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Dynamical behavior of a
stochastic SEIQRV infectious
model with an
Ornstein-Uhlenbeck process and
general incidence

Wen-He Li and Ke-Jia Wu*

School of Mathematics and Statistics Northeast Petroleum University, Daging, China

Considering the influence of quarantine and vaccination factors, this
study examines an SEIQRV infectious disease model that incorporates an
Ornstein-Uhlenbeck process and a general incidence function. By accounting
for disease-induced mortality rates among infected individuals, the article
establishes the existence and uniqueness of a global solution for any arbitrary
positive initial value. An adequate condition for disease extinction is also
provided. Simultaneously, by reconstructing a sequence of random Lyapunov
functions, we demonstrate the existence of a unique stationary distribution
indicating that the disease persists over a period of time in a biological
sense. Based on these findings, the precise expression for the probability
density function of the stochastic model near the quasi-equilibrium state
is derived. Finally, the theoretical results are verified through a series of
numerical simulations.
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1 Introduction

SARS-CoV-2, a coronavirus that emerged in late 2019, causes a severe respiratory
illness that can progress to fatal pneumonia [1]. The WHO has characterized the
epidemic as COVID-19 [2]. SARS-CoV-2, is primarily transmitted through three routes:
respiratory aerosol inhalation, immediate human exposure, and droplet transmission
[3]. It is worth noting that the implementation of quarantine and vaccination measures
significantly influences epidemic dynamics. To understand the transmission dynamics
of infectious diseases, many scholars have proposed numerous mathematical models to
predict and control the development of diseases. For instance, Tang et al. [4] developed
a generalized SEIR model of the SEIR-type considering isolation and treatment, which
elucidated the transmission dynamics of COVID-19 and evaluated the effect of public
health interventions on disease infections. Poonia et al. [5] developed a SEIRV model
incorporating vaccination rate, highlighting the critical role of social distancing and
vaccination in epidemic control.
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In 2020, Fosu et al. [6] proposed a SEIQRV general
epidemiological model for COVID-19 as follows:
dS = [A — BSI — (i + 8)S + vE]dt,
dE = [BSI — (02 + ¥ + v + p)Eldt,
dI = [yE — (01 + w1 + w)I]dt, )
Q = [01] + 02E — (w + 1)Q]dt,
= [0 + w,Q — uR]dt,
dV = [8S — pV]dt.

where S(t), E(t), I(t), Q(t), R(t), and V(t) represent the number
of susceptible, exposed, infected, quarantined, recovered, and
vaccinated classes at time t, respectively, and their initial values
are satisfied:

S(0) > 0,E(0) > 0,1(0) > 0,Q(0) > 0,R(0) > 0,V (0) > 0.

The parameters of Equation | are defined as follows: 8 denotes
the transmission rate from susceptible to exposed individuals;
A represents the recruitment rate of susceptible populations;
is the natural death rate; § denotes the vaccination rate among
susceptibles; v is the transfer rate from exposed back to susceptible;
y is the progression rate from exposed to infected; o7 and o3
represent the quarantine rates for infected and exposed individuals,
respectively; w; and w, are the recovery rates of infected and
quarantined individuals, respectively.

On this basis, considering that the mechanism of disease
transmission may be influenced by several factors, we introduce the
disease-caused mortality rate h of infected individuals and assume
that this rate exceeds the natural mortality rate. The resulting
deterministic Equation 2 takes the following form:

dS =[A — BSI — (uu + 8)S + vE]dt,

dE = [BSI — (02 + ¥ + v + p)Eldt,

dI = [yE — (o1 + w1 + n + B)I]dt,
= [o1] + 02 E — (w2 + n1)Qldt,
= [o1] + @2Q — uR]dt,

dV =[S — uV]dt.

o)

Similar to Fosu et al. [6], here are certain conclusions about
Equation 2:

(1) The basic reproduction number of Equation2 is Ry =
ABy
(n+0)(@1+o1+u+h)(y+ortv+u)
(2) The disease-free equilibrium point is
(-2+,0,0,0,0,

(So, Eo, Io, Qo, Ro, Vo) g
disease-free equilibrium point Ey
stable for Ry < 1.

(3) The endemic
(S*’E*’I*, Q*,R*’ V*))
P* is globally asymptotically stable for Ry > 1, where §* =

E, =
e +6)) and the
is locally asymptotically

equilibrium point is P* =
and the endemic equilibrium point

(@itortptytostvin) px _ A—(@A9S" e _ vE* Q* =
By = ytortp 27 T wrtor+pth’
o11*+0, E* JR* = o1 I +w, Q* V* = 5(w1+01+u+h)(y+oz+v+u)
w2t - Hn > - Byu

