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Extreme heat and disease burden
in Southern Africa: a systematic
review

Maeti Antoinette George*

National University of Lesotho, Maseru, Lesotho

Global climate change affects human populations, as well as aquatic and
terrestrial ecosystems, highlighting the interconnected nature of the intervention
strategies that seek to improve human health. Statistical applications and
mathematical modeling are pivotal and crucial for quantifying the future
outcomes and understanding the effects of climate change on diseases.
The study was intended to identify the extent to which predictive modeling
was utilized in Lesotho in relation to the impact of drought on the spread of
disease in human beings. This was a systematic review of literature focused on
projections and predictions related to impacts on ecosystems and biodiversity
in vulnerable communities, and ultimately on human health. Furthermore, the
extent of research regarding the utilization of models in an attempt to curb the
spread of climate-related diseases and their effectiveness, so that countries can
respond promptly, was reviewed. It has been concluded that predictive modeling
has not been applied in Lesotho, and this risks crop failure, disease spread, anxiety
and mental health problems for the affected communities. If used, statistical and
predictive disease modeling and predictions along the interconnected threats
brought by drought would enable an understanding of how and when diseases
may spread, and how their spread can be controlled. The review recommends
that southern African countries should develop predictive models using available
hydrological parameters, meteorological and disease data. Decision-makers
should also use climate and disease forecasts, provided they are supported by
available climate and health data.
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1 Introduction

Drought is categorized as meteorological, agricultural, hydrological and socio-
economic drought [1]. Meteorological drought occurs as a result of insufficient
precipitation for an extended period, such that this ends up compromising crop production
and associated activities like animal watering, hence the existence of agricultural drought
[2, 3]. Hydrological drought marks a deficiency of water in hydrological systems, and this
affects food security and wellbeing of communities, hence socio-economic drought [4, 5].
Inadequate supply of water has been associated with poor hygiene, food insecurity (also due
to agricultural drought), and a decline in socio-economic aspects of communities, which
might cause anxiety and mental health problems.

Countries are faced with a shift in climatic patterns and zones, which sometimes lead
to extreme weather events like drought, severe cold or snowstorms, tropical cyclones,
wildfires, and floods. Each one of these conditions has drastic health impacts for
communities, subsequently burdening the health sector and other planning departments.
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Floods sometimes provide a suitable environment or breeding
ground for breeding of disease vectors, risking emergence and
transmission of climate-driven diseases.

Some pathogenic diseases are driven by climatic variations, and
these depend on the pathogen in question, health status and age
of the person [6] and individual’s resistance to the pathogen [7].
Furthermore, a combination of various climate factors with that
of pathogens explicitly demonstrates that these interactions have
a potential to aggravate disease spread. However, past studies have
focused on limited sets of pathogens; hazards (floods and drought),
types of disease transmission, that is, whether transmissions were
vector-borne, water-borne [8, 9], or food-borne [8].

Disease outbreaks are disrupting countries’ economies and
causing societal upheaval. Furthermore, countries are faced with
other challenges like disease surveillance, preparedness, adaptation
and modeling of climate factors together with measures to be
taken to contain disease spread and reduce mortalities. Modeling
information includes location, extent or magnitude, and when
disasters will occur. The complicated nature of spread of various
diseases needs to be modeled to predict their spread in space
and time. This will best inform the public health sector, other
stakeholders and policymakers, leading to implementation of the
most effective, suitable, cost-effective interventions. In a study by
Huang et al. [10], a two-dimensional model was developed for
spatial epidemics and temporal distribution of confirmed cases,
but focused on COVID-19 in China. In this model, the spread
of infectious diseases is characterized in various regions, where
control measures, seasonal changes that may affect infection rates,
and vaccination are incorporated as parameterisation schemes.
This contributes by giving a direction and understanding of the
dynamics of disease spread.

Climatic variations impact the environment, which may
directly and indirectly affect human health (Figure 1). For instance,
extreme temperatures directly affect human beings’ respiratory
systems and through cardiovascular complications and stress
[11]. Extreme heat also dries up water bodies, and, apart from
causing water scarcity, water pollution is threatened. During this
period, communities lose their crops and sometimes animals,
contributing toward food insecurity, famine and malnutrition.
During malnutrition, people become vulnerable to other diseases
due to the inability of their bodies to naturally fight germs and other
disease-causing bacteria and/or viruses. Disease vectors which are
tolerant to drought may also cause water-borne diseases [12–14],
which would be already common from water pollution that is
driven by excessive evaporation.

