigorously evaluated on 400 previously unseen images,
the model showcased high performance with an accuracy of 94.50%.
Comprehensive results are presented in Table 3. The results
demonstrate that the model achieved high accuracy, precision, recall,
and F1-score, indicating its effectiveness in classifying plant leaves as
healthy or diseased. These findings suggest that the developed model
could be an invaluable tool for diagnosing plant disease, helping
farmers and agricultural experts identify and treat diseased
plants promptly.

In this experiment, a comprehensive exploration of model
training strategies for the early symptom identification of dome galls
was undertaken. Employing deep and shallow architectures,
experiments ranged from training models from scratch to utilizing
transfer learning. The customized CNN model, featuring seven
convolutional layers with BN after each block, two FC layers, dropout
layers, and an output layer, served as the baseline for the proposed
research, with detailed results in Table 4.

The concept of training oscillation in DL, denoting erratic
fluctuations in metrics like loss or accuracy during training, was
elucidated. This phenomenon often arises from issues such as
inappropriate learning rates or model architecture, impeding the
convergence of the training procedure. Incorporating L2 regularization
in the final layer effectively aligned results with the research objectives.
Visual representations of the training and validation performance,
encompassing accuracy and loss functions, are depicted in Figure 9.
Additionally, MobileNet-v2 (Sandler et al., 2018), VGG-16 (Simonyan
and Zisserman, 2014), InceptionResNet-V2 (Naveenkumar et al.,
2021) and VGG-19 (Simonyan and Zisserman, 2014) were trained
with the same parameters and FC layers, and their respective results
are outlined in Table 4. Instead of three FC layers, the custom CNN
model showed good performance with two FC layers. The confusion
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matrix of the proposed model showing detailed of TPs, TNs, FPs and
FN is depicted in Figure 10.

The DeepSVM,
demonstrated strong performance in classifying Cordia dichotoma leaf

employing ResNet-50 as a backbone,
images as healthy or infected. The utilization of ReLU activation, SGD
optimizer with momentum (0.9), and hinge loss function contributed
to the model’s success. ResNet-50’s deep architecture with 50 layers
allowed it to learn complex features, addressing the vanishing gradient
issue through residual connections. These connections facilitated
efficient gradient propagation and reduced the risk of over-fitting. The
model incorporated three FC layers, progressively reducing neurons
(512, 256, and 128) toward the output layer, with dropout layers
(dropout ratio of 0.3) and L2 regularization in each FC layer. This
design enabled the model to capture intricate nonlinear relationships
between features and class labels. The final layer employed SVM,
outperforming sigmoid, showcasing SVM’s effectiveness in handling
complex data and generalizing well to unseen instances. The
DeepSVM with ResNet-50 as a backbone and SVM as the final layer
presented a robust solution for accurate leaf image classification tasks
(Tang, 2013).

4.4 Ablation study

The proposed model, DeepSVM, underwent a series of iterative
experiments involving continuous adjustments to its architecture and
hyper parameters. In the proposed study, transfer learning was used,
and the main focus was on the head (FC layers) of the CNN model,
changing the number of FC layers followed by the number of neurons
per layer. The model was initially trained with a single fully connected
(FC) layer containing 1,024 neurons, followed by experiments with
two FC layers comprising 512 and 256 neurons, respectively. The best
results, however, were achieved using three FC layers with 512, 256,
and 128 neurons, respectively. Most of the previous literature used
various optimizers, including Adam and stochastic gradient descent
(SGD). In this study both of them were used, but SGD with
momentum (0.9) performed well compared to Adam. The learning
rate was adjusted multiple times during experimentation, with the
optimal performance achieved at a finalized value of 0.0001. To reduce
over fitting, the L2 regularizer was used in the final layer with a
sigmoid activation function. After incorporating three fully connected
(FC) layers with SGDM (momentum = 0.9), a loss value of 0.0001, a
sigmoid activation function, and an L2 regularizer, a notable
improvement was observed in training and validation accuracy as well
as loss values. However, a non-negligible amount of oscillation
persisted in the training and validation curves, potentially affecting
the model’s generalization in real-world applications. To overcome
this issue, the sigmoid activation function was replaced by SVM which
greatly enhanced the results with reduced oscillation. Therefore, a
model that contained a backbone of 50 convolutional layers, three FC
layers and an SVM as an output layer was named DeepSVM.