However, due to the inherent variability in real-world
populations, viral transmission is subject to stochastic disturbances.
Consequently, a growing body of research in infection dynamics
focuses on the stochastic properties of dynamical systems.
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Stochastic epidemic models that incorporate environmental noise
provide a more realistic representation of disease spread than
traditional deterministic models [7]. For instance, Shi et al. [8]
proposed a randomized COVID-19 SEIR model with an Ornstein-
Uhlenbeck process, which contributes to our comprehension of
the dynamic mechanisms. Su et al. [9] applied a randomized
HBYV infectious model having normal morbidity, cell-to-cell spread,
and immunological reactions. The consequences of environmental
perturbations on the mathematical model can be realized by
revising the model’s parameters. Two principal ways of changing
the parameters are mentioned [10]. One approach is to pretend that
the parameters are linear functions of Gaussian white noise. Liu
etal. [11] developed an SEIR-based COVID-19 stochastic epidemic
model incorporating independent standard Brownian motion to
analyze transmission dynamics within infected populations. Shi
etal. [12] developed a stochastic SEIRS rabies model incorporating
population diffusion. The other option is to utilize the mean-
reversion process to interfere with the parameters. Wei et al.
[13] established the dynamic behavior of an HIV infection model
featuring two transmission modes. Liu et al. [14] investigated a
viral infectious disease model incorporating latent individuals and
a log-OU process. Ornstein-Uhlenbeck process is notionally and
biologically more relevant. It better characterizes environmental
heterogeneity in biological systems than a linear function of white
noise [15]. Thus, this study adopts the latter assumption. Since
B is biologically important as the rate of transmission between
susceptible and exposed individuals, then we suppose that § of
Equation 2 varies arbitrarily due to environmental perturbations
and it is amenable to the Ornstein-Uhlenbeck process. In this case,
B could be changed to the form below:

dB(s) = a(B — B(s))ds + 0dB(s), 3)

where @ > 0 is for the speed of reversal. §# > 0 stands for
the intensity of fluctuation. B(s) is the standard Brownian motion.
The solution of Equation 3 can be expressed as follows: 8(s) =
eB(0) + (1 — e ®)B + [3 e~ 9dB(x), and B(s) ~ N(B, &)
as s — 00. By calculation, it is clear that when s — oo, we have
E(B(s)) = e “E(B(0) + (1 — e *)B — B, Var(B(s)) =
e Var(B(O0) + (1 — e G > &,
Based on Allen [15], B(s) is ergodic. Its asymptotic probability
32
9& _Tﬂ). Assuming B(0) = B.
Defining B(s) to be the time-averaged, we have

density function is w(x) =

_ _ 1 S 1 S0  a(x—s) _
fo = /0 pLod -+~ /0 % (1 = 9\ dB(x), E(B(5))7g5¢

= B, Var(B(s) = — + o(s3).

As s — 0, the variance Var(B(s)) tends to zero rather than
infinity. This behavior indicates that the Ornstein-Uhlenbeck
process is more suitable for characterizing the effects of stochastic
perturbations. Because f is a normal number based on its biological
significance, we know that (s) has a significant probability of being
positive by the property of the normal distribution when 6 becomes
small. Letting 81 () = max{B(s), 0}. Adding Ornstein-Uhlenbeck
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process to Equation 2, we have the stochastic model as below:

dS = [A — BH(H)SI — (1 + 8)S + vE]dt,
dE = [BT(H)SI — (02 + ¥ + v + w)E]dt,
dI = [yE — (01 + w1 + p + h)Idt,

dQ = [01] + 02E — (w2 + w)Qldt,

dR = [w1I + w,Q — nR]dt,

dV = [6S — uV]dt,

dB(t) = a(B — B(1))dt + 6dB(¢).

4)

Since the sixth expression in Equation4 does not affect the
dynamical analysis, we only have to investigate the stochastic model
as follows:

dS = [A — BH(1)SI — (u + 8)S + vE]dt,
dE = [BT(®)SI — (03 + y + v + p)E]dt,
dl = [yE — (01 + w1 + 1 + h)I]dt,

dQ = [o1] + 02E — (w2 + )Q]dt,

dR = [w1] + 02Q — pR]dt,

dB(t) = a(B — B(1)dt + 6dB().

The remaining parts of the article are structured according
to the following description. Section 2 investigates whether a
unique global solution exists for Equation 5. Section 3 gives an
adequate condition for the extinction of the epidemic. Section 4
derives a stationary distribution for the Equation 5, which describes
the continuation of the disorder. Section 5 derives the exact
expression of the probability density function through solving
the relevant six-dimensional Fokker-Planck equation. Section 6
illustrates theoretical outcomes with a few numerical simulations.
Section 7 ends with several conclusions.

2 Existence of unique global solution

To analyze the dynamic behavior of Equation 5, it is necessary
first to establish the existence of a global solution. This is a
fundamental requirement for all subsequent proofs. Let M(t) =

(8(0), E(1), 1(2), Q(1), R(2), B(1)).

Theorem 2.1. For any initial value M(0) € ]RS+ x R, there will
exist a unique global solution M(t) for Equation 5, and it will stay
in RS x R with probability one.

Proof. Since the coeflicients of system (1.5) are locally Lipschitz
continuous on R°+ x R for any initial value M(0) € R+ x R, it
follows that there exists a unique local solution M(¢) on t € [0, 7.),
where 7, denotes the explosion time. To justify that M(t) is global,
we simply prove t, = 00 a.s..

Let k; > 0 be large enough to ensure M(0) € Ri X R remains
inside the interval [%, k1]. Then, for every integer m > ki, define a
stopping time as follows:

T, = inf{t €[0, 7,] : min{S(#), E(£), I(¢), Q(¢), R(t), eV} < %

or max{S(t), E(t), I(t), Q(t), R(t), e’ D} > m).

(6)
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Set inf¢p = oo(where ¢ represents the empty set). Obviously,
Ty increases monotonically with m — 00. Define 1o = mh_r)noo Tims
that is, To.c < T.. In case we demonstrate that 1o = o0, then
7, = 00, indicating that M(¢) is global and M(t) € Ri_ x R.

