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1 Introduction

Optimal Feedback Control (OFC) provides a theoretical framework for goal-directed
movements, where the nervous system adjusts actions based on sensory feedback [1, 2].
In OFC, the central nervous system (CNS) not only reacts to stimuli but proactively
predicts and adjusts motor commands, minimizing errors and (often energetic) costs
through internal models. OFC theory can be extended beyond motor control to encompass
perception and learning [3]. This theory assumes that there exists a cost function
that is optimized throughout one’s movement. It is natural to assume that mechanical
quantities should be involved in cost functions. This does not imply that the mechanical
principles that govern human voluntary movements are necessarily Newtonian. Indeed,
the undisputed efficiency of Newtonian mechanics to model and predict the motion
of non-living systems does not guarantee its relevance to model human behavior.
We propose that integrating principles from Lagrangian and Hamiltonian higher-
derivative mechanics, i.e., dynamical models that go beyond Newtonian mechanics,
provides a more natural framework to study the constraints hidden in human voluntary
movement within OFC theory. Such an integration is displayed in Figure I and will be
extensively discussed hereafter. The outcome of our comment will be a refined framework
for OFC that considers recent analyses based on Lagrangian or Hamiltonian mechanics,
and that unifies them in a consistent way.

2 The need for higher-derivative mechanics

Newtonian mechanics obviously helps describe the immediate causal relationships
from initial conditions to generation of a trajectory through the action of external
forces—recall that according to standard terminology, internal forces are such that
their sum always vanishes. However, Newtonian mechanics is not directly suited
to address two primary challenges in understanding motor control: modeling the
redundancy inherent in the musculoskeletal system and the ability to perform
voluntary movements against external loads, such as those induced by gravity.
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Integration of higher-derivative mechanical concepts within components of an optimal feedback control model. It integrates task goals and
environmental cues, such as gravity, into the planning process. A Hamiltonian equation of motion (green box), formulated through a
higher-derivative least-action principle (blue box), informs the control policy. S and H represent the action and Hamiltonian respectively. Initial
conditions and Hamilton's equations then guide movement execution. The optimal phase-space trajectory, or attractor, serves as a forward model
(pink box), continuously compared to the actual trajectory. In rhythmic motion, the invariance of the adiabatic invariant (/) can act as a robust
comparator. Movement updates occur rapidly through this comparison (error-based learning), while significant changes in task or environment may
lead to longer-term adaptations in the variational principle (use-dependent learning). Illustrator: Robin Raedt.
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Redundancy refers to the multiple ways in which the same
movement or task can be performed due to the numerous degrees
of freedom available in our joints and muscles, and the question
of how an individual is able to select a particular movement.
Lagrangian mechanics is a priori well suited to model redundancy:
It asserts that, out of all possible trajectories between two positions
at initial and final times #; and #;, X(t;) and X(tf), the actual path
followed by the system under study is the one that minimizes
an action functional S[X] = ftfj L (3?, ?c, ;, .. .,*(N)> dt, where

3

¥ = 7 x = aand ™ denote the first, second and N time-
derivatives of the dynamical variables X, respectively. Velocity and
acceleration are denoted v and a respectively. The function L is
called the Lagrangian and the actual motion is given by Hamilton’s
variational principle, 8§ = 0, supplemented by a total of 2N
conditions 9 (;) = 0 = ?c(j)(tf),j =0,1,...,N — 1, at both
initial and final times, which leads to the least-action trajectory
[4]. The action functional may therefore be a basic principle of
movement planning, i.e. it provides a principle by which the CNS
can leverage multiple pathways to achieve the same movement
goal and eventually chooses the best one, the one for which the
action is minimal. In that sense, the action functional S[X] may
be thought of as a cost function in the OFC jargon. Newtonian
mechanics has only N = 1, with L being the difference between
kinetic and potential energies. Higher-derivative systems are such
that N > 1, and Lagrangians that are quadratic in ¥ lead to
equations of motion of order 2N with a solution requiring 2N
initial conditions to be specified [5]. Note that both the non-local,
Hamiltonian principle, and the local integration of an order—2N
differential equation require the same number 2N of conditions,
either N conditions at both #; and #; in Hamilton’s principle, or 2N
initial (i.e., at t;) conditions at the level of the equation of motion.

