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Randomization is a standard method in experimental research, yet its validity is
not always guaranteed. This study introduces machine learning (ML) models as
supplementary tools for validating participant randomization. A learning direction
game with dichotomized scenarios was introduced, and both supervised and
unsupervised ML models were evaluated on a binary classification task. Supervised
models (logistic regression, decision tree, and support vector machine) achieved
the highest accuracy of 87% after adding synthetic data to enlarge the sample size,
while unsupervised models (k-means, k-nearest neighbors, and ANN—artificial
neural networks) performed less effectively. The ANN model, in particular, showed
overfitting, even with synthetic data. Feature importance analysis further revealed
predictors of assignment bias. These findings support the proposed methodology
for detecting randomization patterns; however, its effectiveness is influenced
by sample size and experimental design complexity. Future studies should apply
this approach with caution and further examine its applicability across diverse
experimental designs.
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Introduction

When conducting experimental research, randomization of research participants is the
most commonly used method, typically followed by a series of comparisons between at least
two different groups of participants (Campbell and Stanley, 2015). A two-group comparison
can be referred to as dichotomization (DeCoster et al., 2009; MacCallum et al., 2002).
Randomization can be based on participants’ demographic differences, such as gender (e.g.,
Chung and Chang, 2017) or game experience levels (e.g., Procci et al., 2013). From the
perspective of game design in educational contexts, students’ learning performance can also
be compared after assigning them to play different types of games (e.g., two- versus three-
dimensional; Yilmaz and Cagiltay, 2016). A fair comparison in such a dichotomized setting
can be expected if participants are appropriately assigned to one of the two game types in
the experiment.

Machine learning (ML) models are broadly categorized into supervised (e.g., logistic
regression, support vector machines) and unsupervised approaches (e.g., k-means clustering,
artificial neural networks Verma et al., 2022). Both types are particularly valuable for studying
game behavior in educational settings. For example, ML was applied to enhance the analysis
of game-based learning data and to highlight the value of game behaviors (e.g., Jarveld et al.,
2020; Luan and Tsai, 2021). In experimental research, ML can serve as a novel approach to
detecting randomization flaws, complementing conventional balance tests. While statistical
methods such as the t-test and chi-square test are commonly used to examine the validity of
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randomization, they may be limited in addressing fluid, high-
dimensional, and nonlinear relationships among predictive factors
(Choubineh et al., 2023). ML, by contrast, enables the detection of
complex patterns across all data points in an experimental study
(Verma et al., 2022). This research preliminarily explores the capability
of ML models to classify well-randomized, dichotomized sample
assignments. Successful classification is assumed to provide evidence
of the validity of these assignments within the experimental design.

As researchers claim that their sample assignments are well-
randomized, the classification performance of ML, measured by
accuracy rate and influenced by implementation settings, is expected
to surpass a satisfactory threshold (e.g., 60% or higher; Zhang et al.,
2017). In a fully randomized experiment, ML models can evaluate the
effectiveness of dichotomization in sample randomization. A high
accuracy rate in classifying samples within a dichotomized
experimental design reinforces the validity and reliability of claims
regarding the random assignment process. In addition, verification
through ML not only supports researchers’ claims but also enhances
their academic credibility by demonstrating robust sample
randomization in experimental studies.

This study raises the research question: Can ML models serve as
amethodological validation tool to enhance researchers’ accountability
in claiming proper randomization in experiments? It is hypothesized
that supervised ML models will outperform unsupervised ones in
classifying sample assignments, while feature importance analysis
from unsupervised ML models will reveal key predictors of
assignment bias. Both approaches can provide insights into the
effectiveness of small sample sizes and within-group experimental
designs. Unlike prior studies focusing on game analytics, the novelty
of this study lies in validating the capability of both supervised and
unsupervised ML models to examine randomization in
experimental assignments.

The following sections begin with a review of psychology research
literature on randomization in sample assignment, followed by a
discussion of the classification capabilities of ML models. To address
the proposed research question, a learning game featuring two distinct
scenarios was introduced. A detailed description of the recruitment
plan and methodology, including randomization procedures, data
collection, implementation of various ML models, and analysis
methods, is provided. The results of employing these ML models are
presented and thoroughly discussed. Finally, the capability of ML
models to enhance research validity and reliability in experimental
studies, as well as to analyze various behaviors in learning games,
is explored.

Related work

Randomization approaches in experimental
design

Randomization is widely regarded as one of the most effective
solutions for experimental design in psychological research (Campbell
and Stanley, 2015; Pirlott and MacKinnon, 2016). Randomization can
effectively neutralize participant characteristics (e.g., age and gender)
and ensure a representative selection of participants from the research
context (e.g., Chung and Chang, 2017; Pan and Ke, 2023; Procci et al.,
2013; Puolakanaho et al., 2020). Given the limitations of the research
context, incorporating a control group becomes essential to rule out
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confounding factors (e.g., individual differences in personality and
prior knowledge) within the experimental group, a design known as
a randomized controlled design or trial (e.g., Puolakanaho et al,
2020). A within-subject design can also be used to address
confounding factors among research participants (Cohen and Staub,
2015; Brauer and Curtin, 2018; Montoya, 2023). In this approach,
participants’ characteristics can later serve as control variables during
the data analysis stage to enhance the robustness of the findings
(Campbell and Stanley, 2015; Bernerth and Aguinis, 2016).