Now, assume for contradiction that there exist constants T > 0,
em € (0,1) obeys P{too < T} > &p. Accordingly, there is an integer
ky > ki such that P{tee < T} > &, ¥m > k,. What's more,
Vm > ki, t < T,,, there has

dS+E+I+Q+R)

<A—-—puS+E+I+Q+R —8S<A

dt
—n(S+E+I+Q+R)
(7)
then
S(t) + E(t) + I(t) + Q(t) + R(t) < 3 (8)
where S(0) + E(0) + I(0) + Q(0) + R(0) < ﬁ Then define

a non-negative C?-function U(S, E, I, Q,R,ﬂ):]Ri xR — Ry,
as follows:

USELQRB) =S—1—InS+E—1—InE+1—1
—InT+Q—-1-1InQ

B (1)

+R—1—InR+ 3

Set A = sup{(af + %) | B(t) | —a | B(t) |*}. Using Itd’s formula,
BER
we obtain

1 1 1 1
LU =(1 = 9ds +(1 = DAE+ (1= T +(1 = 5)dQ
1 1,
+ (1= )R+ BOAB(®) + 6

:A—M(S+E+I+Q+R)—SS—%+ﬂ+(t)l+(8+u)

vE  BT(®)SI
S E
E o1l
Forky +v ) = T Gt ortp ) = T

E 1

- %+(wz+u)— =
a)zQ = 1 2
T~ R +u+aB()(B—B1)+ 59

§A+/3+(t)%+(6+,LL)+(62+J/+\1+/L)
+ (o1 +w1 +pn+h)
+(w2+u)+ﬂ+aﬂ(t)(5—/3(t))+%92
f(aﬁ+%)lﬂ(t)l—alﬁ(t) 2HA+Su+o+y
+v+h+a)1+w2+01+az+%92

1
§A+A+5M+3+V+U+h+w1+wz+01+62+592

: =k.
&)
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7. .. . . . [ E ) I _ : I
HeFe, kisa posmve. constant. Int.egratmg inequality fromOtofand ~ Then - Ty T aresamy = b which means § <
taking the expectation on both sides %W Next, define the matrix My as follows:

0 < E[US(tm AT, E(tm AT, 1(tm A T), Q(tm A T), R(ty A T),
B(tm A T))]

[N
— EU(M(0)] +E| / LUCM(2))dr]
0
< E[UM(0))] + kT.

For m > ky, let Q,, = 1,, < T, and there exists P(Q,,) > .
Thus for any & € , there exists at minimum one in
(S(Tm:é)aE(Tm:5):1(1—}11)5): Q(Tmyé);R(Tm;é), eﬂ(fm,f)) reaches

either m or % So

LnY) =
E[U(M(0)] + kT
> E[US(Tm A T): E(tyy A T)» I(tm A T): Qi A T): R(zy A T)>
B(tm A T))] =
= E[lﬂm(s)U(s(tm A T)> E(tim A T)> I(Tm A T)) Q(tim A T)>
R(tm A T), B(tm A T))] a
1 1
>el(m—1—Inm)A(— —1+1Inm) A —(Inm)*]. —
m 4
When m — 00, we can obtain 400 < E[U(M(0))] + kT <
+00. Thus, oo = 400 a.s; that is, T, = -+o00. Hence, the =
Equation 5 admits a unique global solution M(t).
<

Remark 2.1. By Theorem 2.1, we know that Equation5 has a
unique global solution M(t) € ]R?,r x R. And if S(0) + E(0) +I(0) +
Q(0) + R(0) < 4, there has S(1) + E(r) + I(t) + Q(t) + R(t) < 4.
Thus, we assume that T* = {(S,E,I,Q,R,B) € ]Ri x R:0 <
S+E+I+Q+R< %} is the invariant set.

=

3 Extinction

=
Having established the existence and uniqueness of the +
system’s solution, this section presents the sufficient conditions for
eradicating COVID-19, providing a theoretical basis for targeted
disease control efforts. Define

InY(t) — InY(0)

R§ = /Ro+ ;
(VR — 1)

yOA
(o2 +y + v+ u)J/Romramin{or +y + v + p,01 + 01 + p+ b}’

wyI) +

BA
wloz+y+v+u) |

(cn +ow1+u+h 0

By direct calculation, one can obtain Equation 10:

(@1,62) (Mo — T) (f) — (JRo - V@ E+@D.  (10)

Using Ito’s formula to In Y, we have

1 c51,3+(t)SI _
(e GIE
Y (o2 +y+v+pu)
0V E
e — ws)
o1+wr+u+h
1 o BAT _ @y E
le

(- +—
Y ploa+y+v+w) oy +wr+p+h

1 o) - pAL

Y u(oa+y +v+u)

%(031,(52)(1\40 —1Iy) (IIE) +

1 &i(BT(t) — B)AI

Y pulop+y +v+p)

] . B I o|BB)—B 1A
VR = D@E+@D + 5=

(VRo—1)

w1E + w1
E+

w1 [5)) I
oty +vtu

o1+w1+u+h

+al+w1+u+h & | Bt)—B A

pulor+y +v+p)
min{o; +y + v+ u,01 + w1 +pu +h}(y/Ro — 1)

)

Loitentudth @1 | B —B | A

@ w(oz +y 4+ v+ pu)

min{oy +y + v + @01 + 1+ +h}(y/Ro — 1)