Wildfires and dust storms are events experienced due to
extreme heat incidences, and subsequently exacerbate air pollution,
ultimately heightening respiratory diseases and heart diseases [6,
15, 16]. PM2.5 is the common contributor of air pollution-related
health problems [15, 17–19]. Stroke has recently been associated
with air pollutants [20–24]. Other direct impacts of excessive
heat on humans include anxiety or eco-distress [25, 26] and
eventually mental health, and this emanates from helplessness and
hopelessness associated with “fear of uncertainty as to what will
come next.” This commonly follows loss of lives and property from
other events like floods, which occur concurrently with drought
and extreme heat.

Previous applications include modeling of natural hazards from
remote sensing and geographic information systems [27] due to the
ability to integrate spatial flood data from various sources to predict
spatial variations. These models were not utilized for the prediction
of disease spread, in the midst of flood events, necessitating the
employment of more robust approaches so as to inform the
health sector and protect human health. Back in the years 2010
to 2018, some studies by Parham and Michael [28] used models
and geospatial systems [29] that revealed significant differences
in the spread of malaria and other vector-borne diseases that are
associated with a warming trend. Research has predicted a future
increase in malaria disease transmission of about 25% [30] for sub-
Saharan Africa, parts of Latin America and Southeast Asia regions
that were cool and recently experiencing heightened temperatures.
Adding to this, Okafor et al. [31] projected malaria incidences
for populations below 5 and above 5 years of age, using climate
data (temperature, precipitation, and humidity), and malaria cases
from the health database in The Gambia. This was achieved with
utilization of a machine learning model for 2021–2030, 2031–
2014, and 2041–2050 periods. This indicates that data from both
departments are significant, and various climatic scenarios like
RCP4.5 and RCP8.5 can be used for epidemiological trends and the
establishment of high-risk communities. Babaie et al. [29] and Filho
et al. [32] found that malaria can be predicted for regions that are
already experiencing the disease, those with few or no malaria cases.
In this manner, countries’ level of preparedness will be enhanced.

A report from the Lesotho Ministry of Health [33], indicates
that Lesotho is not prone to tropical diseases like schistosomiasis
and malaria. However, other reports like the Integrated Master Plan
for the control of Neglected Tropical Diseases (NTDs), include
these diseases. Adding to this, Smith et al. [34] have noted that
various estimates have indicated that Lesotho is one of the countries
with increasing malaria risk owing to the stretching of Orange
river hydrology toward the west of the country [35], and increased
rainfall, aggravation of heat stress or extreme weather events, and a
range of disease vectors [12, 13].

The report further shows that, apart from extreme weather
patterns, air pollution could impact respiratory and communicable
diseases like Tuberculosis (TB), and the malaria zone is anticipated
to stretch toward the country by mid-century [36].

2 Methodology

A review of literature from the year 2015 to July 2025 was done
following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [37]. Reputable publishers
used were Frontiers, ScienceDirect, Springer, MDPI, Taylor and
Francis, and Wiley. Reports from the World Health Organization
(WHO) and governments were used. In addition, full-text, peer-
reviewed publications written in English were included. Literature
from these was used to answer the research questions pertaining
to the utilization of predictive modeling on the burden of disease
owing to drought as a climatic factor. Titles, abstracts and keywords
guided literature selection for the study, and this was followed by
relevance, quality articles, and those published within the 10 years
(2015–2025). Exclusion criterion was also based on literature which
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FIGURE 1

Conceptual model on the relationship between drought, human health and diseases.

did not report on Botswana, Lesotho, Namibia, eSwatini and South
Africa (Figure 2) as the southern African countries, and review
articles and reports which lacked originality (Figure 3).

Inclusion criteria: the review included studies that were
inclined toward burden of disease due to drought, community
members affected, and utilization of models to predict drought
(hydrological and meteorological), and both infectious and heat-
related diseases like strokes. Literature which reported on the
impact of heat and drought on human health was searched, and
inclusion criteria related to those articles which reported on direct
impact that was not specifically diseases, like dry air, water pollution
from drought and wildfires (including air pollution). This was
followed by those which reported direct impact from each of the
factors above on health.