In addition, sampling designs that consider population
characteristics are also an effective approach to preventing prominent
bias and confounding effects in the study context (Levy and
Lemeshow, 2013; Lohr, 2021). This research method is crucial and
widely used in large-scale educational studies, such as the Program for
International Student Assessment (Organization for Economic
Co-operation and Development, 2014) and Trends in International
Mathematics and Science Study TIMSS (Martin et al., 2016). The
sampling weights provided by the experts of these large-scale studies
can be used by researchers who focus on providing meaningful
suggestions for educational, political, or healthcare policies to generate
generalizable findings for the broader population (Arikan et al., 20205
Ertl et al., 2020; Laukaityte and Wiberg, 2018; Meinck, 2015; Rust,
2014). Practitioner researchers can also model the sampling design
using various statistical analyses (e.g., multilevel analysis) to identify
the impact of the factors considered in the sampling design (Chiu
et al,, 2022; Laukaityte and Wiberg, 2018).

Independent researchers in some fields (e.g., education, neurology,
psychology) often use small sample sizes to examine their theories
(Francis et al., 2010; Lakens, 2022; Vasileiou et al., 2018). The within-
subject design is typically the most appropriate and convenient choice,
offering higher statistical power (Lakens, 2022) despite potential
carryover effects (e.g., fatigue and order effects, Montoya, 2023). A
limitation is that researchers may struggle to determine the
appropriateness  of  this with  the

design  compared

randomization design.

Classification performance of machine learning
(ML) models

Machine learning models have gradually been used to analyze
large datasets. Data come from online learning platforms, such as
ASSISTment (Feng and Heffernan, 2007) and large-scale datasets,
such as PISA (Organization for Economic Co-operation and
Development, 2014) and TIMSS (Martin et al.,, 2016). Learning
analytics and educational data mining are the two general terms for
research utilizing machine learning (ML) or artificial intelligence (AI)
models to advance ideals in education or psychology, such as
personalized learning or adaptive instruction (Heffernan and
Heffernan, 2014; Khan and Ghosh, 2021; Zotou et al., 2020). For
example, affective computing can detect students’ affective status when
engaging in learning or problem-solving using a computer (Baker
etal., 2010; Jarveld et al., 2020).

ML models include two main categories: Supervised and
unsupervised learning (Verma et al., 2022). Supervised learning relies
on labeled data. Dichotomous data (e.g., correct vs. incorrect answers
or gameplay sequences in this study) appear to be the basic, widely
used criterion in ML (Goretzko and Biithner, 2022; Yeung and
Fernandes, 2022). In the supervised learning model, the dataset was
split into two parts: training and testing, with a split ratio of 80/20
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(Bichri et al., 2024). With human-proved criteria, supervised learning
is effective in training models by using labeled data to fit the final
practical use (Alloghani et al., 2019; Verma et al., 2022). In other
words, supervised learning increases ecological validity for the
human world. Contrarily, without knowing any ground truth (i.e.,
labeled data), the unsupervised learning model aimed to identify
patterns in the data points (Alloghani et al., 2019). Unsupervised
learning viewed as more exploratory and data-driven (not based on
criteria or theories) can still be useful in model training as long as the
pattern could be found from unlabeled data. Thus, unsupervised
learning models are used to identify unknown categories, similar to
exploratory factor analysis (EFA) in psychology and education (Cox
et al, 2020). The main difference between supervised and
unsupervised learning models is whether labeled data are used
during the training process (Verma et al., 2022). This distinction
allows for the potential evaluation of the effectiveness of a within-
subject experimental design, which typically involves small sample
sizes and only a few factors (e.g., gender), in a manner similar to that
of a randomized design. To be noted, the results obtained by
unsupervised learning usually need further validation (Xie et al,,
2020; Zimmermann, 2020), just like the confirmation factor analysis
to validate the results obtained by EFA.

Theoretical foundations for employing ML
models in randomization validation

There are several ways to check whether samples have been
randomly assigned into groups in an experiment (Bruhn and
McKenzie, 2009; Campbell and Stanley, 2015). Common approaches
include examining descriptive statics (e.g., mean, standard deviation,
distribution shape via histograms or boxplots), running statistical tests
(e.g., t-test, ANOVA, chi-square test), and creating a balance check
table to list all relevant pre-treatment covariates, group means,
p-values from statistical tests, and mean differences. However,
traditional statistical tests are not always sufficient when sample
characteristics are fluid and unstable over time (e.g., emotion, political
inclination), when demographics involve high-dimensional data (e.g.,
brain neuron connectivity), or when unpredictable circumstances
introduce nonlinear relationships during the experiment (e.g., bad
weather, participant tardiness). While such complexities may
be difficult for researchers to detect, various ML models can help
uncover these patterns and provide supporting evidence (e.g.,
Choubineh et al., 2023). Researchers are encouraged to make effective
use of ML techniques to generate classification results. These results

10.3389/frai.2025.1541087

can then be used to assess whether standardized randomization has
reached an acceptable threshold (e.g., 60% or higher; Zhang
etal., 2017).

