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Randomization is a standard method in experimental research, yet its validity is 
not always guaranteed. This study introduces machine learning (ML) models as 
supplementary tools for validating participant randomization. A learning direction 
game with dichotomized scenarios was introduced, and both supervised and 
unsupervised ML models were evaluated on a binary classification task. Supervised 
models (logistic regression, decision tree, and support vector machine) achieved 
the highest accuracy of 87% after adding synthetic data to enlarge the sample size, 
while unsupervised models (k-means, k-nearest neighbors, and ANN—artificial 
neural networks) performed less effectively. The ANN model, in particular, showed 
overfitting, even with synthetic data. Feature importance analysis further revealed 
predictors of assignment bias. These findings support the proposed methodology 
for detecting randomization patterns; however, its effectiveness is influenced 
by sample size and experimental design complexity. Future studies should apply 
this approach with caution and further examine its applicability across diverse 
experimental designs.

KEYWORDS

randomization, experimental design, sample assignment, scenarios, machine learning 
(ML) model, classification performance, learning game

Introduction

When conducting experimental research, randomization of research participants is the 
most commonly used method, typically followed by a series of comparisons between at least 
two different groups of participants (Campbell and Stanley, 2015). A two-group comparison 
can be  referred to as dichotomization (DeCoster et  al., 2009; MacCallum et  al., 2002). 
Randomization can be based on participants’ demographic differences, such as gender (e.g., 
Chung and Chang, 2017) or game experience levels (e.g., Procci et  al., 2013). From the 
perspective of game design in educational contexts, students’ learning performance can also 
be compared after assigning them to play different types of games (e.g., two- versus three-
dimensional; Yilmaz and Cagiltay, 2016). A fair comparison in such a dichotomized setting 
can be expected if participants are appropriately assigned to one of the two game types in 
the experiment.

Machine learning (ML) models are broadly categorized into supervised (e.g., logistic 
regression, support vector machines) and unsupervised approaches (e.g., k-means clustering, 
artificial neural networks Verma et al., 2022). Both types are particularly valuable for studying 
game behavior in educational settings. For example, ML was applied to enhance the analysis 
of game-based learning data and to highlight the value of game behaviors (e.g., Järvelä et al., 
2020; Luan and Tsai, 2021). In experimental research, ML can serve as a novel approach to 
detecting randomization flaws, complementing conventional balance tests. While statistical 
methods such as the t-test and chi-square test are commonly used to examine the validity of 
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randomization, they may be  limited in addressing fluid, high-
dimensional, and nonlinear relationships among predictive factors 
(Choubineh et al., 2023). ML, by contrast, enables the detection of 
complex patterns across all data points in an experimental study 
(Verma et al., 2022). This research preliminarily explores the capability 
of ML models to classify well-randomized, dichotomized sample 
assignments. Successful classification is assumed to provide evidence 
of the validity of these assignments within the experimental design.

As researchers claim that their sample assignments are well-
randomized, the classification performance of ML, measured by 
accuracy rate and influenced by implementation settings, is expected 
to surpass a satisfactory threshold (e.g., 60% or higher; Zhang et al., 
2017). In a fully randomized experiment, ML models can evaluate the 
effectiveness of dichotomization in sample randomization. A high 
accuracy rate in classifying samples within a dichotomized 
experimental design reinforces the validity and reliability of claims 
regarding the random assignment process. In addition, verification 
through ML not only supports researchers’ claims but also enhances 
their academic credibility by demonstrating robust sample 
randomization in experimental studies.

This study raises the research question: Can ML models serve as 
a methodological validation tool to enhance researchers’ accountability 
in claiming proper randomization in experiments? It is hypothesized 
that supervised ML models will outperform unsupervised ones in 
classifying sample assignments, while feature importance analysis 
from unsupervised ML models will reveal key predictors of 
assignment bias. Both approaches can provide insights into the 
effectiveness of small sample sizes and within-group experimental 
designs. Unlike prior studies focusing on game analytics, the novelty 
of this study lies in validating the capability of both supervised and 
unsupervised ML models to examine randomization in 
experimental assignments.

The following sections begin with a review of psychology research 
literature on randomization in sample assignment, followed by a 
discussion of the classification capabilities of ML models. To address 
the proposed research question, a learning game featuring two distinct 
scenarios was introduced. A detailed description of the recruitment 
plan and methodology, including randomization procedures, data 
collection, implementation of various ML models, and analysis 
methods, is provided. The results of employing these ML models are 
presented and thoroughly discussed. Finally, the capability of ML 
models to enhance research validity and reliability in experimental 
studies, as well as to analyze various behaviors in learning games, 
is explored.

Related work

Randomization approaches in experimental 
design

Randomization is widely regarded as one of the most effective 
solutions for experimental design in psychological research (Campbell 
and Stanley, 2015; Pirlott and MacKinnon, 2016). Randomization can 
effectively neutralize participant characteristics (e.g., age and gender) 
and ensure a representative selection of participants from the research 
context (e.g., Chung and Chang, 2017; Pan and Ke, 2023; Procci et al., 
2013; Puolakanaho et al., 2020). Given the limitations of the research 
context, incorporating a control group becomes essential to rule out 

confounding factors (e.g., individual differences in personality and 
prior knowledge) within the experimental group, a design known as 
a randomized controlled design or trial (e.g., Puolakanaho et  al., 
2020). A within-subject design can also be  used to address 
confounding factors among research participants (Cohen and Staub, 
2015; Brauer and Curtin, 2018; Montoya, 2023). In this approach, 
participants’ characteristics can later serve as control variables during 
the data analysis stage to enhance the robustness of the findings 
(Campbell and Stanley, 2015; Bernerth and Aguinis, 2016).

