
TYPE Original Research
PUBLISHED 12 January 2026
DOI 10.3389/frai.2025.1550604

OPEN ACCESS

EDITED BY

P. K. Gupta,
Jaypee University of Information Technology,
India

REVIEWED BY

Liliana Ibeth Barbosa Santillan,
University of Guadalajara, Mexico
Rizwan Raheem Ahmed,
Indus University, Pakistan
Agung Triayudi,
Universitas Nasional, Indonesia
Steve Nwaiwu,
Rajamangala University of Technology,
Thailand
Yuxing Duan,
Hubei University of Technology, Wuchang
University of Technology, China

*CORRESPONDENCE

Filippos Ventirozos
f.ventirozos@mmu.ac.uk

RECEIVED 23 December 2024
REVISED 22 September 2025
ACCEPTED 04 December 2025
PUBLISHED 12 January 2026

CITATION

Ventirozos F, Jacobo-Romero M, Alrdahi H,
Clinch S and Batista-Navarro R (2026)
RiCoRecA: rich cooking recipe annotation
schema. Front. Artif. Intell. 8:1550604.
doi: 10.3389/frai.2025.1550604

COPYRIGHT

© 2026 Ventirozos, Jacobo-Romero, Alrdahi,
Clinch and Batista-Navarro. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

RiCoRecA: rich cooking recipe
annotation schema

Filippos Ventirozos1*, Mauricio Jacobo-Romero2, Haifa Alrdahi2,
Sarah Clinch2 and Riza Batista-Navarro2

1Department of Computing and Mathematics, Manchester Metropolitan University, Manchester,
United Kingdom, 2Department of Computer Science, School of Engineering, University of Manchester,
Manchester, United Kingdom

Despite recent advancements, modern kitchens, at best, have one or
more isolated (non-communicating) “smart” devices. The vision of having a
fully-fledged ambient kitchen where devices know what to do and when has
yet to be realized. To address this, we present RiCoRecA, a novel schema for
parsing cooking recipes into a workflow representation suitable for automation,
a step toward that direction. Methodologically, the schema requires a number
of information extraction tasks, i.e., annotating named entities, identifying
relations between them, coreference resolution, and entity tracking. RiCoRecA
differs from previously reported approaches in that it learns these different
information extraction tasks using one joint model. We also provide a dataset
containing annotations that follow this schema. Furthermore, we compared
two transformer-based models for parsing recipes into workflows, namely,
PEGASUS-X and LongT5. Our results demonstrate that PEGASUS-X surpassed
LongT5 on all of the annotation tasks. Specifically, PEGASUS-X surpassed LongT5
by 39% in terms of F-Score when averaging the performance on all the tasks; it
demonstrated almost human-like performance.

KEYWORDS

information extraction, workflow extraction, generative encoder-decoder models,
instructional text, language resources, internet of things

1 Introduction

In the last few years, we have seen the emergence of smart devices for use within the
kitchen. Indeed, devices designed for the Internet of Things (IoT) or the Internet of Robotic
Things (IoRT)1 that automate cooking tasks in commercial settings are increasingly
becoming popular (Bosch, 2023; Thermomix, 2023; Omni, 2023; Xiaomi, 2023). These
devices are designed to facilitate cooking processes by offering a variety of automated
functionalities. However, their operation is largely isolated, with each device functioning
as a standalone unit. Moreover, these devices utilize coded recipes that have undergone
manual curation. Cooking instructions, originally in English, Chinese and other languages,
are transformed into code that is comprehensible to the specific appliance. Therefore, while
these devices can execute automated tasks, they are unable to independently interpret and
apply recipes provided by the end-user in their natural language form. Furthermore, the
capability of these devices to work with multiple other devices and collaborate seamlessly
with the end-user still remains an unrealised objective.

1 Both IoT and IoRT devices are within the scope of our study, although we will use “IoT” to broadly

refer to the two types of devices throughout this paper.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1550604
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1550604&domain=pdf&date_stamp=2026-01-12
mailto:f.ventirozos@mmu.ac.uk
https://doi.org/10.3389/frai.2025.1550604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1550604/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

Weiser’s vision of Ambient Intelligence (Weiser, 1999) points
toward an ideal where ambient intelligence can exist in the
background and proactively meet its end-user demands. Bringing
this perspective to the kitchen, IoT devices could interpret a
cooking recipe provided by the user, create a plan of action and
engage in collaborative behavior. However, the actualisation of such
systems, where IoT devices and humans work together smoothly,
remains a challenging prospect.

We propose the development of natural language processing
(NLP) methods for analyzing recipes as a step toward realizing
the above-described vision. Given that recipes are a resource that
contains instructions that can be used to coordinate different
IoT devices (Paternò and Santoro, 2017), our overarching aim
is to develop an NLP-based framework for transforming natural
language instructions into IoT workflows. The core principle is
based on the automatic generation of a workflow from a given
recipe, which can then be executed by IoT devices.

We define a workflow as a series of steps—which may or may
not be dependent on each other—that are required to complete a
task (Ventirozos et al., 2021). IoT functionalities are dichotomised
on a granular level into sensors and actuators. The sensors indicate
the ability to get a measurement from the real world (e.g.,
temperature, occupancy), and the actuators interact with the world;
they act in some way (e.g., raise temperature, move an object). This
is a key concept that underpins how we model a recipe, as discussed
in the succeeding sections of this paper.

One can view recipe instructions as a series of functions. For
example, the recipe instructions shown on the left-hand side of
Table 1, can be formally expressed as the numbered functions on
the right-hand side. All of the numbered lines convey actions
(actuator-related), except for Lines 5, 8 and 10, which are conditions
(sensor-related) that use a code statement (i.e., “Until,” “For,” “If”)
and dictate the execution of the action in Line 6 (“stir”), Line 9
(“bake”), and Line 11 (“turn”), respectively. The values enclosed in
brackets denote lexical units such as the names of tools, ingredients,
or other recipe-related tags. It is worth noting that most of the
instructions are dependent on the preceding steps being completed.

TABLE 1 The table presents a baked potato recipe in the left column, with
its pseudocode representation in the right column.

Cooking recipe Expressed as pseudo-functions

Preheat oven to 200 ◦C
(400 ◦F). Clean and cut
the potatoes into
similar-sized pieces. In a
large bowl, mix olive oil,
salt, pepper, herbs, and
minced garlic. Add
potatoes and stir until
they’re coated. Place the
potatoes on a baking
tray. Bake in the oven for
about 40–50 min, until
they’re golden brown
and crisp. Turn them
over halfway. Serve and
Enjoy!

0 | preheat (tool = oven, sett = 200 C, ...)
1 | clean (ingr = potatoes, ...)
2 | cut (ingr = potatoes, sett = smaller-sized...)
3 | mix (tool = large bowl, ingr = [olive oil, salt, ...)
4 | add (ingr = potatoes, ...)
5 | Until (coated, ...):
6 | stir (ingr = [potatoes, olive oil, pepper,], ...)
7 | place (tool = baking_tray, ingr = potatoes, ...)
8 | For (40–50 min) OR Until (golden brown, ...):
9 | bake (tool = oven, ingr = [potatoes, olive oil,
salt, pepper, ...)
10| If (halfway):
11| turn (ingr = [potatoes, olive oil, pepper...)
12| serve (ingr = [potatoes, olive oil, pepper ...])

Here, the main verbs, including actions and conditions, serve as functions, accepting various
parameters enclosed in brackets. To maintain brevity, not all parameters and details are
included.

For instance, Line 4 depends on Line 3; one has to add the
ingredients to mix them. However, some instructions may have a
long-distance dependency, such as Line 9 needing the oven to be
preheated in Line 0.

Thus, recipe instructions can be expressed as a workflow that
can be represented as a graph consisting of nodes and edges, where
nodes represent the corresponding functions and edges represent
the dependency linkages between these functions. Specifically, we
defined a cooking workflow as an encapsulation of the following
information: the actions and conditions (which we will refer to as
predicates), the lexical units involved in each (i.e., entities and their
attributes), and the sequence in which the actions should be carried
out (e.g., which action depends on which).

Lastly, the ingredients during a cooking process are often
referred to differently or are skipped altogether, as they are obvious
to the reader of the recipe. For instance, in Line 9, we need to
infer the entities that require processing even though they are not
explicitly mentioned in the cooking recipe.

Therefore, a number of information extraction tasks need to
be applied to any given recipe: named entity recognition, relation
classification, coreference resolution and entity tracking. Below, we
introduce each of these tasks.

Named entity recognition (NER) is a sub-task of information
extraction that seeks to locate and classify named entities (NEs)
in a text into predefined categories such as names, organizations,
locations, time expressions, quantities, monetary values and so
forth. In our case, in the sentence “Preheat oven to 200 ◦C (400 ◦F)”
our NER system would identify “Preheat” as an action (predicate),
“oven” as a tool, and “200 ◦C (400 ◦F)” as a device setting.

Relation classification (RC) deals with predicting the semantic
relationship between pairs of entities in a text. In our case,
the entities correspond to the above NE spans. For example, in
Table 1 in the right column, RC would recognize the dependency
relationship between “clean” and “cut” as well as “preheat” and
“bake,” and that the latter depends on the former. Moreover, it
would recognize the lexical units that belong to a predicate. For
instance, in the second line on the left pane, the RC would indicate
that the “similar-sized pieces” setting belongs solely to the “cut”
predicate, but not to “clean.”

Coreference resolution, on the other hand, is the information
extraction task of identifying coreferring expressions, i.e.,
expressions in a text that refer to the same entity or event. This is
crucial for understanding the full context of a text, as pronouns
(such as “it” or “them”) and noun phrases (such as “dough”)
frequently refer back to previously mentioned entities. For
example, in Table 1, in the penultimate sentence of the left pane,
“them” refers not only to the potatoes but also to other ingredients
mixed with the potatoes (i.e., olive oil, salt, pepper, herbs, and
minced garlic). Moreover, we extend our task to situations where
no pronoun is used but the elements are implied to be involved in a
process; we still predict their involvement. We refer to coreference
resolution and this extended aspect of coreference resolution as
entity tracking, since this process allows us to track the entities in
each cooking step. In the remainder of this paper, we use these
terms interchangeably.