In this exploratory research, ML models are employed to detect
patterns or predictive relationships among data points collected from
an experiment designed to undergo proper randomization. ML
classifiers are expected to perform beyond chance levels (e.g., ~50%
accuracy in a binary classification task). Grounded in mathematical
principles, both classification and clustering algorithms can be used
to evaluate whether the claim of dichotomized, randomly assigned
samples is valid. If randomization is achieved, the performance of
supervised ML models on classification tasks is expected to reach a
satisfactory level, defined here as standardized ML performance
metrics meeting a benchmark accuracy rate of at least 60%, with
measures such as accuracy, precision, recall, and F1-score used to
assess performance (Zhang et al.,, 2017). It should be noted that
AUC-ROC and support were not included in this study, as the focus
is on validating whether randomization was achieved, rather than on
ranking quality (as in AUC-ROC) or the number of supporting cases
in a binary classification (Verma et al., 2022).

Supervised ML models are expected to perform effectively in
classifying participants into their assigned scenarios. Unsupervised
ML models, by contrast, may identify patterns through clustering that
appear to improve classification performance but risk overlooking the
validity of the underlying claim. In other words, assignment bias may
be detected through unsupervised ML models. Large differences in
feature values across cluster centroids can indicate that specific
features (e.g., demographic attributes) are driving group separation.
Conversely, if substantial centroid differences emerge in unexpected
features (e.g., attributes unrelated to participants), this may provide
evidence of systematic assignment bias.

Methodologies

This exploratory study implements a fully randomized
experiment with two scenarios. Two hypotheses are proposed,
drawing on ML classification and clustering algorithms grounded in
mathematical principles. Supervised ML is applied to labeled data
(e.g., group assignments), enabling the model to map features to
known labels. By contrast, unsupervised ML is employed to uncover
latent structures or groupings in unlabeled data (e.g., clustering)
(Figure 1). It is hypothesized that supervised ML will perform

Supervised Machine Learning
Models for Classification (MLMC)

H1
Valid Claim of v _ Performance of
Randomization A "| Binary Classification
H2
Unsupervised MLMC
Feature Importance Analysis

FIGURE 1
Research model.
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effectively under randomized conditions, and that clustering within
unsupervised ML may yield even higher apparent classification
performance (H1).

In unsupervised ML, large differences in feature values across
cluster centroids may indicate that a given feature (e.g., a
demographic attribute of participants) contributes significantly to
group separation. Conversely, if such differences emerge in features
where no separation is expected (e.g., attributes unrelated to
participants), this may signal assignment bias (H2). By employing
both classification and clustering algorithms, the proposed
hypotheses aim to evaluate model performance under conditions of
valid randomization.

HI: Supervised MLs achieve higher accuracy than unsupervised
ones in detecting randomization flaws.

H2: Feature importance analysis reveals key predictors of
assignment bias.

An experiment of learning direction game

This study employed Utility to develop a learning game with two
distinct difficulty levels, as two scenarios used to test learning
outcomes in the implementation of a fully randomized experiment. In
the first scenario, participants used a 2D interface to guide a virtual
agent through eight mazes, sequentially locating eight treasures
(Figure 2a). In the second scenario, participants used a 3D interface
to assist a different virtual agent in finding eight treasures by following
assigned directions (Figure 2b). Both scenarios incorporated the same
mathematical learning concept, i.e., the NSEW directional system,
with a compass continuously displayed on the interface. Participants
required some adaptation to orient themselves within the environment
before gameplay. To enhance engagement, participants were
encouraged to imagine themselves as the virtual agents while playing.

Each scenario included a time constraint: 100 s in the 2D interface
and 240 s in the 3D interface. Participants’ performance was evaluated
based on scores, with bonus points awarded for task completion

10.3389/frai.2025.1541087

within the allotted time. The maximum achievable score was 36 points
in the 2D interface (eight treasures) and 80 points in the 3D interface
(eight treasures).

Participants

An equal number of female and male undergraduates (all aged
20 years) were recruited to minimize potential gender effects on
learning performance in the game-based context. Participants were
recruited from humanities-related disciplines (e.g., linguistics,
philosophy, sociology), ensuring that their coursework did not require
the use of information technologies. Prior to the experiment, a brief
survey was administered to assess participants weekly gameplay
frequency. In total, 12 participants (six female, six male) were recruited
and randomly assigned to one of the two experimental scenarios.
Randomization ensured balance across groups with respect to
gameplay frequency: each group included two non-gamers, one
seldom player, one occasional player, and two frequent players.

Data collection

All participants were instructed to collect as many treasures as
possible in each interface of their assigned treatment. In addition to
the total scores obtained at the end of the game, task completion time
each interface and the time required to collect each treasure were
recorded. As summarized in Table 1, a total of 22 data points were
collected for each participant across the two interfaces. For subsequent
analyses, all variables except gender were normalized using ratio-
based transformations to a 0-1 scale, ensuring a consistent basis for
comparing the performance of different machine learning models.