In addition, sampling designs that consider population 
characteristics are also an effective approach to preventing prominent 
bias and confounding effects in the study context (Levy and 
Lemeshow, 2013; Lohr, 2021). This research method is crucial and 
widely used in large-scale educational studies, such as the Program for 
International Student Assessment (Organization for Economic 
Co-operation and Development, 2014) and Trends in International 
Mathematics and Science Study TIMSS (Martin et  al., 2016). The 
sampling weights provided by the experts of these large-scale studies 
can be  used by researchers who focus on providing meaningful 
suggestions for educational, political, or healthcare policies to generate 
generalizable findings for the broader population (Arıkan et al., 2020; 
Ertl et al., 2020; Laukaityte and Wiberg, 2018; Meinck, 2015; Rust, 
2014). Practitioner researchers can also model the sampling design 
using various statistical analyses (e.g., multilevel analysis) to identify 
the impact of the factors considered in the sampling design (Chiu 
et al., 2022; Laukaityte and Wiberg, 2018).

Independent researchers in some fields (e.g., education, neurology, 
psychology) often use small sample sizes to examine their theories 
(Francis et al., 2010; Lakens, 2022; Vasileiou et al., 2018). The within-
subject design is typically the most appropriate and convenient choice, 
offering higher statistical power (Lakens, 2022) despite potential 
carryover effects (e.g., fatigue and order effects, Montoya, 2023). A 
limitation is that researchers may struggle to determine the 
appropriateness of this design compared with the 
randomization design.

Classification performance of machine learning 
(ML) models

Machine learning models have gradually been used to analyze 
large datasets. Data come from online learning platforms, such as 
ASSISTment (Feng and Heffernan, 2007) and large-scale datasets, 
such as PISA (Organization for Economic Co-operation and 
Development, 2014) and TIMSS (Martin et  al., 2016). Learning 
analytics and educational data mining are the two general terms for 
research utilizing machine learning (ML) or artificial intelligence (AI) 
models to advance ideals in education or psychology, such as 
personalized learning or adaptive instruction (Heffernan and 
Heffernan, 2014; Khan and Ghosh, 2021; Zotou et  al., 2020). For 
example, affective computing can detect students’ affective status when 
engaging in learning or problem-solving using a computer (Baker 
et al., 2010; Järvelä et al., 2020).

ML models include two main categories: Supervised and 
unsupervised learning (Verma et al., 2022). Supervised learning relies 
on labeled data. Dichotomous data (e.g., correct vs. incorrect answers 
or gameplay sequences in this study) appear to be the basic, widely 
used criterion in ML (Goretzko and Bühner, 2022; Yeung and 
Fernandes, 2022). In the supervised learning model, the dataset was 
split into two parts: training and testing, with a split ratio of 80/20 
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(Bichri et al., 2024). With human-proved criteria, supervised learning 
is effective in training models by using labeled data to fit the final 
practical use (Alloghani et al., 2019; Verma et al., 2022). In other 
words, supervised learning increases ecological validity for the 
human world. Contrarily, without knowing any ground truth (i.e., 
labeled data), the unsupervised learning model aimed to identify 
patterns in the data points (Alloghani et al., 2019). Unsupervised 
learning viewed as more exploratory and data-driven (not based on 
criteria or theories) can still be useful in model training as long as the 
pattern could be  found from unlabeled data. Thus, unsupervised 
learning models are used to identify unknown categories, similar to 
exploratory factor analysis (EFA) in psychology and education (Cox 
et  al., 2020). The main difference between supervised and 
unsupervised learning models is whether labeled data are used 
during the training process (Verma et al., 2022). This distinction 
allows for the potential evaluation of the effectiveness of a within-
subject experimental design, which typically involves small sample 
sizes and only a few factors (e.g., gender), in a manner similar to that 
of a randomized design. To be  noted, the results obtained by 
unsupervised learning usually need further validation (Xie et al., 
2020; Zimmermann, 2020), just like the confirmation factor analysis 
to validate the results obtained by EFA.

Theoretical foundations for employing ML 
models in randomization validation

There are several ways to check whether samples have been 
randomly assigned into groups in an experiment (Bruhn and 
McKenzie, 2009; Campbell and Stanley, 2015). Common approaches 
include examining descriptive statics (e.g., mean, standard deviation, 
distribution shape via histograms or boxplots), running statistical tests 
(e.g., t-test, ANOVA, chi-square test), and creating a balance check 
table to list all relevant pre-treatment covariates, group means, 
p-values from statistical tests, and mean differences. However, 
traditional statistical tests are not always sufficient when sample 
characteristics are fluid and unstable over time (e.g., emotion, political 
inclination), when demographics involve high-dimensional data (e.g., 
brain neuron connectivity), or when unpredictable circumstances 
introduce nonlinear relationships during the experiment (e.g., bad 
weather, participant tardiness). While such complexities may 
be difficult for researchers to detect, various ML models can help 
uncover these patterns and provide supporting evidence (e.g., 
Choubineh et al., 2023). Researchers are encouraged to make effective 
use of ML techniques to generate classification results. These results 

can then be used to assess whether standardized randomization has 
reached an acceptable threshold (e.g., 60% or higher; Zhang 
et al., 2017).