The case N = 1 is ruled out by human’s ability to perform
voluntary movements against given external forces, i.e., to choose
accelerations that are not proportional to the total external force
applied. The motor command and sensory feedback processed by
the CNS constantly control muscle forces, hence the acceleration of
a given joint or limb. The ability of the muscles to separately fine-
tune initial position, velocity and acceleration has been shown by
Ueyama [6], leading to the conclusion that the minimal value of the
integer N should be 2. An N = 2 action, S[X] = ftff L (?c, X, ?c) dt, is
then higher-derivative and four initial conditions must be specified
in the solution of the equations of motion: from %(t;) to % (¢;).
Interestingly, in the field of motor control, movements exhibiting
two-thirds power-law, such as natural tracing or even writing,
demand at least N = 2 to be produced [7, 8]. Therefore, we
conclude that the action principle governing movement planning
has to be higher-derivative.

The seemingly complex nature of selecting a trajectory by
minimizing an action raises the question of how the brain manages
it. The CNS adapts and optimizes motor control by learning from
previous movements. This learning involves continuously updating
internal models to improve predictions of motor command
outcomes, based on feedback and on initial conditions. Hence,
an action can serve as a reliable implementation of an internal
model if an individual can “learn” it through repeated trials and
observations. A four-layer neural network model with 500 hidden
units is already able to learn a Lagrangian from the observation of
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600,000 randomly generated trajectories [9]. Furthermore, a small
neural network can replicate reaching movements in monkeys,
suggesting that the CNS, with its vast complexity, can learn and
optimize similar tasks [10]. These network architectures being
considerably simpler than the human brain, it is reasonable to
assume that several Lagrangians may be learned concurrently by
one individual. This implies that motor strategies, such as non-
trivial cost functions, may be encoded in neural circuits.

3 Hamiltonian mechanics and optimal
feedback control

Once the action is selected, the corresponding Hamiltonian,
H, follows. Let us clarify the relevance of Hamiltonian mechanics
at this stage. In higher-derivative mechanics, the N positions
(é) and N momenta (I’) degrees of freedom can be computed
from L, see e.g., Boulanger et al. [8] for formal developments.
The space spanned by the pairs of variables (Q?,P,) is called
phase-space (b denotes the vector component), in which the full
system trajectory forms a single curve whose properties can be
geometrically studied. To initiate the planned movement after
the choice of higher-derivative action is made and the optimal
trajectory selected, initial conditions on all the 2N higher-derivative
degrees of freedom are designed, that will trigger the movement
in compliance with Hamilton’s equations in the higher-derivative
phase space. This process is illustrated in Figure | (Planning and
Control Policy boxes). Therefore, Hamilton’s equations coupled
with appropriate initial conditions determine the attractor to be
followed in OFC.

Phase-space provides a detailed map of the energy landscape
of trajectories, guiding the CNS in its selection of the most
efficient movement patterns. In an OFC framework, the optimal
state estimator uses a forward model to convert motor commands
into estimates of limb position. We propose that one individual
can “store” phase-space trajectories corresponding to a given
dynamics and initial conditions, called attractors hereafter, and
exploit them as forward models, i.e. predicted attractors. It
predicts sensory consequences of motor commands and compares
them to actual feedback to calculate the error. This iterative process
occurs in real-time, allowing the CNS to refine the trajectory
dynamically by comparison between the planned trajectory and
the actual one. In our framework, the comparison is made
between the predicted and measured attractors, that may reveal
potential discrepancies in every degree of freedom. This naturally
addresses the responsibility assignment problem, as the approach
helps identify which of the many degrees of freedom diverge
from the target trajectory [11]. By updating initial conditions
without changing the dynamics, i.e. by updating internal models
through sensory feedback in an OFC language, the CNS optimizes
short-term adaptation. This mechanism may be related to error-
based learning.

