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Upper Extremity (UE) rehabilitation is crucial for stroke survivors, aiming to
improve the use of the paretic UE in everyday activities. However, assessing
the effectiveness of these treatments is challenging due to a lack of objective
measurement tools. Traditional methods, such as clinician-rated motor ability
or patient self-reports, often fail to measure UE performance in real-life settings
accurately. Evidence suggests that currently used clinical assessments do not
reliably capture actual UE use at home or in the community. This study investigates
the application of Convolutional Neural Networks (CNNs) combined with Dense
layers using accelerometry data from wrist-worn sensors to classify functional
and non-functional UE movements of stroke survivors. Two types of models were
developed: one trained on data from individual subjects (intrasubject model) and
another trained on data across all subjects (intersubject model). The intrasubject
model for the paretic UE achieved an average accuracy of 0.90 + 0.05, while
the intersubject model reached an accuracy of 0.79 + 0.06. When incorporating
signals from the non-paretic arm, the intersubject model’s accuracy improves to
0.88 + 0.10. Notably, this method utilized raw accelerometry data, eliminating the
need for manual feature extraction, which is commonly required in traditional
machine learning, and yielded higher accuracy than previously reported methods.
This proposed deep learning approach incorporates CNNs with Dense layers,
offering a cost-effective and adaptable method for monitoring UE functionality
in real-world settings. The results from this study have the potential to inform
the development of personalized rehabilitation strategies for stroke survivors,
offering valuable insights for clinical practice.
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1 Introduction

A stroke occurs when blood flow to the brain is disrupted, either by a blockage that
prevents oxygen and nutrients from reaching brain cells or by the rupture of a blood vessel.
This interruption can rapidly damage or kill brain cells. Strokes are a significant global health
issue, ranking as the third leading cause of death worldwide and contributing significantly to
cardiovascular disease-related fatalities (Feigin et al., 2021). In the United States alone,
approximately 795,000 people suffer from strokes each year, with about two-thirds surviving
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but often requiring extensive rehabilitation (Sun et al, 2012). A
common consequence of stroke is impaired upper extremity (UE)
function, typically due to hemiparesis, which manifests as reduced
arm movement and altered muscle tone (Lang et al., 2013). Effective
rehabilitation of UE functions is crucial for restoring movement and
functionality, enabling stroke survivors to regain independence and
improve their quality of life (Barreca et al., 2003).

The International Classification of Functioning, Disability and
Health (ICF) defines domains affected by a stroke: body functions,
activities, and participation (Bernhardt et al., 2017). Stroke can affect
body functions, such as impairments in muscle strength or joint range
of motion. The activities domain encompasses functional tasks that
rely on the proper integration of multiple body functions, such as
reaching to grasp or walking. Participation is the end goal of
rehabilitation and includes return to work, social, or recreational
activities. Spanning these domains are the concepts of capacity and
performance (Kwalkkel et al., 2023). Capacity is measured by the
ability to perform tasks, usually in controlled situations, such as
during a clinical test where the patient is asked to pick up an object
with the paretic arm. Capacity assessments can be augmented with
kinematic analysis of the tasks using optical motion capture (Alt
Murphy et al., 2011). Data from wrist-worn Inertial Measurement
Units (IMUs) during execution of a clinical capacity scale can predict
scores from trained clinicians (Werner et al., 2022), and IMUs can
potentially replace optimal motion capture systems in assessing
movement quality (Unger et al., 2024). However, many factors can
limit spontaneous real-world arm use (performance) even if capacity
seems adequate, such as the effort required to use the paretic limb
compared to compensation with the less-affected arm. Capacity
measured in the clinic often does not correlate with real-world
performance (Lundquist et al., 2022).

To address the limitations of traditional methods, emerging
technologies have been developed to provide more objective and
accurate measurements of UE function. One such advancement is the
use of IMUs, which are small, wearable sensors that track movement
through accelerometers and gyroscopes (Papi et al., 2015; Parkka
et al,, 2006; Uswatte et al., 2000; Uswatte et al., 2005; Rand and Eng,
2015; Sengupta et al., 2024). IMUs can be placed on various body parts
to collect detailed movement data over extended periods, both in
clinical settings and during daily activities (Bochniewicz et al., 2017;
Unger et al., 2024).

Prior research has demonstrated the potential of accelerometry
data combined with machine learning algorithms to classify and
analyze UE movements. Studies have shown that IMUs can effectively
capture the nuances of arm movements, providing valuable insights
into motor function and the progress of rehabilitation. For instance,
research has utilized accelerometry data to distinguish between
functional and non-functional movements, providing a more objective
assessment than traditional methods (Tran et al.,, 2018; Lum et al.,
2020; Pohl et al., 2022).

In addition to their use in classification, accelerometry outputs
can also be used to generate clinically meaningful assessments. The
earliest metric proposed was activity counts, which are calculated by
summing the periods of time during which the filtered acceleration
magnitude exceeds a predefined threshold. However, in its original
implementation, this metric has poor specificity for detecting
functional use of the limb (Subash et al., 2022; Lum et al., 2020).
Optimal count thresholds can be derived from labeled accelerometry
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data, achieving an accuracy of 80% in predicting functional limb use
(Pohl et al., 2022). Once functional use is estimated for each limb, the
relative use of the upper extremities can be visualized graphically, and
metrics that capture the limb asymmetries can be calculated (David
etal, 2021). Ifadditional IMUs are used on the upper limb and trunk,
they can be used to estimate clinical parameters of interest during
execution of functional tasks, such as elbow angle, shoulder angle, and
trunk movement (Unger et al., 2024).

Machine learning has also been widely used in upper extremity
(UE) assessment (Geed et al., 2023; Tozlu et al., 2020) to provide
objective, scalable, and quantifiable measures of motor function,
offering more accurate evaluations compared to traditional methods.
Techniques such as Random Forest (RF), Support Vector Machines,
Logistic Regression Classifiers, and traditional neural networks have
been employed to classify functional and non-functional movements
from sensor data (Ghannam and Techtmann, 2021; Arikumar et al.,
2022), often acquired with IMUs or accelerometers, to monitor stroke
recovery progress. These models have the potential to automate the
assessment process, reduce reliance on subjective clinical evaluations,
and enable continuous monitoring in real-world environments.
However, earlier approaches often required labor-intensive manual
feature engineering, such as selecting specific attributes like velocity
or joint angles, limiting these models’ flexibility, adaptability, and
generalizability. Furthermore, hand-selected features may fail to fully
represent the complexity of movement patterns, resulting in less
accurate assessments. Consequently, models based on manually
extracted features often struggle to generalize effectively across diverse
patient populations and movement contexts. According to (Lum et al.,
2020), a machine learning model was used to report an accuracy of
74.2% from the intersubject model with 10 stroke survivors.