In this exploratory research, ML models are employed to detect 
patterns or predictive relationships among data points collected from 
an experiment designed to undergo proper randomization. ML 
classifiers are expected to perform beyond chance levels (e.g., ~50% 
accuracy in a binary classification task). Grounded in mathematical 
principles, both classification and clustering algorithms can be used 
to evaluate whether the claim of dichotomized, randomly assigned 
samples is valid. If randomization is achieved, the performance of 
supervised ML models on classification tasks is expected to reach a 
satisfactory level, defined here as standardized ML performance 
metrics meeting a benchmark accuracy rate of at least 60%, with 
measures such as accuracy, precision, recall, and F1-score used to 
assess performance (Zhang et  al., 2017). It should be  noted that 
AUC-ROC and support were not included in this study, as the focus 
is on validating whether randomization was achieved, rather than on 
ranking quality (as in AUC-ROC) or the number of supporting cases 
in a binary classification (Verma et al., 2022).

Supervised ML models are expected to perform effectively in 
classifying participants into their assigned scenarios. Unsupervised 
ML models, by contrast, may identify patterns through clustering that 
appear to improve classification performance but risk overlooking the 
validity of the underlying claim. In other words, assignment bias may 
be detected through unsupervised ML models. Large differences in 
feature values across cluster centroids can indicate that specific 
features (e.g., demographic attributes) are driving group separation. 
Conversely, if substantial centroid differences emerge in unexpected 
features (e.g., attributes unrelated to participants), this may provide 
evidence of systematic assignment bias.

Methodologies

This exploratory study implements a fully randomized 
experiment with two scenarios. Two hypotheses are proposed, 
drawing on ML classification and clustering algorithms grounded in 
mathematical principles. Supervised ML is applied to labeled data 
(e.g., group assignments), enabling the model to map features to 
known labels. By contrast, unsupervised ML is employed to uncover 
latent structures or groupings in unlabeled data (e.g., clustering) 
(Figure  1). It is hypothesized that supervised ML will perform 

FIGURE 1

Research model.
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effectively under randomized conditions, and that clustering within 
unsupervised ML may yield even higher apparent classification 
performance (H1).

In unsupervised ML, large differences in feature values across 
cluster centroids may indicate that a given feature (e.g., a 
demographic attribute of participants) contributes significantly to 
group separation. Conversely, if such differences emerge in features 
where no separation is expected (e.g., attributes unrelated to 
participants), this may signal assignment bias (H2). By employing 
both classification and clustering algorithms, the proposed 
hypotheses aim to evaluate model performance under conditions of 
valid randomization.

H1: Supervised MLs achieve higher accuracy than unsupervised 
ones in detecting randomization flaws.

H2: Feature importance analysis reveals key predictors of 
assignment bias.

An experiment of learning direction game

This study employed Utility to develop a learning game with two 
distinct difficulty levels, as two scenarios used to test learning 
outcomes in the implementation of a fully randomized experiment. In 
the first scenario, participants used a 2D interface to guide a virtual 
agent through eight mazes, sequentially locating eight treasures 
(Figure 2a). In the second scenario, participants used a 3D interface 
to assist a different virtual agent in finding eight treasures by following 
assigned directions (Figure 2b). Both scenarios incorporated the same 
mathematical learning concept, i.e., the NSEW directional system, 
with a compass continuously displayed on the interface. Participants 
required some adaptation to orient themselves within the environment 
before gameplay. To enhance engagement, participants were 
encouraged to imagine themselves as the virtual agents while playing.

Each scenario included a time constraint: 100 s in the 2D interface 
and 240 s in the 3D interface. Participants’ performance was evaluated 
based on scores, with bonus points awarded for task completion 

within the allotted time. The maximum achievable score was 36 points 
in the 2D interface (eight treasures) and 80 points in the 3D interface 
(eight treasures).

Participants

An equal number of female and male undergraduates (all aged 
20 years) were recruited to minimize potential gender effects on 
learning performance in the game-based context. Participants were 
recruited from humanities-related disciplines (e.g., linguistics, 
philosophy, sociology), ensuring that their coursework did not require 
the use of information technologies. Prior to the experiment, a brief 
survey was administered to assess participants’ weekly gameplay 
frequency. In total, 12 participants (six female, six male) were recruited 
and randomly assigned to one of the two experimental scenarios. 
Randomization ensured balance across groups with respect to 
gameplay frequency: each group included two non-gamers, one 
seldom player, one occasional player, and two frequent players.

Data collection

All participants were instructed to collect as many treasures as 
possible in each interface of their assigned treatment. In addition to 
the total scores obtained at the end of the game, task completion time 
each interface and the time required to collect each treasure were 
recorded. As summarized in Table 1, a total of 22 data points were 
collected for each participant across the two interfaces. For subsequent 
analyses, all variables except gender were normalized using ratio-
based transformations to a 0–1 scale, ensuring a consistent basis for 
comparing the performance of different machine learning models.