YA -
(M(Oz+y+u+ﬂ)\/RT)|ﬁ(t) Bl

(1m

Integrating from 0 to ¢ and dividing by t on both sides, we obtain

< min{o; +y + v+ @ 01 +w +pn+hi

yA 1 /“ _
+ - IBx)—=B|dr.
u(oa+y +v+u)/Rot Jo 1)
12
Theorem 3.1. Ing < 1,ithas Taking the superior limit,
In( @1 E + ) D X InY(¢t)
lim sup orty+v+u o1twi+pu+h liiligf
— t
. =00 . < min{oy +y + v+ 1,01 + 1 + 1+ K} (y/Ro — 1)
<min{foy +y +v+p,01 +w1 +pu+hi(R; — 1) <0, VA 6
Jr —_—
B , ~ wloz +y +v+ )R /ra
,wherewlszm:L =min{<72+)/+v+ll«,t71+w1+ll~+h}(\/R70
AO
Proof. Defi Y -1
cne * wlor +y +v+ u)y/Roramin{oy +y + v+ pu,01 + w1 + p + hj )
Y(EI) = 1 + @2 I. min{oy +y + v + 4,01 + o1 + p+ h}/RE = 1),
oot+y+tvtp  ortwr+uth (13)
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E _ yOA
where R = /R : .
0 o+ w(o2+y+v+u)y/Romra min{or +y +v+u,01+w1 +u+h}

Thus if Rg < 1, we can obtain lim supw < min{o, +

t—+00

Yy +v+uo + o+ p+ hi( Rg — 1) < Oa.s.. That means

lim sup In B(t) f(t) < 0,limsup InI(H) {(t)
t——+00 t—+00

lim E(t) = 0, lim I(t) = 0. This indicates that the disease
t——+00 t—+00

ultimately becomes extinct with probability one. For COVID-19,
achieving eradication requires maintaining RE < 1 over the long

< 0Oa.s., which is to say that

term. From a mathematical theory perspective, the eradication
of COVID-19 is feasible. However, in the real world, achieving
this goal is extremely challenging due to complex environmental
factors, including population mobility, viral mutations, and animal
1 describes the
epidemic’s transmission trend, not the instantaneous infection

reservoirs. It is crucial to note that Rg <

status. In the short term, residual infected individuals may persist
within the population. However, due to the significantly reduced
transmission efficiency of the virus, this will not trigger new large-
scale outbreaks. Over time, the number of infected individuals
will gradually decrease until the final infected person recovers
or is eliminated, at which point the epidemic will be officially
declared over.

Remark 3.1. There is Rg — /Rgas® — 0, and Rg < 1 can
derive Ry < 1. This indicates that RE < 1 can be regarded as a
unifying criterion for both deterministic and stochastic models of
disease extinction.

4 Stationary distribution

Deterministic models have been effective in capturing the
continuity of COVID-19 infection dynamics. However, such
models do not possess a fixed equilibrium state in the stochastic
sense, due to the inherent randomness in disease transmission
and progression. To more accurately characterize the long-term
behavior of the epidemic under uncertainty, we turn to the concept
of a stationary distribution within the stochastic framework. In
this section, we derive sufficient conditions for the existence and
stability of a stationary distribution for the stochastic system
described by Equation 5. These conditions provide theoretical
insights into the circumstances under which the infection is likely
to persist endemically over time.

Lemma 4.1. ([16-18]) For any initial value X(0) = X, € T%,
assuming there is a bounded closed domain I' € T* with a regular
boundary, if

1 t
lim inf; P(x, Xo, )dx > 0, a.s.,
0

t— 00

where P(x, Xy, I') is the transition probability of X(¢). That means
Equation 5 has at least one ergodic stationary distribution.

Define
S _ BAy
Ry= RS
@+ wor+or+ut+h)or+y+v+puta =)
(14)

G _ ([T, 1 4. BAy
,Whereﬂ = (fo x47T(x)dx) , €1 = m.
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Theorem 4.1. Assume Rg > 1, the solution M(t) of Equation 5 has
at least one stationary distribution 7 (- ) on T*.

Proof. Using Ito’s formula to Equation 5,

A E
L-ln§) = -5 - %+ﬁ+(t)l+8+u <

A
-5 HBTOI+5+u,

+
L(—InE) = _p (BST

+oty+v+u,

E
L(—lmr):—’/T for+wor+u+h

Lm0 2 <2y
Q) =-"F - 4o tp<— tat+u
Q Q Q

a)lI a)zQ
L(—InR) = — 2% _ 2=,
(=InR) R R +u

A
L(n(— —-S—E—-I—Q—R))
"

—A+uS+E+I1+Q+R)+8S+hI
A
4_S—E-I1-Q-R

8S+hI

4_S—-E-1-Q-R

:—’u+

Define Vi = —InE —¢; In S — ¢, In I, where ¢; will be confirmed in
Equation 16.
Using Ito’s formula to V7, we have

+()SI aA
LVIS_IB EE) +az+y+v+u—1T+c1ﬂ+(t)I
oyE
+ (8 +p) — 27 + (01 + @1 + 1+ h),

1
< =3B ()crica Ay + T (O + c1(8 + p)
tal+or+put+h)+ot+y+v+u,

=—3ypacAy +aptOI + s+ p

talrt+or+pu+h)+o+y+v+u

+3( Berca Ay — /BT (tercaAy),

:—3,3/5c1csz+c1(8+u)+cz(01 4w +u+h)
+or+y+vtutapl+al| )-8

+ 3(\3/ Berca Ay — /Bt (t)cicaAy),
<- 3\3/ Berca Ay +c1(8 + 1) + c2(o1 + w1 + 1+ h)
_ A _
+02+V+U+M+cl/31+c1; | () — B |
A6 A6 N>
— — 3 A
+C1M — CIM — + (\/m
— VBt Ay).