What makes our work different from previous approaches to
automatic workflow construction based on recipes (also referred to

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

in the literature as flowgraph construction [Yamakata et al. 2020]),
is our handling of code statements. These code statements allow
us to identify actions that are conditioned on some information
from the environment that can be determined using sensing, e.g.,
the baking action in “bake until golden brown.” Such predicates
are different from immediately executable actions that require
actuation, e.g., “heat the oven to 400 deg F.” In addition, we utilize
notations to determine which processes can be done sequentially,
in parallel, repeated or disjunctive (i.e. XOR). To the best of our
knowledge, our work is the first to incorporate such information
in workflows extracted from text. Crucially, our approach is novel
in that it learns these different information extraction tasks jointly
within a single sequence-to-sequence model, a significant departure
from prior pipeline-based methods that handle these tasks in
isolation.

To support the development of methods for extracting
workflows based on text, we introduced a new schema for
annotating a collection of recipes with the above-described
information. To facilitate the automatic extraction of such detailed
information from recipes, we exploited transformer-based models
(Vaswani et al., 2017) for the various information extraction tasks.
Inspired by the work of Paolini et al. (2021), we cast information
extraction as a structured prediction problem addressed using
sequence-to-sequence modeling. However, we expanded it to
jointly learn the tasks of NER, RC and coreference resolution. In
addition, due to the length of recipe instructions—which tend to
be longer than 512 tokens—we made use of the “long” transformer
variants that can take longer text inputs. A visual depiction of our
inference approach is provided in Figure 1.

Our contributions can be summarized as follows:

1. A new annotation schema, RiCoRecA, aimed at extracting
workflows for IoT automation.

2. A dataset of 156 recipes labeled based on the RiCoRecA
annotation schema.

3. A new transformer-based approach for generating workflows
from recipes that is based on sequence-to-sequence modeling.

4. A comparison between two long transformer models for the
joint tasks of NER, RC and coreference resolution.

Figure 2 provides a visual summary of our research
methodology. The remainder of this paper is structured as
follows. In Section 2, we review previous work on recipe workflow
extraction using NLP and multi-modal approaches. Section 3

presents the details of the annotation schema for labeling named
entities, the relationships between them, as well as coreferring
expressions. In Section 4, we introduce our newly created dataset
and the annotation methodology applied to develop it. We then
describe our proposed approach to workflow extraction based on
long transformer models in Section 5. This is followed by Section 6,
which reports the results of evaluating our approach. Lastly, we
provide a discussion of our results and future work in Section 7,
and summarize our findings in Section 8.

2 Related studies

In this section, we present a number of studies that are more
relevant to the problem of structured prediction from text more
generally and the task of workflow extraction from recipes more
specifically. We also review multi-modal approaches that have been
proposed to address the latter.

2.1 Structured prediction

In the literature, a number of efforts have sought to
transform text into a structured form such as abstract meaning
representation (AMR) (Banarescu et al., 2013), the BabelNet
meaning representation (Martínez Lorenzo et al., 2022) or the
resource description framework (RDF) graph format. For instance,
Shirai and Kim (2022) utilized RDF triples to create a graph and
solve a task such as the identification of ingredient substitutes. In
our research, we parse text into an event structure. Within this
framework, each cooking step is articulated as an individual event.
Each event can be defined using the 5W1H criteria: “who,” “when,”
“where,” “what,” “why” and “how” (Li et al., 2022).

Ventirozos et al. (2023) conducted a study that evaluated the
semantic coherence of cooking recipe instructions in the context
of orchestrating IoT devices. Notably, the semantic representation
they employed bore similarities to that utilized in our research,
primarily the 3W1H event representation, which also finds its roots
in IoT control theory, which is used in our study. However, a key
distinction lies in the fact that, in their approach, events were not
interconnected, thus not facilitating the creation of (IoT) recipe
workflows.

FIGURE 1

The figure above demonstrates the inference processing pipeline. On the left-hand side, we have a plain text recipe, which a sequence-to-sequence
(encoder-decoder transformer) model parses to a semantically annotated one by augmenting the recipe with NER, RC, and coreference resolution
notations. Then, a simple parser reads the annotated recipe and can print it as a workflow.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

FIGURE 2

The figure shows a visual depiction of our overall methodology. It begins with the manually curated FoodBase dataset (Popovski et al., 2019)
containing pre-labeled ingredients, following the initial pre-processing to clean the data and add NER labels using an off-the-shelf library. Then, a
customized annotation interface [Prodigy (Montani and Honnibal 2017)] was employed for recipe labeling. The annotation process involved two
iterative stages: an initial refinement of annotation guidelines followed by the final annotation phase. The resulting labeled recipes serve as the
ground truth for inference using encoder-decoder transformer models. The figure indicates the sections where each part of the process is discussed.

2.2 Recipe workflow extraction

Zhang et al. (2012) demonstrated how to employ a syntactic
parser to extract procedural knowledge from texts (including
cooking recipes). Focussed on process automation, they proposed
that each step encompassed a set of slots to fill in, such as action
verb, actee, instrument, post-condition and more. The hierarchical
nature of a syntactic parse tree helps one to delineate the verb,
which is on top of the tree, and by working their way down
one could extract most of the lexical units. Our study does not
rely on syntactic parsing; instead it utilizes a pre-trained language
model (encoder-decoder transformer) to parse not only the named
entities but also the entities used in each step and their relations.
Specifically, one major difference in our annotation schema is that
we link the various steps, utilizing relation extraction to model a
control flow diagram.

A follow-up study that models the control flow was published
a few years later by Schumacher (2015). They proposed a method
for parsing procedural text (predominantly cooking recipes) into
a workflow representation based on the Business Process Model
and Notation (BPMN). By their definition, workflow components
correspond to actions and products (i.e., ingredients and tools).
In the same study, the notion of control flow extraction was also
introduced. Four types of control were identified: (1) sequential,
where actions follow a linear sequence; (2) disjunctive, where an
action depends on a condition, e.g., “add sugar if you want”; (3)
parallel, where actions can be executed in parallel, e.g., preheating
the oven and laying the baking dish; and (4) repetitive, where
actions need to be repeated until a certain requirement/condition
is met, e.g., “repeat steps until all ingredients are mixed.” In
their work, workflows were extracted by employing rule- and
frame-based approaches utilizing the results of part-of-speech
(POS) tagging, dependency parsing, and by exploiting the recipe’s

structure (e.g., paragraph indentation). In comparison, our work
sought to utilize state-of-the-art transformers (Vaswani et al.,
2017) to solve the structured prediction problem as a sequence-to-
sequence modeling task.

More recently, Yamakata et al. (2020) annotated English
cooking recipes with named entities and arcs (edges), representing
relationships between the entities, based on a similar study on
Japanese recipes (Mori et al., 2014). The authors defined ten named
entity labels (e.g., food, tool duration, quantity, food state, action
by food) and 13 edge labels. They automatically computed the
flow graphs (similar to workflows) by first utilizing the encoder-
only transformer BERT (Devlin et al., 2019) and then inferred the
edges using a dependency parsing procedure. One main difference
between their work and ours is that their generated workflows were
not designed for IoT automation. Furthermore, our approach also
learns actions that are dependent on some condition, similarly to
Wu et al. (2022). In addition, we learn coreference resolution as
part of the structured prediction problem, whereas previous work
had focused only on NER and RC.

Rather than extracting workflows, Papadopoulos et al. (2022)
investigated the extraction of programs from recipes. First, they
constructed a taxonomy of actions and their lexical units (e.g.,
ingredient, tool, temperature, quantity). Then, using an encoder-
decoder model, they parsed a recipe’s text into a graph where
each of the detected named entities is linked to the taxonomy,
performing entity linking. They then connected each entity with
relations to resemble a program. Again, our approach is different
from theirs in that we learn coreference resolution (in addition
to NER and RC) as well as actions that are contingent on
certain conditions.

Other approaches involve predicting the workflow of a cooking
recipe given the entities (Jermsurawong and Habash, 2015; Kiddon
et al., 2015) or predicting just the named entities themselves

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

(Wróblewska et al., 2022; Harashima and Hiramatsu, 2020;
Gunamgari et al., 2014).

2.3 Multi-modal recipe workflow
extraction

Recent studies have combined images with text or videos to
extract richer information from cooking recipes. For instance,
Zhang et al. (2021) utilized images to extract ingredient
information not explicitly mentioned in the cooking steps.
Meanwhile, Paulius et al. (2018) utilized annotated cooking
videos to compose “task trees” (chains of events needed for a
certain outcome) by fusing knowledge based on object similarity.
Recent work also demonstrated how instructional videos can be
automatically labeled by a model trained in an unsupervised
manner (Piergiovanni et al., 2021). Our work is different from these
in that we rely on text only, and leverage the knowledge learned by
pre-trained transformer models.

3 Annotation schema

In this section, we introduce the annotation tags (labels) that
were utilized in our study. According to our three NLP tasks, we
have devised NER tags, RC tags and lastly an entity tracking scheme
for coreference resolution. Table 2 presents our NER and RC tags
and a short description of each.

TABLE 2 Summarized descriptions of our NER and RC tags.