Secondly, a review of articles which showed drought models
that can be used for modeling diseases was done. This was
followed by a literature selection on disease modeling, with respect
to food insecurity-based (malnutrition) and climate-sensitive
infectious diseases.

Exclusion criteria: literature that did not report on heat and
drought-related diseases, models that are used for the prediction
of drought and climate-sensitive diseases were excluded from the
review. Adding on these, literature that was published before 2015,
and outside southern Africa, was not utilized for review (Figure 3).
Lastly, a comparison of drought and disease models was done, and

this guided the selection of those which could suit the southern
African countries’ conditions, and recommendations were made in
that aspect.

3 Results

3.1 Screening and study material selection

A total of 288 publications were identified, and the elimination
process was based on abstracts, titles and irrelevant keywords,
and 182 articles were screened for duplicates, review articles, pre-
prints, lack of originality, and those of non-southern Africa origin,
yielding 148 texts. Eligibility criteria gave 54 texts, and work that
was published before the year 2015 and the poorly-written (42)
were excluded and this yielded 12 papers for this review. Poorly-
written papers were unclear and hard to follow, and ambiguous in
terms of climate-related health problems.

3.2 Relationships between drought and
disease burden

Relationships between drought events, human health and
disease burden are shown in Figure 1. It is evident that, if there
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FIGURE 2

Map showing southern African countries that were included in the review.

FIGURE 3

PRISMA diagram for literature search. Source: Author.
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is no forecasting or predictive modeling of these events, then
the health sector will lack preparedness and fail to curb disease
spread. Indirect impact of climatic variations, like destruction of
infrastructure, is pertinent for the socioeconomic and wellbeing
of affected communities. When precipitation rate drops, so do
agricultural production, hygiene, water quality and invasion of
disease vectors that tolerate drought. The latter worsens crop and
livestock production, gripping the nutrition sector. Adding to this,
farmers battle with agricultural production, and may increase food
prices, further putting vulnerable communities under pressure with
regard to food provision to their families. This mounts onto stress,
anxiety, and mental health problems from other drought and
flood-related challenges.

4 Impact of extreme heat and drought
on health

Rising temperatures have increased the risk of extreme heat
events like heatwaves, drought and subsequently water shortages.
Drought is documented as a prolonged and wide-ranging scarcity
of natural waters, and its consequences are not confined within
certain geographical locations [38]. Other health problems that are
associated with drought are food insecurity, psycho-social stress
[11] malnutrition and infectious diseases [39]. Indirect impacts
of extreme heat include disease spread amongst animals, where
increased disease capacity affects meat consumers. These include
a shortage of fodder [40] and spread of tick-borne diseases in
livestock [41].

Extreme heat directly destroys crops and kills animals
through excessive transpiration and heat-related stress on animals.
Problems range from lack of water, invasion of disease vectors that
find hot environments suitable for their development and survival,
and poor tolerance to the polluted environment where animals and
crops are expected to survive.

Crop failure is associated with low heat tolerance in some
crops [42, 43], and associated weather conditions like dry air.
On the other hand, farmers and households may fail to secure
adequate supplies for animals. Animal feed is also affected, together
with their health, and this adds to food insecurity problem for
communities. Apart from water shortages and diseases, growing
periods have been drastically adjusted, and crops do not have
adequate growing periods despite other environmental challenges.
These problems together lead to malnutrition and food price hike
due to limited food.

5 Excessive heat and human health

The following sections will elaborate on how heat and dry air
from excessive temperature impact on human health.

Excessive heat evaporates water from both surface water
bodies and the atmosphere. Human beings and other forms
of life like animals subsequently breathe in dry air, and this
affects their respiratory systems [44, 45]. To some extent, human
beings experience lung diseases caused by excessively dry air,
which is sometimes polluted from particulate matter (PM) in

the air, and even cardiovascular failures. Dry air irritates the
respiratory tract and may exacerbate asthmatic problems [18].
Exposure to PM2.5 was reportedly associated with short and/or
long-term health risks and sometimes fatalities from stroke [18,
19].

