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Upper Extremity (UE) rehabilitation is crucial for stroke survivors, aiming to 
improve the use of the paretic UE in everyday activities. However, assessing 
the effectiveness of these treatments is challenging due to a lack of objective 
measurement tools. Traditional methods, such as clinician-rated motor ability 
or patient self-reports, often fail to measure UE performance in real-life settings 
accurately. Evidence suggests that currently used clinical assessments do not 
reliably capture actual UE use at home or in the community. This study investigates 
the application of Convolutional Neural Networks (CNNs) combined with Dense 
layers using accelerometry data from wrist-worn sensors to classify functional 
and non-functional UE movements of stroke survivors. Two types of models were 
developed: one trained on data from individual subjects (intrasubject model) and 
another trained on data across all subjects (intersubject model). The intrasubject 
model for the paretic UE achieved an average accuracy of 0.90 ± 0.05, while 
the intersubject model reached an accuracy of 0.79 ± 0.06. When incorporating 
signals from the non-paretic arm, the intersubject model’s accuracy improves to 
0.88 ± 0.10. Notably, this method utilized raw accelerometry data, eliminating the 
need for manual feature extraction, which is commonly required in traditional 
machine learning, and yielded higher accuracy than previously reported methods. 
This proposed deep learning approach incorporates CNNs with Dense layers, 
offering a cost-effective and adaptable method for monitoring UE functionality 
in real-world settings. The results from this study have the potential to inform 
the development of personalized rehabilitation strategies for stroke survivors, 
offering valuable insights for clinical practice.
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1 Introduction

A stroke occurs when blood flow to the brain is disrupted, either by a blockage that 
prevents oxygen and nutrients from reaching brain cells or by the rupture of a blood vessel. 
This interruption can rapidly damage or kill brain cells. Strokes are a significant global health 
issue, ranking as the third leading cause of death worldwide and contributing significantly to 
cardiovascular disease-related fatalities (Feigin et  al., 2021). In the United  States alone, 
approximately 795,000 people suffer from strokes each year, with about two-thirds surviving 
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but often requiring extensive rehabilitation (Sun et  al., 2012). A 
common consequence of stroke is impaired upper extremity (UE) 
function, typically due to hemiparesis, which manifests as reduced 
arm movement and altered muscle tone (Lang et al., 2013). Effective 
rehabilitation of UE functions is crucial for restoring movement and 
functionality, enabling stroke survivors to regain independence and 
improve their quality of life (Barreca et al., 2003).

The International Classification of Functioning, Disability and 
Health (ICF) defines domains affected by a stroke: body functions, 
activities, and participation (Bernhardt et al., 2017). Stroke can affect 
body functions, such as impairments in muscle strength or joint range 
of motion. The activities domain encompasses functional tasks that 
rely on the proper integration of multiple body functions, such as 
reaching to grasp or walking. Participation is the end goal of 
rehabilitation and includes return to work, social, or recreational 
activities. Spanning these domains are the concepts of capacity and 
performance (Kwakkel et  al., 2023). Capacity is measured by the 
ability to perform tasks, usually in controlled situations, such as 
during a clinical test where the patient is asked to pick up an object 
with the paretic arm. Capacity assessments can be augmented with 
kinematic analysis of the tasks using optical motion capture (Alt 
Murphy et al., 2011). Data from wrist-worn Inertial Measurement 
Units (IMUs) during execution of a clinical capacity scale can predict 
scores from trained clinicians (Werner et al., 2022), and IMUs can 
potentially replace optimal motion capture systems in assessing 
movement quality (Unger et al., 2024). However, many factors can 
limit spontaneous real-world arm use (performance) even if capacity 
seems adequate, such as the effort required to use the paretic limb 
compared to compensation with the less-affected arm. Capacity 
measured in the clinic often does not correlate with real-world 
performance (Lundquist et al., 2022).

To address the limitations of traditional methods, emerging 
technologies have been developed to provide more objective and 
accurate measurements of UE function. One such advancement is the 
use of IMUs, which are small, wearable sensors that track movement 
through accelerometers and gyroscopes (Papi et  al., 2015; Parkka 
et al., 2006; Uswatte et al., 2000; Uswatte et al., 2005; Rand and Eng, 
2015; Sengupta et al., 2024). IMUs can be placed on various body parts 
to collect detailed movement data over extended periods, both in 
clinical settings and during daily activities (Bochniewicz et al., 2017; 
Unger et al., 2024).

Prior research has demonstrated the potential of accelerometry 
data combined with machine learning algorithms to classify and 
analyze UE movements. Studies have shown that IMUs can effectively 
capture the nuances of arm movements, providing valuable insights 
into motor function and the progress of rehabilitation. For instance, 
research has utilized accelerometry data to distinguish between 
functional and non-functional movements, providing a more objective 
assessment than traditional methods (Tran et al., 2018; Lum et al., 
2020; Pohl et al., 2022).

In addition to their use in classification, accelerometry outputs 
can also be used to generate clinically meaningful assessments. The 
earliest metric proposed was activity counts, which are calculated by 
summing the periods of time during which the filtered acceleration 
magnitude exceeds a predefined threshold. However, in its original 
implementation, this metric has poor specificity for detecting 
functional use of the limb (Subash et al., 2022; Lum et al., 2020). 
Optimal count thresholds can be derived from labeled accelerometry 

data, achieving an accuracy of 80% in predicting functional limb use 
(Pohl et al., 2022). Once functional use is estimated for each limb, the 
relative use of the upper extremities can be visualized graphically, and 
metrics that capture the limb asymmetries can be calculated (David 
et al., 2021). If additional IMUs are used on the upper limb and trunk, 
they can be used to estimate clinical parameters of interest during 
execution of functional tasks, such as elbow angle, shoulder angle, and 
trunk movement (Unger et al., 2024).

Machine learning has also been widely used in upper extremity 
(UE) assessment (Geed et al., 2023; Tozlu et al., 2020) to provide 
objective, scalable, and quantifiable measures of motor function, 
offering more accurate evaluations compared to traditional methods. 
Techniques such as Random Forest (RF), Support Vector Machines, 
Logistic Regression Classifiers, and traditional neural networks have 
been employed to classify functional and non-functional movements 
from sensor data (Ghannam and Techtmann, 2021; Arikumar et al., 
2022), often acquired with IMUs or accelerometers, to monitor stroke 
recovery progress. These models have the potential to automate the 
assessment process, reduce reliance on subjective clinical evaluations, 
and enable continuous monitoring in real-world environments. 
However, earlier approaches often required labor-intensive manual 
feature engineering, such as selecting specific attributes like velocity 
or joint angles, limiting these models’ flexibility, adaptability, and 
generalizability. Furthermore, hand-selected features may fail to fully 
represent the complexity of movement patterns, resulting in less 
accurate assessments. Consequently, models based on manually 
extracted features often struggle to generalize effectively across diverse 
patient populations and movement contexts. According to (Lum et al., 
2020), a machine learning model was used to report an accuracy of 
74.2% from the intersubject model with 10 stroke survivors.