The validity of these classification approaches has also been
demonstrated through comparisons with established clinical
measures. The concurrent validity of the functional/non-functional
ratio against several clinical outcomes was previously published (Geed
et al., 2023). The ratio was found to be highly correlated with the
Action Research Arm Test (ARAT), Fugl-Meyer, 9-hole Peg Test, and
the Motor Activity Log. Another study by (Pohl et al, 2022)
demonstrated the validity of distinguishing functional from
non-functional movements using IMU data. By comparing
conventional thresholding, optimal thresholds, and a logistic
regression classifier, the authors found that both the optimal
thresholding and logistic regression classifier methods achieved
approximately 80% accuracy in inter-subject model and outperformed
conventional thresholding.

Networks (CNNs) have become
increasingly prominent in medical and healthcare applications due to

Convolutional Neural
their ability to process and analyze complex data. In healthcare, CNNs
have been used for tasks such as medical image analysis, disease
detection, and patient monitoring (Shen et al., 2017; Ravi et al., 2017;
Hossain et al, 2023). The application of CNNs to movement
assessment, especially in stroke rehabilitation, is an emerging field
with significant potential (Szczesna et al., 2020).

In this study, we investigated the application of a deep learning
architecture that combines CNN and dense layers in stroke
rehabilitation. CNN layers, which consist of convolutional and pooling
operations, are designed to extract spatial or local patterns from input
data, such as images or sensor signals. Dense layers, also known as
fully connected (FC) layers, receive the extracted features from CNNs
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and learn complex, non-linear combinations to perform the final
prediction. In a Dense layer, every neuron is connected to all neurons
in the preceding layer through learnable weights (Ram and Reyes-
Aldasoro, 2020). In the context of upper extremity movement
classification, Dense layers serve to map the temporal-spatial features
extracted by preceding convolutional layers to output classes
representing functional and non-functional arm movements. The use
of CNNs offers significant advantages for movement assessment.
These models can automatically extract salient features directly from
raw input data, minimizing the need for manual feature engineering.
This capability is especially beneficial when processing large and
complex datasets, such as those collected by inertial measurement
units (IMUs) (Ordonez and Roggen, 2016). By learning hierarchical
patterns and subtle correlations within the data, CNNs can produce
more accurate and reliable movement classifications than traditional
analysis methods (LeCun et al., 2015).

However, the use of CNNs in movement assessment also presents
challenges. One major challenge is the requirement for large datasets
to train the models effectively, which can be difficult to obtain in
clinical settings. Additionally, the complexity of CNNs can lead to
overfitting, where the model performs well on training data but poorly
on unseen data. Regularization techniques, such as dropout and batch
normalization, are often employed to mitigate this issue. Despite these
challenges, the integration of CNNs with IMUs data holds promise for
advancing UE assessment and improving rehabilitation outcomes for
stroke survivors.

This study aims to explore the use of a CNN combined with Dense
layers and the raw wrist-worn accelerometry data to improve the
classification of functional and non-functional UE movements in the
paretic arm of stroke survivors. The functional category encompassed
actions, e.g., gesturing, reaching and grasping objects, pushing to open
a door, etc. The non-functional category included arm movements
related to gait, sit-to-stand transitions, or whole-body movements that
did not involve functional arm movement. Additionally, frames with
no movement were also labeled as non-functional. By leveraging
advanced deep learning techniques, this study seeks to enhance the
classification performance of UE movements, offering a more
objective approach to assessing rehabilitation outcomes. The goal is to
improve the effectiveness of UE rehabilitation by providing better
tools for monitoring and analyzing patient progress in both clinical
and community settings.

2 Materials and methods
2.1 Data collection and preprocessing

In this study, 37 stroke survivors participated in a set of activities
known as the Activity Script, which simulated daily tasks to reflect
real-life upper extremity (UE) use in a community environment.
Table I summarizes demographic and clinical characteristics of the 37
stroke survivors who participated in this study. Two subjects were
excluded: subject 18 due to having only non-functional movements,
and subject 24 due to corrupted data. Participants (24 males, 11
females) had a mean age of 59.4 + 12.5 years (range: 32-84 years) and
a median chronicity post-stroke of 16 months (range: 6-257 months).
The sample included 18 individuals with left-sided and 17 with right-
sided affected limbs. Arm impairment, assessed via the ARAT test,
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varied considerably across subjects (mean = 26.9 + 15.1, range: 0-54).
The mean use ratio, representing real-world affected-arm usage
relative to the less-affected arm, was 0.5 + 0.3 (range: 0-1.05). The
broad variability in impairment severity and arm usage captured
within this cohort provides context for interpreting model
performance and evaluating the generalizability of our findings.
We complied with all relevant ethical guidelines for human research.
The study protocol was approved by the Institutional Review Board
(IRB) at our institution. Informed consent was obtained from all
participants prior to data collection.

The data collection was conducted in a naturalistic environment
within an Independence Square facility at MedStar National
Rehabilitation Hospital. The setting included essential areas like a
kitchen, bedroom, a shopping store, and a car. Participants performed
various instrumental activities of daily living (IADLs) such as doing
laundry, kitchen activities, grocery shopping, and bed making. In the
laundry activity, participants moved clothes from a closet to a washer,
transferred them to a dryer, and then folded or hung the clothes on
hooks in the closet. In the kitchen activity, participants loaded and
unloaded the dishwasher, cut an apple, picked up items from the floor,
and used a broom to sweep the floor. In the shopping activity,
participants gathered grocery items from a store, placed them in the
car, and removed them from the car. In the bed-making activity,
participants replaced the sheets and pillowcases on a bed.

Participants performed these IADLs naturally, without specific
instructions on which arm to use or whether to prioritize the paretic
arm. They were instructed to perform the task as they usually would
in the home and community, with activities interspersed with breaks,
conversations with experimenters, and walking around the facility,
allowing the collection of non-functional UE usage data. There was no
strict time limit for completing the tasks. Table 2 summarizes the tasks
performed by subjects, along with the minimum, maximum, and
average duration of each task. We conducted data collection in two
phases. In the first phase, 10 subjects were involved, and each subject
performed only 4 tasks: doing laundry, kitchen activities, grocery
shopping, and bed making. In the second phase, an additional 25
subjects were recruited, and each subject performed 7 tasks, with 3
additional tasks: letter writing, medication organizing, and keyboard
typing, as clinicians felt that more seated tasks requiring hand
dexterity should be added after the first phase. Throughout the
experiments, participants wore IMU sensors on both wrists, similar
to wrist watches or smart watches, and were videotaped. Figure 1
shows a picture of the ActiGraph sensor illustrating the axes directions.