NER
tags

Description RC tags Description

Action predicate, denoting a
process

Modifier Parameter to a
process

Ingr Ingredients or ingredient
products

Member Part of process

Tool Tools, devices,
equipment

Or Code Statement
“Or”

Part of * Part of Ingr or Tool Join Denotes
parallelism

Coreference
of *

Reference to Ingr or
Tool

Dependency Process depended
on another
process

Msr & Sett Measurement of Ingr
and setting of Tool

Why Reasoning or
justification for a process

If Code statement “If”

Until Code statement “Until”

Repeat Code statement “Repeat”

State of * Denotes condition of
Ingr or Tool

3.1 Named entity recognition tags

We delved into IoT control theory to create the appropriate
named entity labels. Specifically, we drew inspiration from the
work of Milis et al. (2019). They created a semantically enhanced
IoT-enabled Intelligent Control System (SEMIoTICS). The control
system involved a supervisor module facilitating the semantic
modeling of IoT workflow composition and reconfiguration. The
backbone of the system relies on a database of semantically
annotated signals. Each signal is a quadruple, where each slot would
be one of the defined “Where,” “What,” “Why” (Ws) and “How”
(3W1H). For instance, in order for the supervisor to acquire a
temperature sensor (thermometer) reading from an oven, it would
have the following quadruple:

1. Where → Oven: represents the location and answers
the question “Where?”

2. What → Temperature: represents the studied property
of the feature of interest and answers the question
“What?”

3. Why → State Measurement: represents the role of
the signal or the parameter in the control system
configuration and answers the question “Why?”

4. How → Celsius: the measurement unit of the property,
where applicable, and answers the question “How?”

Our named entity labels were inspired by the 3W1H semantics
and were adjusted to facilitate cooking recipes and, more
generally, instructional text. Firstly, we wanted to include control
flow extraction (see Section 2.2) in the design. Secondly, the
annotation methodology (in iterations) described in Section 4.5
aided in refining the named entity types, relation types and
the corresponding guidelines. For our study, we characterize the
named entities as span-based; they can include one to multiple
words. Below we present the named entity tags, as core and code
statements, followed by the relation tags.

3.1.1 Core
Action is usually a verb denoting the current process at hand.

It pertains to the answer to the question “What?”, as in “What is
happening in this step?” (e.g., collecting ingredients). Similar to the
SEMIoTICS approach, the answer is typically a verb. For instance,
in “Pre-heat the oven on 200 C” the verb “Pre-heat” denotes the
type of signal (heating) that should be sent to an IoT device (an
oven in this case).

Entities are categorized into expendables and durable, i.e., into
ingredients and tools (i.e., devices).

• Ingridients involve any ingredient or ingredient product.
• Tools involve any concept of a tool. These could be appliances,

cutlery, plates, worktops and even hands in some cases. In
addition, tools tend to answer the question “Where?”. In our
case, the location would refer to a part of the kitchen, which is
usually an appliance or equipment. For instance, in “Pre-heat
the oven on 200 C,” the word “oven” denotes the location that
we want to pre-heat.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

Part of ingr and part of tool were introduced to label the spans of
words that refer to a specific part of an entity (e.g., “the icing of the
cake,” “door of the oven”).

Coreference of ingr and coreference of tool are used for
coreference between entities. This is further explained in Section
3.3.

Msr and Sett are two different labels, referring to the
measurement and the setting. As one can see below, they both
answer the question “How?”. The measurement, as the name
suggests, refers to the quantity of an entity, usually an Ingr
(e.g. “2 tbsp of sugar”). Setting refers to the setting of a Tool
(e.g., “Pre-heat the oven on 200 C”). It’s worth noting that in
some cases, these can refer to verbose descriptions, e.g., “cover
pan with water, cover everything plus one inch” (Msr) or “Reduce
heat to a simmer” (Sett).

Why in the context of SEMIoTICS, this pertains to the reason
why a signal is sent to an IoT device, e.g., to acquire a state
measurement or to increase a value (e.g., heating). Moreover,
this measurement is manually set by the engineer/technician or
automatically by downloading the information from the Internet
to fit the current plan’s ontology. In our case, the “Why” refers to
the span of words that explain the reason behind an action. For
instance, a reason to pre-heat an oven could be “If you don’t preheat
your oven the temperature won’t be hot enough and the end result
may be a heavy, under-cooked mess.”

3.1.2 Code statements
Code statement is a parent term that refers to coding keywords,

such as “if,” “for” or “until.” These are crucial for the development
of automation since they are the backbone of sensor-type devices.
For instance, “bake until golden brown,” could refer to continuing
with baking until (conditional statement) a camera-sensor would
detect that the food entity is golden brown. Another example is
“whisk until no lumps.” In our study, these keywords are:
If tests if a certain condition holds (e.g., “if,” “whether”) and
determines if an alternative predicate or entity applies.
Until denotes doing an Action until a state is met (e.g., “until,”
“while”).
Repeat signifies repeating an Action for a number of times (e.g.,
“for,” “repeat”).

Stt refers to the state of ingredient and state of tool. One
can view them as programming conditions referring to a state.
For instance, in the above example “bake until golden brown,” the
underlined is a state of the ingredient linked to the Until.

3.2 Relation classification tags

We perform relation classification by considering the predicate,
i.e., Action or a Code Statement (from Until, If and Repeat), as the
root of a tree. The entities and the remaining lexical units are linked
to the predicates. We defined the following relations:

Modifier is a type of relation that applies when a tagged word
span is a direct argument, referring to another word span. Typically,
these would be Msr or Sett referring to entities (e.g., “200 C” would

refer to “oven”) or Stt_* referring to a Code Statement (“no lumps”
would refer to “until”).

Member denotes which lexical units belong to which predicate.
Every lexical unit needs to be connected; if the above Modifier does
not apply, then Member would be used. In addition, it is used
when a predicate is part of another predicate, such as between the
predicates in Line 6 and Line 5 in Table 1.

Or is affiliated with code statements. It denotes whether one
predicate or another should be used; the same applies to entities.

Join is used to denote when two predicates should happen in
parallel.

Dependency is a type of relation that denotes which predicates
are dependent on which. Once the annotator fills in the Dependency
links, a timeline of predicates could be formed.

Figure 3 presents a high-level demonstration of how predicates
can be connected using the aforementioned relationships.

3.3 Entity tracking

3.3.1 Named entity recognition tags for
coreference resolution

Cooking recipes use culinary jargon and are often written in
colloquial language. Certain terms are expected to be known. For
instance, the word “batter” would be anticipated within a pancake
recipe. Fang et al. (2022) and our observations show that cooking
recipes use four types of coreferring expressions/anaphors2 for
ingredients. Primarily, we have two one-to-one relationships. These
are: (1) referring to the exact same entity, without undergoing a
process and changing its state, but with different wording (e.g.,
a pronoun). (2) Referring to the exact same entity, but being
transformed through a process (e.g., “marinated meat”). We also
consider two one-to-many relationships with the same distinction
of with and without any state change. In our study, we grouped
all the coreference types under one tag for Ingr and Tool, i.e.,
Coreference of ingr and Coreference of tool, respectively. As a
general rule, any wording(s) that refer to a previous entity and
is different should be considered Coreference of * instead (e.g.,
“dough” is a Coreference of ingr referring to water, yeast, flour etc.,
whereas “preheated oven” is a Coreference of tool). In some cases,
it could even be the same word if and only if the latter entity has
added entities onto it, despite preserving its name.

3.3.2 Spreadsheet filling
The difficulty of processing instructional text is further

compounded by the omission of certain descriptive parts that are
implied. We noticed that certain actuations are considered to be
based on common sense, and make the assumption that an agent (a
human) should be able to track the entities. For instance, if one says
“remove the chicken from the oven,” they imply switching off the
oven’s heating, and the oven would not be in the image depicting

2 Anaphora resolution bears similarities with coreference resolution in

that it focusses on identifying anaphors in a text and their corresponding

antecedents. Anaphors are words or phrases that refer to earlier-mentioned

words or phrases (antecedents).

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

FIGURE 3

Demonstration of how predicates can be linked. The red boxes are Actions (actuations) and the gray ones are code statements (related to sensing).
The “Dep” links stand for predicate Dependency. Lvl 2 shows nested predicates.

the next step. Hence, state tracking applies to the entities. As
explained in Section 4.3, this was done with the aid of a spreadsheet,
which allows for recording which entities are involved in each
predicate, thus uncovering the entities that certain coreferring
expressions pertain to.

More information on the annotation rules and processes can be
found in the annotation guidelines3.

4 Dataset annotation

To test our hypothesis that an NLP model can perform NER,
RC and coreference resolution to extract a workflow from a
recipe, we needed to create a suitably annotated dataset for the
purposes of developing models. Our target dataset was not intended
to be large enough for training machine learning models from
scratch. Consequently, we propose an annotation task that can
be executed by even one person, with the expectation that a pre-
trained transformer can achieve near-human-like inference. Below,
we describe the annotation methodology and the dataset in detail.

4.1 Annotation methodology

The annotation process consists of two sections. Firstly, the
annotator utilized a customized Prodigy4 interface to complete the
NER and RC annotation tasks. After completion, the results were
saved into a downloadable CSV file, where the annotator would
need to fill in which initial entities are present in each predicate.
In cases where the reference of an ingredient had changed (e.g.,
“flour” should be present where “dough” is), it was annotated with
its original entity (e.g., “flour”); we refer to this task as coreference
resolution. Also, this format allowed the annotator to omit any

3 https://figshare.com/articles/online_resource/RiCoRecA_i_Ri_i_ch_i_

Co_i_oking_i_Rec_i_ipe_i_A_i_nnotation_Schema_Annotation_

Interface_Guidelines_/25853902

4 Prodigy (Montani and Honnibal, 2017) is an annotation tool by the

creators of the NLP toolkit spaCy (Honnibal et al., 2019).

sentences or phrases that are comments, comments ensuring how
a state should be without contributing to the process (e.g., “It
should be piping hot right now”); and generally, comments that are
typically not in the imperative form which do not contribute to the
process. Additionally, duplicate actions were not considered.