Let ¢; and c; satisfy the following equalities

(15)

BAy

S+ 1) =caon F o +pu+h) = ’
cr( n)=co1+w1 + 1 ) S+ oy +w1 +p+ h)
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and note

A _ A =
HBW)=a— |- -a +3(y Bac Ay
0 u/mo
—VBH (D Ay),
then
Lvy < — pay toty+v+pu
(8 + p)or + w1+ +h)
_ A6
+capBl+c + H(B(t)).
18 VaJma (B()
Define V, = V; + #ﬁm—hl . Applying Ito’s formula to V>,

BAy

Lv, = - +ot+y+v+u

(6 + o1 +wr +pn+h)
AB By
+
uma oy twr+p+h

(2+y+v+p+ A0
= — (O v C
2y L=
6151’
— T E+ H(B®),
or+wr+u+h b®)

E+ H(B(1)),

)(RG — 1)

S _ Bay
where Ry = o rartihox by +raicra 25"
Denote
W=MV,—InS—InIl —InQ — InR—
A 2(t
m2 —s-1-p-q-r+2®,
" 2
and

B= sup 54+8+h+o01+w +w

B(t)eR

_ A
B+ Y180 —2a B0 P
I 2

1
~6%y,
+2 }

(16)

(17)

where M is a sufficiently large positive constant satistfying the
inequality —M(o2 +y + v+ u+a M‘}%)(Rg —1)+B < —2.
It has been observed that W — 400 as (S, E, I, Q, R, B) toward the
boundary of T*. Thus, it is essential that it has a minimum value
Wonin- Finally, we obtain a C?-function W: W(S,E, I, Q, R, B) =
W(S,E, I, Q,R, B) — Win. Using Ito’s formula to W(S, E, I, Q, R, B),
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we obtain
LW < — Moz 47 +v+n+a—2 &1
— M(o v q——— —
= 2TV 128 1#@ 0
clﬁy A
+M—E+ MH(B(t)) — —
P (B®) S
4 vE o E
+ B (t)I+8+5M—T+01+w1+h—?
a)11 a)zQ
+ wy + R R
8S + hi = 1,
— +aB()(B — B(1) + -0
4-S-E-1-Q-R pOG=F 2
A6
<—Mlor+y+v+pu+ Rj—1
<—-Moy+y+v+nu Clﬂ\/ﬁ)(o )
- A
+5M+5+h+61+w1+w2+(0‘ﬂ+;)|ﬂ(t)|
1 , 1, aBy
— —« HlIF+-0"+M——"—"—
2 I B® 2 or+wr+u+h

A yE onE ol Q

§S 1
TTs-p-1-q-r 2" | B(t) I +MH(B(1))
:=G(S,E, I, Q,R, B(t)) + MH(B(1)).

(18)
Then we define a closed subset of D, as follows: D, =
{((SE.LLQR,B(t) € T*)|S>e,E>e,1 > e%,Q> %, R> %S+
E4+I+Q+R< ﬁ —gte<pB< é}.Supposethats is a minimal

positive constant sufficient to satisfy the inequalities below.

P VL ) A
o1 +w+u+h
By A A
M apy A
(o1+or+pu+hp ¢
)
By A
+M by Yo
(o1 +or+u+hu e
+M( apya - o _
oltor+ut+hp e (19)
By A
M aby -®2 o 12
(or+or+u+hu e
M apyA 2y
(o1 +w1+pu+hp e
By A 8
24 M aby )
(o1+or+pn+hp ¢
M aByA ® .

(o1 +or+p+hu 282~
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The complement of D, can be divided into eight

domains below:

DS, ={(S.E.,Q.R,B(t) € T*|E < &}, D5,

={(S,E,I,Q, R, B(t)) € T*|S < ¢},

DS, ={(SE.LQR,B(1)) € T*|E > &,I < £*}, D,
={(S,E,I,Q,R, (1)) € T*|I > &*,R < &3},

DS, ={(SE.LQR,B(t) € T*|Q > &*,R < &’}, D,
={(SELQRB(1) € T'|E>¢,Q < &},

DS, ={(SELQRB() € T*IS>¢e,S+E+I+Q+R

A
> = — &%),

1
Dg, ={(S,E,L,QR,B(1) € T*[|B(1)| > -
Then, we can obtain the following result from the inequalities

Case 1: (S E I Q R ﬂ(t)) € D] & G(SaEaIa Q)R)ﬁ(t)) =<

—2+ML85—1.
o+wr+u+h

Case 2:(S,E, I, Q, R, B(1)) € D5 ., G(S, E, I, Q, R, B(t)) <
By A A
—24 M by - Z <1
(o1 +or+u+hu e

Case 3:(S,E, I, Q, R, B(1)) € D5, G(S, E, I, Q, R, B(t)) <

aByA AP
(1+or+p+hp e~

Case 4:(S,E, I, Q, R, B(1)) € Dy, G(S, E,I, Q, R, B(t)) <

—-2+M

By A
24+ M aby _2 o
(o1 +or+u+hu e

Case 5:(S, E, I, Q. R, B(t)) € D5 ., G(S, E, I, Q, R, B(t)) <

A
24 M afy _2
(o1 +wr+u+hp e

Case 6:(S,E, I, Q,R, B(t)) €

Dg.» G(S,E,I,Q R, B(1)) <

—24 M apy A _2 o
(or+wor +p+hu ¢
Case 7:(S,E, I, Q,R, B(t)) € D;s,G(S, E,I,Q,R,B(t) <
apyA 8
(o1 +wr+u+hp e

Case 8:(S,E, I, Q. R, f(t)) € D, G(S,E, I, Q. R, B(t)) <

-24+M

clﬂ y A o
—24M -~ =<-L
(o1 +or+u+hp 2
Given the above derivations, it is clear that it has a

sufficiently small constant & and a closed set D, such that
G(S,E,I,Q,R, B(t)) < —1L,Y(S,E, I, Q,R, B(t)) € T* \ Ds.