In the 2 phases of data collection, sensor data from the first 10
subjects were collected at 200 Hz with a commercially available sensor
(ADIS16400BMLZ, Analog Devices) (Lum et al., 2020) while the
remaining data were collected at 30 Hz or 50 Hz using the Actigraph
GT9X Link watches. All raw accelerometry data were down-sampled
to 30Hz before analysis and expressed as three-axis accelerations
normalized to gravity (9.81 m/s*); no gravity compensation was
applied. To ensure maximum generalizability, most external datasets
include only raw accelerometry. In prior work, we also found no
increase in model accuracy when using both accelerometry and
angular velocity (Bochniewicz et al., 2017) compared to using
accelerometry alone (Lum et al., 2020). The algorithms will operate
with any wrist-worn three-axis accelerometer, provided that axis
directions, sign conventions, and data format match those of the
ActiGraph Link sensor; left and right arm data are made anatomically
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TABLE 1 Summary of subject demographics including age, gender, and stroke information.

10.3389/frai.2025.1547127

ID Age (years) Gender Post (months) Affected Limb ARAT Use Ratio
1 77 Male 23 Right 41 0.704
2 35 Male 35 Left 23 0.662
3 56 Male 17 Left 19 0.086
4 49 Female 19 Left 20 0.340
5 57 Male 104 Right 16 0.089
6 63 Male 77 Right 32 0.632
7 47 Female 12 Right 33 0.411
8 50 Male 53 Right 15 0.172
9 66 Male 69 Right 5 0.218
10 65 Male 20 Right 42 0.424
11 54 Female 24 Right 23 0.494
12 56 Female 26 Left 38 0.944
13 64 Male 14 Right 42 1.053
14 84 Female 6 Left 48 0.991
15 48 Male 9 Left 47 0913
16 71 Male 15 Right 53 0.781
17 65 Male 17 Left 27 0.470
18 58 Male 17 Left 32 0.629
19 79 Male 18 Left 52 0.952
20 54 Male 12 Right 29 0.632
21 64 Male 11 Right 32 0.631
22 50 Male 36 Right 5 0.037
23 77 Male 10 Left 54 0.900
24 64 Female 7 Left 24 0.662
25 32 Female 6 Left 6 0.088
26 77 Female 13 Right 7 0.601
27 64 Male 8 Right 36 0.571
28 50 Female 257 Left 0 0.000
29 59 Male 13 Left 28 0.551
30 66 Male 14 Left 12 0.251
31 68 Female 14 Left 34 0.728
32 58 Male 16 Right 23 0.301
33 55 Male 14 Right 29 0.716
34 62 Female 13 Left 20 0.521
35 41 Male 10 Left 15 0.162
36 74 Male 137 Left N/A 0.382
37 43 Female 29 Left 9 0.237

TABLE 2 Tasks performed by subjects and duration statistics (in minutes).

# of Doing Kitchen Grocery Bed Letter Medication Keyboard
Subjects laundry activities shopping making writing organizing typing
25 X X X X X X X

Min. 225 0.5 15 2 1 15 15
Max. 19.25 14.5 12 13 6 45 9.5
Mean 5.45 5.48 3.52 5.16 3.09 2.67 4.45
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FIGURE 1
Picture of ActiGraph sensors with accelerometry axes labeled.

consistent with a simple axis transform, and a fixed 30 Hz sample rate
is assumed. All these details will be provided as metadata in the
data repository.

Three independent annotators reviewed the videos and labeled
each frame as functional, non-functional, or unknown. Each limb was
annotated independently, and the final label for each limb on each
video frame was determined by majority vote. The agreement between
annotators was quantified by the percentage of frames on which 2
independent annotators agreed on the class label. Across all possible
comparisons and all limbs annotated, the mean agreement was
92.4 + 5.3%. Most discrepancies are related to the precise timing of
transitions in the class label. The video was synchronized with
accelerometry data, and the ground truth labels for functional,
non-functional, and unknown activity were transferred to the
accelerometry data. Synchronization was achieved by rapidly
oscillating the accelerometers in the z direction five times before
attaching them to the subject. This produced five distinct peaks in the
z-axis data, which were easily identified and marked. These sensor
peaks corresponded to reversal points in the oscillation, which were
marked on the video.

Frames labeled as “unknown” were initially used by human
annotators for instances where the arm was out of view or when it was
unclear whether the movement was functional or non-functional.
However, these frames were later excluded before the training, leaving
the ground truth with only two labels: “functional” and
“non-functional” After synchronization with the accelerometry data,
the corresponding accelerometry points associated with the
“unknown” labels were also removed. Then, the ground truth with 2
labels was used along with the raw accelerometry data for training an
integrated deep learning model, specifically a Convolutional Neural
Network (CNN) with Dense layers.

Frontiers in Artificial Intelligence
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Using a custom Python IDE, we organized the collected sensor
data in three different ways:

1 Paretic arm dataset: Comprising Xx;, v, z, dimensions using
paretic arm labels

2 Non-paretic arm dataset: Comprising X,, V», Z, dimensions
using non-paretic arm labels

3 Combined arms dataset: Merging both arms’ data (x,, y;, 2, X,,
Y2 2, dimensions) using paretic arm labels

The combined dataset incorporates data from both arms to
capture a more comprehensive range of movement patterns. We then
defined each data point as a 2-s sequence of sensor data. This approach
yielded the following datasets:

13,967 functional and
non-functional data points

2 Non-paretic arm dataset: 28,105 functional and 5,224
non-functional data points

3 Combined dataset: 13,923 functional and
non-functional data points

1 Paretic arm dataset: 19,168

19,075

To maintain consistency, we excluded any data that did not
conform to the 2-s sequence structure from our analysis. This method
potentially truncates incomplete segments at the end of the sequence,
which explains the slight variations in the final sample counts while
preserving the time-series structure of the data, as seen in the paretic
arm dataset and the combined dataset.

2.2 Network architecture

As depicted in Figure 2, our deep learning model utilizes CNNs
with dense layers to classify both functional and non-functional arm
movements using pre-processed raw accelerometry data. CNNs are
specialized deep neural networks that process and analyze different
data types. They are highly effective in image recognition and
computer vision tasks due to their ability to capture spatial hierarchies.
The key components of CNNs include convolutional layers that apply
filters to produce feature maps, activation functions such as ReLU to
introduce non-linearity, pooling layers to downsample feature maps,
dense layers for high-level reasoning, and dropout for regularization.
These elements enable CNNs to efficiently learn and detect various
features within images, reducing the number of parameters through
parameter sharing and capturing spatial dependencies through local
receptive fields.