Experimental procedures

To ensure the validity of randomized sample assignment, an equal
number of female and male participants with comparable gameplay
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FIGURE 2

(NSTC 110-2511-H-004-001-MY3).

Learning direction game experimental scenarios designed in: (a) 2D and (b) 3D interfaces. This game was developed as part of the funded project
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TABLE 1 All data points collected in each interface.

Data types ‘ Data points

Demographics No. 1: Gender

No. 2: Gameplay frequency

Learning scores No. 3: Total scores obtained in 2D
interface

No. 4: Total scores obtained in 3D
interface

No. 5 ~ 12: Scores obtained from
eight tasks in 2D interface

No. 13 ~ 20: Scores obtained from

eight tasks in 3D interface

Gameplay time usage No. 21: Total playing time in seconds
in 2D interface
No. 22: Total playing time in seconds

in 3D interface

frequency levels from humanities-related fields were evenly distributed
across two treatment groups. In Treatment 1 (labeled 2D3D),
participants played the direction learning game starting with the 2D
interface, followed by the 3D interface. In Treatment 2 (labeled 3D2D),
the sequence was reversed, with participants starting on the 3D
interface and then moving to the 2D interface.

Upon completion of the assigned sequence, data were collected on
participants’ task completion times (speed in finding each treasure)
and learning scores. As illustrated in Figure 3, both supervised and
unsupervised ML models were developed using the dichotomized
treatment assignments. In the supervised approach, the randomization
sequence (2D3D vs. 3D2D) was explicitly provided as labels to
facilitate learning. In contrast, unsupervised models attempted to
recover the sequence structure directly from the experimental data.
Binary classification performance was then evaluated to assess the
extent to which ML models could validate the randomized
experimental design.

To ensure consistency in comparison, the treatment assignment
of each participant (i.e., group allocation by gender and gameplay
frequency; see No. 1 ~ 2 in Table 1) was incorporated into the ML
process. Performance scores (No. 3 ~20 in Table 1) and task
completion times (No. 21 ~ 22 in Table 1) were split into training and
test sets (80/20) for supervised model development, whereas in
unsupervised model development these were treated as features.
Because participants were randomly assigned according to the
recruitment plan, which balanced gender and gameplay frequency
across groups, the models could learn from both the equilibrium of
group assignment and performance-related datapoints. To increase
the effective sample size, synthetic data were generated by introducing
random noise into existing data points.

Data analyses

According to Table 1, the participants’ demographics were clearly
reported in the recruitment plan. The analyses were first conducted to
compare differences in the participants’ learning scores and the time
spent playing the game between the two groups. Descriptive analyses
were performed using the original scores, providing the mean and

Frontiers in Artificial Intelligence

10.3389/frai.2025.1541087

standard deviation. An independent samples t¢-test was then
conducted to determine which group had significantly higher learning
scores. All data points, except for gender, were normalized for
later analyses.

Supervised and unsupervised machine learning (ML) models
were used to test the proposed hypotheses. These two types of models
differ based on the presence of labels in the dataset (Verma et al.,
2022). Hypothesis testing referred to the ML performance on a binary
classification task (Bichri et al., 2024). Model performance evaluation
was based on standard classification metrics, including accuracy,
precision, recall, and Fl-score (Luan and Tsai, 2021; Zhang et al,,
2017). All metrics were expressed in percentage format to enable
direct comparison of classification performance across models. Based
on the literature, satisfactory learning performance in the classification
task was defined as achieving metrics that exceeded a passing
threshold of 60% (Bichri et al., 2024; Zhang et al., 2017), even though
higher thresholds may be needed for robust validation. Notably, this
study used Jupyter Notebook 6.5.4 and Python 3 to run all models. All
models were expected to perform well by accurately classifying the
samples into two groups (i.e., 2D3D vs. 3D2D), based on the data
points listed in Table 1.

Commonly-used ML models were selected to test the hypotheses
(Alloghani et al., 2019; Luan and Tsai, 2021; Verma et al., 2022). The
representative supervised learning models employed in this study
were logistic regression, decision tree, and support vector machine
(SVM). The supervised learning models were trained and tested using
an 80/20 split ratio (Bichri et al., 2024). Except for logistic regression,
decision tree and support vector machine (SVM) are considered
non-parametric algorithms. Logistic regression is a statistical linear
model in which a coefficient is estimated for each variable. Decision
trees recursively partition the feature space using a tree-like structure,
consisting of root, parent, child, and leaf nodes; pruning may
be applied when necessary to avoid overfitting (Alloghani et al., 2019).
In contrast, SVM constructs optimal separating hyperplanes to
maximize the margin between classes without assuming a specific data
distribution (Prastyo et al., 2020). By incorporating kernel functions,
SVM can transform a non-linear dataset into a higher-dimensional
feature space, enabling the construction of a linear separation
boundary and potentially improving performance compared to the
basic linear SVM model. In addition, model performance varied
depending on the values of random_state and other parameter settings
(e.g., depth of tree, kernel type), reflecting the sensitivity of decision
trees and SVM to initialization and hyperparameter choices.