4.2 Source dataset

We used the FoodBase corpus (Popovski et al., 2019) for
our study. The recipes were extracted from allrecipes.com, one
of the most popular cooking websites, accessible to everyone
who wishes to contribute any recipes. Specifically, we used a
manually curated dataset which was annotated with ingredient
semantic types adhering to the taxonomy of the Hansard Corpus5.
The ingredient taxonomy served two purposes in our study: 1.
expediting the NER annotation process 2. supporting future studies
on graph clustering (covered in Section 7.2). The dataset was pre-
processed using tokenisation (e.g., 425F to 425 F) to allow fine-
grained span labeling in the first annotation iterations. Following
this, to expedite the annotation process, we utilized spaCy’s part-
of-speech (POS) tagger to mark ACTION (action) tokens. Thus,
the ACTION and INGR (ingredient) labels, documented in Section
3.1, were automatically labeled by the spaCy tool and the dataset’s
provided labels. Nonetheless, the annotator could change them
during the NE annotation step should they perceive that they
are inaccurate. The FoodBase corpus’ dinner and lunch recipes
were used since they contained the most mentions of tools and
kitchen devices. The code for pre-processing and the dataset are
freely available in github.com/FilipposVentirozos/RicoReca.git and
figshare.com, respectively.

5 The Hansard semantic tags are part of the Hansard Corpus project(Davies,

2015).

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://figshare.com/articles/online_resource/RiCoRecA_i_Ri_i_ch_i_Co_i_oking_i_Rec_i_ipe_i_A_i_nnotation_Schema_Annotation_Interface_Guidelines_/25853902
https://www.allrecipes.com/
https://github.com/FilipposVentirozos/RicoReca.git
https://figshare.com/articles/dataset/RiCoRecA_i_Ri_i_ch_i_Co_i_oking_i_Rec_i_ipe_i_A_i_nnotation_Schema_Dataset_/22317796
https://web.archive.org/web/20151108152449/http://www.hansard-corpus.org/semTags1.asp?c1=AG
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

FIGURE 4

Part of an annotated small recipe with Named Entities and Relations. The Prodigy annotation tool by Montani and Honnibal (2017) was used.

4.3 Annotation interface

An annotator would read a recipe and complete the following
tasks: (1) named entity recognition (NER), (2) relation extraction
and classification (RC), and (3) entity tracking for coreference
resolution. Each annotator was assigned a username and a set of
recipes to annotate via a web browser. Annotation was conducted
remotely and asynchronously because Prodigy allows saving and
resuming at any time. We commended this style of annotation, as
a single recipe could take up to 30 min to annotate; in this way,
annotators could work at their convenience and diligently allocate
time to understand step dependencies, annotate, and evaluate their
annotations. The landing page for each annotator was the Prodigy
interface, a customized joint NER and RC annotation page. Figure 4
shows an example of the annotation view.

This view includes an interactive graph that was generated
using the Visjs library6 for the convenience of the annotator; an
example is shown in Figure 5. In addition, a button was provided
at the bottom of the page, and if pressed, it would download a
spreadsheet (CSV file) auto-filled with the actions (predicates) and
the entities that the user had annotated up to that point. Rows in
this spreadsheet refer to the actions, and the columns correspond
to all the entities. Annotators reviewed the spreadsheet using their
preferred spreadsheet software (e.g., Excel) and filled in the cells
with “1” where an entity is present in an actuation or left empty
if not. The full annotation guidelines and guide to the graphical
annotation interface are available as Supplementary material.

4.4 Annotators

Three annotators contributed to the annotation task, namely,
the first three authors of this paper. These annotators represented
diversity in terms of gender and geographic origins, hailing from
Greece, Mexico and Saudi Arabia. While not native speakers
of English, each annotator has demonstrated proficiency in the

6 https://visjs.github.io/vis-network/docs/network/

FIGURE 5

The graph interactive output from Figure 4. This section belonged
under the previous output for the annotator’s convenience.

language, evidenced by postgraduate degrees in an English-
speaking university. Additionally, they all have knowledge of NLP

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://visjs.github.io/vis-network/docs/network/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

and linguistics. Lastly, they are moderate users of online cooking
recipes and cooks.

4.5 Annotation phases

There were two phases in the annotation process. In the
first one, the lead author was creating the guidelines and testing
them with the second author. The process mimicked the DevOps
methodology (Jabbari et al., 2016). The lead author was responsible
for designing the guidelines, updating the annotation interface and
ensuring that there were no issues in the annotation process. The
second author then annotated based on the annotation scheme.
The first author monitored their progress and received feedback
on the annotation process, in order to plan the next iteration
of guideline testing. In this strategy, fine-grained details were
firstly annotated (e.g., specific units and metrics) followed by
the annotation of coarse-grained ones, labeling everything under
one tag. The decisions were based on the trade-off between the
annotator’s effort and the recipes’ patterns (e.g., the span “fill with
enough water to cover almost the top of the pot” is difficult to
label as unit and metric, such as “two” → unit, “litres” → metric)
relative to the semantic information gained. Once the guidelines
were stable, the first phase was considered completed. For phase
two, approximately 150 recipes were allocated to the first author
and 50 to each of the second and third authors. The third annotator
was given an opportunity to practice with a few trial recipes before
annotating the set of recipes allocated to them.

4.6 Dataset statistics

The annotation process resulted in 156 labeled recipes. On
average, each recipe contains 9.3 sentences and 133.4 tokens.
Table 3 presents the frequencies of NER and RC tags in the
labeled dataset. The duration of annotation varied with the recipe
length: the shortest recipes, consisting of two sentences, required
approximately 5 min; the longest one, consisting of 26 sentences,
took an hour or more.

Evidently, our dataset size is not big enough to train machine
learning models from scratch. Our position is that we put forward
an annotation task that can be done relatively easily and result in a
dataset that can be used to fine-tune a pre-trained transformer.

4.7 Inter-annotator agreement

Cohen’s Kappa is recognized as the metric of choice when
dealing with inter-annotator agreement. It was developed to
counter the percentage agreement between annotators, as it
accounts for chance agreement, which percentage agreement
(e.g., accuracy) does not (McHugh, 2012). However, studies in
information extraction (Hripcsak and Rothschild, 2005; Deleger
et al., 2012; Brandsen et al., 2020; Richie et al., 2022) have
highlighted its inefficacy. Notably, in the context of NER, they
mention that the task involves tagging sequences of words, which
are not associated with the concept of true negatives found in

TABLE 3 The frequencies of NER and RC tags recorded by the first
annotator.

NER
tags

Counts RC
tags

Counts

Ingredient Tool Total

Action 2,290 Modifier 912

Entity 1,865 673 Member 4,762

Part of 295 50 Or 243

Coreference
of

654 192 Join 146

Msr & Sett 305 312 Dependency 1,943

Why 85

If 42

Until 699

Repeat 22

State of 547 25

The counts are based on spans labeled by the annotator. In total there are 8,056 NER tags and
8,006 RC tags.

typical classification tasks. These true negatives are necessary for
calculating the Kappa statistic. Consequently, they concluded that
the F1-score is more suitable. Furthermore, Cohen’s Kappa is not
suited for multi-label classification tasks, which are part of our
information extraction task. Bearing all these points in mind, we
opted for the F1-score. The bespoke F1-score metrics for all our
information extraction tasks are described in Section 6.

In our study, 50 recipes were annotated by the second and third
authors and evaluated against the first author. Table 4 displays the
inter-annotator agreement results. Notably, both sets of agreements
follow the same pattern. The highest agreement was observed in
NER, followed by membership, then RC, and lastly, antecedents.
Upon further inspection, we identified that the NER tags Repeat,
Part of Tool, and the RC tag Join obtained the lowest agreement in
both instances. These tags were also the most sparse in the dataset,
especially in the more intricate recipes.

5 Generative encoder-decoder
transformer model

In the preceding sections, we detailed three types of
annotations–NER, RC, and entity tracking–alongside the dataset.
In this section, we first introduce the sequence-to-sequence task,
explaining how a raw text recipe is parsed into an output that
incorporates all three types of semantic annotations. We then
discuss the transformer models employed in this study.

5.1 Sequence to sequence task

In the context of a sequence-to-sequence (seq2seq) encoder-
decoder task, we formalize the parsing process of a given recipe
X as follows: Given a recipe X, our objective is to transform it
into an augmented output Y , which reproduces the recipe while
integrating annotations that encapsulate the previously described

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

TABLE 4 The inter-annotator agreement between the first author vs. the second and third author.

2nd author 3rd author

Type F-score Precision Recall F-score Precision Recall

Antecedents 0.714 0.699 0.73 0.807 0.794 0.821

Membership 0.822 0.832 0.811 0.89 0.89 0.891

NER 0.886 0.874 0.898 0.908 0.916 0.9

RC 0.809 1.0 0.679 0.871 1.0 0.772

Section 6.1 mentions the types of evaluations that are presented in the Type column. Briefly, NER and RC refer to the tags in Table 2. However, the RC tag Member is an exception, as it falls
under the Membership type, defined by the Member linkage tags and additionally by link traversal from other links. Lastly, the antecedent type pertains to coreference resolution.

semantic information. This can be mathematically represented by
the function:

Y = f (X)

where f denotes the seq2seq model. This model maps the
input sequence X—the raw recipe text—to the output sequence
Y—the annotated recipe. The training of the model involves
recognizing and encoding different types of semantic annotations
such as NER, RC, and entity tracking, directly within the
text of Y .

To incorporate the annotations into the format Y , we drew
inspiration from the work described by Paolini et al. (2021).
They used a T5 (Raffel et al., 2020) for structured prediction.
They demonstrated and argued about different formats for
doing NER, RC, and other NLP tasks. We adhered to their
findings to: (1) generate tokens instead of numbers (e.g., it
could be the predicate’s count number instead), (2) repeat
the entire input sentence in the output, and (3) augment
the structured format for NER and RC by using the same
special characters. Below, we show how we tangled all the
information for one output. And following are some examples
for reference.

For each token that is a predicate or a lexical unit, we parse as
follows, assuming that token 1 is only of interest in this example:

tok_0 tok_1 ..., tok_n. → tok_0 [tok_1 | entities
| predicate | NER label | RC labels] ..., tok_n.

As one can distinguish, we parse a token into a quintuple
between the square brackets. In particular, we have the following
spaces to fill in the quintuple, the:

1. token(s) themselves.
2. antecedents. This applies only to entities. In this space, would be

listed the entities that it is composed of if any (e.g., the dough
may be composed of flour, sugar, milk, yeast salt). If it is not
a coreference but the actual entity, then it will have the same
token as in space 1. Then, should the token not be an entity (e.g.,
predicate) then it would remain empty.