While accelerometry data is fundamentally temporal,
CNN-based models have demonstrated effectiveness in capturing
local temporal-spatial patterns and hierarchical features within
fixed-length accelerometry segments, making them particularly
suitable for our classification tasks. Prior research comparing neural
architectures for accelerometry-based human activity recognition
(HAR) has shown that CNNs often achieve superior or comparable
accuracy relative to recurrent neural networks (RNNs) such as
LSTMs, while requiring less training time and fewer computational
resources (Hammerla et al., 2016; Ignatov, 2018). LSTM-based
models, though excellent at modeling long-range temporal
dependencies, are generally more computationally demanding and
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prone to overfitting with relatively smaller or fixed-length datasets
typical in stroke rehabilitation research. Preliminary experiments
conducted during the early stages of our study showed that CNN
architecture outperformed basic LSTM models in terms of validation
accuracy and computational efficiency for short-duration (e.g., 2-s)
accelerometry windows, consistent with findings in the literature
(Bochniewicz et al., 2017; Lum et al., 2020). Transformer-based
models, although powerful for processing sequential data, typically
require extensive training data to prevent overfitting and fully
demonstrate their potential (Vaswani et al., 2017). Given the limited
size and diversity of available stroke rehabilitation data, CNN
architectures combined with dense layers offer a robust and
computationally efficient alternative, capable of capturing essential
local and global features without the high data demands associated
with transformer-based approaches.

The proposed architecture is designed to capture both local and
global features from the data. CNN excels at extracting local features,
spatial, and temporal hierarchies, while Dense layers integrate and
map these features to the final output, enabling the modeling of
complex global patterns and decision boundaries. This combination
enhances the model’s ability to learn detailed and hierarchical features,
improving its accuracy and robustness in classifying activities. The
integration of CNN with Dense layers improves both classification
accuracy and training efficiency, particularly in distinguishing
between non-functional (NF) and functional (F) movements of the
paretic arm. Dense layers play a critical role in consolidating the
extracted features and mapping them to output classes, enabling the
network to model complex relationships and decision boundaries. By
leveraging both local feature extraction and global pattern integration,
the architecture becomes more robust and less prone to overfitting.
This design is especially well-suited for applications such as human
activity recognition, gesture recognition, and other domains where
precise activity classification is critical. Thus, it provides a powerful
framework for developing models that can accurately and efficiently
classify various activities from complex data inputs.

10.3389/frai.2025.1547127

Batch normalization, kernel regularization with 12, and dropout
are used between layers to prevent overfitting and stabilize the training
process. Batch normalization normalizes each layer’s inputs by
adjusting and scaling the activations, reducing internal covariate
shifts, and improving gradient flow. Dropout randomly sets a fraction
of the input units to zero during training, preventing the network
from becoming too reliant on specific neurons and ensuring
better generalization.

To evaluate the influence of three data configurations, we trained
and built three models:

Paretic Arm Model: The proposed network was trained solely
with paretic arm data

Non-Paretic Arm Model: The proposed network was trained
solely with non-paretic arm data

Combined Arms Model: The proposed network was trained
with merged data from both arms

These experimental configurations allow us to compare models’
performance across different data scenarios and assess the potential
benefits of incorporating data from both arms in the analysis.

Figure 2 illustrates the proposed neural network architecture for
classifying arm movements from accelerometry data. The network is
structured into three main stages: feature extraction, feature
aggregation, and classification. In the feature extraction stage, the
input consists of preprocessed accelerometry data. It is passed through
two Conv2D blocks. The first convolutional block employs 16 filters
with a 3 x 3 kernel size, followed by batch normalization, ReLU
activation, and a 20% dropout layer to mitigate overfitting. The second
block is similar but uses 32 filters, again followed by batch
normalization, ReLU activation, and another 20% dropout. These
convolutional layers are designed to capture local spatial and temporal
patterns in the accelerometry signals. The feature aggregation stage
begins by flattening the output of the last convolutional layer. This is
followed by two Dense layers, each containing 64 units. Both dense

G Eilade Dense Layer
Conv2D
kernel_size = (3.3) 64 Units
padding = ‘same’
[ Batch Normalization ]
[ ReLu
[ ReLu ]
] ©° Q Il I
- —_ - = 1
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FIGURE 2
The proposed neural network architecture for classifying arm movements.
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layers use ReLU activation, kernel L2 regularization (4 = le-3) to
prevent overfitting, and are followed by dropout layers with a 30%
dropout rate. These layers enable the learning of higher-level feature
representations from the extracted signal patterns. The final
classification stage consists of a single layer with a sigmoid activation
function that outputs a probability value representing the likelihood
of the movement being functional or non-functional. The model was
trained using a batch size of 64 for up to 700 epochs. A learning rate
scheduler was applied to reduce the learning rate by a factor of 0.1 if
the validation loss did not improve for 10 consecutive epochs. Early
stopping was also used, with a patience of 20 epochs, to halt training
if no improvement was observed, thereby preventing overfitting.
Detailed hyperparameter settings are listed in Table 3.

2.3 Model implementation and evaluation

For implementation, we utilized the TensorFlow2 and Keras
frameworks (Bisong, 2019). TensorFlow2 is an open-source deep
learning library developed by Google that provides a flexible and
comprehensive ecosystem for building and deploying deep learning
models. Keras is a high-level API for neural networks, written in
Python and capable of running on top of TensorFlow, that simplifies
the process of building and training deep learning models. The
accelerometry data were normalized using RobustScaler from Scikit-
learn (Pedregosa et al., 2011), which is particularly effective in
handling outliers by removing the median and scaling the data
according to the interquartile range, thus making it robust to
anomalies. Robust Scaler equation:

Xscaled = IQR

where:

« X s the original data point

o Q2 is the median of the data

« IQR is the interquartile range, calculated as Q3 — Q1, where Q1
is the first quartile (25th percentile) and Q3 is the third quartile
(75th percentile).

Thus, the transformed data X, .4 has its median centered around
zero and is scaled according to the interquartile range, which helps
mitigate the influence of outliers.

Performance evaluation of the intrasubject model, i.e., within-
subject model, was conducted using 5-fold cross-validation. In this
process, the data for each subject was divided into five equal parts, or
“folds” The model was trained on four of the five folds, with the
remaining fold serving as the test set. This process was repeated five
times, using a different fold as the test set, ensuring that every part of
the data was used for both training and testing. The results from the

TABLE 3 Hyperparameters used in model training.

Parameter name Batch size Kernel

Val 64

Activation(“Relu”) L2(1e-3)

10.3389/frai.2025.1547127

five iterations were then averaged to provide a robust assessment of
the model’s performance for each subject.

In contrast, performance evaluation of the intersubject model, i.e.,
across-subject model, was conducted using leave-one-out cross-
validation, where one subject was left out as the test set while the
model was trained on the remaining subjects. This process was
repeated for each subject, thoroughly assessing the models
performance across different subjects.

Additionally, we employed ReduceLROnPlateau, a callback in
Keras that monitors quantity and reduces the learning rate by a factor
of 0.1 if no improvement is seen for a ‘patience’ number of epochs,
starting from le-3 and adjusting every 10 epochs. Early stopping was
used to prevent overfitting by monitoring validation accuracy and
stopping the training process once performance ceased to improve for
every 20 epochs, preserving the best weights encountered during
training. This comprehensive approach was adopted to ensure robust
model training and accurate assessment of functional and
non-functional movements in stroke rehabilitation.