Experimental procedures

To ensure the validity of randomized sample assignment, an equal 
number of female and male participants with comparable gameplay 

FIGURE 2

Learning direction game experimental scenarios designed in: (a) 2D and (b) 3D interfaces. This game was developed as part of the funded project 
(NSTC 110-2511-H-004-001-MY3).
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frequency levels from humanities-related fields were evenly distributed 
across two treatment groups. In Treatment 1 (labeled 2D3D), 
participants played the direction learning game starting with the 2D 
interface, followed by the 3D interface. In Treatment 2 (labeled 3D2D), 
the sequence was reversed, with participants starting on the 3D 
interface and then moving to the 2D interface.

Upon completion of the assigned sequence, data were collected on 
participants’ task completion times (speed in finding each treasure) 
and learning scores. As illustrated in Figure 3, both supervised and 
unsupervised ML models were developed using the dichotomized 
treatment assignments. In the supervised approach, the randomization 
sequence (2D3D vs. 3D2D) was explicitly provided as labels to 
facilitate learning. In contrast, unsupervised models attempted to 
recover the sequence structure directly from the experimental data. 
Binary classification performance was then evaluated to assess the 
extent to which ML models could validate the randomized 
experimental design.

To ensure consistency in comparison, the treatment assignment 
of each participant (i.e., group allocation by gender and gameplay 
frequency; see No. 1 ~ 2 in Table 1) was incorporated into the ML 
process. Performance scores (No. 3 ~ 20  in Table  1) and task 
completion times (No. 21 ~ 22 in Table 1) were split into training and 
test sets (80/20) for supervised model development, whereas in 
unsupervised model development these were treated as features. 
Because participants were randomly assigned according to the 
recruitment plan, which balanced gender and gameplay frequency 
across groups, the models could learn from both the equilibrium of 
group assignment and performance-related datapoints. To increase 
the effective sample size, synthetic data were generated by introducing 
random noise into existing data points.

Data analyses

According to Table 1, the participants’ demographics were clearly 
reported in the recruitment plan. The analyses were first conducted to 
compare differences in the participants’ learning scores and the time 
spent playing the game between the two groups. Descriptive analyses 
were performed using the original scores, providing the mean and 

standard deviation. An independent samples t-test was then 
conducted to determine which group had significantly higher learning 
scores. All data points, except for gender, were normalized for 
later analyses.

Supervised and unsupervised machine learning (ML) models 
were used to test the proposed hypotheses. These two types of models 
differ based on the presence of labels in the dataset (Verma et al., 
2022). Hypothesis testing referred to the ML performance on a binary 
classification task (Bichri et al., 2024). Model performance evaluation 
was based on standard classification metrics, including accuracy, 
precision, recall, and F1-score (Luan and Tsai, 2021; Zhang et al., 
2017). All metrics were expressed in percentage format to enable 
direct comparison of classification performance across models. Based 
on the literature, satisfactory learning performance in the classification 
task was defined as achieving metrics that exceeded a passing 
threshold of 60% (Bichri et al., 2024; Zhang et al., 2017), even though 
higher thresholds may be needed for robust validation. Notably, this 
study used Jupyter Notebook 6.5.4 and Python 3 to run all models. All 
models were expected to perform well by accurately classifying the 
samples into two groups (i.e., 2D3D vs. 3D2D), based on the data 
points listed in Table 1.

Commonly-used ML models were selected to test the hypotheses 
(Alloghani et al., 2019; Luan and Tsai, 2021; Verma et al., 2022). The 
representative supervised learning models employed in this study 
were logistic regression, decision tree, and support vector machine 
(SVM). The supervised learning models were trained and tested using 
an 80/20 split ratio (Bichri et al., 2024). Except for logistic regression, 
decision tree and support vector machine (SVM) are considered 
non-parametric algorithms. Logistic regression is a statistical linear 
model in which a coefficient is estimated for each variable. Decision 
trees recursively partition the feature space using a tree-like structure, 
consisting of root, parent, child, and leaf nodes; pruning may 
be applied when necessary to avoid overfitting (Alloghani et al., 2019). 
In contrast, SVM constructs optimal separating hyperplanes to 
maximize the margin between classes without assuming a specific data 
distribution (Prastyo et al., 2020). By incorporating kernel functions, 
SVM can transform a non-linear dataset into a higher-dimensional 
feature space, enabling the construction of a linear separation 
boundary and potentially improving performance compared to the 
basic linear SVM model. In addition, model performance varied 
depending on the values of random_state and other parameter settings 
(e.g., depth of tree, kernel type), reflecting the sensitivity of decision 
trees and SVM to initialization and hyperparameter choices.

The representative unsupervised learning models used in this study 
were k-means, k-nearest neighbor (KNN), and artificial neural networks 
(ANN). K-means is a centroid-based algorithm (Alloghani et al., 2019). 
The numbers of clusters could be decided and then tested to determine 
whether the highest accuracy rate had been achieved. The value for each 
cluster center could be obtained. The value was a mean score representing 
the importance of the data point. A random seed could be provided to 
ensure the output was stable in each run of the learning process for the 
model. KNN is also a non-parametric algorithm, meaning it does not 
involve model learning or make assumptions about the data distribution 
(Luan and Tsai, 2021). It operates as a supervised classification model. In 
the unsupervised learning phase, the only step is to assign the number 
of neighbors for each sample in the training dataset. However, when the 
data is labeled, the model can make accurate classification decisions and 
perform well on classification tasks. Finally, ANN can be used in both 

TABLE 1  All data points collected in each interface.