The representative unsupervised learning models used in this study
were k-means, k-nearest neighbor (KNN), and artificial neural networks
(ANN). K-means is a centroid-based algorithm (Alloghani et al., 2019).
The numbers of clusters could be decided and then tested to determine
whether the highest accuracy rate had been achieved. The value for each
cluster center could be obtained. The value was a mean score representing
the importance of the data point. A random seed could be provided to
ensure the output was stable in each run of the learning process for the
model. KNN is also a non-parametric algorithm, meaning it does not
involve model learning or make assumptions about the data distribution
(Luan and Tsai, 2021). It operates as a supervised classification model. In
the unsupervised learning phase, the only step is to assign the number
of neighbors for each sample in the training dataset. However, when the
data is labeled, the model can make accurate classification decisions and
perform well on classification tasks. Finally, ANN can be used in both
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Models for Classification (MLMC) Unsupervised MLMC
FIGURE 3
Experimental procedures

supervised and unsupervised learning contexts. This model extracts
statistical properties or data features from the training dataset to inform
learning. There are various approaches to running an ANN in an
unsupervised manner. For example, an autoencoder can be used to help
the model learn from vectorized data points (Song et al., 2013). A
clustering algorithm can also be used to the hidden layers of the network
to identify patterns and groupings within the data.

Results

Participants’ raw gameplay scores and completion time spent were
first analyzed to evaluate their performance. Various supervised and
unsupervised machine learning (ML) models were then trained using
normalized data points and gender information collected from the
randomized sample assignment in the experiment. Finally, the
proposed hypotheses were tested based on the classification
performance of each model.

Learning scores and time usage in
gameplay experiment

The 2D3D group achieved higher scores than the 3D2D group
when playing the learning direction games on the 2D or 3D interfaces
(Table 2). However, the difference in scores between the two groups
was not statistically significant (only in 2D: t = 0.870, p = 0.413; only
in 3D: t = 0.842, p = 0.612). In addition, the 2D3D group spent less
time playing games on the 2D and 3D interfaces compared to the
3D2D group. To be noted, this comparison result is helpful to the
machine accurately classifying samples in the follow-up model
development and learning processes.

Machine learning model performance on
binary classification

This section outlines the approach used to implement each ML
model, followed by detailed explanations of data entries and data
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processing procedures. Default parameter values provided by the
original models were used to ensure the stability of the learning
procedures. For instance, the random_state parameter in the Python
Scikit-learn library was set to an integer based on the data size for
certain machine learning models (e.g., decision tree, k-means,).
Finally, the performance metrics were reported to evaluate each
model’s performance on the binary classification tasks in this study.
Table 3 presents a comprehensive comparison of the results across
all machine learning models.

Supervised learning models

In the supervised learning model, the training dataset was labeled
to help the machine identify which samples were assigned to the
2D3D or 3D2D groups. The model’s performance on the binary
classification task was then evaluated using the testing dataset. It is
worth noting that the sample size in this study was small.
Consequently, the data split into training and testing was conducted
in a conventional manner, and the learning performance may be as
high as reported in the literature.

Logistic regression

This model was used to classify samples, represented by 22
data points (Table 1), into the two treatment groups (2D3D and
3D2D). Using an 80/20 training-testing split and a random_state
value of 114, the model achieved an accuracy of 67%. The solver
parameter was set to its default (Ibfgs), and alternative solvers
(liblinear, newton-cg, sag, saga) produced identical results.
However, when random_state values below or above 114 were
applied, accuracy decreased substantially, in some cases dropping
to 33% or even 0%. Following the incorporation of synthetic data,
model performance improved, with accuracy reaching a maximum
of 80% under the same parameter settings. Moreover, precision,
recall, and F1-score each exceeded 80%, indicating that the model
not only achieved higher overall accuracy but also maintained
balanced and reliable

classification performance across

evaluation metrics.
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TABLE 2 Differences between two treatments in learning performance and time use.

Game
frequency*

Participation

Biological

number gender

2D Gameplay
time usage

2D Learning
scores

3D Gameplay
time usage

3D Learning
scores

(100 s)
2D3D Group (average scores in 2D: 19.67/36, s.d. = 13.09; average scores in 3D: 53.33/80, s.d. = 35.02)

(36/36) (240 s) (80/80)

001 Female 1 100 10 240 60
002 Female 3 100 15 240 0
003 Female 2 100 6 191 80
007 Male 1 100 15 230 80
008 Male 4 74 36 221 80
009 Male 4 96 36 240 20

3D2D Group (average scores in 2D: 13.86/36, s.d. = 11.54; average scores in 3D: 50.00/80, s.d. = 23.80)

004 Female 4 100 0 216 80
005 Female 1 100 28 240 30
006 Female 2 100 21 240 40
010 Male 3 100 21 234 80
011 Male 1 100 6 240 20
012 Male 4 100 21 240 40

*1 = almost none, 2 = a few times or about an hour per week, 3 = not often, 4 = often (more than three times or about 3 h per week).