For any (S,E,I,QR,f(1)) e T*, denote X =
sup{G(S,E, I, Q,R, B(t)) + MH(B(t))}. Then G(S,E, I, Q, R, B(t)) <
X < +00,Y(S,E, I, Q,R, B(1)) € T*.

For any initial value M(0) € T%, integrating and applying
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mathematical expectation, we obtain

t
S]E[W(/t\/l(t))] _ E[LW<tM<°>>1 +% / E[W(M(r))ldr
0
t
fw n %/ E[G(M(r))ldr
0

t
+ 3M\3/6162A)/%/ E[(\S/E — VBT ()ldr

A t
+Mc%f0 E[(| () — f | ———)dr.

f
(20)

According to Cai et al. [19] and Zhang and Yuan [20], B(¢) has
ergodic property, so

1 ¢ _
Jim —/ () — Blde
/ V@ @)

+o00 _
=/ I — Blm(x)dg

—00 - Jra® t%+oo t
400 1
=( / x 17 (x)dx)?.
0
We can derive from that
t
0 <11m1nf E[G(M(T))]dr
t—+00
t
=1gn+1&f; E[GM () Lar)ep, ldT
t
+ lim inf — / E[GM () pm(r)en\p,)dT
t—+o00 t Jo

) (22)
§Xliminf7/ P(M(7)) € D.dt
t—>+oo t Jo

t
— lim infl P{(M(t)) € Q*\D,}dr
0

t—>+4o0 t

1 t
<—14+X+1)liminf- / P{(M(7)) € D.}dr.
t—+o0 t Jo

Hence, we obtain ltiin_g&f%félp{(/\/t(t)) € Ddr > g >

0a.s.. Therefore V(M(0)) € T*, lim inf { Jo P{z, (M(x)), Dc}dr >
— 400

X—H > 0.

According to Lemma 4.1, Equation5 has a stationary
distribution 7(-) on T*. Thus, the proof of Theorem 4.1
is completed.

Furthermore, in order to observe the influence of the stochastic
perturbation on RS for numerical simulation, we need to evaluate
the value of B. Let By < B < B1,the calculations for Sy and B are
provided below.

For easier computation, define p = (2971’ then 7w(x) =
_w=B?

N7 207 Let F(x) =

function of the standard normal distribution and ®(x) =

ffoo F(s)ds, then ®(+00) = 1,&(—a) = 1 — P(a). Take I'(x) =

f0+°° sX7le™5ds(x > 0),then I'(x +1) = x I'(x), F(%) = /7 Let

= fOJrOO X in (x)dy.Combining the above definitions and letting

2
¢~’T be the probability density
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x = %, we have which indicates that if Rgo > 1, then Ry > 1. Consequently,
when RS, > 1, the endemic equilibrium point P* of
C /+OO ) %n(X)dX _ /Jr_oooé N px)% 1 e‘édx Equation 2 is stable and Hquatéon 5 has a stationary di.stribution
8 V2 m(-). This suggests that R}, > 1 can be viewed as
L [0 px1 1 ; (23) " a harmonized threshold for COVID-19 prevalence for both
— A1 ) (l—|——_)3 e~ 7 dx. e . .  Simi E
B /; s i N deterministic and stochastic systems. Similar to Ry, the essence

of RS lies in the average number of healthy individuals that

Since (1 +a)* > 1 + "(";”az(o < x < 1), the Equation 23 can be a single infected person can transmit the disease to within

expressed as a susceptible population. It does not directly represent the

actual number of infections occurring during an outbreak

_y [To° pX 1 _2 _1 but serves as a core metric for measuring the strength of
K = p1 (1+7)4 e 2dx > g1 . . . , . .
_B B /27 an infectious disease’s transmission potential. For COVID-19,
+o0 3 ] 2 sustained epidemic circulation requires the basic reproduction
/ ; (1— p’x = )—ef%dx number RS to remain stably above 1 over the long term. Thus,
T 327~ when the viruss baseline transmissibility B is sufficiently high
_; : [ /+OO 1 e_é _ :"BpZ +00 o 2 o] (the numerator is sufficiently large) and can offset the effects of
- ,% V2 328221 J- control measures (represented by interventions such as §, oy, 02,
B B and h) through mutation or waning immunity (reflected in the
= Bi[@(+00) = (=) - ———— / T rdx dynamics of parameters v and $*), R} can stabilize above 1 over the
_ ? 1645 v/2m Jo long term. transforming the outbreak from a transient event into
_ B%q)(é) _ 3p° /+oo V2ste5ds sustained endemicity.
P’ 16f"i2m Jo
-1 B 3p2 3. .1 B 3p?
—pro®) - 1) =pied) - 22
P 16B” i 2w 2 p’ 328
— (Bo)i. 5 Probability density function
(24)
Similarly, since (1 4+ a)* < 1+ xa(0 < x < 1), the Equation 23 can Section 4 demonstrates the existence of a stationary
be also expressed as follows: distribution, indicating that the disease will persist. To better
elucidate the dynamics and statistical properties of the stochastic
N px1 1 2 1 - . - .
K=p1 | (1+=)1 e”7dx < B1 system, we will provide an exact expression for the probability
-5 V2m density function of the steady-state distribution in this section.
+oo L4 Px 12 dx When Ry > 1 , there will exist a quasi-equilibrium
/7§ 1+ 47?) /27 ¢ P* = (S, E*, I*, Q*, R*, %), which satisfies the equations below:
0
~1 +oo 1 2 T pxX 1 2
< pz e_de—l—/ . —=——=¢ 2dx
g /;oo V2T _% 4 2
A — BFS* I — (u+8)S* + vE* =0,
21
=pilt wm/é i B*S'T* — (02 +y + v+ WE* =0,
° * *
1 0 ~ 1 VE _(0'1+601+/L+h)1 =0, 26
= Bill+ — 1= (A" N .l (26)
_ B o1I" + 02 E* — (w2 + 1)Q* =0,
4./27 Be2*
o I* + 0,Q* — uR* =0,
It follows that By — B - B1 when & — 0 from the expressions a(f—p*) =0.
for B and B, fo = Bl (p 3252]4 Bi =B+ + —L 1
421 fe20?
Defi
ehne Taking C; = S — §*,C, = E—E*,C3 = [ — I*, Cy = Q — Q*, Cs =
RS — BoAy R — R*,C¢ = B — B*, the corresponding linearized system for
P GHme o+ p+ho+y+vbptas)  EquationSis
(25)
It is clear thatSRgo < Rg ansd there is Rgo — Rg when 6 — 0. dCy = (=m1Cy + m12Cy — my3Cs — myCe)dt,
Therefore, 1fR00 > 1, then Ry > 1. Moreover, we can observe dCy = (my1Cy — myaCy + mysCs + mrgCe)dt,
RS — BoAy dCs = (m3Cy — m33C3)dt, 27)
O o o R oty Fv At j%) dCy = (—mygrCy + ma3Cy — myaCy)dt,
BAy dCs = (ms3Cs — ms4Cy — m55Cs)dt,
< = Ry,
St +uthy oty dCo = —mesCodt + 0dB(1).
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where