The model was built and trained on Paperspace CloudServer. This
study evaluated model performance using two primary metrics:
accuracy and F1 scores for classifying non-functional and functional
arm movements. Accuracy measures the overall correctness of the
model’s predictions, representing the proportion of correct predictions
(true positives and true negatives) among all predictions. F1 scores
offer a balanced assessment by considering both precision (the
accuracy of positive predictions) and recall (the ability to identify all
positive instances correctly), which is particularly valuable in subjects
with low functional use.

3 Results

Tables 4, 5 report the model performance metrics as mean +
standard deviation, conveying both the central tendency and the
variability in the model’s performance across subjects. Table 4
summarizes several performance metrics for the intrasubject model
trained with the paretic arm, non-paretic arm dataset, and combined
arms datasets. Note that subject 28, who exhibited no functional use,
was excluded from the intrasubject modeling but included in the
intersubject modeling.

The intrasubject model performs well for the paretic arm, with a
training accuracy of 0.96 +0.03 and a validation accuracy of
0.90 + 0.05. For non-functional movement detection, the validation
F1 score is 0.89 + 0.08, while functional movement detection yields a
lower F1 score of 0.81 + 0.18. The increased variability in functional
movement F1 scores is primarily attributed to three stroke survivors
with more severe impairments, leading to imbalanced datasets where
less than 10% of movements were functional. Specifically, subjects 3,
22, and 25 had functional use of 5.8, 3, and 7.6%, respectively. Their
validation functional movement F1 scores were 0.19 + 0.12, 0.52 +
0.34, and 0.20 + 0.27, respectively.

Epochs Learning rate Early stopping
Adam (1e-3) Factor = 0.1
700 Patience = 20
Patience = 10
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TABLE 4 Comparison of intrasubject model performance metrics for paretic arm, non-paretic arm, and combined arms.

Training Validation Training F1 Validation F1 Training F1 Validation F1
accuracy accuracy (+std)  score for NF score for NF score for F score for F
(+std) class (+std) class (+std) class (+std) class (+std)
RF - Paretic arm 1.00 £ 0.00 0.91 +0.04 1.00 £ 0.00 0.90 + 0.06 1.00 £ 0.00 0.81+0.19
RF - Non-paretic
0.99 +0.02 0.96 + 0.06 0.99 +0.03 0.83 £0.12 0.99 +0.02 0.97 £ 0.04
arm
RF - Combined
1.00 £ 0.00 0.92 +0.03 1.00 £ 0.00 0.90 + 0.06 1.00 £ 0.00 0.83£0.19
arms
Paretic arm 0.96 +0.03 0.90 +0.05 0.95 +0.05 0.89 +0.08 0.90 £0.15 0.81£0.18
Non-paretic arm 0.97 +0.02 0.96 + 0.04 0.90 +0.11 0.85+0.13 0.98 +0.02 0.97 £0.03
Combined arms 0.98 +0.02 0.91 +0.04 0.97 +0.03 0.90 + 0.06 0.94 +0.11 0.84 +0.14

TABLE 5 Comparison of intersubject model performance metrics for paretic arm, non-paretic arm, and combined arms.

Validation
Accuracy (+std)

Training

Accuracy
(+std)

Training F1
score for NF
class (+std)

Validation F1
score for NF
class (+std)

Validation F1
score for F
class (+std)

Training F1
score for F
class (+std)

RF - Paretic arm 1.00 = 0.00 0.68 £0.12 1.00 = 0.00 0.67 £0.16 1.00 £ 0.00 0.58 £0.20
RF - Non-paretic

0.99 £ 0.00 0.89 £0.07 0.98 £ 0.00 0.57 £0.20 0.99 +£0.00 0.93 £0.05
arm
RF - Combined

1.00 = 0.00 0.72£0.10 1.00 = 0.00 0.72£0.16 1.00 £ 0.00 0.61 £0.19
arms
Paretic arm 0.79 £0.03 0.79 £0.06 0.80 £ 0.06 0.74 £0.16 0.73 £0.07 0.67 £0.18
Non-paretic arm 0.93+£0.03 0.89 £ 0.04 0.70 £0.15 0.55+0.23 0.96 +0.02 0.94+£0.03
Combined arms 0.91 £0.02 0.88 £0.10 0.86 £ 0.04 0.63 £0.35 0.92+0.03 0.88 £0.15

TABLE 6 Effect of SMOTE on intrasubject model performance for paretic and combined arm models for three imbalance subjects.

Model Subject #  Functional Original data with SMOTE (F/NF = 0.5)
use
Accuracy F-Score F-Score Accuracy F-Score F-Score
(F) (NF) (F) (NF)

3 0.058 0.95 +0.00 0.19+0.12 0.97 +0.01 0.94 +0.01 0.32 +0.08 0.96 + 0.01
Paretic arm 22 0.030 0.98 +0.01 0.52 +0.34 0.99 + 0.00 0.99 +0.01 0.61 +0.39 0.99 +0.01

25 0.076 0.96 +0.01 0.20 +0.27 0.98 + 0.00 0.97 +0.01 0.28 +0.38 0.98 +0.01

3 0.058 0.96 +0.01 0.41+0.28 0.98 +0.01 0.95 +0.01 0.46 +0.19 0.98 +0.01
Combined

22 0.030 0.98 +0.01 0.57 +0.22 0.99 +0.00 0.98 +0.01 0.57 +0.22 0.99 +0.00
arms

25 0.076 0.97 +0.01 0.25+0.25 0.98 + 0.00 0.97 +0.01 035+ 0.36 0.98 + 0.00

Several strategies can mitigate this imbalance, including
upsampling, synthetic minority oversampling (SMOTE; Chawla et al.,
2002), and class weighting. Table 6 illustrates performance
improvements using SMOTE, where the minority class size is set to
50% of the majority class, resulting in a functional use increase to
33.3%. After applying SMOTE, the validation F1 scores for these
subjects improved to 0.32 + 0.08, 0.61 + 0.39, and 0.28 + 0.38,
respectively. While SMOTE enhances results compared to the original
data, the limited functional data still constrains the model’s
generalizability and stability. Removing these three subjects from our
analysis improves the functional movement F1 score to 0.94 + 0.05 for
training and 0.85 £ 0.10 for validation. Model performance also
improves for the combined arms dataset in both training and
validation. Non-functional movement detection achieved a validation
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F1 score of 0.90 + 0.06, whereas functional movement detection
showed more variability, with a validation F1 score of 0.84 + 0.14.

Compared to the RF baseline, as shown in Table 4, the proposed
model exhibits similar validation accuracy for the paretic arm
(0.90 £ 0.05 vs. 0.91 + 0.04) and non-paretic arm (0.96 + 0.04 vs.
0.96 + 0.06) but shows improved validation F1 scores for functional
movements in the combined dataset (0.84 +0.14 vs. 0.83 + 0.19).
Although CNN improvement is not significant, the CNN model
operates directly on raw accelerometer data, bypassing the need for
handcrafted features required by RF models, which may
be advantageous with larger datasets.