The validity of these classification approaches has also been 
demonstrated through comparisons with established clinical 
measures. The concurrent validity of the functional/non-functional 
ratio against several clinical outcomes was previously published (Geed 
et al., 2023). The ratio was found to be highly correlated with the 
Action Research Arm Test (ARAT), Fugl-Meyer, 9-hole Peg Test, and 
the Motor Activity Log. Another study by (Pohl et  al., 2022) 
demonstrated the validity of distinguishing functional from 
non-functional movements using IMU data. By comparing 
conventional thresholding, optimal thresholds, and a logistic 
regression classifier, the authors found that both the optimal 
thresholding and logistic regression classifier methods achieved 
approximately 80% accuracy in inter-subject model and outperformed 
conventional thresholding.

Convolutional Neural Networks (CNNs) have become 
increasingly prominent in medical and healthcare applications due to 
their ability to process and analyze complex data. In healthcare, CNNs 
have been used for tasks such as medical image analysis, disease 
detection, and patient monitoring (Shen et al., 2017; Ravi et al., 2017; 
Hossain et  al., 2023). The application of CNNs to movement 
assessment, especially in stroke rehabilitation, is an emerging field 
with significant potential (Szczesna et al., 2020).

In this study, we investigated the application of a deep learning 
architecture that combines CNN and dense layers in stroke 
rehabilitation. CNN layers, which consist of convolutional and pooling 
operations, are designed to extract spatial or local patterns from input 
data, such as images or sensor signals. Dense layers, also known as 
fully connected (FC) layers, receive the extracted features from CNNs 
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and learn complex, non-linear combinations to perform the final 
prediction. In a Dense layer, every neuron is connected to all neurons 
in the preceding layer through learnable weights (Ram and Reyes-
Aldasoro, 2020). In the context of upper extremity movement 
classification, Dense layers serve to map the temporal–spatial features 
extracted by preceding convolutional layers to output classes 
representing functional and non-functional arm movements. The use 
of CNNs offers significant advantages for movement assessment. 
These models can automatically extract salient features directly from 
raw input data, minimizing the need for manual feature engineering. 
This capability is especially beneficial when processing large and 
complex datasets, such as those collected by inertial measurement 
units (IMUs) (Ordonez and Roggen, 2016). By learning hierarchical 
patterns and subtle correlations within the data, CNNs can produce 
more accurate and reliable movement classifications than traditional 
analysis methods (LeCun et al., 2015).

However, the use of CNNs in movement assessment also presents 
challenges. One major challenge is the requirement for large datasets 
to train the models effectively, which can be difficult to obtain in 
clinical settings. Additionally, the complexity of CNNs can lead to 
overfitting, where the model performs well on training data but poorly 
on unseen data. Regularization techniques, such as dropout and batch 
normalization, are often employed to mitigate this issue. Despite these 
challenges, the integration of CNNs with IMUs data holds promise for 
advancing UE assessment and improving rehabilitation outcomes for 
stroke survivors.

This study aims to explore the use of a CNN combined with Dense 
layers and the raw wrist-worn accelerometry data to improve the 
classification of functional and non-functional UE movements in the 
paretic arm of stroke survivors. The functional category encompassed 
actions, e.g., gesturing, reaching and grasping objects, pushing to open 
a door, etc. The non-functional category included arm movements 
related to gait, sit-to-stand transitions, or whole-body movements that 
did not involve functional arm movement. Additionally, frames with 
no movement were also labeled as non-functional. By leveraging 
advanced deep learning techniques, this study seeks to enhance the 
classification performance of UE movements, offering a more 
objective approach to assessing rehabilitation outcomes. The goal is to 
improve the effectiveness of UE rehabilitation by providing better 
tools for monitoring and analyzing patient progress in both clinical 
and community settings.

2 Materials and methods

2.1 Data collection and preprocessing

In this study, 37 stroke survivors participated in a set of activities 
known as the Activity Script, which simulated daily tasks to reflect 
real-life upper extremity (UE) use in a community environment. 
Table 1 summarizes demographic and clinical characteristics of the 37 
stroke survivors who participated in this study. Two subjects were 
excluded: subject 18 due to having only non-functional movements, 
and subject 24 due to corrupted data. Participants (24 males, 11 
females) had a mean age of 59.4 ± 12.5 years (range: 32–84 years) and 
a median chronicity post-stroke of 16 months (range: 6–257 months). 
The sample included 18 individuals with left-sided and 17 with right-
sided affected limbs. Arm impairment, assessed via the ARAT test, 

varied considerably across subjects (mean = 26.9 ± 15.1, range: 0–54). 
The mean use ratio, representing real-world affected-arm usage 
relative to the less-affected arm, was 0.5 ± 0.3 (range: 0–1.05). The 
broad variability in impairment severity and arm usage captured 
within this cohort provides context for interpreting model 
performance and evaluating the generalizability of our findings. 
We complied with all relevant ethical guidelines for human research. 
The study protocol was approved by the Institutional Review Board 
(IRB) at our institution. Informed consent was obtained from all 
participants prior to data collection.

The data collection was conducted in a naturalistic environment 
within an Independence Square facility at MedStar National 
Rehabilitation Hospital. The setting included essential areas like a 
kitchen, bedroom, a shopping store, and a car. Participants performed 
various instrumental activities of daily living (IADLs) such as doing 
laundry, kitchen activities, grocery shopping, and bed making. In the 
laundry activity, participants moved clothes from a closet to a washer, 
transferred them to a dryer, and then folded or hung the clothes on 
hooks in the closet. In the kitchen activity, participants loaded and 
unloaded the dishwasher, cut an apple, picked up items from the floor, 
and used a broom to sweep the floor. In the shopping activity, 
participants gathered grocery items from a store, placed them in the 
car, and removed them from the car. In the bed-making activity, 
participants replaced the sheets and pillowcases on a bed.

Participants performed these IADLs naturally, without specific 
instructions on which arm to use or whether to prioritize the paretic 
arm. They were instructed to perform the task as they usually would 
in the home and community, with activities interspersed with breaks, 
conversations with experimenters, and walking around the facility, 
allowing the collection of non-functional UE usage data. There was no 
strict time limit for completing the tasks. Table 2 summarizes the tasks 
performed by subjects, along with the minimum, maximum, and 
average duration of each task. We conducted data collection in two 
phases. In the first phase, 10 subjects were involved, and each subject 
performed only 4 tasks: doing laundry, kitchen activities, grocery 
shopping, and bed making. In the second phase, an additional 25 
subjects were recruited, and each subject performed 7 tasks, with 3 
additional tasks: letter writing, medication organizing, and keyboard 
typing, as clinicians felt that more seated tasks requiring hand 
dexterity should be  added after the first phase. Throughout the 
experiments, participants wore IMU sensors on both wrists, similar 
to wrist watches or smart watches, and were videotaped. Figure 1 
shows a picture of the ActiGraph sensor illustrating the axes directions.