Data types Data points

Demographics No. 1: Gender

No. 2: Gameplay frequency

Learning scores No. 3: Total scores obtained in 2D 

interface

No. 4: Total scores obtained in 3D 

interface

No. 5 ~ 12: Scores obtained from 

eight tasks in 2D interface

No. 13 ~ 20: Scores obtained from 

eight tasks in 3D interface

Gameplay time usage No. 21: Total playing time in seconds 

in 2D interface

No. 22: Total playing time in seconds 

in 3D interface
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supervised and unsupervised learning contexts. This model extracts 
statistical properties or data features from the training dataset to inform 
learning. There are various approaches to running an ANN in an 
unsupervised manner. For example, an autoencoder can be used to help 
the model learn from vectorized data points (Song et  al., 2013). A 
clustering algorithm can also be used to the hidden layers of the network 
to identify patterns and groupings within the data.

Results

Participants’ raw gameplay scores and completion time spent were 
first analyzed to evaluate their performance. Various supervised and 
unsupervised machine learning (ML) models were then trained using 
normalized data points and gender information collected from the 
randomized sample assignment in the experiment. Finally, the 
proposed hypotheses were tested based on the classification 
performance of each model.

Learning scores and time usage in 
gameplay experiment

The 2D3D group achieved higher scores than the 3D2D group 
when playing the learning direction games on the 2D or 3D interfaces 
(Table 2). However, the difference in scores between the two groups 
was not statistically significant (only in 2D: t = 0.870, p = 0.413; only 
in 3D: t = 0.842, p = 0.612). In addition, the 2D3D group spent less 
time playing games on the 2D and 3D interfaces compared to the 
3D2D group. To be noted, this comparison result is helpful to the 
machine accurately classifying samples in the follow-up model 
development and learning processes.

Machine learning model performance on 
binary classification

This section outlines the approach used to implement each ML 
model, followed by detailed explanations of data entries and data 

processing procedures. Default parameter values provided by the 
original models were used to ensure the stability of the learning 
procedures. For instance, the random_state parameter in the Python 
Scikit-learn library was set to an integer based on the data size for 
certain machine learning models (e.g., decision tree, k-means,). 
Finally, the performance metrics were reported to evaluate each 
model’s performance on the binary classification tasks in this study. 
Table 3 presents a comprehensive comparison of the results across 
all machine learning models.

Supervised learning models

In the supervised learning model, the training dataset was labeled 
to help the machine identify which samples were assigned to the 
2D3D or 3D2D groups. The model’s performance on the binary 
classification task was then evaluated using the testing dataset. It is 
worth noting that the sample size in this study was small. 
Consequently, the data split into training and testing was conducted 
in a conventional manner, and the learning performance may be as 
high as reported in the literature.

Logistic regression
This model was used to classify samples, represented by 22 

data points (Table 1), into the two treatment groups (2D3D and 
3D2D). Using an 80/20 training-testing split and a random_state 
value of 114, the model achieved an accuracy of 67%. The solver 
parameter was set to its default (lbfgs), and alternative solvers 
(liblinear, newton-cg, sag, saga) produced identical results. 
However, when random_state values below or above 114 were 
applied, accuracy decreased substantially, in some cases dropping 
to 33% or even 0%. Following the incorporation of synthetic data, 
model performance improved, with accuracy reaching a maximum 
of 80% under the same parameter settings. Moreover, precision, 
recall, and F1-score each exceeded 80%, indicating that the model 
not only achieved higher overall accuracy but also maintained 
balanced and reliable classification performance across 
evaluation metrics.

FIGURE 3

Experimental procedures.
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Decision tree
In this study, the 22 data points were used as input features to 

predict the treatment groups (2D3D vs. 3D2D) by learning simple 
decision rules. The decision tree model consistently achieved a 
maximum accuracy of 67% with an 80/20 training–testing split and 
a random_state value of 143, which was higher than the value 
observed in the logistic regression model. The tree depth was set to 
the default configuration, allowing the tree to expand fully, while the 
default random_state parameter resulted in trees being built 
differently in each iteration. Notably, when random_state values lower 
or higher than 145 were applied during sample splitting, accuracy 
dropped sharply, reaching as low as 33% or even 0%. After the 
inclusion of synthetic data, model performance improved, with 
accuracy reaching 80% when the tree depth was restricted to 2 while 
keeping other parameters unchanged. Under these conditions, 
precision, recall, and F1-score also exceeded 80%, indicating 
improved and balanced classification performance.

Support vector machine (SVM)
The model was trained with an 80/20 training–testing split 

and a random_state value of 114. A linear kernel function was 
applied instead of the default rbf (radial basis function) kernel, 
resulting in an accuracy of 67%. Alternative kernels such as poly 
and sigmoid produced substantially lower accuracy. After adding 
the synthetic data, accuracy improved to 80% under the same 
parameter setting, with precision, recall, and F1-scores also 
exceeding 80%. However, when the rbf or poly kernels were used, 
the model achieved 100% accuracy, indicating potential 
overfitting. By contrast, the sigmoid kernel achieved only 40% 
accuracy, reflecting poor performance.