Long-term adaptation can occur by comparison of parameters
relevant at longer time scales. In the case of a rhythmic movement
for example, attractors become closed loops in phase-space planes
(Qb,P,). The areas of these loops, called adiabatic invariants
and denoted I, are known to be constant in Hamiltonian
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mechanics and even remain weakly fluctuating in presence of noise.
They also remain roughly constant in the presence of radically
new environments, such as rapid transitions between different
gravitational fields [12, 13]. In other words, I &~ 0. This constraint
may allow the CNS to refine its control strategies over longer
timescales by minimizing errors related to the fluctuations of I,
thereby improving performance over a longer time scale than the
process based on the attractor. We think that such long-range
adaptations may even result in a change in the action functional and
chosen Hamiltonian, through use-dependent learning mechanism.
As an illustration, Raffalt et al. [14] have shown that the walk-
run transition may be seen as the transition toward two attractors,
the attractor for running becoming more stable (as assessed by
Lyapunov exponent) at higher speed.

4 Discussion

How may the brain implement higher-derivative mechanical
principles? Decades of research have uncovered functional
specialization within both cortical and subcortical regions.
However, a significant gap persists between our ability to leverage
the brain for application and our deeper understanding of how
various brain areas contribute to these tasks [15]. Today, most
prosthetic control systems, for instance, heavily rely on signals
from the primary motor cortex (M1), largely because it is easily
accessible. This reliance on M1 oversimplifies the complexity
of brain functions. Traditional approaches, such as using brain
imaging with region-of-interest analysis, often assume distinct
functions for each area. In fact, many brain regions serve diverse
and overlapping roles. For example, the insula is involved in
a wide range of processes, despite these processes being very
different in nature, such as empathy [16] and graviception [17].
In this view, examining a brain area in isolation overlooks the
complex, context-dependent interactions that occur across the vast
neural network. No single region operates independently; instead,
functions are likely implemented by distributed networks, with
each area contributing in a dynamically modulated manner. Task
goals and environmental cues are integrated within the dorsolateral
prefrontal cortex, forming initial movement intentions. The
posterior parietal cortex combines multisensory inputs to construct
a state estimate of the body (initial conditions) and refine the
motor planning component. M1 generates motor commands, while
the cerebellum and primary somatosensory cortex process sensory
feedback to refine ongoing movements. Going beyond this highly
simplified story will open new avenues in motor control research.

An explicit class of higher-derivative Lagrangians has been
proposed by Boulanger et al. [8]:

A 1 ~ (N—
Ly =5 [EV2 = U (1F")), M

with N > 2, A > 0, and U an arbitrary real function. These
Lagrangians encompass well-known higher-derivative candidates
based on minimal jerk [7] while allowing for rhythmic motion and
leading to trajectories that exhibit two-thirds power-law, i.e., [|[V|| o
« 13, with « the trajectory’s curvature. We summarize the study of
Ly as a worked-out example, and refer the reader to the previous
reference for computational details. Following Ostrogradsky [18],
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the corresponding phase-space is defined as follows: The position-
like dynamical variables are defined as Q7 = X0 with j =
0,...,N — 1, and the conjugate momenta 13]- are given by

D N—j—14 = (2N—j—1) N—j 1"1N_j_2
C— (_1)N=i—1y 7z (N—j— IR A e U
Pj=(-1) AX +(-1) N2

(U/(;C(Nfl)Z) ;C(an) ]

)

The corresponding Hamiltonian, computed from Equations 1,

2, reads
N-2 f,z 1
_ D. . O+l N-1 - AN—1\2
HN_j_ZOPJQ + +2U((Q )?) . (3)

The Hamilton (canonical) equations read

-, O0Hy = 0H,
Q=" p =N (4)
9B, Qi

When the corresponding trajectory is periodic in phase-space,
noting gN"! = ||QV7!|| and py—1 = |[|Pn—1l, the adiabatic
invariant reads