In the 2 phases of data collection, sensor data from the first 10 
subjects were collected at 200 Hz with a commercially available sensor 
(ADIS16400BMLZ, Analog Devices) (Lum et  al., 2020) while the 
remaining data were collected at 30 Hz or 50 Hz using the Actigraph 
GT9X Link watches. All raw accelerometry data were down-sampled 
to 30Hz before analysis and expressed as three-axis accelerations 
normalized to gravity (9.81 m/s2); no gravity compensation was 
applied. To ensure maximum generalizability, most external datasets 
include only raw accelerometry. In prior work, we  also found no 
increase in model accuracy when using both accelerometry and 
angular velocity (Bochniewicz et  al., 2017) compared to using 
accelerometry alone (Lum et al., 2020). The algorithms will operate 
with any wrist-worn three-axis accelerometer, provided that axis 
directions, sign conventions, and data format match those of the 
ActiGraph Link sensor; left and right arm data are made anatomically 
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TABLE 1  Summary of subject demographics including age, gender, and stroke information.

ID Age (years) Gender Post (months) Affected Limb ARAT Use Ratio

1 77 Male 23 Right 41 0.704

2 35 Male 35 Left 23 0.662

3 56 Male 17 Left 19 0.086

4 49 Female 19 Left 20 0.340

5 57 Male 104 Right 16 0.089

6 63 Male 77 Right 32 0.632

7 47 Female 12 Right 33 0.411

8 50 Male 53 Right 15 0.172

9 66 Male 69 Right 5 0.218

10 65 Male 20 Right 42 0.424

11 54 Female 24 Right 23 0.494

12 56 Female 26 Left 38 0.944

13 64 Male 14 Right 42 1.053

14 84 Female 6 Left 48 0.991

15 48 Male 9 Left 47 0.913

16 71 Male 15 Right 53 0.781

17 65 Male 17 Left 27 0.470

18 58 Male 17 Left 32 0.629

19 79 Male 18 Left 52 0.952

20 54 Male 12 Right 29 0.632

21 64 Male 11 Right 32 0.631

22 50 Male 36 Right 5 0.037

23 77 Male 10 Left 54 0.900

24 64 Female 7 Left 24 0.662

25 32 Female 6 Left 6 0.088

26 77 Female 13 Right 7 0.601

27 64 Male 8 Right 36 0.571

28 50 Female 257 Left 0 0.000

29 59 Male 13 Left 28 0.551

30 66 Male 14 Left 12 0.251

31 68 Female 14 Left 34 0.728

32 58 Male 16 Right 23 0.301

33 55 Male 14 Right 29 0.716

34 62 Female 13 Left 20 0.521

35 41 Male 10 Left 15 0.162

36 74 Male 137 Left N/A 0.382

37 43 Female 29 Left 9 0.237

TABLE 2  Tasks performed by subjects and duration statistics (in minutes).

# of 
Subjects

Doing 
laundry

Kitchen 
activities

Grocery 
shopping

Bed 
making

Letter 
writing

Medication 
organizing

Keyboard 
typing

10 x x x x

25 x x x x x x x

Min. 2.25 0.5 1.5 2 1 1.5 1.5

Max. 19.25 14.5 12 13 6 4.5 9.5

Mean 5.45 5.48 3.52 5.16 3.09 2.67 4.45
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consistent with a simple axis transform, and a fixed 30 Hz sample rate 
is assumed. All these details will be  provided as metadata in the 
data repository.

Three independent annotators reviewed the videos and labeled 
each frame as functional, non-functional, or unknown. Each limb was 
annotated independently, and the final label for each limb on each 
video frame was determined by majority vote. The agreement between 
annotators was quantified by the percentage of frames on which 2 
independent annotators agreed on the class label. Across all possible 
comparisons and all limbs annotated, the mean agreement was 
92.4 ± 5.3%. Most discrepancies are related to the precise timing of 
transitions in the class label. The video was synchronized with 
accelerometry data, and the ground truth labels for functional, 
non-functional, and unknown activity were transferred to the 
accelerometry data. Synchronization was achieved by rapidly 
oscillating the accelerometers in the z direction five times before 
attaching them to the subject. This produced five distinct peaks in the 
z-axis data, which were easily identified and marked. These sensor 
peaks corresponded to reversal points in the oscillation, which were 
marked on the video.

Frames labeled as “unknown” were initially used by human 
annotators for instances where the arm was out of view or when it was 
unclear whether the movement was functional or non-functional. 
However, these frames were later excluded before the training, leaving 
the ground truth with only two labels: “functional” and 
“non-functional.” After synchronization with the accelerometry data, 
the corresponding accelerometry points associated with the 
“unknown” labels were also removed. Then, the ground truth with 2 
labels was used along with the raw accelerometry data for training an 
integrated deep learning model, specifically a Convolutional Neural 
Network (CNN) with Dense layers.

Using a custom Python IDE, we organized the collected sensor 
data in three different ways:

	 1	 Paretic arm dataset: Comprising x1, y1, z1 dimensions using 
paretic arm labels

	 2	 Non-paretic arm dataset: Comprising x2, y2, z2 dimensions 
using non-paretic arm labels

	 3	 Combined arms dataset: Merging both arms’ data (x1, y1, z1, x2, 
y2, z2 dimensions) using paretic arm labels

The combined dataset incorporates data from both arms to 
capture a more comprehensive range of movement patterns. We then 
defined each data point as a 2-s sequence of sensor data. This approach 
yielded the following datasets:

	 1	 Paretic arm dataset: 13,967 functional and 19,168 
non-functional data points

	 2	 Non-paretic arm dataset: 28,105 functional and 5,224 
non-functional data points

	 3	 Combined dataset: 13,923 functional and 19,075 
non-functional data points

To maintain consistency, we  excluded any data that did not 
conform to the 2-s sequence structure from our analysis. This method 
potentially truncates incomplete segments at the end of the sequence, 
which explains the slight variations in the final sample counts while 
preserving the time-series structure of the data, as seen in the paretic 
arm dataset and the combined dataset.

2.2 Network architecture

As depicted in Figure 2, our deep learning model utilizes CNNs 
with dense layers to classify both functional and non-functional arm 
movements using pre-processed raw accelerometry data. CNNs are 
specialized deep neural networks that process and analyze different 
data types. They are highly effective in image recognition and 
computer vision tasks due to their ability to capture spatial hierarchies. 
The key components of CNNs include convolutional layers that apply 
filters to produce feature maps, activation functions such as ReLU to 
introduce non-linearity, pooling layers to downsample feature maps, 
dense layers for high-level reasoning, and dropout for regularization. 
These elements enable CNNs to efficiently learn and detect various 
features within images, reducing the number of parameters through 
parameter sharing and capturing spatial dependencies through local 
receptive fields.

While accelerometry data is fundamentally temporal, 
CNN-based models have demonstrated effectiveness in capturing 
local temporal–spatial patterns and hierarchical features within 
fixed-length accelerometry segments, making them particularly 
suitable for our classification tasks. Prior research comparing neural 
architectures for accelerometry-based human activity recognition 
(HAR) has shown that CNNs often achieve superior or comparable 
accuracy relative to recurrent neural networks (RNNs) such as 
LSTMs, while requiring less training time and fewer computational 
resources (Hammerla et  al., 2016; Ignatov, 2018). LSTM-based 
models, though excellent at modeling long-range temporal 
dependencies, are generally more computationally demanding and 

FIGURE 1

Picture of ActiGraph sensors with accelerometry axes labeled.
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prone to overfitting with relatively smaller or fixed-length datasets 
typical in stroke rehabilitation research. Preliminary experiments 
conducted during the early stages of our study showed that CNN 
architecture outperformed basic LSTM models in terms of validation 
accuracy and computational efficiency for short-duration (e.g., 2-s) 
accelerometry windows, consistent with findings in the literature 
(Bochniewicz et  al., 2017; Lum et  al., 2020). Transformer-based 
models, although powerful for processing sequential data, typically 
require extensive training data to prevent overfitting and fully 
demonstrate their potential (Vaswani et al., 2017). Given the limited 
size and diversity of available stroke rehabilitation data, CNN 
architectures combined with dense layers offer a robust and 
computationally efficient alternative, capable of capturing essential 
local and global features without the high data demands associated 
with transformer-based approaches.