Decision tree

In this study, the 22 data points were used as input features to
predict the treatment groups (2D3D vs. 3D2D) by learning simple
decision rules. The decision tree model consistently achieved a
maximum accuracy of 67% with an 80/20 training-testing split and
a random_state value of 143, which was higher than the value
observed in the logistic regression model. The tree depth was set to
the default configuration, allowing the tree to expand fully, while the
default random_state parameter resulted in trees being built
differently in each iteration. Notably, when random_state values lower
or higher than 145 were applied during sample splitting, accuracy
dropped sharply, reaching as low as 33% or even 0%. After the
inclusion of synthetic data, model performance improved, with
accuracy reaching 80% when the tree depth was restricted to 2 while
keeping other parameters unchanged. Under these conditions,
precision, recall, and Fl-score also exceeded 80%, indicating
improved and balanced classification performance.

Support vector machine (SVM)

The model was trained with an 80/20 training-testing split
and a random_state value of 114. A linear kernel function was
applied instead of the default rbf (radial basis function) kernel,
resulting in an accuracy of 67%. Alternative kernels such as poly
and sigmoid produced substantially lower accuracy. After adding
the synthetic data, accuracy improved to 80% under the same
parameter setting, with precision, recall, and Fl-scores also
exceeding 80%. However, when the rbf or poly kernels were used,
the model achieved 100% accuracy, indicating potential
overfitting. By contrast, the sigmoid kernel achieved only 40%
accuracy, reflecting poor performance.
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Unsupervised learning models

The ground truth refers to the actual classification of the samples
in this study, which is also known as the target. To predict the target
accurately, the model learned from the given data points, which were
treated as vector features. In other words, even though the dataset was
not labeled, the model was still able to learn effectively based on the
features during the learning process.

K-means

All 22 data points were used to predict participants’ gameplay
sequence assignments by clustering the samples into two groups. The
Elbow Method plot also confirmed that two clusters provided the best
fit, consistent with the original random sample assignment (2D3D vs.
3D2D). The highest accuracy rate (58%) was achieved with random_
state = 1. Increasing the random_state value did not improve accuracy.
Other performance metrics included precision (59%), recall (58%),
and F1-score (58%).

Feature importance analysis showed that the most influential
variable was the total time spent collecting all eight treasures in
the 3D game (No. 22 in Table 1). Gender and gameplay frequency
were not identified as key predictors of assignment, although
gender contributed slightly more than gameplay frequency. After
incorporating synthetic data, results were reproduced consistently.
In addition, Silhouette scores ranged from 0.165 to 0.410,
suggesting that participants fit reasonably well within their
assigned clusters compared to alternative cluster assignments
(Alloghani et al., 2019; Prastyo et al., 2020). No evidence of
overfitting was detected.
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TABLE 3 Performance metrics achieved by different machine learning models.

Machine learning

Random state values and

models parameters used
Supervised
Logistic regression 0.67 0.83 0.67 0.67 Train: test = 0.8:0.2, random_state = 114
(after adding synthetic data) (0.80) (0.87) (0.80) (0.80) Solver = Ibfgs
Decision tree 0.67 0.44 0.67 0.53 Train: test = 0.8:0.2, random_state = 143
(after adding synthetic data) (0.80) (0.87) (0.80) (0.80) Depth of tree = 2
SVM 0.67 0.83 0.67 0.67 Train: test = 0.8:0.2, random_state = 114
(after adding synthetic data) (0.80) (0.87) (0.80) (0.80) Kernel = linear
Unsupervised
K-Means 0.58 0.59 0.58 0.58 Cluster = 2, random_state = 1
(after adding synthetic data) (0.58) (0.59) (0.58) (0.58)
KNN 0.67 0.83 0.67 0.67 Neighbor = 1, random_state = 1
(after adding synthetic data) (0.67) (0.83) (0.67) (0.67)
ANN 0.67 0.44 0.67 0.53 activation and optimizer, random_
(after adding synthetic data) (0.67) (1.00) (0.67) (0.80) state = 3

(random_state = 2)

A, accuracy rate; P, precision; R, recall; F, F1-score.

K-nearest neighbor (KNN)

Given the small sample size, a lower number of neighbors was
deemed appropriate. Accordingly, the number of neighbors was set to
1 with random_state = 1, resulting in an accuracy rate of 67%, recall
and F1-scores of 67%, and a higher precision score of 83%. These
values were consistent across both the training and testing datasets.
However, when the number of neighbors was increased to 2 or 3,
accuracy dropped to 33%. Although using more than 4 neighbors
occasionally achieve 67% accuracy, this was not considered reasonable
given the limited sample size.

Since KNN is not a tree-based model (e.g., decision tree or
random forest) and lacks built-in feature importance measures (unlike
RandomForestClassifier or GradientBoostingClassifier) (Pudjihartono
et al., 2022), feature relevance was examined through statistical
methods, including chi-square tests, f_classif, and RFE (Recursive
Feature Elimination). These analyses identified the following
important features: (1) the time spent hunting the sixth treasure in the
3D game (No. 18 in Table 1), (2) the total time spent hunting all
treasures in the 2D game (No. 21), and (3) the total scores earned in
the 2D game (No. 3). Similar findings were obtained for gender and
gameplay frequency in terms of their relatively low importance. After
incorporating synthetic data, the same results were reproduced,
confirming the robustness of the findings.