4.5 Performance evaluation of the
DeepSVM on public datasets

The results of the suggested model on two publicly accessible
datasets show that it is somewhat more adaptable and performs
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FIGURE 6
(a) Healthy leaf section (b) initiation of dome gall (c) transverse section of leaf gall segment (d) trichome (e) trichome, closer view (f) Multiple
trichomes.

FIGURE 7
(a) A trichome with its secretion (b) irregular xylem vessel (C) multiple trichomes (d) multiple.

better in a couple of areas. The model demonstrated an improved =~ TABLE 3 Shows the outcomes of DeepSVM on the test images.
precision in classifying plant leaf illnesses using the Potato Leaf

Disease (PLD) dataset, which consists of 4,072 images spanning Serial No Metric Value (%) SD%
the healthy, early blight, and late blight classes. On the pulmonary 1 Accuracy 94.50 1.50
X-ray image dataset, which comprises 6,432 medical images 2 Precision 96.00 -
classified into three classes—normal, COVID-19, and R Recall 93.00 B
pneumonia—the model’s stated accuracy of 98.00% was similarly

e . .. N 4 Specificity 96.00 -
intriguing. This improved performance revealed the model’s

capacity to recognize intricate patterns within radiography images, 5 Fl-Score 9447 140
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FIGURE 8
Calcium oxalate crystals of various dimensions.

TABLE 4 Performance comparison of DeepSVM with other models.

Accuracy (%) Precision (%) Recall (%) F1-Score Parameters GFLOPs
(VA (millions)
MobileNetV2 91.33 93.76 88.23 90.91 3.40 0.30
VGG-16 90.87 92.37 87.00 89.60 14.7 15.0
VGG-19 91.80 92.44 90.74 91.58 20.0 19.0
InceptionResNet-v2 92.65 94.77 92.88 93.79 55.9 12.5
Custom-CNN 87.41 87.74 83.37 85.49 3.34 2.00
DeepSVM 94.50 96.00 93.00 94.47 25.6 3.80
a b
6
104 — train
— validation
5 B
0.9
4 4
0.8 1
3 4
0.7
2 <4
0.6 1
1 B
— train
051 — validation | | s A‘ s\ o, I
0 2 % 60 80 100 0 2 © 60 80 100
FIGURE 9
Shows training performance of the proposed DeepSVM (a) accuracy (b) loss.

creating intriguing opportunities to enhance medical diagnostic ~ addressing the unique issues presented by detecting plant diseases
processes. By carefully assessing its performance metrics, as  and analyzing medical images were brought to light. These findings
indicated in Table 5, the model’s versatility and efficacy in  demonstrated the improved generalizability of the suggested
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approach and not only demonstrated its adaptability but also it’s
potential to make a substantial contribution to healthcare
and agriculture.

4.6 Comparison of the DeepSVM with
other SOTA methods

The proposed approach is evaluated on a novel dataset curated for
the dome galls. We cannot find related studies to evaluate and compare
the performance of the proposed approach with the SOTA approaches
concentrating on similar datasets. Therefore, to identify the
effectiveness and performance of the proposed DeepSVM approach,
it is evaluated against the publicly available dataset. The DeepSVM was
trained and tested on the PLD dataset to create a solid foundation for
the work. The detailed results are shown in Table 6. The model
exhibited better performance, achieving a test accuracy of 97.50%.
This achievement served as a testament to the efficacy of the novel
approach. A meticulous comparative analysis was conducted to
provide a comprehensive perspective, pitting the model against prior

]
©
()
[
o
La
©
-
©
3
i1
< >
s
=- 8
[
T
Dome Galls Healthy
Predicted Label
FIGURE 10
Shows confusion matrix of the proposed model.