miy = BI* + (8 + w), miz = v,mi3 = BS* = my3, mig = SI*
= mae, my1 = BI*,

myp =03+y+Vv+umyp=ym;z=0+o+u+hmg
= 02,M43 = 01,

Myq = wy + U, M53 = W1, M54 = W2, M55 = WU, Mee = .

Next, we denote

—my mpp —myz 0 0 —m
My —myy M3 0 0 me
G= 0 mszpy —ms33 0 0 0
0 —My4y M43 —My4q 0 0 ’
0 0 msz —msy —mss 0
0 0 0 0 0 —Me6

W = diag(0,0,0,0,0,0),

C(t) = (C1, G5, C3, Cs, G5, Go) T, B(1) = (0,0,0,0,0, B(t))"
Then, the Equation 5 can be expressed by a matrix as follows:

dC(t) = GC(t)dt + wdB(z).

Theorem 5.1. IfR(S) > 1,a; # 0, a5 # 0 and ay # 0, the solution
M(t) of Equation 5 around the quasi-stationary equilibrium P*
follows a normal probability density function ®(S,E,I, Q,R, B) :

®(S,EI,QR,B) = (21) || 2

1
eXP[—E(Ch C2,C3, Ca, C5, Ce)ZH(C1, Cs, C3, Cy, C5, Co) T,
where

2 =020%(JeJsIals)2 ) " =¥ [Us)s)als) )17

C11 0 C13 0 C15 0 000001
0 —C13 0 —C15 0 C26 010000
2* C13 0 C15 0 —C26 0 ] 001000
= 1:
0 —c15 0 ¢ 0 cal’ 000100/
C15 0 —C26 0 —C46 0 000010
0 C26 0 C46 0 Ce6 100000
100000 10 0 000
010000 01 0 000
I = 001000 Iy = 00 I 000
*7loooro00| T o022 100
000010 00 0 010
010001 00 a 001
100 0 00O 1000 0 O
010 0 0O 0100 0 O
o 001 0 00 0010 0 O
Js=looo 1 oo~ looo1 o ol
000 %10 0000 1 O
000 —% 01 0000 —% 1
az as
by b, bs by bs be
0 aasaymz, by bg by (my — my)*
Jo = 0 0 ayasa; big by — (my — my)’
0 0 0 asa; a; (—myy +my —mss)  (myg — my)*
0 0 0 0 az —myy + my
0 0 0 0 0 1
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Proof. For the proof of Theorem 5.1, we proceed in two steps.
Step 1: We prove that the eigenvalues of matrix G all contain
negative real parts. Step 2: We demonstrate that ¥ is a positive
definite matrix.

Step 1. Defining the characteristic polynomial of a matrix G to be
¢G(A), we have the following:

@A) = (A + mee)(A + mss)(A* + q127 + @22 + g3k + qa),
where

q1 =myy + mo + m33 + myq > 0,
q2 =(mi1may — miamay) + miymss + myimay
+ (maamsz — myzmsy) + Myamay + m3zmay > 0,
q3 =m1Moams3 — Mi1mp3msy — MM M33 + M131M1 M3y
+ (myympmaq — miamyymyq) + mMy1M33Ma44
+ (maamazmyq — my3msazmyg)
=(m11 — ma1)(marmss — m3ymy3)
+ (ma1mpamss — miamy1ms3)
+ (myympmaq — miamyymyg) + mM11M33M44
+ (mpym3zmyy — mpzmsymyy) > 0,
Q4 =M11MpM33May — M111M33M33Meq — M12M21 33144
+ my3my;msp gy
=mayy[(m11 — ma1)(maamsaz — m3pym;y3)

-+ ma1m33(myy — miz)] > 0.

By calculation, we can obtain q1g>—q3 > 0,419293 —q3 — 494 > 0.
Therefore, according to the Hurwitz criterion, the eigenvalues of
the matrix G all contain negative real parts.