Artificial neural networks (ANN)

Since ANN can be applied in both supervised and unsupervised
learning contexts, this study implemented both approaches by
encoding participants’ gameplay scores and completion time collected
from the 2D and 3D games, using two hidden layers. To mitigate
overfitting, where the model fits the training data perfectly but
generalizes poorly to the test data (Bejani and Ghatee, 2021), two
activation functions were applied, i.e., relu (layer dense = 4) followed
by sigmoid (layer dense = 1).
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Hyperparameter tuning was then conducted using the keras-tuner
library. The ADAM optimizer and categorical cross-entropy loss
function were employed during training to minimize loss (Ghosh and
Gupta, 2023). In addition, GridSearch was used to explore
combinations of hyperparameters, limited to 10 trials (as overfitting
was observed with more than 10 trials given the dataset size). Under
these conditions, the ANN achieved its best accuracy of 67%, with
random_state = 3 for training-testing splitting and an optimal
learning rate of 0.0001. Other metrics were also obtained but did not
exceed 67%. In addition, feature relevance was examined with multiple
statistical tests. The chi-square test identified the total scores
participants received in the 2D game (No. 3, Table 1) as an important
predictor. The f_classif and RFE tests highlighted the total time spent
hunting all treasures in the 2D game (No. 21) as important. Gender
and gameplay frequency were consistently found to have relatively
low importance.

After synthetic data were incorporated, accuracy and recall
remained unchanged with a lower random_state. The Fl-score
increased to 80%, while precision rose to 100%, indicating potential
overfitting caused by false positives being misclassified. This suggests
that the trained ANN may incorrectly classify well-randomized data
as flawed. Nevertheless, across all three tests, the total 2D game score
(No. 3) was consistently identified as an important feature in
binary classification.

Discussion

Randomization is critical in experiments; however, traditional
validation methods may lack sensitivity to hidden bias, such as
distribution imbalance or non-linear interaction among participants.
This study investigated the capability of supervised and unsupervised
machine learning (ML) models to detect randomization flaws. Feature
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importance analyses were also conducted to identify predictors of
potential assignment bias. A series of actions were carried out,
including participant recruitment, implementation of a well-
randomized sample assignment, training of various machine learning
models, and evaluation of model performance on a binary
classification task using accuracy, precision, recall, and F1-score. In
this study, 12 participants were randomly assigned to play a learning
direction game in two interface sequences (2D3D or 3D2D).

Supervised vs. unsupervised models

All supervised ML models, logistic regression, decision trees, and
SVM, achieved satisfactory classification performance (67%) when
trained on labeled data (Bichri et al., 2024; Zhang et al., 2017). After
incorporating synthetic data, their performance further improved,
with all three models reaching up to 87% accuracy. The unsupervised
ML model k-means achieved only 58%. KNN and ANN consistently
plateaued at 67%, even after synthetic data were added. The ANN
model showed the weakest performance, with precision as low as 44%,
likely due to the small sample size and its limited ability to capture
meaningful patterns in binary classification (Alloghani et al., 2019;
Alwosheel et al., 2018; Pudjihartono et al., 2022). While synthetic data
improved ANN performance, it also introduced overfitting, as
indicated by inflated precision scores. Overall, supervised ML models
achieved higher accuracy than unsupervised models in detecting
randomization flaws, thereby supporting H1.

Feature importance and assignment bias

Feature importance analysis offers a practical means of guiding
unsupervised ML models by identifying variables that most strongly
influence cluster separation (Pudjihartono et al., 2022). In this study,
feature importance results revealed consistent findings across models.
In both KNN and ANN, the total scores earned in the 2D game and
the total time spent collecting all treasures in the 2D game emerged as
key predictors. In k-means clustering, the time spent on the sixth
treasure hunt in the 3D game (No. 18, Table 1) was identified as an
important feature. Gender and gameplay frequency were consistently
less important, although gender showed slightly greater predictive
relevance. This suggests that the experimental design achieved
effective randomization with respect to demographic variables. At the
same time, the findings indicate that assigning participants to groups
based on gameplay performance risks data leakage, as learners may
be prematurely categorized as low or high performers. Overall, the
evidence supports H2: Feature importance analysis reveals key
predictors of assignment bias.

Confirmation of randomization and
learning outcomes

The randomization procedures implemented in this study reflect
a systematic sample assignment process. The results demonstrated
that supervised ML classifiers effectively validated the randomization
in binary classification, confirming that the two experimental
treatments produced distinct learning outcomes in both scores and
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gameplay times. With supervised ML validation, the differences in
learning outcomes (higher scores and faster completion in the
2D-first condition) can be attributed to treatment effects rather than
pre-existing biases. Conversely, if independent variables such as
gender or gaming frequency had significantly influenced the
outcomes, supervised ML classifiers would have performed only at
chance level (~50% accuracy), providing neither support for
randomization nor evidence of model sensitivity. Unsupervised ML
classifiers, which are designed to detect latent patterns and
predictive relationships, may in some cases outperform supervised
approaches in classification tasks. However, this was not the case in
the present study. Overall, the consistent performance across
multiple ML methods confirmed both the success of the
randomization procedure and the impact of interface sequence on
learning outcomes.