The proposed architecture is designed to capture both local and 
global features from the data. CNN excels at extracting local features, 
spatial, and temporal hierarchies, while Dense layers integrate and 
map these features to the final output, enabling the modeling of 
complex global patterns and decision boundaries. This combination 
enhances the model’s ability to learn detailed and hierarchical features, 
improving its accuracy and robustness in classifying activities. The 
integration of CNN with Dense layers improves both classification 
accuracy and training efficiency, particularly in distinguishing 
between non-functional (NF) and functional (F) movements of the 
paretic arm. Dense layers play a critical role in consolidating the 
extracted features and mapping them to output classes, enabling the 
network to model complex relationships and decision boundaries. By 
leveraging both local feature extraction and global pattern integration, 
the architecture becomes more robust and less prone to overfitting. 
This design is especially well-suited for applications such as human 
activity recognition, gesture recognition, and other domains where 
precise activity classification is critical. Thus, it provides a powerful 
framework for developing models that can accurately and efficiently 
classify various activities from complex data inputs.

Batch normalization, kernel regularization with l2, and dropout 
are used between layers to prevent overfitting and stabilize the training 
process. Batch normalization normalizes each layer’s inputs by 
adjusting and scaling the activations, reducing internal covariate 
shifts, and improving gradient flow. Dropout randomly sets a fraction 
of the input units to zero during training, preventing the network 
from becoming too reliant on specific neurons and ensuring 
better generalization.

To evaluate the influence of three data configurations, we trained 
and built three models:

	 1	 Paretic Arm Model: The proposed network was trained solely 
with paretic arm data

	 2	 Non-Paretic Arm Model: The proposed network was trained 
solely with non-paretic arm data

	 3	 Combined Arms Model: The proposed network was trained 
with merged data from both arms

These experimental configurations allow us to compare models’ 
performance across different data scenarios and assess the potential 
benefits of incorporating data from both arms in the analysis.

Figure 2 illustrates the proposed neural network architecture for 
classifying arm movements from accelerometry data. The network is 
structured into three main stages: feature extraction, feature 
aggregation, and classification. In the feature extraction stage, the 
input consists of preprocessed accelerometry data. It is passed through 
two Conv2D blocks. The first convolutional block employs 16 filters 
with a 3 × 3 kernel size, followed by batch normalization, ReLU 
activation, and a 20% dropout layer to mitigate overfitting. The second 
block is similar but uses 32 filters, again followed by batch 
normalization, ReLU activation, and another 20% dropout. These 
convolutional layers are designed to capture local spatial and temporal 
patterns in the accelerometry signals. The feature aggregation stage 
begins by flattening the output of the last convolutional layer. This is 
followed by two Dense layers, each containing 64 units. Both dense 

FIGURE 2

The proposed neural network architecture for classifying arm movements.
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layers use ReLU activation, kernel L2 regularization (λ = 1e-3) to 
prevent overfitting, and are followed by dropout layers with a 30% 
dropout rate. These layers enable the learning of higher-level feature 
representations from the extracted signal patterns. The final 
classification stage consists of a single layer with a sigmoid activation 
function that outputs a probability value representing the likelihood 
of the movement being functional or non-functional. The model was 
trained using a batch size of 64 for up to 700 epochs. A learning rate 
scheduler was applied to reduce the learning rate by a factor of 0.1 if 
the validation loss did not improve for 10 consecutive epochs. Early 
stopping was also used, with a patience of 20 epochs, to halt training 
if no improvement was observed, thereby preventing overfitting. 
Detailed hyperparameter settings are listed in Table 3.

2.3 Model implementation and evaluation

For implementation, we  utilized the TensorFlow2 and Keras 
frameworks (Bisong, 2019). TensorFlow2 is an open-source deep 
learning library developed by Google that provides a flexible and 
comprehensive ecosystem for building and deploying deep learning 
models. Keras is a high-level API for neural networks, written in 
Python and capable of running on top of TensorFlow, that simplifies 
the process of building and training deep learning models. The 
accelerometry data were normalized using RobustScaler from Scikit-
learn (Pedregosa et  al., 2011), which is particularly effective in 
handling outliers by removing the median and scaling the data 
according to the interquartile range, thus making it robust to 
anomalies. Robust Scaler equation:

	
scaled

X Q2X
IQR
−

=

where:

	•	 X is the original data point
	•	 Q2 is the median of the data
	•	 IQR is the interquartile range, calculated as Q3 − Q1, where Q1 

is the first quartile (25th percentile) and Q3 is the third quartile 
(75th percentile).

Thus, the transformed data Xscaled has its median centered around 
zero and is scaled according to the interquartile range, which helps 
mitigate the influence of outliers.

Performance evaluation of the intrasubject model, i.e., within-
subject model, was conducted using 5-fold cross-validation. In this 
process, the data for each subject was divided into five equal parts, or 
“folds.” The model was trained on four of the five folds, with the 
remaining fold serving as the test set. This process was repeated five 
times, using a different fold as the test set, ensuring that every part of 
the data was used for both training and testing. The results from the 

five iterations were then averaged to provide a robust assessment of 
the model’s performance for each subject.

In contrast, performance evaluation of the intersubject model, i.e., 
across-subject model, was conducted using leave-one-out cross-
validation, where one subject was left out as the test set while the 
model was trained on the remaining subjects. This process was 
repeated for each subject, thoroughly assessing the model’s 
performance across different subjects.

Additionally, we employed ReduceLROnPlateau, a callback in 
Keras that monitors quantity and reduces the learning rate by a factor 
of 0.1 if no improvement is seen for a ‘patience’ number of epochs, 
starting from 1e-3 and adjusting every 10 epochs. Early stopping was 
used to prevent overfitting by monitoring validation accuracy and 
stopping the training process once performance ceased to improve for 
every 20 epochs, preserving the best weights encountered during 
training. This comprehensive approach was adopted to ensure robust 
model training and accurate assessment of functional and 
non-functional movements in stroke rehabilitation.

The model was built and trained on Paperspace CloudServer. This 
study evaluated model performance using two primary metrics: 
accuracy and F1 scores for classifying non-functional and functional 
arm movements. Accuracy measures the overall correctness of the 
model’s predictions, representing the proportion of correct predictions 
(true positives and true negatives) among all predictions. F1 scores 
offer a balanced assessment by considering both precision (the 
accuracy of positive predictions) and recall (the ability to identify all 
positive instances correctly), which is particularly valuable in subjects 
with low functional use.