3. predicate it belongs to. This is straightforward for the lexical
units. Nonetheless, the predicates also have this space filled. It’s
either themselves or the predicate they belong to. For instance,
in the introductory example, the indented action “bake” (line 6)
belongs to the “Until” (line 5).

4. NER label, these are described in Section 4 in more detail.
5. RC labels and the corresponding tokens, described previously in

Section 4 in more detail.

The subsequent illustrations, which derive from Table 1, adhere
to the format. Herein, they serve as references for elucidating the
utilization of this format.

The “cut” found in line 2 in the right pane would be
expressed as:

cut → [cut | | cut | ACTION | Dependency =
Clean]

since it is a predicate, it does not have antecedents. It does not
belong to another predicate, hence, the same word is repeated on
the third space. Then, it is dependent on the previous predicate (i.e.
Clean).

The “baking tray” found in line 7 is a TOOL type NER tag, and
since it is firstly introduced there it does not have any antecedents,
hence, it keeps its name. It belongs under the predicate “place.”
Consequently, it would be written as:

baking tray → [baking tray | baking tray | place
| TOOL |]

The “bake” predicate found in line 9 is under the conditional
statements “until” and “(For) 40–50 min” (regarded as a NER tag
of Until). Hence, would be written as:

bake → [bake | | 40–50 min, until | ACTION |]

Lastly, the “potatoes” in line 12 would be written as:

potatoes → [potatoes | potatoes, olive oil, salt, pepper,
herbs, minced garlic | serve | INGR |]

Since the term potatoes refers not only to the potatoes used but
also to the other added ingredients.

In Supplementary material, one can find examples of a whole
recipe as input to output with this format. Moreover, it is worth
mentioning that in our representation, we labeled spans as named
entities, but without using the IOB or IOB2 format. Instead, all the
tokens of a tag had the same label.

To be able to parse the annotations to the format mentioned
above, further processing had to be done on the annotated

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

data. Firstly, we extracted all the predicates from Prodigy
and matched them with the spreadsheet ones. Then we had
to link all the entities to the belonging predicate. However,
a lot of them were not linked directly to it. Hence, we
treated the problem as a graph, and by traversing the links
recursively, we could link each entity to its predicate. In our
calculations, when we traversed a recipe graph, we had to
treat the Dependency and the Modifier relations as directional,
whereas the rest as omnidirectional. Next, we filled in the entities
that link to entities according to the algorithm described in
Supplementary material. Lastly, we filled in the Msr and Sett,
which did not specify the entity they were referring to, similarly
to how we filled in the entities. The relevant code is provided in
https://github.com/FilipposVentirozos/RiCoRecA.

5.2 Long transformers

We build on Paolini et al. (2021)’s work; hence, we opted
for the same methodology of fine-tuning encoder-decoder models
for our task. Nonetheless, it was evident that the outputs we
targeted were quite lengthy, as an input to a model would
be an entire recipe ranging from 2 to nearly 30 sentences,
and the output would be an augmentation of that text,
potentially 4–6 times longer. Consequently, a typical 512-token
limit encoder-decoder transformer would omit valuable output.
Therefore, we opted for transformers that can accommodate
longer sequences. It is uncommon in the literature to find tasks
involving short inputs and long outputs; however, the reverse
is prevalent. A considerable amount of research has proposed
various architectures for summarisation and parsing from longer
to shorter text. Below, we document two recent long summarisation
transformers that we employed in our experiments and can adapt to
longer outputs.

5.2.1 LongT5
The LongT5 (Guo et al., 2022) is characterized as a scalable

T5 model (Raffel et al., 2020). Fundamentally, the T5 model
adheres to the encoder-decoder architecture with trainable weights
as delineated by Vaswani et al. (2017). Briefly, it comprises an
encoder consisting of multiple blocks. These blocks refer to a
grouping of neural network layers which are stacked one after
the other. Characteristically, each block includes a self-attention
layer (Vaswani et al., 2017), which utilizes trainable autoregressive
weights to map onto the sequence itself, followed by a feed-forward
neural network. The decoder is similar but incorporates a standard
attention layer to map the trainable attention weights from the
encoder’s output. The LongT5 extends the T5’s architecture by
enhancing its attention capabilities for longer sequences. In Guo
et al. (2022) two attention strategies were compared 1. transient
global attention 2. local attention.

In our study, we utilized the transient global attention
mechanism within LongT5, which modifies ETC’s (Ainslie et al.,
2020) global-local attention using a fixed block pattern. The
mechanism divides the input sequence into blocks of k tokens,
each block generating a global token by summing and normalizing

the embeddings within it. This configuration allows each token to
attend not only to nearby tokens but also to transient global tokens
dynamically constructed during the attention phase. This approach
minimizes additional parameters, requiring only T5-style relative
position biases and layer normalization for global tokens. Such a
structure enhances context comprehension and integration across
longer texts, proving more effective in the summarisation tasks than
the local attention.

5.2.2 PEGASUS-X
PEGASUS-X (Phang et al., 2023) is an extension of the

PEGASUS (Zhang et al., 2020). The PEGASUS followed a similar
encoder-decoder architecture to T5 but was scoped for abstractive
summarisation and was pre-trained with a self-supervised gap-
sentence-generation objective (Zhang et al., 2020). PEGASUS-X,
compared with its predecessor, accommodates an additional long
input pre-training and uses staggered block-local attention with
global tokens in the encoder.

Similarly to before, a block is a bucket which has a part of
the text input. Again, we would separate the text input into k
number of blocks. However, the staggered block-local attention
method represents an advancement beyond LongT5’s local and
transient global attention. Specifically, staggering involves varying
block boundaries across the various neural network layers in
block-local attention, thereby enhancing the model’s ability to
incorporate global information. The use of staggered, overlapping
blocks has proven to be a more effective strategy for long abstractive
summarisation (Phang et al., 2023). However, the staggered blocks
strategy is not the only difference between these models. For a
comprehensive understanding of how PEGASUS-X diverges from
LongT5, we refer readers to the study by Phang et al. (2023).

6 Experiments

Building on the preceding sections, this segment introduces our
evaluation criteria–a bespoke approach tailored to our specific task.
These criteria were employed to evaluate both the models and the
inter-annotator agreement. Following this, we detail the parsing
experiments conducted with the two models previously discussed,
documenting their performance using the evaluation metrics we
have introduced.

6.1 Evaluation criteria

The NER evaluation criterion was based on the SemEval F-
score measure (Segura-Bedmar et al., 2013). Specifically, for NER
we calculated for each token whether the token was:

1. Correct: classified correctly.
2. Hypothesized: A tag entry (i.e. the classified label of a span of

word[s]) exists in the prediction but not in the ground truth.
3. Missed: A tag entry exists in the ground truth, but not in the

prediction, the reverse from the above.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://github.com/FilipposVentirozos/RiCoRecA
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

4. Incorrect: The tag entry between the prediction and the ground
truth differs. For instance, in the ground truth, the tag entry
expands into two tokens, whereas in the prediction, in one only.

Once we populated the above, we could record the precision
and recall as follows:

Precision = Correct/(Correct + Incorrect + Hypothesized) (1)

and the recall:

Recall = Correct/(Correct + Incorrect + Missed) (2)

From these two, it was then easy to draw the known F-score
formula.

The rest of the evaluations are rarely found in the literature.
In relation extraction papers, there is always one class type per
detected pair (Bassignana and Plank, 2022), resulting in a multi-
class classification task. However, in our case, the membership, the
entities and the RC tasks may contain from zero to multiple labels
(i.e. multi-label classification task). Hence, for these, we treated the
evaluation slightly differently but built upon the aforementioned
NER SemEval evaluation. We devised this metric instead, which
includes set theory:

1. Correct: the intersection (∩) between the ground truth items and
the predicted.

2. Hypothesized: the difference (−) of predicted items minus the
ground truth items.

3. Missed: the difference (−) of ground truth items minus the
predicted items.

Following, the precision and recall were calculated identically
with the Equations 1, 2 respectively, but by omitting the not
available “Incorrect.” In conclusion, we have the following metrics,
these follow the numbered points 2, 3, 4, and 5 from Section 5.1:

1. Antecedents are the prior entities to which entities are referring.
It relates to the coreference resolution task. In the case that
the entities are the main ones, introduced first, then themselves
would classify as the correct answer. Non-entities were omitted
in the calculation (e.g., predicates).

2. Membership the predicates that a lexical unit or predicate
belongs to. It will always be populated.

3. NER the only task that we evaluated with the exact SemEval
F-score measure.

4. RC of the remaining relationships (apart from membership) that
a lexical unit or predicate may have. It can be none or multiple.

Lastly, after the output was generated, there had to be an
alignment with the input text. The reason is that not all tokens are
copied from the input into the output, and some may be altered.
Therefore, in Paolini et al. (2021), the authors wrote a dynamic
programming algorithm based on Needleman and Wunsch (1970)
for token alignment. Instead, we incorporated7 the Myers (1986)
dynamic programming algorithm, which is used in git diff.

7 We utilized the https://github.com/explosion/tokenizations library, which

is affiliated with the Honnibal et al. (2019) library.

6.2 Parsing using transformers

For our experiments, we utilized an A100 80Gb Ampere
NVIDIA GPU. We compared the two aforementioned models,
PEGASUS-X8 and LongT59 using their large provided models from
the HuggingFace library (Wolf et al., 2020).