TABLE 5 Performance assessment of the DeepSVM on public datasets.

10.3389/frai.2025.1558358

research that employed the same publicly available dataset. The
detailed outcomes of this comparative evaluation are meticulously
outlined in Table 4, offering valuable insights into the significant
advancements made by the suggested model (Table 6).

4.7 Limitations of the study

In the context of our proposed study, DeepSVM, a novel model
meticulously crafted for the early symptom identification of dome
galls, showcased better results by achieving a better accuracy of
94.50% on the test dataset. This accomplishment represented a
significant stride forward in the domain of plant leaf disease
classification. However, an avenue for improvement lies in enhancing
computational efficiency. DeepSVM necessitated a longer training
duration than contemporaneously trained models, particularly those
employing the sigmoid activation function as the final layer and Adam
optimizer. The forthcoming research endeavors will optimize the
DeepSVM training process and explore alternative optimization
strategies, including optimizers and other parameters. This pursuit
aims to strike an optimal equilibrium between elevated accuracy and
diminished computational time, thereby fortifying the model’s
practical applicability in real-world scenarios. Moreover, the proposed
DeepSVM approach is a black box, which takes dome galls images as
inputs and predicts whether the input image is healthy or unhealthy.
To better understand the results of the proposed DeepSVM approach,
we aim to introduce eXplainble Artificial Intelligence (XAI) with the
proposed approach to reduce its complexity and results fairness.

5 Conclusion and future work

This study aimed to create a model that can spot early signs of
dome galls, a leaf ailment that affects Cordia plants, and introduced a
new method called DeepSVM. The model was built using ResNet-50
as the backbone, three FC layers, and the final layer contained SVM

Dataset Source Accuracy (%) Precision (%) Recall (%) F1-Score (%)

PLD Kaggle 97.50 98.50 96.53 97.42 ‘
Chest X-Ray Kaggle 98.00 97.25 97.50 97.37 ‘

TABLE 6 Comparison of DeepSVM method with previous work on a public dataset.

Study Method Dataset Year Accuracy (%)

Islam et al. (2017) CNN Potato Leaves 2017 92.00

Rozagi and Sunyoto (2020) ANN Potato Leaves 2020 96.50

Sanjeev et al. (2021) Segmentation + MSVM Potato Leaves 2021 95.00

Singh and Kaur (2021) K-Means + MSVM Potato Leaves 2021 95.99

Kurmi et al. (2022) CNN Potato Leaves 2022 95.35

Mahum et al. (2023) Efficient-Net DenseNet Potato Leaves 2023 97.20
Ashikuzzaman et al. (2024) DenseNet201 Potato Leaves 2024 96.00

DeepSVM CNN + SVM Potato Leaves - 97.50
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instead of the sigmoid activation function. A custom dataset
containing 3,500 images of healthy and diseased leaves with class
balancing was used for training the model, equipped with
preprocessing and data augmentation techniques to enhance
generalization and reduce over fitting, resulting in a test accuracy of
94.50%. The study highlighted the model’s potential for improving
plant disease detection by highlighting its effectiveness in early
symptom classification for plant leaf diseases. The proposed approach
offers a reliable tool for early plant disease detection, enhancing crop
productivity and outperforming traditional algorithms. It encourages
the integration of anomalous histological feature extraction with the
DeepSVM model to enhance performance further. This framework
can be extended to other agricultural applications, improving existing
machine and deep learning methods. Ultimately, it supports farmers
in selecting effective pesticides, reducing costs, and maintaining crop
quality through timely diagnosis.

There is scope for further research to improve the performance of
the proposed approach. The accuracy may be increased, and the
training time may be reduced without compromising accuracy.
Collaborating with domain experts to amass a more comprehensive
and diverse dataset, stratified into subcategories such as initial, mature,
and severe dome gall cases, would enhance method evaluation.
Expanding the proposed method to encompass various plant species
for early leaf disease symptom identification holds promise. Moreover,
exploring an extension of this approach to classify human diseases
could broaden its applicability, fostering advancements in plant and
human disease classification techniques.
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