)»2 tf (-qul)Z

1
In=— _dgV Tl = ————dt. 5
N7 o ﬁpl" 14 2 [, U(@®-12) )

In the latter equation, the closed curve I is a phase-space cycle
in the (gN~', py_1) plane starting at ¢; and ending at tf, so that
the period of the motion is T = t; — t;. The peculiar structure of
Hy leads to unbounded trajectories because of the term Zjli?,z 13]' .
Q/*1. This phenomenon, known as Ostrogradsky instability, is
often seen as an intrinsic weakness of higher-derivative models.
We believe however that individuals, through the comparison
stage of OFC model, are able to avoid this instability by
maintaining to zero the N — 1 momenta {}q’o,}ﬂ’l,‘...,f’N,z},
thereby avoiding the well-known pitfall of generic higher-derivative
models. Furthermore, regardless of human motor control, we
have shown in a previous work that classes of higher-derivative
Lagrangians, of Pais-Uhlenbeck type, can be constructed, that are
free from Ostrogradsky instability [19].

To experimentally test our framework, we propose a rhythmic
wrist/arm oscillation task with an abrupt context switch on a
planar backdrivable robotic manipulandum along the lines of the
protocol studied by White et al. [20]. Previous explicit higher-
derivative models as proposed in Richardson and Flash [21] rely
indeed on actions that do not allow for rhythmic motions, while
our model based on Ly does. Participants will oscillate the handle
at a metronome-paced frequency. The robot renders either a
viscous (velocity-dependent drag) force field, F = — BV or an
inertial (mass-like load) force field, F = —B a, with B € ]Ra'.
At an unpredictable instant, we will introduce a step change in
the environment by instantaneously updating B while keeping
task instructions and metronome unchanged. We hypothesize
that the Lagrangian Ly written above, with a simple harmonic
potential U(z) ~ z, should be able to reproduce the observed
trajectories before and after the update of B while predicting

an invariant Iy. Note that, with U(z) ~ =z one has Iy ~

o . . .
ft’,f (% N+D)12 dt. This integral corresponds to the action originally
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proposed by Richardson and Flash [21], and in our framework, it
emerges naturally as an adiabatic invariant. Crucially, the concept
of maintaining an invariant provides a holistic and principled way
to understand motor learning: Rather than simply minimizing
immediate errors, the motor system may aim to preserve deeper
structural quantities across changing environments.

This perspective aligns with growing empirical evidence that
the brain can switch between internal control policies depending
on contextual cues. For example, White and Diedrichsen [22]
showed that learning opposing force fields is only possible when
each is associated with a distinct feedback control strategy.
Similarly, White et al. [20] demonstrated that during tool-
mediated interaction with elastic force fields, grip force control
undergoes a discrete switch as stiffness crosses a threshold
— suggesting the brain uses switched feedforward strategies
in response to continuous task changes. In this view, classic
motor learning mechanisms—such as error-based adaptation,
use-dependent learning, and reinforcement learning—can be
interpreted as complementary processes working to preserve an
underlying invariant. Error-based mechanisms may handle rapid
online corrections, reinforcement learning may guide strategic
policy selection based on long-term outcomes, and use-dependent
processes may refine execution through repetition. All three
can be seen as converging toward a common goal: maintaining
stability in internal control structure despite environmental
variability. The action assumed by Richardson and Flash [21]
actually emerges as the adiabatic invariant of our model. We
will analyse the data for different N and find the best value,
that is the N for which Iy is maximally constant (i.e., with
the lowest coefficient of variation across the successive cycles)
before and after the B switch. This approach, grounded in
the principle of adiabatic invariance, offers a unified lens
through which both abrupt and gradual motor adaptations can
be interpreted.