3 Results

Tables 4, 5 report the model performance metrics as mean ± 
standard deviation, conveying both the central tendency and the 
variability in the model’s performance across subjects. Table  4 
summarizes several performance metrics for the intrasubject model 
trained with the paretic arm, non-paretic arm dataset, and combined 
arms datasets. Note that subject 28, who exhibited no functional use, 
was excluded from the intrasubject modeling but included in the 
intersubject modeling.

The intrasubject model performs well for the paretic arm, with a 
training accuracy of 0.96 ± 0.03 and a validation accuracy of 
0.90 ± 0.05. For non-functional movement detection, the validation 
F1 score is 0.89 ± 0.08, while functional movement detection yields a 
lower F1 score of 0.81 ± 0.18. The increased variability in functional 
movement F1 scores is primarily attributed to three stroke survivors 
with more severe impairments, leading to imbalanced datasets where 
less than 10% of movements were functional. Specifically, subjects 3, 
22, and 25 had functional use of 5.8, 3, and 7.6%, respectively. Their 
validation functional movement F1 scores were 0.19 ± 0.12, 0.52 ± 
0.34, and 0.20 ± 0.27, respectively.

TABLE 3  Hyperparameters used in model training.

Parameter name Batch size Kernel Epochs Learning rate Early stopping

Val 64 Activation(“Relu”) L2(1e-3) 700
Adam (1e-3) Factor = 0.1

Patience = 10
Patience = 20
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TABLE 6  Effect of SMOTE on intrasubject model performance for paretic and combined arm models for three imbalance subjects.

Model Subject # Functional 
use

Original data with SMOTE (F/NF = 0.5)

Accuracy F-Score 
(F)

F-Score 
(NF)

Accuracy F-Score 
(F)

F-Score 
(NF)

Paretic arm

3 0.058 0.95 ± 0.00 0.19 ± 0.12 0.97 ± 0.01 0.94 ± 0.01 0.32 ± 0.08 0.96 ± 0.01

22 0.030 0.98 ± 0.01 0.52 ± 0.34 0.99 ± 0.00 0.99 ± 0.01 0.61 ± 0.39 0.99 ± 0.01

25 0.076 0.96 ± 0.01 0.20 ± 0.27 0.98 ± 0.00 0.97 ± 0.01 0.28 ± 0.38 0.98 ± 0.01

Combined 

arms

3 0.058 0.96 ± 0.01 0.41 ± 0.28 0.98 ± 0.01 0.95 ± 0.01 0.46 ± 0.19 0.98 ± 0.01

22 0.030 0.98 ± 0.01 0.57 ± 0.22 0.99 ± 0.00 0.98 ± 0.01 0.57 ± 0.22 0.99 ± 0.00

25 0.076 0.97 ± 0.01 0.25 ± 0.25 0.98 ± 0.00 0.97 ± 0.01 0.35 ± 0.36 0.98 ± 0.00

Several strategies can mitigate this imbalance, including 
upsampling, synthetic minority oversampling (SMOTE; Chawla et al., 
2002), and class weighting. Table  6 illustrates performance 
improvements using SMOTE, where the minority class size is set to 
50% of the majority class, resulting in a functional use increase to 
33.3%. After applying SMOTE, the validation F1 scores for these 
subjects improved to 0.32 ± 0.08, 0.61 ± 0.39, and 0.28 ± 0.38, 
respectively. While SMOTE enhances results compared to the original 
data, the limited functional data still constrains the model’s 
generalizability and stability. Removing these three subjects from our 
analysis improves the functional movement F1 score to 0.94 ± 0.05 for 
training and 0.85 ± 0.10 for validation. Model performance also 
improves for the combined arms dataset in both training and 
validation. Non-functional movement detection achieved a validation 

F1 score of 0.90 ± 0.06, whereas functional movement detection 
showed more variability, with a validation F1 score of 0.84 ± 0.14.

Compared to the RF baseline, as shown in Table 4, the proposed 
model exhibits similar validation accuracy for the paretic arm 
(0.90 ± 0.05 vs. 0.91 ± 0.04) and non-paretic arm (0.96 ± 0.04 vs. 
0.96 ± 0.06) but shows improved validation F1 scores for functional 
movements in the combined dataset (0.84 ± 0.14 vs. 0.83 ± 0.19). 
Although CNN improvement is not significant, the CNN model 
operates directly on raw accelerometer data, bypassing the need for 
handcrafted features required by RF models, which may 
be advantageous with larger datasets.

Table 5 presents the same set of performance metrics for the 
intersubject model among three datasets: paretic arm, non-paretic 
arm, and combined arms. Across all datasets, the intersubject 

TABLE 4  Comparison of intrasubject model performance metrics for paretic arm, non-paretic arm, and combined arms.

Model Training 
accuracy 

(±std)

Validation 
accuracy (±std)

Training F1 
score for NF 
class (±std)

Validation F1 
score for NF 
class (±std)

Training F1 
score for F 
class (±std)

Validation F1 
score for F 
class (±std)

RF – Paretic arm 1.00 ± 0.00 0.91 ± 0.04 1.00 ± 0.00 0.90 ± 0.06 1.00 ± 0.00 0.81 ± 0.19

RF – Non-paretic 

arm
0.99 ± 0.02 0.96 ± 0.06 0.99 ± 0.03 0.83 ± 0.12 0.99 ± 0.02 0.97 ± 0.04

RF – Combined 

arms
1.00 ± 0.00 0.92 ± 0.03 1.00 ± 0.00 0.90 ± 0.06 1.00 ± 0.00 0.83 ± 0.19

Paretic arm 0.96 ± 0.03 0.90 ± 0.05 0.95 ± 0.05 0.89 ± 0.08 0.90 ± 0.15 0.81 ± 0.18

Non-paretic arm 0.97 ± 0.02 0.96 ± 0.04 0.90 ± 0.11 0.85 ± 0.13 0.98 ± 0.02 0.97 ± 0.03

Combined arms 0.98 ± 0.02 0.91 ± 0.04 0.97 ± 0.03 0.90 ± 0.06 0.94 ± 0.11 0.84 ± 0.14

TABLE 5  Comparison of intersubject model performance metrics for paretic arm, non-paretic arm, and combined arms.

Model Training 
Accuracy 

(±std)

Validation 
Accuracy (±std)

Training F1 
score for NF 
class (±std)

Validation F1 
score for NF 
class (±std)

Training F1 
score for F 
class (±std)

Validation F1 
score for F 
class (±std)

RF – Paretic arm 1.00 ± 0.00 0.68 ± 0.12 1.00 ± 0.00 0.67 ± 0.16 1.00 ± 0.00 0.58 ± 0.20

RF – Non-paretic 

arm
0.99 ± 0.00 0.89 ± 0.07 0.98 ± 0.00 0.57 ± 0.20 0.99 ± 0.00 0.93 ± 0.05

RF – Combined 

arms
1.00 ± 0.00 0.72 ± 0.10 1.00 ± 0.00 0.72 ± 0.16 1.00 ± 0.00 0.61 ± 0.19

Paretic arm 0.79 ± 0.03 0.79 ± 0.06 0.80 ± 0.06 0.74 ± 0.16 0.73 ± 0.07 0.67 ± 0.18

Non-paretic arm 0.93 ± 0.03 0.89 ± 0.04 0.70 ± 0.15 0.55 ± 0.23 0.96 ± 0.02 0.94 ± 0.03