Unsupervised learning models

The ground truth refers to the actual classification of the samples 
in this study, which is also known as the target. To predict the target 
accurately, the model learned from the given data points, which were 
treated as vector features. In other words, even though the dataset was 
not labeled, the model was still able to learn effectively based on the 
features during the learning process.

K-means
All 22 data points were used to predict participants’ gameplay 

sequence assignments by clustering the samples into two groups. The 
Elbow Method plot also confirmed that two clusters provided the best 
fit, consistent with the original random sample assignment (2D3D vs. 
3D2D). The highest accuracy rate (58%) was achieved with random_
state = 1. Increasing the random_state value did not improve accuracy. 
Other performance metrics included precision (59%), recall (58%), 
and F1-score (58%).

Feature importance analysis showed that the most influential 
variable was the total time spent collecting all eight treasures in 
the 3D game (No. 22 in Table 1). Gender and gameplay frequency 
were not identified as key predictors of assignment, although 
gender contributed slightly more than gameplay frequency. After 
incorporating synthetic data, results were reproduced consistently. 
In addition, Silhouette scores ranged from 0.165 to 0.410, 
suggesting that participants fit reasonably well within their 
assigned clusters compared to alternative cluster assignments 
(Alloghani et  al., 2019; Prastyo et  al., 2020). No evidence of 
overfitting was detected.

TABLE 2  Differences between two treatments in learning performance and time use.

Participation 
number

Biological
gender

Game 
frequency*

2D Gameplay 
time usage 

(100 s)

2D Learning 
scores 
(36/36)

3D Gameplay 
time usage 

(240 s)

3D Learning 
scores 
(80/80)

2D3D Group (average scores in 2D: 19.67/36, s.d. = 13.09; average scores in 3D: 53.33/80, s.d. = 35.02)

001 Female 1 100 10 240 60

002 Female 3 100 15 240 0

003 Female 2 100 6 191 80

007 Male 1 100 15 230 80

008 Male 4 74 36 221 80

009 Male 4 96 36 240 20

3D2D Group (average scores in 2D: 13.86/36, s.d. = 11.54; average scores in 3D: 50.00/80, s.d. = 23.80)

004 Female 4 100 0 216 80

005 Female 1 100 28 240 30

006 Female 2 100 21 240 40

010 Male 3 100 21 234 80

011 Male 1 100 6 240 20

012 Male 4 100 21 240 40

*1 = almost none, 2 = a few times or about an hour per week, 3 = not often, 4 = often (more than three times or about 3 h per week).
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K-nearest neighbor (KNN)
Given the small sample size, a lower number of neighbors was 

deemed appropriate. Accordingly, the number of neighbors was set to 
1 with random_state = 1, resulting in an accuracy rate of 67%, recall 
and F1-scores of 67%, and a higher precision score of 83%. These 
values were consistent across both the training and testing datasets. 
However, when the number of neighbors was increased to 2 or 3, 
accuracy dropped to 33%. Although using more than 4 neighbors 
occasionally achieve 67% accuracy, this was not considered reasonable 
given the limited sample size.

Since KNN is not a tree-based model (e.g., decision tree or 
random forest) and lacks built-in feature importance measures (unlike 
RandomForestClassifier or GradientBoostingClassifier) (Pudjihartono 
et  al., 2022), feature relevance was examined through statistical 
methods, including chi-square tests, f_classif, and RFE (Recursive 
Feature Elimination). These analyses identified the following 
important features: (1) the time spent hunting the sixth treasure in the 
3D game (No. 18  in Table 1), (2) the total time spent hunting all 
treasures in the 2D game (No. 21), and (3) the total scores earned in 
the 2D game (No. 3). Similar findings were obtained for gender and 
gameplay frequency in terms of their relatively low importance. After 
incorporating synthetic data, the same results were reproduced, 
confirming the robustness of the findings.

Artificial neural networks (ANN)
Since ANN can be applied in both supervised and unsupervised 

learning contexts, this study implemented both approaches by 
encoding participants’ gameplay scores and completion time collected 
from the 2D and 3D games, using two hidden layers. To mitigate 
overfitting, where the model fits the training data perfectly but 
generalizes poorly to the test data (Bejani and Ghatee, 2021), two 
activation functions were applied, i.e., relu (layer dense = 4) followed 
by sigmoid (layer dense = 1).

Hyperparameter tuning was then conducted using the keras-tuner 
library. The ADAM optimizer and categorical cross-entropy loss 
function were employed during training to minimize loss (Ghosh and 
Gupta, 2023). In addition, GridSearch was used to explore 
combinations of hyperparameters, limited to 10 trials (as overfitting 
was observed with more than 10 trials given the dataset size). Under 
these conditions, the ANN achieved its best accuracy of 67%, with 
random_state = 3 for training–testing splitting and an optimal 
learning rate of 0.0001. Other metrics were also obtained but did not 
exceed 67%. In addition, feature relevance was examined with multiple 
statistical tests. The chi-square test identified the total scores 
participants received in the 2D game (No. 3, Table 1) as an important 
predictor. The f_classif and RFE tests highlighted the total time spent 
hunting all treasures in the 2D game (No. 21) as important. Gender 
and gameplay frequency were consistently found to have relatively 
low importance.