In Botswana, a study by Byakatonda et al. [46] established
that El Niño Southern Oscillation (ENSO) was the most precise
instrument for predicting drought in the country. Standardized
Precipitation Evaporation Index (SPEI) was utilized, and correlated
with ENSO, reflecting a 0.8% dryness per decade. The country
experiences severe drought, which alternates with destructive
floods [47]. For instance, the year 2023–2024 was declared “an
Extreme agricultural drought year,” and this was followed by the
2025 floods, which destroyed crops, including livestock fodder,
hence food insecurity.

In Lesotho, a report by the World Food Programme [48]
indicated that a combination of drought, erratic and/or prolonged
rainfall, and early frost disrupts people’s livelihoods, especially crop
production, food security and nutrition.

In Namibia, the drought assessment report [49] indicated a
12% surge in the population that would face food insecurity
owing to drought. The country had experienced drought for
seven consecutive years, with the rural communities being the
most vulnerable, marked by low agricultural productivity, livestock
deaths and negative impact on primary livelihood activities like
unemployment, school drop-outs and escalated food prices.

In eSwatini, it was forecasted that El Niño would threaten
food insecurity for 20% of communities in the year 2023, a figure
that escalated to 25% in the year 2024 [50]. Water insecurity
affected livestock and rainfed irrigation, and its population relied
on humanitarian aid. From all these reports, drought modeling
was not done comprehensively, utilizing atmospheric, climate
data, hydrologic data and remote sensing (RS). Furthermore,
there was no correlation between drought and disease spread or
infectious diseases.

Chen et al. [52] reported that rising temperatures are associated
with myocardial infarction for individuals with predisposing risk
factors using German data, whereas data from the UK and Spain
did not link heat events with myocardial infarctions. On the
contrary, Khraishah et al. [53] have associated low temperature
spells with incidences of myocardial infarction. In addition,
McCutcheon et al. [54] have asserted that a strong association
between climate change and cardiovascular complications is
more pronounced for the elderly, and individuals who have
medical complications like type 2 diabetes and hypertension are
more vulnerable. These inconsistencies are concerning and need
further research that entails predictive modeling under various
meteorological conditions and health status of study groups.
With regard to southern Africa, there is no widespread research
on how excessive heat may contribute to respiratory problems
and cardiovascular failures, as guided by models. In the absence
of predictive modeling regarding the effect of heat on non-
communicable diseases, there might be a hindrance to the health
sector’s preparedness and planning toward curbing these health
issues. This is more concerning since non-communicable diseases
like stroke and heart failure are reported as the second leading
causes of mortality for people above 13 years of age [33].
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6 Surface water bodies pollution

Excessive heat evaporates surface water bodies, increasing the
concentration of any existing pollutants [6]. Furthermore, water
bodies with low water volume get stagnant and are unable to dilute
pollutants, a process that occurs to enable self-purification. This
is usually enhanced by dilution and influx of clean water from
upstream or tributaries.

Communities that use polluted water are at risk of water-
borne diseases like cholera, giardiasis and cryptosporidiosis [55,
56]. These diseases also result from inadequate water due to
drought [57]. On the other hand, inadequate water supply could
lead to poor personal hygiene, leading to diseases like skin
infections, scabies, dysentery, conjunctivitis, and trachoma [58].
Few studies have modeled disease burden from water that is
polluted following periods of drought. For instance, a report by The
Ministry of Health [33] outlines incidences of poor water supply,
compromised sanitation and hygiene for rural communities,
without linking these conditions to climatic variations. With
erratic rainfall and prolonged periods of extreme heat events,
there is an insufficient supply of water for consumption and
improved hygiene.

7 Wildfires and air pollution

Wildfires deteriorate air quality from gases like carbon dioxide
(CO2), sulfur dioxide (SO2) and particulate matter (PM), with
PM2.5 being the air pollutant of health concern due to its ability
to penetrate human lungs. Polluted air exacerbates respiratory
diseases and communicable diseases like TB [12, 13], and asthma
patients are the most vulnerable. Prolonged air pollution degrades
the environment and impact on crop and plant growth.

With predicted changes in temperatures, the rural and poor
communities tend to be the most vulnerable, and, due to congestion
in their families, will easily transmit other diseases like measles [59].