Chiefly, we opted for a conservative learning rate of 5e − 4
and a maximum of 20 epochs since the dataset did not have
many instances. Due to the long output of our data, we had an
input sequence length of 420 and an output of 2,580 tokens to
cover even our most lengthy recipes. However, due to the large
model sizes and the long token sequences, we could use, at most,
a batch size of 2 and 1 for the PEGASUS-X and the LongT5,
respectively. We opted for five-fold cross-validation trained on the
156 first author’s annotated recipes to perform our experiments.
The best-performing epoch model was selected based on the
Rouge1 score (Lin, 2004). The models’ results are averaged and
depicted in Table 5. The outcomes derived from the five-fold cross-
validation demonstrated minimal divergence among the distinct
folds. The table results clearly indicate the superior performance
of the PEGASUS-X transformer compared to the LongT5 across all
evaluative metrics. Furthermore, a detailed analysis of the inference
datasets revealed a tendency for the LongT5 model to erroneously
produce repetitive token sequences within specific recipe outputs.
Lastly, similarly to the annotators (Table 4), one can distinguish
that the NER was again leading the scoreboard, followed this time
by the RC and then the Memberships and the antecedents.

Once the parsing was generated, we could visualize a graph
from it, similarly to Figure 5. However, not all predicates were
connected, since some relations were missing. This is evident from
the low recall the RC had, view Table 5.

7 Discussion and future work

7.1 Discussion

From the experiments, one can notice that the least challenging
task is the NER. We believe there are two factors contributing to
that. Firstly, the NER was framed as a multi-class, whereas the rest
were multi-label, also having the no-label option. The latter is a
considerably more difficult task since there are more degrees of
freedom. Secondly, for the transformers, we believe that the type
of word is relatively easy for them to classify without investing
heavily in fine-tuning due to the distributed semantic knowledge
they have obtained through pre-training. Moreover, the predictions
of the transformers follow a similar trend to the annotators. From
the NER and RC, the lowest scoring labels are again the NER tags
Repeat, Part of tool and the RC tag Join. A fact that is exacerbated
by the low volume of training data for these cases.

Identifying the antecedents from the labeled entities is
admittedly perceived as the most challenging task, and the task
scored lowest among the annotators. Upon annotating, we realized
that it was not an easy task since a product could refer to 20
of the aforementioned ingredients. The task of tracking all the

8 https://huggingface.co/google/pegasus-x-large

9 https://huggingface.co/google/long-t5-tglobal-large

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://github.com/explosion/tokenizations
https://huggingface.co/google/pegasus-x-large
https://huggingface.co/google/long-t5-tglobal-large
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

TABLE 5 The results of the PEGASUS-X and LongT5 transformers.

PEGASUS-X LongT5

Type F-score Precision Recall F-score Precision Recall

Antecedents 0.626 0.666 0.591 0.228 0.274 0.196

Membership 0.835 0.841 0.829 0.38 0.386 0.374

NER 0.883 0.894 0.873 0.549 0.695 0.457

RC 0.83 1.0 0.709 0.462 1.0 0.302

They were fine-tuned, every time, on a five-fold cross-validation on the first author’s annotators. The scores shown are the averages.

various ingredients was mundane and open to interpretation. Then,
PEGASUS-X had a significant loss in predicting the antecedents
compared to the rest of the tasks. Upon closer inspection, it
was evident that some errors occurred during generation (e.g.,
repeated entities or introduced non-existent ones). Nonetheless,
most errors resulted from the lack of reasoning and the word
giveaway. Specifically, we noticed four themes:

1. Typically, at the start of a recipe, an ingredient is introduced with
its full name. Then, further below the recipe, the ingredient is
congested to one word (e.g., halibut filets → filets). This trait
sometimes confused the transformer to not label the whole span
(e.g., “halibut fillets” in this case).

2. In a similar fashion, main ingredients which undergo a process
and other ingredients are added to them but are referred to with
the same or part of the first main ingredient, have their added
ingredients neglected.

3. On the contrary, if there was a word indicating part of an
entity but had different wording (e.g., “inside [the turkey]”),
PEGASUS-X could instead refer to other aforementioned
entities rather than its entity (“turkey” in this case).

4. Lastly, there was a difference in interpretation. Should an entity
be introduced in the latter stage of a recipe, PEGASUS-X
assumed in some cases that it was a coreference instead.

We recognize that these errors are due to the missing
knowledge of cooking and the lack of reasoning. The annotators
could identify the cooking jargon and make a better judgement
when entities are present.

Moreover, in certain instances, the coreference algorithm,
explicated in Supplementary material, could not accurately
attribute all the entities to their corresponding referents. The trait
was evident when a predicate introduced multiple new coreference
wordings. Since there was no one-to-one mapping (we only knew
which entities were present), the algorithm proved ineffectual in
correctly assigning all referential associations. Nevertheless, such
occurrences were notably infrequent.

In the literature, akin to our entity tracking methodology,
a growing interest has emerged regarding detecting entities
throughout a process (Dalvi et al., 2019), including imagery (Zhang
et al., 2022). Nevertheless, we identified a lacuna in the literature
of additionally inferring their coreferences. Unquestionably, for
automation, the knowledge of entity tracking is essential; however,
coreference resolution could have the added benefit of retrieving
the semantic meaning for each co-referred entity when interacting
with the user. A potential resolution could have been to let

the annotators assign links in the Annotation GUI between the
co-referred ingredients. Despite its merits, this strategy would
significantly obfuscate the annotation process and would not allow
the further utilization of the dataset to detect entities when not
mentioned, since this strategy tracks only the entities that are
viewed and not the omitted ones.

Another challenging task that PEGASUS-X faced was to
identify long-range relationships. It was noticeable with long
Dependency RC links. If a predicate depended on one, many
predicates ago (e.g., the first sentence says to “preheat” the oven,
and the last one says to “bake”), it was challenging to identify.
PEGASUS-X omitted most of these relationships; hence, the low
recall in Table 5. Similarly, the annotators had low recall values
(Table 4) since they often disagreed or were confused about long-
range dependencies. It may be that these links require opting
for non-machine learning solutions, such as inductive approaches
(Nieves et al., 2020).

From the results in Table 5, one can distinguish the gap
between PEGASUS-X and LongT5. If one averages the scores
across all four tasks, it shows a difference of 39% F-Score. Then,
if one views Tables 4, 5, one can recognize that the difference
in scoring between PEGASUS-X and the annotators is subtle.
The superiority of PEGASUS-X over LongT5 can be attributed
to its architectural advantage of utilizing staggered blocks. Our
results coincide with PEGASUS-X performing better in abstractive
summarisation (Phang et al., 2023); however, we cannot confirm
what feature or features make it superior. We are inclined to
believe that the architecture is the reason since, during their
training, both could reach peak performance on the validation
set. This begs the question of what architecture, pre-training
data, and task is best for structured prediction using transformers
(Paolini et al., 2021). Although there has been an investigation
(Wang et al., 2022) on pre-training for structural prediction, we
believe there is more room for exploration for joint structured
prediction on long transformers. Our view is compounded by
the fact that different architectures for long sequences performed
better than the shorter ones; this was evident in shorter and
longer abstractive summarisations (Phang et al., 2023). Another
element for investigation is the output format. He and Choi
(2023) demonstrated that opting for a more verbose approach, an
entirely composed natural language instead of using special tokens
(i.e. ‘]’, ‘=’, ‘]’), proved a better strategy. Nevertheless, it remains
a challenge since our dataset has long inputs and exceptionally
long outputs, making this option prohibitively expensive for
our infrastructure.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

7.2 Future work

A primary obstacle before parsing the generated workflow for
device automation is the alignment of predicates to atomic services.
By atomic services, we define the lowest level actuation and sensor
services that are included in a device. In cooking, many processes
are described succinctly, which may not be adequate information
for an IoT or IoRT (e.g., “bake” instead of “set temperature on,
open door, insert dish, ...”). Admittedly, there have been studies to
augment the details of cooking predicates. For instance, Donatelli
et al. (2021) looked at the problem of aligning recipe actions across
recipes to retrieve more elaborate actions. We leave this task for
future work.

Further investigation is needed to capture the entities that are
present in a predicate but are not mentioned, most often because it
is expected from the reader to make the inference. These could be
added to the output sequence. An additional investigation needs to
analyse the possible formats and entity checking.

We hope that this work can challenge future investigations
in this area. There are multiple directions for research. Foremost,
transformers trained on large corpora of cooking datasets with
this methodology can harness the knowledge to achieve several
downstream tasks. They could suggest substitutes to entities
(i.e. ingredients, tools) but also to measurements and device
settings depending on the context. Moreover, transformers with the
language modeling setting can generate the most probable tokens
based on the input in an autoregressive manner. We believe that
using a similar setting could aid in predicting the next cooking step,
including variables related to device operability.

We propose a more extensive investigation in the language
modeling domain of NLP to explore alternative models for
executing this task and evaluating the results. Decoder-only
architectures such as GPT-5 (OpenAI et al., 2024), Claude
(Anthropic, 2025) or Gemini (Gemini Team et al., 2025),
have gained prominence in NLP owing to their straightforward
training approach, which involves predicting the next token in an
autoregressive manner. While this approach may yield promising
results for our task, significant further experimentation remains
necessary. Given the highly context-dependent nature of the
problem, a long-context decoder model would be essential for
in-context learning (Dong et al., 2024). However, such models
often struggle to effectively capture long-range dependencies–a
limitation consistently observed in relevant benchmarks (Li et al.,
2024).

Lastly, we hope to raise awareness of sibling domains in
which textual manuals or process documentation can serve as
specifications for programming IoT-enabled systems. Beyond
recipes, domains such as automotive maintenance, DIY home
improvement, electronics assembly and testing, agricultural
equipment operation, laboratory protocols, building and HVAC
commissioning, smart appliance installation, network device
configuration (e.g., routers and cameras), clinical device setup
and calibration, industrial preventive maintenance, and drone/3D
printer/CNC workflows can benefit from machine-assisted
interpretation of procedures to guide users and automate routine
steps. By transforming free-text instructions into executable task
graphs aligned with device APIs and validated via sensor feedback,

such systems can improve safety and compliance, reduce error
rates and training time, increase reproducibility and auditability,
and broaden access for non-expert users across heterogeneous
devices and settings.