After synthetic data were incorporated, accuracy and recall 
remained unchanged with a lower random_state. The F1-score 
increased to 80%, while precision rose to 100%, indicating potential 
overfitting caused by false positives being misclassified. This suggests 
that the trained ANN may incorrectly classify well-randomized data 
as flawed. Nevertheless, across all three tests, the total 2D game score 
(No. 3) was consistently identified as an important feature in 
binary classification.

Discussion

Randomization is critical in experiments; however, traditional 
validation methods may lack sensitivity to hidden bias, such as 
distribution imbalance or non-linear interaction among participants. 
This study investigated the capability of supervised and unsupervised 
machine learning (ML) models to detect randomization flaws. Feature 

TABLE 3  Performance metrics achieved by different machine learning models.

Machine learning 
models

A P R F Random state values and 
parameters used

Supervised

Logistic regression

(after adding synthetic data)

0.67

(0.80)

0.83

(0.87)

0.67

(0.80)

0.67

(0.80)

Train: test = 0.8:0.2, random_state = 114

Solver = lbfgs

Decision tree

(after adding synthetic data)

0.67

(0.80)

0.44

(0.87)

0.67

(0.80)

0.53

(0.80)

Train: test = 0.8:0.2, random_state = 143

Depth of tree = 2

SVM

(after adding synthetic data)

0.67

(0.80)

0.83

(0.87)

0.67

(0.80)

0.67

(0.80)

Train: test = 0.8:0.2, random_state = 114

Kernel = linear

Unsupervised

K-Means

(after adding synthetic data)

0.58

(0.58)

0.59

(0.59)

0.58

(0.58)

0.58

(0.58)

Cluster = 2, random_state = 1

KNN

(after adding synthetic data)

0.67

(0.67)

0.83

(0.83)

0.67

(0.67)

0.67

(0.67)

Neighbor = 1, random_state = 1

ANN

(after adding synthetic data)

0.67

(0.67)

0.44

(1.00)

0.67

(0.67)

0.53

(0.80)

activation and optimizer, random_

state = 3

(random_state = 2)

A, accuracy rate; P, precision; R, recall; F, F1-score.
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importance analyses were also conducted to identify predictors of 
potential assignment bias. A series of actions were carried out, 
including participant recruitment, implementation of a well-
randomized sample assignment, training of various machine learning 
models, and evaluation of model performance on a binary 
classification task using accuracy, precision, recall, and F1-score. In 
this study, 12 participants were randomly assigned to play a learning 
direction game in two interface sequences (2D3D or 3D2D).

Supervised vs. unsupervised models

All supervised ML models, logistic regression, decision trees, and 
SVM, achieved satisfactory classification performance (67%) when 
trained on labeled data (Bichri et al., 2024; Zhang et al., 2017). After 
incorporating synthetic data, their performance further improved, 
with all three models reaching up to 87% accuracy. The unsupervised 
ML model k-means achieved only 58%. KNN and ANN consistently 
plateaued at 67%, even after synthetic data were added. The ANN 
model showed the weakest performance, with precision as low as 44%, 
likely due to the small sample size and its limited ability to capture 
meaningful patterns in binary classification (Alloghani et al., 2019; 
Alwosheel et al., 2018; Pudjihartono et al., 2022). While synthetic data 
improved ANN performance, it also introduced overfitting, as 
indicated by inflated precision scores. Overall, supervised ML models 
achieved higher accuracy than unsupervised models in detecting 
randomization flaws, thereby supporting H1.

Feature importance and assignment bias

Feature importance analysis offers a practical means of guiding 
unsupervised ML models by identifying variables that most strongly 
influence cluster separation (Pudjihartono et al., 2022). In this study, 
feature importance results revealed consistent findings across models. 
In both KNN and ANN, the total scores earned in the 2D game and 
the total time spent collecting all treasures in the 2D game emerged as 
key predictors. In k-means clustering, the time spent on the sixth 
treasure hunt in the 3D game (No. 18, Table 1) was identified as an 
important feature. Gender and gameplay frequency were consistently 
less important, although gender showed slightly greater predictive 
relevance. This suggests that the experimental design achieved 
effective randomization with respect to demographic variables. At the 
same time, the findings indicate that assigning participants to groups 
based on gameplay performance risks data leakage, as learners may 
be prematurely categorized as low or high performers. Overall, the 
evidence supports H2: Feature importance analysis reveals key 
predictors of assignment bias.

Confirmation of randomization and 
learning outcomes

The randomization procedures implemented in this study reflect 
a systematic sample assignment process. The results demonstrated 
that supervised ML classifiers effectively validated the randomization 
in binary classification, confirming that the two experimental 
treatments produced distinct learning outcomes in both scores and 

gameplay times. With supervised ML validation, the differences in 
learning outcomes (higher scores and faster completion in the 
2D-first condition) can be attributed to treatment effects rather than 
pre-existing biases. Conversely, if independent variables such as 
gender or gaming frequency had significantly influenced the 
outcomes, supervised ML classifiers would have performed only at 
chance level (~50% accuracy), providing neither support for 
randomization nor evidence of model sensitivity. Unsupervised ML 
classifiers, which are designed to detect latent patterns and 
predictive relationships, may in some cases outperform supervised 
approaches in classification tasks. However, this was not the case in 
the present study. Overall, the consistent performance across 
multiple ML methods confirmed both the success of the 
randomization procedure and the impact of interface sequence on 
learning outcomes.