Table 5 presents the same set of performance metrics for the
intersubject model among three datasets: paretic arm, non-paretic
arm, and combined arms. Across all datasets, the intersubject

frontiersin.org


https://doi.org/10.3389/frai.2025.1547127
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Tran etal.

models show a common trend where training accuracy and F1
scores are higher than their validation counterparts. The model
trained on the paretic arm data performs consistently with training
of 0.79+0.03 and 0.79 +0.06,
respectively. However, it shows lower F1 scores for functional

and validation accuracies

movements, particularly in validation, with a score of 0.67 + 0.18,
indicating some variability in classifying paretic arm movements.
The non-paretic arm model demonstrates consistently higher
accuracy and F1 scores, particularly for functional movements. It
achieves a training accuracy of 0.93 + 0.03 and a validation accuracy
of 0.89 + 0.04. It excels in classifying functional movements, with
high F1 scores in both training at 0.96 + 0.02 and validation at
0.94 + 0.03 but shows lower performance for non-functional
movements. These results reflect the predictability and consistency
of movement patterns in the non-paretic arm, though the lower F1
scores for non-functional movements indicate greater challenges in
capturing these patterns. The combined model, which incorporates
data from both arms, performs well overall, achieving a training
accuracy of 0.91 + 0.02 and a validation accuracy of 0.88 + 0.10,
respectively. This model maintains high F1 scores for functional
movements while improving on the classification of non-functional
movements compared to the non-paretic arm model alone. These
results suggest that incorporating bilateral data provides a richer
feature set, enabling the model to generalize more effectively across
different movement types, though the broader variability in
validation scores underscores the complexity of generalizing
across subjects.

Compared to RE the proposed CNN model achieved substantially
higher validation F1 scores for functional movements in the paretic
arm (0.67 + 0.18 vs. 0.58 + 0.20), non-paretic arm (0.94 + 0.03 vs.
0.93 £ 0.05), and especially the combined arms dataset (0.88 + 0.15 vs.
0.61 +0.19).

10.3389/frai.2025.1547127

These results underscore the combined arms model’s capacity to
leverage richer bilateral features, providing enhanced robustness and
improved generalization. However, maintaining balanced datasets
remains crucial for achieving consistently high performance across
all subjects.

The box plots in Figures 3-5 illustrate three different statistical
and performance metrics based on three different training datasets:
the paretic arm, the non-paretic arm, and the combined arms dataset.

Figure 3 shows the box plots of model accuracy for 3 different
datasets. The non-paretic arm model consistently performs better
in both the training and validation phases than the other 2 models.
The median training accuracy reaches 94%, while the validation
accuracy is approximately 90%. This high level of performance
with small variability suggests that the non-paretic arm movement
is more predictable and has consistent movement patterns, making
it easier for the model to learn from. Additionally, the smaller
range of variability in training and validation accuracies indicates
that the model performs reliably and robustly. The combined
dataset, which includes data from both the paretic and non-paretic
arms, also shows strong results. The median training accuracy is
around 91%, while the validation accuracy is about 90%. The
combined data from both arms seems to provide a richer and more
comprehensive dataset, enabling the model to generalize well
across different types of movements. The slightly broader range of
validation accuracies in this dataset suggests that while the model
is robust, it benefits from the diversity of data, enhancing its ability
to handle variations in movement patterns from both arms. This
suggests that leveraging bilateral data can be an effective approach
for enhancing model accuracy and generalization. The paretic arm
model, which represents movements from the paretic arm, exhibits
median training and validation accuracies of approximately 79 and
78%, respectively. While slightly lower than the non-paretic and
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combined datasets, these accuracies still reflect solid model
performance, especially given the inherent complexities and
variability in the movement data from stroke-paretic limbs. The
model’s ability to achieve these accuracies suggests it is effectively
learning from the more challenging data, and the consistent
performance across training and validation phases indicates that
the model is generalizing well to unseen data.

Frontiers in Artificial Intelligence

Figure 4 shows the box plots of model F1 scores for non-functional
movements for 3 different datasets. The non-paretic arm model
consistently performs well during training, with a median F1 score of
around 0.69 and a relatively narrow range, indicating stable performance
across different training iterations. However, in the validation phase, the
median F1 score drops to approximately 0.61 with a wider range of
variability. This suggests that while the model can reliably identify
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non-functional movements during training, it struggles more during
validation, potentially due to the more subtle or less distinct movement
patterns of the non-paretic arm compared to the paretic arm. The
combined model exhibits the highest performance overall in terms of
F1 scores for non-functional movements. The training F1 score reaches
a median of about 0.86, indicating that exposure to a diverse set of
movement patterns enables the model to learn and classify
non-functional movement more effectively. During validation, the
combined model maintains a higher median F1 score of around 0.79,
outperforming the individual models. This robustness suggests that
leveraging bilateral data improves the model’s ability to generalize,
making it more adaptable to different non-functional movement
patterns. The paretic arm model exhibits solid performance, particularly
in training, with a median F1 score of around 0.81. This outcome
suggests that the model effectively learns from the more variable and
complex data associated with the paretic arm’s movements. In the
validation phase, the median F1 score remains consistent at
approximately 0.79, though with a broader spread, indicating some
variability. This variability suggests that, while the model generally
performs well in detecting non-functional movements in the paretic
arm, certain validation instances pose additional challenges. Overall, the
paretic arm model provides a strong basis for training, but additional
strategies may enhance its generalization in validation.

Figure 5 shows the box plots of model F1 scores for functional
movements for 3 different datasets. The non-paretic arm model
performs exceptionally in detecting functional movements during the
training and validation phases. The training F1 scores for this model are
consistently high, with a median of around 0.95 and minimal variability.
This indicates that the model is highly effective at learning the pattern
associated with functional movements in the non-paretic arm. During
validation, the F1 scores remain robust, with a median of nearly 0.94,
indicating strong generalization capabilities. The narrow range of these
scores further underscores the model’s reliability in identifying
functional movements when applied to non-paretic arm data. The
combined model, which includes data from both the paretic and
non-paretic arms, also demonstrates strong performance in detecting
functional movements. The training F1 scores for the combined model
have a median of around 0.92, suggesting that the model benefits from
the richer and more varied feature set provided by integrating data from
both arms. This improved performance carried over into the validation
phases indicates that using bilateral data enhances the learning process,
allowing the model to generalize effectively across varied conditions.
The paretic arm model shows solid, though slightly lower, performance
in detecting functional movements compared to the non-paretic arm
and combined models. The training F1 scores for this model have a
median of around 0.74, suggesting that, while the model effectively
learns from the paretic arm data, the variability inherent in post-stroke
movements poses certain challenges. During validation, the median F1
score drops slightly to around 0.70, with a broader spread of scores,
which may reflect the increased complexity and variability of functional
movement patterns in the paretic arm. Despite this, the mode[’s ability
to maintain relatively high F1 scores indicates it can effectively classify
functional movements, even in more challenging datasets.