Our framework brings a new vantage point on motor
control, regarding for example (1) Connection to neurological
diseases and rehabilitation as e.g., gait in patients suffering from
Parkinson’s disease, for which fluctuations between consecutive
strides have lost predictability [23]. This loss may be related
to an inability to ensure the constancy of the action variable
i =
stimulations as an effective rehabilitation option, see Figure I;

0), eventually supporting the use of auditory rhythmic

(2) Identification of new motor invariants from N > 2 action
principles, as already done to recover two-thirds law [8]; (3)
Use of adiabatic invariant theory as the most powerful way
to model the response of a system to external perturbations.
This will enhance the predictive power of OFC models for
individuals moving in variable environments with factors such
as vibrations, luminosity, acoustic environment or even gravity
[12]. In the intricate dance of motor control, the brain is not
just a reactive machine: it is an anticipatory maestro, fine-tuning
every movement through layers of prediction, feedback, and
adaptation. By pairing higher-derivative mechanical concepts
and components of optimal feedback control models, one is led
to a comprehensive framework that can link the intricate neural
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computations at work in voluntary movement to mathematically
elegant physical laws governing them.

Author contributions

OW: Conceptualization, Writing - review & editing,
Methodology, Writing — original draft. FB: Writing - original draft,
Formal analysis, Writing - review & editing, Conceptualization,
Methodology. FD: Writing - original draft, Conceptualization,
Methodology, Writing - review & editing. NB: Methodology,
Conceptualization, Writing - original draft, Formal analysis,

Writing - review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. Research support
(salaries) was provided by all the organizations reported in the
affiliations.

Acknowledgments

The authors thank Robin Raedt (UMONS) for his work as
illustrator of Figure 1.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen Al was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
of the publisher,
Any product that

their affiliated organizations, or those
the editors and the

be evaluated in this article, or claim that may be made

reviewers. may

by its manufacturer,
the publisher.

is not guaranteed or endorsed by

frontiersin.org


https://doi.org/10.3389/fams.2025.1692890
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

White et al.

References

1. Todorov E, Jordan MI. Optimal feedback control as a theory of motor
coordination. Nat Neurosci. (2002) 5:1226-35. doi: 10.1038/nn963

2. Wolpert DM, Ghahramani Z. Computational principles of movement
neuroscience. Nat Neurosci. (2000) 3:1212-7. doi: 10.1038/81497

3. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci.
(2010) 11:127-38. doi: 10.1038/nrn2787

4. Jos¢ JV, Saletan EJ. Classical Dynamics: A Contemporary Approach.
Cambridge UK: Cambridge University Press (1998). doi: 10.1017/CB0O97805118
03772

5. Pais A, Uhlenbeck GE. On field theories with non-localized action. Phys Rev.
(1950) 79:145-65. doi: 10.1103/PhysRev.79.145

6. Ueyama Y. Costs of position, velocity, and force requirements in optimal
control induce triphasic muscle activation during reaching movement. Sci Rep. (2021)
11:16815. doi: 10.1038/s41598-021-96084-2

7. Flash T, Handzel AA. Affine differential geometry analysis of human
arm movements. Biol Cybern. (2007) 96:577-601. doi: 10.1007/s00422-007-
0145-5

8. Boulanger N, Buisseret F, Dierick F White O. The two-thirds power
law derived from a higher-derivative action. Physics. (2024) 6:1251-63.
doi: 10.3390/physics6040077

9. Cranmer MD, Greydanus S, Hoyer S, Battaglia PW, Spergel DN, Ho S. Lagrangian
neural networks. arXiv preprint arXiv:2003.04630. (2020).

10. Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. A neural network that
finds a naturalistic solution for the production of muscle activity. Nat Neurosci. (2015)
18:1025-33. doi: 10.1038/nn.4042

11. White O, Diedrichsen J. Responsibility assignment in redundant systems. Curr
Biol. (2010) 20:1290-5. doi: 10.1016/j.cub.2010.05.069

12. Boulanger N, Buisseret E Dehouck V, Dierick F, White O. Motor strategies and
adiabatic invariants: the case of rhythmic motion in parabolic flights. Phys Rev E. (2021)
104:024403. doi: 10.1103/PhysRevE.104.024403