Learning performance in 2D vs. 3D

Participants assigned to the 2D3D sequence achieved higher 
scores than those in the 3D2D sequence. This aligns with 
expectations, as 2D representations are inherently simpler and less 
cognitive demanding than 3D representations (Herbert and Chen, 
2015; Hegarty, 2011; Hicks et  al., 2003). Two-dimensional tasks 
allow learners to concentrate more effectively on core learning 
concepts without the distraction of additional spatial complexity. In 
contrast, 3D representations requires greater cognitive effort to 
interpret and are less prevalent in traditional educational materials. 
Cognitive science research further supports that 2D visualizations 
demand less mental effort and are more easily processed by the 
visual system than 3D representations (Chang et al., 2017; Hegarty, 
2011). The human visual system processes 2D flat images more 
easily because all elements are presented on a single plane. This 
reduces the cognitive load and enhances comprehension. 
Consequently, 2D representations tend to be more accessible for 
learners due to their simplicity, familiarity, ease of application, and 
reduced cognitive demand. Nevertheless, combining 2D and 3D 
perspectives can be beneficial in certain domains such as ML model 
development (Chen et  al., 2019) and structural design (Hong 
et al., 2024).

Implications for game-based learning

Game-based learning is gaining increasing popularity across 
educational levels and age groups (Liu et al., 2020; Sumi and Sato, 
2022). Beyond the complexity of 3D games, the literature 
emphasizes their immersive effects of 3D games, particularly in 
virtual reality (VR) and augmented reality (AR) settings, compared 
to traditional 2D games. Learners frequently report greater 
excitement and engagement with 3D games than with 2D ones 
(Chang et  al., 2017; Dalgarno and Lee, 2010). To ensure that 
learners achieve their learning objectives, it is important to 
incorporate virtual guides or an instructional pages that present 
fundamental subject concepts within game environment (Chiu 
et al., 2022; Dicheva et al., 2021; Yilmaz and Cagiltay, 2016). Recent 
advances in intelligent learning companions, powered by well-
trained machine learning models, further enhance the educational 
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value of game-based learning environments. The development of 
intelligent learning companions, powered by well-trained ML 
models, has advanced significantly. These companions provide 
personalized interaction and adaptive support during gameplay, 
thereby improving engagement and learning outcomes (Alloghani 
et al., 2019; Alwosheel et al., 2018; Pudjihartono et al., 2022).

Limitations

While ML shows promise for validating randomization, its 
reliability depends strongly on sample size and experimental context. 
As shown in the ANN results, performance was poorest with the 
limited sample size (n  = 12). After synthetic data were added, 
overfitting emerged, suggesting that the model failed to generalize. In 
this study, the direction game served as the experimental scenario. 
Players required some adaptation to orient themselves within the 
environment before gameplay. This was especially challenging in the 
3D2D treatment, which relied heavily on spatial orientation skills. 
Once players adapted to the 3D environment, however, performance 
improved more rapidly in the 2D3D treatment, where participants 
transitioned from simpler to more complex tasks. If the game is either 
too easy or too difficult, causing players to consistently achieve full 
scores or perform poorly, the resulting learning outcomes become 
highly predictable. In such cases, sample randomization would 
be trivial, and ML classification would add little value because no 
meaningful patterns could be explored. Therefore, the findings of the 
present study should be regarded as preliminary. They may not easily 
generalize to larger or more complex experimental designs, where 
greater variability in participant performance and richer datasets 
could lead to more robust validation of randomization.

Conclusion

This study contributes to advancing the use of machine 
learning (ML) models for validating sample randomization in 
experimental assignments. A carefully designed recruitment plan, 
followed by a well-randomized sample assignment, was shown to 
be enabling the evaluation of ML performance. Supervised ML 
models (i.e., logistic regression, decision trees, and SVM) achieved 
a satisfactory level of accuracy in detecting randomization 
validity. Feature importance analysis further demonstrated that 
while ML offers considerable promise, its reliability is contingent 
on factors such as sample size, noise tolerance, and 
experimental context.

Compared with traditional validation methods, ML models can 
capture complex and subtle biases, offering a more sensitive 
evaluation of non-linear relationships and higher-order 
interactions. In this study, ML models were employed as a 
robustness check to validate experimental randomization during 
sample assignment. The novelty lies in demonstrating that ML can 
be  used to evaluate claims of participant randomization in 
experimental designs, suggesting its potential as a supplementary 
tool. However, while ML shows promise in detecting randomization 
patterns, its efficacy depends on sample size and design complexity. 
With very small samples, its reliability remains limited. Future work 
should therefore apply this approach to larger and more balanced 

datasets, combining ML with traditional balance tests (e.g., t-test, 
F-test). It is also recommended that ML be systematically compared 
with standard balance tests across diverse experimental contexts.

Finally, future studies are encouraged to extend this framework to 
experiments with more than two treatments. The capabilities of other 
ML models, including semi-supervised and self-supervised 
approaches, should also be explored in classification tasks to further 
expand understanding in this area.
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