Combined arms 0.91 ± 0.02 0.88 ± 0.10 0.86 ± 0.04 0.63 ± 0.35 0.92 ± 0.03 0.88 ± 0.15
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models show a common trend where training accuracy and F1 
scores are higher than their validation counterparts. The model 
trained on the paretic arm data performs consistently with training 
and validation accuracies of 0.79 ± 0.03 and 0.79 ± 0.06, 
respectively. However, it shows lower F1 scores for functional 
movements, particularly in validation, with a score of 0.67 ± 0.18, 
indicating some variability in classifying paretic arm movements. 
The non-paretic arm model demonstrates consistently higher 
accuracy and F1 scores, particularly for functional movements. It 
achieves a training accuracy of 0.93 ± 0.03 and a validation accuracy 
of 0.89 ± 0.04. It excels in classifying functional movements, with 
high F1 scores in both training at 0.96 ± 0.02 and validation at 
0.94 ± 0.03 but shows lower performance for non-functional 
movements. These results reflect the predictability and consistency 
of movement patterns in the non-paretic arm, though the lower F1 
scores for non-functional movements indicate greater challenges in 
capturing these patterns. The combined model, which incorporates 
data from both arms, performs well overall, achieving a training 
accuracy of 0.91 ± 0.02 and a validation accuracy of 0.88 ± 0.10, 
respectively. This model maintains high F1 scores for functional 
movements while improving on the classification of non-functional 
movements compared to the non-paretic arm model alone. These 
results suggest that incorporating bilateral data provides a richer 
feature set, enabling the model to generalize more effectively across 
different movement types, though the broader variability in 
validation scores underscores the complexity of generalizing 
across subjects.

Compared to RF, the proposed CNN model achieved substantially 
higher validation F1 scores for functional movements in the paretic 
arm (0.67 ± 0.18 vs. 0.58 ± 0.20), non-paretic arm (0.94 ± 0.03 vs. 
0.93 ± 0.05), and especially the combined arms dataset (0.88 ± 0.15 vs. 
0.61 ± 0.19).

These results underscore the combined arms model’s capacity to 
leverage richer bilateral features, providing enhanced robustness and 
improved generalization. However, maintaining balanced datasets 
remains crucial for achieving consistently high performance across 
all subjects.

The box plots in Figures 3–5 illustrate three different statistical 
and performance metrics based on three different training datasets: 
the paretic arm, the non-paretic arm, and the combined arms dataset.

Figure 3 shows the box plots of model accuracy for 3 different 
datasets. The non-paretic arm model consistently performs better 
in both the training and validation phases than the other 2 models. 
The median training accuracy reaches 94%, while the validation 
accuracy is approximately 90%. This high level of performance 
with small variability suggests that the non-paretic arm movement 
is more predictable and has consistent movement patterns, making 
it easier for the model to learn from. Additionally, the smaller 
range of variability in training and validation accuracies indicates 
that the model performs reliably and robustly. The combined 
dataset, which includes data from both the paretic and non-paretic 
arms, also shows strong results. The median training accuracy is 
around 91%, while the validation accuracy is about 90%. The 
combined data from both arms seems to provide a richer and more 
comprehensive dataset, enabling the model to generalize well 
across different types of movements. The slightly broader range of 
validation accuracies in this dataset suggests that while the model 
is robust, it benefits from the diversity of data, enhancing its ability 
to handle variations in movement patterns from both arms. This 
suggests that leveraging bilateral data can be an effective approach 
for enhancing model accuracy and generalization. The paretic arm 
model, which represents movements from the paretic arm, exhibits 
median training and validation accuracies of approximately 79 and 
78%, respectively. While slightly lower than the non-paretic and 

FIGURE 3

Intersubject model- training and validation accuracies across datasets.

https://doi.org/10.3389/frai.2025.1547127
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Tran et al.� 10.3389/frai.2025.1547127

Frontiers in Artificial Intelligence 10 frontiersin.org

FIGURE 5

Intersubject model- training and validation f1 score functional across datasets.

combined datasets, these accuracies still reflect solid model 
performance, especially given the inherent complexities and 
variability in the movement data from stroke-paretic limbs. The 
model’s ability to achieve these accuracies suggests it is effectively 
learning from the more challenging data, and the consistent 
performance across training and validation phases indicates that 
the model is generalizing well to unseen data.

Figure 4 shows the box plots of model F1 scores for non-functional 
movements for 3 different datasets. The non-paretic arm model 
consistently performs well during training, with a median F1 score of 
around 0.69 and a relatively narrow range, indicating stable performance 
across different training iterations. However, in the validation phase, the 
median F1 score drops to approximately 0.61 with a wider range of 
variability. This suggests that while the model can reliably identify 

FIGURE 4

Intersubject model- training and validation f1 score non- functional across datasets.
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non-functional movements during training, it struggles more during 
validation, potentially due to the more subtle or less distinct movement 
patterns of the non-paretic arm compared to the paretic arm. The 
combined model exhibits the highest performance overall in terms of 
F1 scores for non-functional movements. The training F1 score reaches 
a median of about 0.86, indicating that exposure to a diverse set of 
movement patterns enables the model to learn and classify 
non-functional movement more effectively. During validation, the 
combined model maintains a higher median F1 score of around 0.79, 
outperforming the individual models. This robustness suggests that 
leveraging bilateral data improves the model’s ability to generalize, 
making it more adaptable to different non-functional movement 
patterns. The paretic arm model exhibits solid performance, particularly 
in training, with a median F1 score of around 0.81. This outcome 
suggests that the model effectively learns from the more variable and 
complex data associated with the paretic arm’s movements. In the 
validation phase, the median F1 score remains consistent at 
approximately 0.79, though with a broader spread, indicating some 
variability. This variability suggests that, while the model generally 
performs well in detecting non-functional movements in the paretic 
arm, certain validation instances pose additional challenges. Overall, the 
paretic arm model provides a strong basis for training, but additional 
strategies may enhance its generalization in validation.

Figure 5 shows the box plots of model F1 scores for functional 
movements for 3 different datasets. The non-paretic arm model 
performs exceptionally in detecting functional movements during the 
training and validation phases. The training F1 scores for this model are 
consistently high, with a median of around 0.95 and minimal variability. 
This indicates that the model is highly effective at learning the pattern 
associated with functional movements in the non-paretic arm. During 
validation, the F1 scores remain robust, with a median of nearly 0.94, 
indicating strong generalization capabilities. The narrow range of these 
scores further underscores the model’s reliability in identifying 
functional movements when applied to non-paretic arm data. The 
combined model, which includes data from both the paretic and 
non-paretic arms, also demonstrates strong performance in detecting 
functional movements. The training F1 scores for the combined model 
have a median of around 0.92, suggesting that the model benefits from 
the richer and more varied feature set provided by integrating data from 
both arms. This improved performance carried over into the validation 
phases indicates that using bilateral data enhances the learning process, 
allowing the model to generalize effectively across varied conditions. 
The paretic arm model shows solid, though slightly lower, performance 
in detecting functional movements compared to the non-paretic arm 
and combined models. The training F1 scores for this model have a 
median of around 0.74, suggesting that, while the model effectively 
learns from the paretic arm data, the variability inherent in post-stroke 
movements poses certain challenges. During validation, the median F1 
score drops slightly to around 0.70, with a broader spread of scores, 
which may reflect the increased complexity and variability of functional 
movement patterns in the paretic arm. Despite this, the model’s ability 
to maintain relatively high F1 scores indicates it can effectively classify 
functional movements, even in more challenging datasets.