8 Conclusion

The current study presented a novel annotation schema.
For its development, three annotation tasks were devised.
Three annotators performed these tasks: NER, RC and entity
tracking. The annotation campaign involved multiple iterations
for optimizing the annotation guidelines, and it sought to adhere
to IoT control system design principles. After the annotation
task was completed, a codebase parsed the individual annotations
into a unified representation. This included coreference resolution
derived from entity tracking. The format was inspired by Paolini
et al. (2021) and was designed to be compatible with encoder-
decoder transformers, enabling both training on the processed
examples and inference from textual recipes. We opted for “long”
transformers, the PEGASUS-X and LongT5, since the recipes and
their output format were too long for conventional encoder-
decoder transformers. PEGASUS-X performed better than LongT5.
However, both of them failed to identify some entities’ coreference
and could not uncover certain relations.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

FV: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing. MJ-R: Data
curation, Investigation, Writing – review & editing. HA: Data
curation, Investigation, Writing – review & editing. SC: Funding
acquisition, Project administration, Resources, Supervision,
Writing – review & editing. RB-N: Investigation, Methodology,
Project administration, Resources, Supervision, Writing – review
& editing, Writing – original draft.

Funding

The author(s) declared that financial support was received
for this work and/or its publication. We would like to express
our gratitude to ARM Ltd and the UK Engineering and Physical
Sciences Research Council (EPSRC), grant no. EP/S513842/1
(Studentship 2109081), for their generous financial support, which
was instrumental in facilitating this research study. ARM Ltd. was
not involved in the study design, collection, analysis, interpretation
of data, the writing of this article, or the decision to submit it for
publication.

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2025.
1550604/full#supplementary-material

References

Ainslie, J., Ontañón, S., Alberti, C., Cvicek, V., Fisher, Z., Pham, P., et al. (2020).
“ETC: encoding long and structured inputs in transformers,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), eds.
B. Webber, T. Cohn, Y. He, and Y. Liu (Punta Cana: Association for Computational
Linguistics), 268–284. doi: 10.18653/v1/2020.emnlp-main.19

Anthropic (2025). Claude Opus 4.5 System Card. Available online at: https://www.
anthropic.com/transparency/model-report (Accessed December 21, 2025).

Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., et al.
(2013). “Abstract meaning representation for sembanking,” in Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse (Sofia: Association
for Computational Linguistics), 178–186.

Bassignana, E., and Plank, B. (2022). “What do you mean by relation extraction?
A survey on datasets and study on scientific relation classification,” in Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics: Student
Research Workshop (Dublin: Association for Computational Linguistics), 67–83.
doi: 10.18653/v1/2022.acl-srw.7

Bosch (2023). Bosch Cookit. Bosch. Available online at: https://cookit.bosch-home.
com/de/faq (Accessed December 21, 2025).

Brandsen, A., Verberne, S., Wansleeben, M., and Lambers, K. (2020). “Creating
a dataset for named entity recognition in the archaeology domain,” in Proceedings
of the Twelfth Language Resources and Evaluation Conference (Marseille: European
Language Resources Association), 4573–4577.

Dalvi, B., Tandon, N., Bosselut, A., Yih, W.-t., and Clark, P. (2019). “Everything
happens for a reason: Discovering the purpose of actions in procedural text,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) (Hong Kong: Association for Computational Linguistics), 4496–
4505. doi: 10.18653/v1/D19-1457

Davies, M. (2015). Hansard Corpus. Available online at: https://www.english-
corpora.org/hansard (Accessed December 21, 2025).

Deleger, L., Li, Q., Lingren, T., Kaiser, M., Molnar, K., Stoutenborough, L., et al.
(2012). Building gold standard corpora for medical natural language processing tasks.
AMIA Annu. Symp. Proc. 2012, 144–153.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
(Minneapolis, MN: Association for Computational Linguistics), 4171–4186.

Donatelli, L., Schmidt, T., Biswas, D., Köhn, A., Zhai, F., and Koller, A. (2021).
“Aligning actions across recipe graphs,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing (Punta Cana: Association for
Computational Linguistics), 6930–6942. doi: 10.18653/v1/2021.emnlp-main.554

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., et al. (2024). “A survey
on in-context learning,” in Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, eds. Y. Al-Onaizan, M. Bansal, and
Y.-N. Chen (Miami, FL: Association for Computational Linguistics), 1107–1128.
doi: 10.18653/v1/2024.emnlp-main.64

Fang, B., Baldwin, T., and Verspoor, K. (2022). “What does it take to bake a
cake? The RecipeRef corpus and anaphora resolution in procedural text,” in Findings
of the Association for Computational Linguistics: ACL 2022 (Dublin: Association for
Computational Linguistics), 3481–3495. doi: 10.18653/v1/2022.findings-acl.275

Gemini Team, Comanici, G., Bieber, E., Schaekermann, M., Pasupat, I., Sachdeva,
N., et al. (2025). Gemini 2.5: Pushing the frontier with advanced reasoning,
multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261.

Gunamgari, S. R., Dandapat, S., and Choudhury, M. (2014). “Hierarchical recursive
tagset for annotating cooking recipes,” in Proceedings of the 11th International
Conference on Natural Language Processing (Goa: NLP Association of India), 353–361.

Guo, M., Ainslie, J., Uthus, D., Ontanon, S., Ni, J., Sung, Y.-H., et al. (2022).
“LongT5: efficient text-to-text transformer for long sequences,” in Findings of the
Association for Computational Linguistics: NAACL 2022 (Seattle, WA: Association for
Computational Linguistics), 724–736. doi: 10.18653/v1/2022.findings-naacl.55

Harashima, J., and Hiramatsu, M. (2020). “Cookpad parsed corpus: Linguistic
annotations of Japanese recipes,” in Proceedings of the 14th Linguistic Annotation
Workshop (Barcelona: Association for Computational Linguistics), 87–92.

He, H., and Choi, J. D. (2023). Unleashing the true potential of sequence-to-
sequence models for sequence tagging and structure parsing. Trans. Assoc. Comput.
Linguist. 11, 582–599. doi: 10.1162/tacl_a_00557

Honnibal, M., Montani, I., Landeghem, S. V., and Boyd, A. (2019).
Explosion/spaCy: Improved evaluation, better language factories and bug fixes.
Zenodo. doi: 10.5281/zenodo.3358113

Hripcsak, G., and Rothschild, A. S. (2005). Agreement, the f-measure, and
reliability in information retrieval. J. Am. Med. Inform. Assoc. 12, 296–298.
doi: 10.1197/jamia.M1733

Jabbari, R., Bin Ali, N., Petersen, K., and Tanveer, B. (2016). “What is DevOps? A
systematic mapping study on definitions and practices,” in Proceedings of the Scientific
Workshop Proceedings of XP2016, XP Workshops (New York, NY: Association for
Computing Machinery), 1–11. doi: 10.1145/2962695.2962707

Jermsurawong, J., and Habash, N. (2015). “Predicting the structure of cooking
recipes,” in Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (Lisbon: Association for Computational Linguistics), 781–786.
doi: 10.18653/v1/D15-1090

Kiddon, C., Ponnuraj, G. T., Zettlemoyer, L., and Choi, Y. (2015). “Mise en
place: unsupervised interpretation of instructional recipes,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (Lisbon: Association
for Computational Linguistics), 982–992. doi: 10.18653/v1/D15-1114

Li, J., Wang, M., Zheng, Z., and Zhang, M. (2024). “LooGLE: can long-context
language models understand long contexts?” in Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), eds. L.-W. Ku,
A. Martins, and V. Srikumar (Bangkok: Association for Computational Linguistics),
16304–16333. doi: 10.18653/v1/2024.acl-long.859

Li, Q., Li, J., Sheng, J., Cui, S., Wu, J., Hei, Y., et al. (2022). A survey on deep learning
event extraction: approaches and applications. IEEE Trans. Neural. Netw. Learn. Syst.
35, 6301–6321. doi: 10.1109/TNNLS.2022.3213168

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://www.frontiersin.org/articles/10.3389/frai.2025.1550604/full#supplementary-material
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://www.anthropic.com/transparency/model-report
https://www.anthropic.com/transparency/model-report
https://doi.org/10.18653/v1/2022.acl-srw.7
https://cookit.bosch-home.com/de/faq
https://cookit.bosch-home.com/de/faq
https://doi.org/10.18653/v1/D19-1457
https://www.english-corpora.org/hansard
https://www.english-corpora.org/hansard
https://doi.org/10.18653/v1/2021.emnlp-main.554
https://doi.org/10.18653/v1/2024.emnlp-main.64
https://doi.org/10.18653/v1/2022.findings-acl.275
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.1162/tacl_a_00557
https://doi.org/10.5281/zenodo.3358113
https://doi.org/10.1197/jamia.M1733
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.18653/v1/D15-1090
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/2024.acl-long.859
https://doi.org/10.1109/TNNLS.2022.3213168
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Ventirozos et al. 10.3389/frai.2025.1550604

Lin, C.-Y. (2004). “ROUGE: a package for automatic evaluation of summaries,”
in Text Summarization Branches Out (Barcelona: Association for Computational
Linguistics), 74–81.

Martínez Lorenzo, A. C., Maru, M., and Navigli, R. (2022). “Fully-semantic
parsing and generation: The BabelNet meaning representation,” in Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers) (Dublin: Association for Computational Linguistics), 1727–1741.
doi: 10.18653/v1/2022.acl-long.121

McHugh, M. L. (2012). Interrater reliability: the Kappa statistic. Biochem. Med. 22,
276–282. doi: 10.11613/BM.2012.031

Milis, G. M., Panayiotou, C. G., and Polycarpou, M. M. (2019). Semiotics:
semantically enhanced IOT-enabled intelligent control systems. IEEE Internet Things
J. 6, 1257–1266. doi: 10.1109/JIOT.2017.2773200

Montani, I., and Honnibal, M. (2017). Prodigy: A Modern and Scriptable Annotation
Tool for Creating Training Data for Machine Learning Models. Explosion. Available
online at: https://prodi.gy (Accessed December 21, 2025).