Learning performance in 2D vs. 3D

Participants assigned to the 2D3D sequence achieved higher
scores than those in the 3D2D sequence. This aligns with
expectations, as 2D representations are inherently simpler and less
cognitive demanding than 3D representations (Herbert and Chen,
2015; Hegarty, 2011; Hicks et al., 2003). Two-dimensional tasks
allow learners to concentrate more effectively on core learning
concepts without the distraction of additional spatial complexity. In
contrast, 3D representations requires greater cognitive effort to
interpret and are less prevalent in traditional educational materials.
Cognitive science research further supports that 2D visualizations
demand less mental effort and are more easily processed by the
visual system than 3D representations (Chang et al., 2017; Hegarty,
2011). The human visual system processes 2D flat images more
easily because all elements are presented on a single plane. This
reduces the cognitive load and enhances comprehension.
Consequently, 2D representations tend to be more accessible for
learners due to their simplicity, familiarity, ease of application, and
reduced cognitive demand. Nevertheless, combining 2D and 3D
perspectives can be beneficial in certain domains such as ML model
development (Chen et al., 2019) and structural design (Hong
etal., 2024).

Implications for game-based learning

Game-based learning is gaining increasing popularity across
educational levels and age groups (Liu et al., 2020; Sumi and Sato,
2022). Beyond the complexity of 3D games, the literature
emphasizes their immersive effects of 3D games, particularly in
virtual reality (VR) and augmented reality (AR) settings, compared
to traditional 2D games. Learners frequently report greater
excitement and engagement with 3D games than with 2D ones
(Chang et al., 2017; Dalgarno and Lee, 2010). To ensure that
learners achieve their learning objectives, it is important to
incorporate virtual guides or an instructional pages that present
fundamental subject concepts within game environment (Chiu
etal., 2022; Dicheva et al., 2021; Yilmaz and Cagiltay, 2016). Recent
advances in intelligent learning companions, powered by well-
trained machine learning models, further enhance the educational
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value of game-based learning environments. The development of
intelligent learning companions, powered by well-trained ML
models, has advanced significantly. These companions provide
personalized interaction and adaptive support during gameplay,
thereby improving engagement and learning outcomes (Alloghani
et al,, 2019; Alwosheel et al., 2018; Pudjihartono et al., 2022).

Limitations

While ML shows promise for validating randomization, its
reliability depends strongly on sample size and experimental context.
As shown in the ANN results, performance was poorest with the
limited sample size (n =12). After synthetic data were added,
overfitting emerged, suggesting that the model failed to generalize. In
this study, the direction game served as the experimental scenario.
Players required some adaptation to orient themselves within the
environment before gameplay. This was especially challenging in the
3D2D treatment, which relied heavily on spatial orientation skills.
Once players adapted to the 3D environment, however, performance
improved more rapidly in the 2D3D treatment, where participants
transitioned from simpler to more complex tasks. If the game is either
too easy or too difficult, causing players to consistently achieve full
scores or perform poorly, the resulting learning outcomes become
highly predictable. In such cases, sample randomization would
be trivial, and ML classification would add little value because no
meaningful patterns could be explored. Therefore, the findings of the
present study should be regarded as preliminary. They may not easily
generalize to larger or more complex experimental designs, where
greater variability in participant performance and richer datasets
could lead to more robust validation of randomization.

Conclusion

This study contributes to advancing the use of machine
learning (ML) models for validating sample randomization in
experimental assignments. A carefully designed recruitment plan,
followed by a well-randomized sample assignment, was shown to
be enabling the evaluation of ML performance. Supervised ML
models (i.e., logistic regression, decision trees, and SVM) achieved
a satisfactory level of accuracy in detecting randomization
validity. Feature importance analysis further demonstrated that
while ML offers considerable promise, its reliability is contingent
on factors such as sample size, noise tolerance, and
experimental context.

Compared with traditional validation methods, ML models can
capture complex and subtle biases, offering a more sensitive
evaluation of non-linear relationships and higher-order
interactions. In this study, ML models were employed as a
robustness check to validate experimental randomization during
sample assignment. The novelty lies in demonstrating that ML can
be used to evaluate claims of participant randomization in
experimental designs, suggesting its potential as a supplementary
tool. However, while ML shows promise in detecting randomization
patterns, its efficacy depends on sample size and design complexity.
With very small samples, its reliability remains limited. Future work

should therefore apply this approach to larger and more balanced
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datasets, combining ML with traditional balance tests (e.g., ¢-test,
F-test). It is also recommended that ML be systematically compared
with standard balance tests across diverse experimental contexts.

Finally, future studies are encouraged to extend this framework to
experiments with more than two treatments. The capabilities of other
ML models, including semi-supervised and self-supervised
approaches, should also be explored in classification tasks to further
expand understanding in this area.
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