Frontiers in Applied Mathematics and Statistics

06

10.3389/fams.2025.1692890

13. Boulanger N, Buisseret F, Dehouck V, Dierick E White O. Adiabatic invariants
drive rhythmic human motion in variable gravity. Phys Rev E. (2020) 102:062403.
doi: 10.1103/PhysRevE.102.062403

14. Raffalt PC, Kent JA, Wurdeman SR, Stergiou N. To walk or to run —
a question of movement attractor stability. J Exp Biol. (2020) 223(13):;jeb224113.
doi: 10.1242/jeb.224113

15. Gallego JA, Makin TR, McDougle SD. Going beyond primary motor
cortex to improve brain-computer interfaces. Trends Neurosci. (2022) 45:176-83.
doi: 10.1016/j.tins.2021.12.006

16. DecetyJ, Jackson PL. The functional architecture of human empathy. Behav Cogn
Neurosci Rev. (2004) 3:71-100. doi: 10.1177/1534582304267187

17. Rousseau C, Barbiero M, Pozzo T, Papaxanthis C, White O. Gravity highlights a
dual role of the insula in internal models. bioRxiv.659870. (2019). doi: 10.1101/659870

18. Ostrogradsky M. Mémoires sur les équations différentielles, relatives au
probléme des isopérimeétres. Mem Acad St Petersbourg. (1850) 6:385-517.

19. Boulanger N, Buisseret F, Dierick F, White O. Higher-derivative harmonic
oscillators: stability of classical dynamics and adiabatic invariants. Eur Phys J C. (2019)
79:60. doi: 10.1140/epjc/s10052-019-6569-y

20. White O, Karniel A, Papaxanthis C, Barbiero M, Nisky I. Switching in
feedforward control of grip force during tool-mediated interaction with elastic force
fields. Front Neurorobot. (2018) 12:31. doi: 10.3389/fnbot.2018.00031

21. Richardson MJE, Flash T. Comparing smooth arm movements with the two-
thirds power law and the related segmented-control hypothesis. ] Neurosci. (2002)
22:8201-11. doi: 10.1523/JNEUROSCI.22-18-08201.2002

22. White O, Diedrichsen J. Flexible switching of feedback control mechanisms
allows for learning of different task dynamics. PLoS ONE. (2013) 8:1-8.
doi: 10.1371/journal.pone.0054771

23. Lheureux A, Warlop T, Cambier C, Chemin B, Stoquart G, Detrembleur C, et
al. Influence of autocorrelated rhythmic auditory stimulations on Parkinson’s disease
gait variability: comparison with other auditory rhythm variabilities and perspectives.
Front Physiol. (2020) 11:601721. doi: 10.3389/fphys.2020.601721

frontiersin.org


https://doi.org/10.3389/fams.2025.1692890
https://doi.org/10.1038/nn963
https://doi.org/10.1038/81497
https://doi.org/10.1038/nrn2787
https://doi.org/10.1017/CBO9780511803772
https://doi.org/10.1103/PhysRev.79.145
https://doi.org/10.1038/s41598-021-96084-2
https://doi.org/10.1007/s00422-007-0145-5
https://doi.org/10.3390/physics6040077
https://doi.org/10.1038/nn.4042
https://doi.org/10.1016/j.cub.2010.05.069
https://doi.org/10.1103/PhysRevE.104.024403
https://doi.org/10.1103/PhysRevE.102.062403
https://doi.org/10.1242/jeb.224113
https://doi.org/10.1016/j.tins.2021.12.006
https://doi.org/10.1177/1534582304267187
https://doi.org/10.1101/659870
https://doi.org/10.1140/epjc/s10052-019-6569-y
https://doi.org/10.3389/fnbot.2018.00031
https://doi.org/10.1523/JNEUROSCI.22-18-08201.2002
https://doi.org/10.1371/journal.pone.0054771
https://doi.org/10.3389/fphys.2020.601721
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	From brain to motion: harnessing higher-derivative mechanics for neural control
	1 Introduction
	2 The need for higher-derivative mechanics
	3 Hamiltonian mechanics and optimal feedback control
	4 Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