Socio-economic impacts from wildfires include communities’
loss of property from wildfires [60, 61], and this may lead
to mental health issues, and some community members resort
to unplanned migration (even due to extensive air pollution),
leaving behind other hard-earned property, whereas others would
have lost property after being gutted during fires. Furthermore,
some animals get trapped within wildfires, leading to stress for
animal owners/farmers, food insecurity and malnutrition due to
inadequate supply of protein meals for consumers.

Predators which feed on some disease vectors diminish,
causing an increase in the numbers of some disease vectors
and changing the DV ecology [62, 63]. Adding to this,
there might be an infestation of disease vectors due to heat
spells and drought, affecting agricultural activities like crop
production and livestock rearing. This problem mostly affects
countries that lack preparedness, and the health sector gets
overwhelmed with patients. Bianco et al. [64] reported on the
vulnerability of middle and low-income countries to climate-
related diseases, without expanding on a variety of such climate-
sensitive diseases, and predictions related to when such diseases
might be experienced. There is a gap concerning the extent,

duration and coverage of the fires, and this needs to be predicted
so that all the sectors can get prepared, and this includes disaster
management authorities, to whom the data and information should
be accessible.

8 Drought models

Literature on drought models was examined, and a relationship
between existing literature was established, along with disease
models, and what prevails in southern African countries. Various
drought models can be used for modeling diseases for countries
whose predictions point to a drier and hotter climate. Drought
studies need atmospheric, climatic, hydrologic and remote
sensing data [65]. These incorporate input parameters like
evapotranspiration, temperature, precipitation, relative humidity,
wind, vegetation health, stream-flow, and soil moisture. All
these are available as meteorological and hydrological databases
(historical and recent).

Model selection should be guided by factors such as the
availability of data (cases of climate or drought-related diseases,
and epidemiological, in this case), desired level of accuracy and
intended use of predictions.

8.1 Stochastic models

They utilize historical climate data together with hydrological
data for future drought predictions. Autoregressive Integrated
Moving Average (ARIMA) and Seasonal Autoregressive Integrated
Moving Average (SARIMA) are the two common stochastic
models, with ARIMA being the most effective due to its
ability to predict events in time [66–68]. However, ARIMA has
drawbacks when it comes to complex non-linear time series
modeling [69–71].

8.2 Physical models

These are known to replicate drought behavior, using physical
or mathematical equations. An example is the Variable Infiltration
Capacity model, which mimics the water balance of a watershed or
drought prediction [72, 73]. Another physical model is the Soil and
Water Assessment Tool (SWAT), which is considered consistent
toward modeling future hydrologic drought events [74].

8.3 Machine Learning models (ML)

These models use techniques which are capable of identifying
complex patterns and relationships from data, and this includes
the utilization of algorithms to learn patterns that emanate from
historical hydrological and climate data, for drought prediction
[65]. In summary, various models have uniqueness that translates
into specific strengths and weaknesses, but machine learning is
more effective and reliable owing to the complexity of drought
[70, 75, 76].
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9 Disease modeling

It has been observed that remote sensing data, meteorological
observations, hydrological modeling and climate indices should be
integrated for accurate drought prediction [65, 77]. This approach
enables an understanding of how various aspects of drought may
significantly and adversely affect other sectors like the health sector.

9.1 Diffusion rate

Huang et al. [10] developed a model which reiterated the
significance of three major links in disease transmission, being the
source of infection, the transmission route, and the population
that is susceptible to the disease in question, thus formulating the
diffusion rate D (x,y) equation below:

D
(
x, y

) = D0
(
x; y

) + D 1
(
x; y

) + D2
(
x; y

) + D 3 (x; y)

+ D4 (x; y) (1)

Where:
D0 (x,y) = the impact of pollution as an environmental

factor on the epidemic process for infectious diseases. Here,
respiratory health problems and transmission through air are
taken into consideration through the respiratory tract as a mode
of transmission. Drought with high PM2.5 concentration in the
atmosphere could be a climatic condition.