Paired statistical comparisons between training and validation 
performance indicated significant discrepancies across datasets and 
metrics. For classification accuracy, the difference was not statistically 
significant for the paretic arm model (p = 0.8923) or the combined arms 
model (p = 0.0907) but was highly significant for the non-paretic arm 

model (p = 1.695 × 10−7). Regarding the F1 score for non-functional 
movements, no significant difference was observed for the paretic arm 
model (p = 0.103), whereas significant differences were found for the 
non-paretic (p = 1.85 × 10−5) and combined arms models (p = 0.00043). 
In contrast, the F1 score for functional movements revealed significant 
differences for the paretic (p = 0.038) and non-paretic arm models 
(p = 0.00046), while the combined arms model did not show a 
statistically significant difference (p = 0.097). These findings suggest that 
models trained on non-paretic arm data may be more susceptible to 
overfitting, as evidenced by substantial performance drops from 
training to validation, while models trained on paretic and combined 
arms data exhibited more stable generalization.

Overall, the figures highlight the relative strengths of each dataset 
in training and validating models for classifying arm movements. The 
analysis of performance metrics reveals that the non-paretic arm 
dataset consistently provides higher accuracy and F1 scores, reflecting 
the stability and predictability of the movement patterns it represents. 
The combined dataset, which merges data from both arms, also 
performs exceptionally well, underscoring the value of using a more 
comprehensive dataset that captures a wider range of movement 
characteristics. Adding these features significantly enhances the 
model’s overall effectiveness, especially in training, and improves 
generalization, though some variability remains. While presenting 
more of a challenge, the paretic arm dataset still results in strong 
model performance, demonstrating the model’s capability to learn and 
generalize from more complex and variable data. These findings 
underscore the importance of leveraging comprehensive datasets and 
incorporating diverse features to optimize model robustness and 
accuracy, particularly in the context of complex movement 
classification tasks in stroke rehabilitation.

Table 7 reports the effect sizes (Cohen’s d) and corresponding 95% 
confidence intervals for intersubject comparisons across three training 
datasets: paretic arm, non-paretic arm, and combined arms. The 
combined dataset, which integrates signals from both arms, yielded 
moderate effect sizes across accuracy and F1 metrics, reflecting more 
balanced generalization compared to the individual datasets. The 
paretic arm dataset showed negligible differences between training 
and validation performance (e.g., accuracy d = −0.025), suggesting 
consistent generalization but limited variability in movement patterns. 
By contrast, the non-paretic dataset exhibited large effect sizes for 
accuracy (d = 1.162) and F1 scores, indicating strong training 
performance but a marked drop during validation, consistent with 
overfitting. The combined dataset produced intermediate results, with 
reduced overfitting compared to the non-paretic case and improved 
stability relative to the paretic case. These findings indicate that 
leveraging both paretic and non-paretic signals can capture a wider 
spectrum of movement characteristics, supporting more robust and 
generalizable classification of upper extremity function.

4 Discussion

4.1 Interpretation of results

The intrasubject models perform very well when trained with 
the combined arms data. The paretic arm model shows a higher 
variability in performance due to data imbalance and subject-
specific movement patterns. Note that the accuracy and F1 scores 
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were improved if the three subjects with imbalanced data 
were removed.

The intersubject model demonstrated improvement in accuracy 
and F1 scores across different datasets using raw accelerometry data. 
The trained model using the paretic arm data achieved a training 
accuracy of 79% and a validation accuracy of 79%. These results show 
an improvement over the previously reported validation accuracy of 
74.2% using the paretic arm data by (Lum et al., 2020). Achieving this 
level of accuracy is encouraging, given the inherent variability and 
complexity associated with movement data from stroke-paretic limbs, 
as well as the limited training data available. In comparison, the model 
trained on the non-paretic arm displayed higher performance, with a 
validation accuracy of 89%, suggesting that the more predictable and 
consistent movement patterns of the non-paretic arm are easier for the 
model to learn and generalize from. The combined arms model 
significantly improved the performance of the paretic arm model. With 
this integrated dataset, the model achieved a validation accuracy of 
88%, surpassing the accuracy of the model trained solely on the paretic 
arm data. The F1 scores for non-functional movements in the 
combined dataset improved to 0.86 during training, compared to 0.80 
for the paretic arm alone, highlighting the benefits of a richer feature 
set. However, the validation F1 score for non-functional movements 
showed greater variability, indicating that while the additional data 
enhances the model’s learning capacity, it also introduces complexity 
that may complicate generalization. The combined dataset maintained 
strong validation F1 scores of 0.88 for functional movements, 
demonstrating the model’s effective generalization across various 
movement conditions.

These results also align with the broader trends observed in 
machine learning applications within healthcare (Figueroa et al., 2012; 
Beam and Kohane, 2018; Li et al., 2023; Nunes et al., 2024) where 
models often perform better with more consistent and less variable 
data. The stable movement patterns of the non-paretic arm provided a 
more stable foundation for training, which likely contributed to the 
model’s enhanced performance in both the training and validation 
phases (Hossain et al., 2023).

Additionally, this study included a larger sample of 35 subjects 
across a wider range of impairment severities and incorporated three 
more tasks per subject for the 25 newly recruited subjects compared to 
the 10 subjects in (Lum et al., 2020). This larger, more diverse dataset 
may have also contributed to our model’s higher validation accuracies 

for both the paretic arm and combined arms models, underscoring its 
improved generalizability.

In addition, the training duration, measured by the number of 
epochs needed to reach the optimal performance, is shorter for the 
non-paretic arm model (e.g., 50–75 epochs) than for the paretic arm 
model (e.g., ~100 epochs). This faster convergence may suggest that the 
model learns more consistent or generalizable patterns from the 
non-paretic arm data, possibly due to reduced movement variability or 
imbalances in that dataset.

This study utilizes raw accelerometry signals as input, which 
enables the model to learn rich, hierarchical representations directly 
from the data; however, this approach results in more complex and less 
interpretable deep learning models. To enhance interpretability and 
transparency, future work will integrate advanced attribution methods 
such as saliency maps, feature importance analyses, integrated 
gradients, and related techniques. These approaches will be able to 
identify and visualize the temporal and spatial features that drive the 
classification of functional versus non-functional movements, thereby 
fostering clinical trust and supporting model validation and refinement.

In our current model training, hyperparameters were chosen 
through an iterative, empirical process informed by pilot experiments on 
a subset of data. Moving forward, we plan to adopt more sophisticated 
hyperparameter optimization techniques, such as Bayesian optimization, 
which efficiently balance exploration and exploitation of the 
hyperparameter space. This probabilistic approach builds a surrogate 
model of the objective function, guiding the search for optimal 
hyperparameters to improve model accuracy while minimizing 
computational cost. Integrating such automated optimization will 
further enhance training robustness, reduce overfitting, and accelerate 
convergence, especially as datasets grow in size and complexity.