Mori, S., Maeta, H., Yamakata, Y., and Sasada, T. (2014). “Flow graph
corpus from recipe texts,” in Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC) (Reykjavik: European Language Resources
Association (ELRA)), 2370–2377.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations.
Algorithmica 1, 251–266. doi: 10.1007/BF01840446

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48,
443–453. doi: 10.1016/0022-2836(70)90057-4

Nieves, D., Ramírez-Quintana, M., Monserrat, C., Ferri, C., and Hernández-Orallo,
J. (2020). Learning alternative ways of performing a task. Expert Syst. Appl. 148:113263.
doi: 10.1016/j.eswa.2020.113263

Omni, T. (2023). Tokit Omni Cook: Your Smart Home Chef. TOKIT UK. Available
online at: https://uk.tokitglobal.com (Accessed December 21, 2025).

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., et al. (2024).
GPT-4 technical report. ArXiv preprint arXiv:2303.08774.

Paolini, G., Athiwaratkun, B., Krone, J., Ma, J., Achille, A., Anubhai, R., et al.
(2021). Structured prediction as translation between augmented natural languages.
arXiv [preprint]. arXiv:2101.05779. doi: 10.48550/arXiv.2101.05779

Papadopoulos, D. P., Mora, E., Chepurko, N., Huang, K. W., Ofli, F., Torralba, A.,
et al. (2022). “Learning program representations for food images and cooking recipes,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (
New Orleans, LA: IEEE), 16538–16548. doi: 10.1109/CVPR52688.2022.01606

Paternò, F., and Santoro, C. (2017). A Design Space for End User Development in
the Time of the Internet of Things, Chapter 3. Cham: Springer International Publishing,
43–59. doi: 10.1007/978-3-319-60291-2_3

Paulius, D., Jelodar, A. B., and Sun, Y. (2018). “Functional object-oriented
network: construction & expansion,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 5935–5941.
doi: 10.1109/ICRA.2018.8460200

Phang, J., Zhao, Y., and Liu, P. (2023). “Investigating efficiently extending
transformers for long input summarization,” in Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, eds. H. Bouamor, J. Pino,
and K. Bali (Singapore: Association for Computational Linguistics), 3946–3961.
doi: 10.18653/v1/2023.emnlp-main.240

Piergiovanni, A., Angelova, A., Ryoo, M. S., and Essa, I. (2021). Unsupervised
discovery of actions in instructional videos. arXiv [preprint]. arXiv:2106.14733.
doi: 10.48550/arXiv.2106.14733

Popovski, G., Seljak, B. K., and Eftimov, T. (2019). FoodBase corpus: a new resource
of annotated food entities. Database 2019:baz121. doi: 10.1093/database/baz121

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21, 1–67. doi: 10.5555/3455716.3455856

Richie, R., Grover, S., and Tsui, F. R. (2022). “Inter-annotator agreement is
not the ceiling of machine learning performance: evidence from a comprehensive
set of simulations,” in Proceedings of the 21st Workshop on Biomedical Language
Processing (Dublin: Association for Computational Linguistics), 275–284.
doi: 10.18653/v1/2022.bionlp-1.26

Schumacher, P. (2015). Workflow Extraction from Textual Process Descriptions [PhD
Thesis]. Goethe University Frankfurt am Main, Frankfurt am Main.

Segura-Bedmar, I., Martínez, P., and Herrero-Zazo, M. (2013). “SemEval-2013 task
9: extraction of drug-drug interactions from biomedical texts (DDIExtraction 2013),”
in Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume
2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval
2013) (Atlanta, GA: Association for Computational Linguistics), 341–350.

Shirai, S. S., and Kim, H. (2022). “EaT-PIM: substituting entities in procedural
instructions using flow graphs and embeddings,” in The Semantic Web – ISWC
2022: 21st International Semantic Web Conference (Berlin: Springer-Verlag), 161–178.
doi: 10.1007/978-3-031-19433-7_10

Thermomix (2023). The Thermomix TM6 All-In-One Cooking Machine.
Thermomix. Available online at: https://www.thermomix.com/tm6 (Accessed
December 21, 2025).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30. eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, et al. (Red Hook, NY: Curran Associates, Inc).

Ventirozos, F., Batista-Navarro, R., Clinch, S., and Arellanes, D. (2021). “IOT
cooking workflows for end-users: a comparison between behaviour trees and the
dx-man model,” in 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C) (Fukuoka: IEEE), 341–
350. doi: 10.1109/MODELS-C53483.2021.00057

Ventirozos, F., Clinch, S., and Batista-Navarro, R. T. (2023). Towards end-
user development for IoT: a case study on semantic parsing of cooking
recipes for programming kitchen devices. arXiv [preprint]. arXiv:2309.14165.
doi: 10.4850/arXiv.2309.14165

Wang, C., Liu, X., Chen, Z., Hong, H., Tang, J., Song, D., et al. (2022). “DeepStruct:
pretraining of language models for structure prediction,” in Findings of the Association
for Computational Linguistics: ACL 2022 (Dublin: Association for Computational
Linguistics), 803–823. doi: 10.18653/v1/2022.findings-acl.67

Weiser, M. (1999). The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev. 3, 3–11. doi: 10.1145/329124.329126

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). “Transformers: state-of-the-art natural language processing,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, eds. Q. Liu and D. Schlangen (Punta Cana: Association for
Computational Linguistics), 38–45. doi: 10.18653/v1/2020.emnlp-demos.6

Wróblewska, A., Kaliska, A., Pawłowski, M., Wiśniewski, D., Sosnowski, W.,
and Ławrynowicz, A. (2022). Tasteset-recipe dataset and food entities recognition
benchmark. arXiv [preprint]. arXiv:2204.07775. doi: 10.48550/arXiv.2204.07775

Wu, T.-L., Zhang, C., Hu, Q., Spangher, A., and Peng, N. (2022). Learning action
conditions from instructional manuals for instruction understanding. arXiv [preprint].
arXiv:2205.12420. doi: 10.4850/arXiv.2205.12420

Xiaomi (2023). Xiaomi Smart Cooking Robot. Xiaomi Deutschland. Available
online at: https://www.mi.com/de/product/xiaomi-smart-cooking-robot (Accessed
December 21, 2025).

Yamakata, Y., Mori, S., and Carroll, J. (2020). “English recipe flow graph corpus,”
in Proceedings of the Twelfth Language Resources and Evaluation Conference, eds. N.
Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, et al. (Marseille:
European Language Resources Association), 5187–5194.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. (2020). “PEGASUS: pre-training
with extracted gap-sentences for abstractive summarization,” in In Proceedings of
the 37th International Conference on Machine Learning, Volume 119 of Proceedings
of Machine Learning Research, eds. H. Daumé III, and A. Singh (Vienna: PMLR),
11328–11339.

Zhang, Y., Yamakata, Y., and Tajima, K. (2021). “Supplementing omitted named
entities in cooking procedural text with attached images,” in 2021 IEEE 4th
International Conference on Multimedia Information Processing and Retrieval (MIPR)
(Tokyo: IEEE), 199–205. doi: 10.1109/MIPR51284.2021.00037

Zhang, Y., Yamakata, Y., and Tajima, K. (2022). “MIAIS: a multimedia recipe
dataset with ingredient annotation at each instructional step,” in CEA++ (New
York, NY: Association for Computing Machinery), 49–52. doi: 10.1145/3552485.35
54938

Zhang, Z., Webster, P., Uren, V., Varga, A., and Ciravegna, F. (2012). “Automatically
extracting procedural knowledge from instructional texts using natural language
processing,” in Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC) (Istanbul: European Language Resources Association
(ELRA)), 520–527.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2025.1550604
https://doi.org/10.18653/v1/2022.acl-long.121
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1109/JIOT.2017.2773200
https://prodi.gy
https://doi.org/10.1007/BF01840446
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/j.eswa.2020.113263
https://uk.tokitglobal.com
https://doi.org/10.48550/arXiv.2101.05779
https://doi.org/10.1109/CVPR52688.2022.01606
https://doi.org/10.1007/978-3-319-60291-2_3
https://doi.org/10.1109/ICRA.2018.8460200
https://doi.org/10.18653/v1/2023.emnlp-main.240
https://doi.org/10.48550/arXiv.2106.14733
https://doi.org/10.1093/database/baz121
https://doi.org/10.5555/3455716.3455856
https://doi.org/10.18653/v1/2022.bionlp-1.26
https://doi.org/10.1007/978-3-031-19433-7_10
https://www.thermomix.com/tm6
https://doi.org/10.1109/MODELS-C53483.2021.00057
https://doi.org/10.4850/arXiv.2309.14165
https://doi.org/10.18653/v1/2022.findings-acl.67
https://doi.org/10.1145/329124.329126
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2204.07775
https://doi.org/10.4850/arXiv.2205.12420
https://www.mi.com/de/product/xiaomi-smart-cooking-robot
https://doi.org/10.1109/MIPR51284.2021.00037
https://doi.org/10.1145/3552485.3554938
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	RiCoRecA: rich cooking recipe annotation schema
	1 Introduction
	2 Related studies
	2.1 Structured prediction
	2.2 Recipe workflow extraction
	2.3 Multi-modal recipe workflow extraction

	3 Annotation schema
	3.1 Named entity recognition tags
	3.1.1 Core
	3.1.2 Code statements

	3.2 Relation classification tags
	3.3 Entity tracking
	3.3.1 Named entity recognition tags for coreference resolution
	3.3.2 Spreadsheet filling

	4 Dataset annotation
	4.1 Annotation methodology
	4.2 Source dataset
	4.3 Annotation interface
	4.4 Annotators
	4.5 Annotation phases
	4.6 Dataset statistics
	4.7 Inter-annotator agreement

	5 Generative encoder-decoder transformer model
	5.1 Sequence to sequence task
	5.2 Long transformers
	5.2.1 LongT5
	5.2.2 PEGASUS-X

	6 Experiments
	6.1 Evaluation criteria
	6.2 Parsing using transformers

	7 Discussion and future work
	7.1 Discussion
	7.2 Future work

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