D1 (x,y) = impact of natural factors, including local climate and
geographical conditions. These take into consideration the period
when people stay indoors during undesirable weather conditions,
increasing transmission rate or spread of disease due to poor
ventilation and congestion indoors.
D2 (x,y) = residential environment taking into consideration that
high population and high density places are more prone to disease
transmission rate;
D3 (x,y) = relates to the economic and health status of individuals,
where even economic status of countries in terms of ability to
supply vaccines and medicinal products; health education, and
awareness may help curb disease spread.
D4 (x,y) = local population mobility and transportation increase
the epidemic process of infectious diseases, since there might be
congestion. The unplanned migration of some communities that
incurred losses after wildfires could be one of the factors that lead
to increased transportation or migration rates.

In summary, the availability of data (long-term or historical),
the ability to apply a more suitable model for data processing
and predictions, and parameterisation (seasonal change and
impact on infection rate; control disease spread and medicinal
care/vaccination) are the three basic requirements for the system-
prediction process. Data should be collected from the health sector,
whereas social data (population size and urbanization or migration
rate) should be collected from relevant departments like statistics.
The other set of data entails meteorological data, and should also
include historical data to facilitate future projections. An epidemic
process must have three basic links, including sources of infection,
routes of transmission and susceptible population. Studies by
Barman et al. [78] and Jeong et al. [79] predicted the spread of

Aedes Albopictus mosquitoes and COVID-19, respectively. None of
these studies covered the southern African countries, and this is a
gap that needs to be addressed to safeguard human health against
transmissible diseases.

9.2 Population attributable fraction (PAF)

The population attributable fraction calculates disease burden,
which is preventable if there are alternative exposures as the means
of reducing or mitigating potential risk factors [80, 81]. The fraction
is in relation to heat-related health outcomes and was developed
in Australia [82], as shown in Equation 2 below. The fraction
needs relative risks through an estimation of effect size; Theoretical
Minimum Risk Exposure Distribution (TMRED) detection; and
exposure level of risk factors, as inputs for calculations [82].
TMRED assumes that the most frequent temperatures are the
minimum risk exposure threshold.

PAF =
∑

Pc (RRc − 1)
∑

c Pc (RRc − 1) + 1
× 100 (2)

where:∑
c = sum over all categories

c = Index for exposure level category
P = Proportional exposure at each exposure level/proportion of

“hot” days above the TMREDs in the reference year
RR = relative risk specific to the temperature category.
In South Africa, PAF was utilized for predictions of cholera and

mortality risks [83] and not for other southern African countries.
This is an area that needs further research regarding drought-
related diseases using PAF.

9.3 Burden of Disease (BoD)

BoD is attributable to high temperatures calculation, and
this is based on data availability and a wide difference in risk
patterns across geographical regions [82], and this is preceded
by the calculation of the PAF. BoD incorporates Years of Life
Lost (YLL) [51] and Years Lived with Disability (YLD) in relation
to temperature to find Disability-Adjusted Life Years (DALYs).
However, few studies have incorporated DALYs as one of the
indicators due to dependency on YLD data [84, 85].

Heat- attributable BoD could then be obtained as shown in
Equation 3:

Heat attributable BoD = DALY × PAF (3)

A study by Burkart et al. [81] linked deaths to daily temperature
estimates taken from the ERA5 dataset. Exposure-response curves
were further utilized with gridded temperature for calculation of
the cause-specific burden based on the Global Burden of Diseases,
Injuries and Risk Factors study over the 1990–2019 period. Sub-
Saharan Africa was one of the regions included in this study where
the highest heat-attributable burdens were observed, with global
deaths at 1.69 million attributable to non-optimal temperature in
the year 2019. This is the only study that covered southern African
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FIGURE 4

Center for disease control framework in BRACE. Adopted from Hess et al. [86].

countries, and the trend of diseases was not modeled against
soaring temperatures.

When models are developed, communities’ resilience to the
effects of climate change is strengthened. The Building Resilience
Against Climate Effects (BRACE) from Hess et al. [86] can be
adopted, and this framework (Figure 4) follows these critical steps:

i. The first step entails a forecast of climate impacts and an
assessment of community vulnerability to the impacts;

ii. Secondly, the Burden of Disease (BoD) is projected;
iii. Assessment of available interventions and the feasibility of

interventions that are aimed at protecting public health;
iv. Climate and Health Adaptation plans are developed, and this is

followed by their implementation, and;
v. Monitoring and evaluation are performed to ensure the

effectiveness of the interventions. This is aimed at the
identification of the quality of such interventions on
the ground.