Paired statistical comparisons between training and validation
performance indicated significant discrepancies across datasets and
metrics. For classification accuracy, the difference was not statistically
significant for the paretic arm model (p = 0.8923) or the combined arms
model (p = 0.0907) but was highly significant for the non-paretic arm
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model (p =1.695 x 1077). Regarding the F1 score for non-functional
movements, no significant difference was observed for the paretic arm
model (p = 0.103), whereas significant differences were found for the
non-paretic (p = 1.85 x 10~°) and combined arms models (p = 0.00043).
In contrast, the F1 score for functional movements revealed significant
differences for the paretic (p = 0.038) and non-paretic arm models
(p =0.00046), while the combined arms model did not show a
statistically significant difference (p = 0.097). These findings suggest that
models trained on non-paretic arm data may be more susceptible to
overfitting, as evidenced by substantial performance drops from
training to validation, while models trained on paretic and combined
arms data exhibited more stable generalization.

Opverall, the figures highlight the relative strengths of each dataset
in training and validating models for classifying arm movements. The
analysis of performance metrics reveals that the non-paretic arm
dataset consistently provides higher accuracy and F1 scores, reflecting
the stability and predictability of the movement patterns it represents.
The combined dataset, which merges data from both arms, also
performs exceptionally well, underscoring the value of using a more
comprehensive dataset that captures a wider range of movement
characteristics. Adding these features significantly enhances the
model’s overall effectiveness, especially in training, and improves
generalization, though some variability remains. While presenting
more of a challenge, the paretic arm dataset still results in strong
model performance, demonstrating the model’s capability to learn and
generalize from more complex and variable data. These findings
underscore the importance of leveraging comprehensive datasets and
incorporating diverse features to optimize model robustness and
accuracy, particularly in the context of complex movement
classification tasks in stroke rehabilitation.

Table 7 reports the effect sizes (Cohen’s d) and corresponding 95%
confidence intervals for intersubject comparisons across three training
datasets: paretic arm, non-paretic arm, and combined arms. The
combined dataset, which integrates signals from both arms, yielded
moderate effect sizes across accuracy and F1 metrics, reflecting more
balanced generalization compared to the individual datasets. The
paretic arm dataset showed negligible differences between training
and validation performance (e.g., accuracy d = —0.025), suggesting
consistent generalization but limited variability in movement patterns.
By contrast, the non-paretic dataset exhibited large effect sizes for
accuracy (d=1.162) and F1 scores, indicating strong training
performance but a marked drop during validation, consistent with
overfitting. The combined dataset produced intermediate results, with
reduced overfitting compared to the non-paretic case and improved
stability relative to the paretic case. These findings indicate that
leveraging both paretic and non-paretic signals can capture a wider
spectrum of movement characteristics, supporting more robust and
generalizable classification of upper extremity function.

4 Discussion
4.1 Interpretation of results

The intrasubject models perform very well when trained with
the combined arms data. The paretic arm model shows a higher

variability in performance due to data imbalance and subject-
specific movement patterns. Note that the accuracy and F1 scores
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TABLE 7 Comparison of intersubject statistical metrics for paretic arm, non-paretic arm, and combined arms.

Model comparison Metrics Cohen'sd 95% confidence intervals
Accuracy —0.025 [—0.502, 0.452]
Train - Paretic vs. Val - Paretic F1 Functional 0.429 [—0.053, 0.912]
F1 Non-functional 0.349 [-0.131, 0.830]
Accuracy 1.162 [0.647, 1.678]
Train - Non-Paretic vs. Val - Non-Paretic F1 Functional 0.809 [0.313, 1.305]
F1 Non-functional 0.760 [0.266, 1.254]
Accuracy 0.410 [-0.072, 0.892]
Train - Combined vs. Val - Combined F1 Functional 0.415 [-0.067, 0.897]
F1 Non-functional 0.908 [0.407, 1.409]

were improved if the three subjects with imbalanced data
were removed.

The intersubject model demonstrated improvement in accuracy
and F1 scores across different datasets using raw accelerometry data.
The trained model using the paretic arm data achieved a training
accuracy of 79% and a validation accuracy of 79%. These results show
an improvement over the previously reported validation accuracy of
74.2% using the paretic arm data by (Lum et al., 2020). Achieving this
level of accuracy is encouraging, given the inherent variability and
complexity associated with movement data from stroke-paretic limbs,
as well as the limited training data available. In comparison, the model
trained on the non-paretic arm displayed higher performance, with a
validation accuracy of 89%, suggesting that the more predictable and
consistent movement patterns of the non-paretic arm are easier for the
model to learn and generalize from. The combined arms model
significantly improved the performance of the paretic arm model. With
this integrated dataset, the model achieved a validation accuracy of
88%, surpassing the accuracy of the model trained solely on the paretic
arm data. The F1 scores for non-functional movements in the
combined dataset improved to 0.86 during training, compared to 0.80
for the paretic arm alone, highlighting the benefits of a richer feature
set. However, the validation F1 score for non-functional movements
showed greater variability, indicating that while the additional data
enhances the model’s learning capacity, it also introduces complexity
that may complicate generalization. The combined dataset maintained
strong validation F1 scores of 0.88 for functional movements,
demonstrating the model’s effective generalization across various
movement conditions.

These results also align with the broader trends observed in
machine learning applications within healthcare (Figueroa et al., 2012;
Beam and Kohane, 2018; Li et al., 2023; Nunes et al., 2024) where
models often perform better with more consistent and less variable
data. The stable movement patterns of the non-paretic arm provided a
more stable foundation for training, which likely contributed to the
model’s enhanced performance in both the training and validation
phases (Hossain et al., 2023).

Additionally, this study included a larger sample of 35 subjects
across a wider range of impairment severities and incorporated three
more tasks per subject for the 25 newly recruited subjects compared to
the 10 subjects in (Lum et al., 2020). This larger, more diverse dataset
may have also contributed to our model’s higher validation accuracies
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for both the paretic arm and combined arms models, underscoring its
improved generalizability.

In addition, the training duration, measured by the number of
epochs needed to reach the optimal performance, is shorter for the
non-paretic arm model (e.g., 50-75 epochs) than for the paretic arm
model (e.g., ~100 epochs). This faster convergence may suggest that the
model learns more consistent or generalizable patterns from the
non-paretic arm data, possibly due to reduced movement variability or
imbalances in that dataset.

This study utilizes raw accelerometry signals as input, which
enables the model to learn rich, hierarchical representations directly
from the data; however, this approach results in more complex and less
interpretable deep learning models. To enhance interpretability and
transparency, future work will integrate advanced attribution methods
such as saliency maps, feature importance analyses, integrated
gradients, and related techniques. These approaches will be able to
identify and visualize the temporal and spatial features that drive the
classification of functional versus non-functional movements, thereby
fostering clinical trust and supporting model validation and refinement.