4.2 Practical implications

The rationale for using raw accelerometry data lies in its ability to 
capture complex movement patterns, which are essential for accurately 
assessing UE movements. We  gain a comprehensive source of 
information by utilizing raw data, free from subjective interpretations, 
such as patient self-reports or other clinical assessments. We obtained 
highly accurate and reliable classifications by processing and analyzing 
accelerometer data using advanced models like CNNs combined with 

TABLE 7  Comparison of intersubject statistical metrics for paretic arm, non-paretic arm, and combined arms.

Model comparison Metrics Cohen’s d 95% confidence intervals

Train – Paretic vs. Val – Paretic

Accuracy −0.025 [−0.502, 0.452]

F1 Functional 0.429 [−0.053, 0.912]

F1 Non-functional 0.349 [−0.131, 0.830]

Train – Non-Paretic vs. Val – Non-Paretic

Accuracy 1.162 [0.647, 1.678]

F1 Functional 0.809 [0.313, 1.305]

F1 Non-functional 0.760 [0.266, 1.254]

Train – Combined vs. Val – Combined

Accuracy 0.410 [−0.072, 0.892]

F1 Functional 0.415 [−0.067, 0.897]

F1 Non-functional 0.908 [0.407, 1.409]
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Dense layers. This approach supports a more objective and quantifiable 
assessment of functional and non-functional movements, thereby 
enhancing the overall effectiveness of stroke rehabilitation monitoring.

The findings of this study have important implications for creating 
and developing personalized rehabilitation strategies. The high 
accuracy and stability of our models have the potential to enable more 
precise monitoring of UE functionality, allowing clinicians to tailor 
interventions based on individual performance metrics. In clinical 
practice, these models can be used to provide real-time feedback and 
facilitate long-term monitoring, thereby improving the quality of 
rehabilitation programs. The demonstrated robustness of the models 
also ensures reliability across different cases, which is critical for real-
world applications where patient data can vary widely.

Although our architecture is relatively compact, we  have not 
systematically benchmarked the computational efficiency and 
feasibility of deploying these models in real-time clinical or home 
environments. The model processes data in 2-s windows using a 
modest number of convolutional filters and dense layers, making it 
computationally efficient enough in principle for deployment on 
modern mobile or edge devices. However, real-time deployment on 
resource-constrained platforms such as wearable devices or 
smartphones requires explicit profiling to evaluate inference latency, 
energy consumption, and memory usage under real-world conditions. 
Prospective studies should also assess sensor runtime under different 
sampling/transmission schemes and develop strategies to maximize 
adherence, such as calibration routines, wear-time monitoring, and 
user feedback.

Despite the promising results, the study has limitations. Although 
the dataset (35 subjects) is larger than previous studies (10 subjects) 
and involves more tasks (7 tasks in total), it may still be insufficient and 
could restrict the generalizability of the models. Deploying deep 
learning models for upper extremity movement classification in real-
world environments entails several challenges that may impact their 
reliability and generalizability. Sensor placement variability is one of 
the most critical issues, as small differences in the orientation and 
positioning of wrist-worn sensors can introduce significant signal 
inconsistencies and reduce model performance. To address this, data 
collection could incorporate a standardized calibration procedure, such 
as holding the arm in a standardized posture prior to data collection, 
aligning sensor axes, and normalizing orientation. Another important 
consideration is signal noise and artifacts, which can arise from 
environmental vibrations or electromagnetic interference. 
Incorporating real-time signal filtering, a robust preprocessing pipeline, 
and anomaly detection algorithms may help mitigate these effects and 
preserve data quality.

Furthermore, differences across patient populations present 
challenges for model generalization, as stroke survivors exhibit 
substantial variability in impairment severity, compensatory strategies, 
and daily activity patterns. To improve performance across diverse 
cohorts, future work should prioritize the collection of larger, multi-
center datasets representing a broad spectrum of functional abilities 
and demographic characteristics. Finally, recognizing that activities 
performed in home and community settings are inherently more 
variable than scripted rehabilitation tasks, it will be essential to conduct 
prospective validation studies under ecologically valid conditions. 
Addressing these challenges systematically will be critical to developing 
reliable, scalable systems that can support continuous monitoring and 
personalized rehabilitation in real-world practice. Additionally, 

exploring other deep learning architectures and hyperparameter 
tuning could potentially improve performance. Incorporating 
multimodal data, such as clinical assessments, might also improve the 
model’s accuracy and robustness. Finally, the results of this study are 
not generalizable to acute stroke settings, as all subjects were more than 
6 months post-stroke. Additionally, generalization to patient 
performance in the home and community will have to be demonstrated 
with data collection in these environments.

5 Conclusion

This study demonstrated that deep learning models, particularly 
those leveraging CNNs with Dense layers, can accurately and reliably 
classify functional and non-functional arm movements in stroke 
patients. The proposed models surpass previous benchmarks 
in performance.

This research contributes significantly to stroke rehabilitation by 
offering a robust and precise method for classifying arm movements 
using raw accelerometry data. The findings highlight the potential of 
advanced deep learning algorithms to enhance the monitoring and 
assessment of UE functionality, which is essential for developing 
personalized rehabilitation strategies.

We acknowledge key limitations in our study, including sensor 
placement variability, noise/artifacts, and limited sample size. Small 
variations in wrist sensor positioning can introduce significant signal 
inconsistencies that may reduce model performance. Additionally, the 
relatively small and heterogeneous dataset limits generalizability, 
especially across diverse patient populations and real-world home 
environments. Future work will focus on standardized calibration 
procedures and collecting larger multi-center datasets to improve 
model robustness and ecological validity.

Potential challenges related to sensor battery life, data transmission, 
and user compliance must be  carefully considered in real-world 
deployments. Prospective studies should evaluate sensor runtime under 
various sampling rates and data transmission schemes to identify optimal 
configurations that balance performance and power consumption.

Strategies to maximize user adherence include implementing 
calibration routines to ensure data quality, wear-time monitoring to 
track device usage, and providing timely user feedback to encourage 
consistent wear. Advanced power management techniques—such as 
adaptive sampling, low-power modes, and efficient data communication 
protocols—can significantly extend battery life in wearable devices.

Future work should integrate these approaches and explore 
energy-harvesting technologies to sustain longer operational times, 
ensuring reliability and user convenience during continuous 
monitoring in clinical and home environments.

Overall, the study underscores the potential for integrating deep 
learning models into clinical practice for stroke rehabilitation. The 
encouraging results set the stage for future advancements in real-time 
rehabilitation monitoring and personalized intervention programs. 
Further research should focus on expanding the dataset, exploring 
additional data modalities, and refining model architectures to further 
improve classification accuracy and robustness. Specifically, a 
prospective study should pursue (1) prospective validation in home 
and community environments to establish ecological validity; (2) 
multi-center data collection across diverse populations, impairment 
levels, and devices to ensure generalizability; and (3) model adaptation 
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strategies, such as transfer learning or lightweight personalization, to 
tailor models to specific patient cohorts. These steps will be essential 
for building robust, widely deployable systems for upper extremity 
movement classification in stroke rehabilitation.
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