Various initiatives like the National Climate Change
Adaptation Strategy (NCCAS) in South Africa [87] and the
Lesotho National Adaptation Programme of Action (NAPA)
on climate change have used this approach to build resilient
populations in efforts to get the nation prepared for climate-related
disasters and avoid mental health and depression problems.
However, the Lesotho approach is inclined toward agricultural
productivity, and not disease spread, and extended research should
model resilience using the BRACE approach to establish the quality
of intervention initiatives related to disease spread.

In summary, this study suggests that countries should
incorporate environmental predictors and climate predictions
(temperature, precipitation, humidity and extreme weather events)
into health data (numbers of reported cases and all health-related
information/data from disease surveillance system); geographic
and population demographics (population density and age
distribution); socio-economic factors (poverty level or sources
of household funds, land use, movements of communities and
environmental factors within habitats); Vector data (disease vectors
which are common in specific regions, e.g., insects and rodents).
The “Big data” will thus be populated with predictors and will
inform the spatio-temporal modeling and machine learning, which
will be used to develop an early warning and decision support
tool that will effectively inform climate-sensitive infectious disease
transmission [68]. The public sector and its policies can thus
be guided for the reduction of infectious and communicable
disease spread. Notably, human behavior alters following increased
temperatures, exacerbating pathogen transmission and disease
outbreaks [7, 88].

10 Conclusion

It has been concluded in this review that drought and
epidemiological data availability are significant in selection of
suitable models that are intended to predict disease spread
and reduce disease burden. The study concludes that soaring
temperatures are one of the determinants of human health, marked
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by mortalities and morbidity. The review has also concluded that
Lesotho is not forecasting drought events in alignment with disease
burden, and is also not utilizing predictive models for this event.
Suitable models are those that account for non-linear interactions
between climate or environmental characteristics like seasonality
of disease spread, variations in time (temporal disease spread), and
uncertainty of disease transmission. In this manner, no risk will be
left unpredicted.

It is further concluded that SARIMA and ARIMA were
reportedly suitable for seasonality and temporal outbreak
predictions, respectively. Nonetheless, other models like
Generalized Additive Model and Artificial Neural Network
(ANN) were utilized successfully in Mexico to model weather
effects on human health [89] and drought simulations in South
Africa [90]. In the same manner, Lesotho has not utilized
these models in order to determine the effects of drought on
human health. Furthermore, health services and climate change
policies should be reassessed to incorporate the burden of
disease, even in the planning phases of the health sector. Again,
mosquitoes are highly transmissible in regions that experience
both high temperatures and prolonged precipitation. There is
thus a pressing need for Lesotho to model disease transmission
due to this disease vector. However, heat-related, water-borne,
communicable diseases should not be overlooked during the
modeling processes.

Predictive modeling can be employed from the
following dataset:

- hydrological parameters (surface and groundwater)
- meteorological data

i. temperature
ii. evapotranspiration

iii. rainfall

These have been utilized in studies by Zeynolabedin et al. [77] in
East Azarbaijan Province, Iran, and a review on drought simulation
by Nandgude et al. [65].

11 Recommendations

Availability of epidemiological and climate data can be used
for disease forecasting, and this will inform early warning
systems, alleviating the spread of infectious disease, while
controlling cardiovascular and other heat and drought-related
diseases. Lesotho is currently outside the malaria zone, but, with
climatic variations, the belt is slowly shifting toward southern
Africa. On this basis, the government has to facilitate and
capacitate modeling of diseases and reduce disease spread to
improve the level of preparedness. It is thus imperative that
all the southern African countries seek to establish which
predictive models are suitable for drought prediction, disease
spread, resilience and sustainable development. Furthermore, the
models will ensure strengthened nations’ mitigation measures,
preparedness of the health sector and development of early
warning systems.

12 Future prospects

Future studies should establish the feasibility of diffusion
rate, population attributable fraction, and burden of disease
(BoD) incorporation in disease modeling, to further predict
morbidities and mortalities amidst predicted drought in Lesotho.
Adding to this, the significance of “Big data” that comprises
environmental, health and climate data, geographical and
population demographics, socio-economic factors, vector
data, together with BRACE toward building the resilience of
communities should be incorporated into future studies.
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