In our current model training, hyperparameters were chosen
through an iterative, empirical process informed by pilot experiments on
a subset of data. Moving forward, we plan to adopt more sophisticated
hyperparameter optimization techniques, such as Bayesian optimization,
which efficiently balance exploration and exploitation of the
hyperparameter space. This probabilistic approach builds a surrogate
model of the objective function, guiding the search for optimal
hyperparameters to improve model accuracy while minimizing
computational cost. Integrating such automated optimization will
further enhance training robustness, reduce overfitting, and accelerate
convergence, especially as datasets grow in size and complexity.

4.2 Practical implications

The rationale for using raw accelerometry data lies in its ability to
capture complex movement patterns, which are essential for accurately
assessing UE movements. We gain a comprehensive source of
information by utilizing raw data, free from subjective interpretations,
such as patient self-reports or other clinical assessments. We obtained
highly accurate and reliable classifications by processing and analyzing
accelerometer data using advanced models like CNNs combined with

frontiersin.org


https://doi.org/10.3389/frai.2025.1547127
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Tran etal.

Dense layers. This approach supports a more objective and quantifiable
assessment of functional and non-functional movements, thereby
enhancing the overall effectiveness of stroke rehabilitation monitoring.

The findings of this study have important implications for creating
and developing personalized rehabilitation strategies. The high
accuracy and stability of our models have the potential to enable more
precise monitoring of UE functionality, allowing clinicians to tailor
interventions based on individual performance metrics. In clinical
practice, these models can be used to provide real-time feedback and
facilitate long-term monitoring, thereby improving the quality of
rehabilitation programs. The demonstrated robustness of the models
also ensures reliability across different cases, which is critical for real-
world applications where patient data can vary widely.

Although our architecture is relatively compact, we have not
systematically benchmarked the computational efficiency and
feasibility of deploying these models in real-time clinical or home
environments. The model processes data in 2-s windows using a
modest number of convolutional filters and dense layers, making it
computationally efficient enough in principle for deployment on
modern mobile or edge devices. However, real-time deployment on
resource-constrained platforms such as wearable devices or
smartphones requires explicit profiling to evaluate inference latency,
energy consumption, and memory usage under real-world conditions.
Prospective studies should also assess sensor runtime under different
sampling/transmission schemes and develop strategies to maximize
adherence, such as calibration routines, wear-time monitoring, and
user feedback.

Despite the promising results, the study has limitations. Although
the dataset (35 subjects) is larger than previous studies (10 subjects)
and involves more tasks (7 tasks in total), it may still be insufficient and
could restrict the generalizability of the models. Deploying deep
learning models for upper extremity movement classification in real-
world environments entails several challenges that may impact their
reliability and generalizability. Sensor placement variability is one of
the most critical issues, as small differences in the orientation and
positioning of wrist-worn sensors can introduce significant signal
inconsistencies and reduce model performance. To address this, data
collection could incorporate a standardized calibration procedure, such
as holding the arm in a standardized posture prior to data collection,
aligning sensor axes, and normalizing orientation. Another important
consideration is signal noise and artifacts, which can arise from
environmental vibrations or electromagnetic interference.
Incorporating real-time signal filtering, a robust preprocessing pipeline,
and anomaly detection algorithms may help mitigate these effects and
preserve data quality.

Furthermore, differences across patient populations present
challenges for model generalization, as stroke survivors exhibit
substantial variability in impairment severity, compensatory strategies,
and daily activity patterns. To improve performance across diverse
cohorts, future work should prioritize the collection of larger, multi-
center datasets representing a broad spectrum of functional abilities
and demographic characteristics. Finally, recognizing that activities
performed in home and community settings are inherently more
variable than scripted rehabilitation tasks, it will be essential to conduct
prospective validation studies under ecologically valid conditions.
Addressing these challenges systematically will be critical to developing
reliable, scalable systems that can support continuous monitoring and
personalized rehabilitation in real-world practice. Additionally,
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exploring other deep learning architectures and hyperparameter
tuning could potentially improve performance. Incorporating
multimodal data, such as clinical assessments, might also improve the
model’s accuracy and robustness. Finally, the results of this study are
not generalizable to acute stroke settings, as all subjects were more than
6 months post-stroke. Additionally, generalization to patient
performance in the home and community will have to be demonstrated
with data collection in these environments.

5 Conclusion

This study demonstrated that deep learning models, particularly
those leveraging CNNs with Dense layers, can accurately and reliably
classify functional and non-functional arm movements in stroke
patients. The proposed models surpass previous benchmarks
in performance.

This research contributes significantly to stroke rehabilitation by
offering a robust and precise method for classifying arm movements
using raw accelerometry data. The findings highlight the potential of
advanced deep learning algorithms to enhance the monitoring and
assessment of UE functionality, which is essential for developing
personalized rehabilitation strategies.

We acknowledge key limitations in our study, including sensor
placement variability, noise/artifacts, and limited sample size. Small
variations in wrist sensor positioning can introduce significant signal
inconsistencies that may reduce model performance. Additionally, the
relatively small and heterogeneous dataset limits generalizability,
especially across diverse patient populations and real-world home
environments. Future work will focus on standardized calibration
procedures and collecting larger multi-center datasets to improve
model robustness and ecological validity.

Potential challenges related to sensor battery life, data transmission,
and user compliance must be carefully considered in real-world
deployments. Prospective studies should evaluate sensor runtime under
various sampling rates and data transmission schemes to identify optimal
configurations that balance performance and power consumption.

Strategies to maximize user adherence include implementing
calibration routines to ensure data quality, wear-time monitoring to
track device usage, and providing timely user feedback to encourage
consistent wear. Advanced power management techniques—such as
adaptive sampling, low-power modes, and efficient data communication
protocols—can significantly extend battery life in wearable devices.

Future work should integrate these approaches and explore
energy-harvesting technologies to sustain longer operational times,
ensuring reliability and user convenience during continuous
monitoring in clinical and home environments.

Opverall, the study underscores the potential for integrating deep
learning models into clinical practice for stroke rehabilitation. The
encouraging results set the stage for future advancements in real-time
rehabilitation monitoring and personalized intervention programs.
Further research should focus on expanding the dataset, exploring
additional data modalities, and refining model architectures to further
improve classification accuracy and robustness. Specifically, a
prospective study should pursue (1) prospective validation in home
and community environments to establish ecological validity; (2)
multi-center data collection across diverse populations, impairment
levels, and devices to ensure generalizability; and (3) model adaptation
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strategies, such as transfer learning or lightweight personalization, to
tailor models to specific patient cohorts. These steps will be essential
for building robust, widely deployable systems for upper extremity
movement classification in stroke rehabilitation.
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