Step 2. Based on Markov theory [21], the probability density
function ®(S,E, I, Q, R, B) of the Equation 5 can be expressed by
the following Fokker-Planck equation,

o 82®+3[( Co)®] + 0 [( C
- —[(—m —|[(—m
2 ac2 B 66C6 aC, 1t

+ m2Cy — m13C3 — msCe) D]

d
+ E[(m21cl — mpCy + my3Cs + masCs) D)

9 (28)
— C, — C3)dP
+ 3G [(m3,Cy — m33C3) D]

— [(=mypCy + my3C3 — myy Cy) D]
0Cy

d
+ —[(ms53C3 — ms4Cy — m55C5)P] = 0.
9Cs

The equation can be expressed as a Gaussian distribution ®(C) =
cexp{—%CTCT}, where c is a constant and 1" satisfies T W27 +
GI'Y +7G = 0. Thenif T is a positive definite matrix, denote
T™! =%, weobtain U2 + GZ + £GT = 0.

Through the calculations in the Appendix 1, we obtain the
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transition matrix Gg as follows:

—dy —dy —d3 —dy —ds —ds
1 0 0 0 0 0

Ge

oS O o O
oS O O
(= =
oS = O O
- o O O
o O o o

where dy = mgs+mss+q1, dy = (ms5+q1)mes +ms5q1+q2, d3 =
(mssq1 + q2)mes + Ms5q2 + q3, dg = (Ms5q92 + q3)mes + Ms5q3 +
q4> ds = (ms5q3 + qa)mes + Ms5q4, ds = MesMs5q4.

Next, we can transform the equation into the following form:

JoJsIal3J2 1 Y2 UsJsJal3)2J1) T + GelJsJsTals)a)i 22 UslsJal3)2J1) ]

+ 6J5J4)31211 22 Us)sJa3J2J1) T1GE = 0.

(29)
b%%]s]sh]a]zh22(]6]5]4]3]2]1)T , then ®2 +
GeX* + Z*Gl =0,

Assuming Y =

where © = diag(1,0,0,0,0,0), X* =
C11 0 C13 0 C15 0
0 —C13 0 —Cl15 0 €26
C13 0 C15 0 —C26 0
0 —C15 0 €26 0 C46 ’
cis 0 —c6 0 —cg6 O
0 6 0 ce 0 ce

. :(dldG — dbds)? + (dads — dade)(dads + ds — dids)

€00
dzdg + d%dg — didsdg — dzdyds
13 =— ,
13 o
didsde — dydyds + d% d%ds — dydyds + dzds
€15 = , 026 = ,
€00 €00
_ didy + di — dydyds — dyds
C46 = >
€00
e :(d1d4 — ds5)? + (didy — d3)(dads — dady — drds)
€00 '

coo =2de[ds((dvdy — ds)* — (dvdy — d3)(d3dy — dads))
+ ds(d1(dids — dvdads + dsds) — d3(didy + d3
— didads — dvds)
— dids(dvdy — d3))].

¥* is a positive definite matrix, which means that X
616> UsJsJalsl2)) ' £*[UsJsJals)2JD)T] ™" is a positive definite

matrix. Therefore, the normal probability density function around
the quasi-stationary equilibrium P* can be expressed by
1
®(S,E L QR B) = 2n) 3|52 expl— (S —§"E~ E%,1 T,
Q - Q*)R - R*>ﬁ - :8*)
2§ - SLE-ESTI-T,Q— Q" R—R" - )]

Remark 5.1. By Theorem 5.1 it follows that the solution

M(t) of Equation5  satisfies the normal  density
function N((§*, E*, T*, Q*,R*, B*), Z) around P If
Frontiers in Applied Mathematics and Statistics 10
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BA
RS by w7

(8+m)(o1+w1+p+h) (o2 4y +v+putc LT
(S(1), E(t), I(t), Q(t), R(t)) has a unique normal density function

> 1, then

_3 (5) -+
®(S,E,LQR) = (2m) 2 | XV |72
1 (5)-1 T
eXP[—E(Cl,Cz,C3,C4,C5)Z (C1,C2,C3,C4,C5) 1,
where we define £ as the fifth-order principal subform of X.

Therefore S(2), E(t), I(t), Q(t) and R(¢) will converge to the marginal
density function ®g, O, @1, P and Pp, respectively:

_ (575*)2 _ (E—E*)z
D5(8) = e M L ®p(E) = e ™
V2rg V2rg,
B (H?Z 1 _ (Q—Qj)2
o(I) = ﬁ e ,q>Q(Q) = \/T e M
TY3 T Q4
1 _ R=R)?
OrB) = e w5,
TYs

where ¢? is the i-th element on the main diagonal of %, respectively.

6 Numerical simulations

We will use Milstein’s higher-order method for numerical
simulations. Then, transform the Equation 5 into the following
discrete system:

Sit1 = Si+ [A — xiSil; — BSiTi — (u + 8)S; + vEi] At
Eip1 = Ei+ [xSili + BSili — (02 + ¥ + v + w)Ei] At
liy1 =1L+ [VE; — (01 + w1 + u + h)[;] At,

Qit1 = Qi+ [01] + 02Ei — (w2 + 1) Qi] At,

Rit1 = Ri + [w1]; + 02Q; — uR;] At,

Xipl = X — axi At + O/ Atg; + %(Sf —1)At.

(30)

where At > 0 represents the time increment, (S;, E;, I, Q;i, R, x;)
is the corresponding value of the ith iteration of Equation 5. In
addition, &; denotes the random variables that satisfy the standard
normal distribution.

Example 6.1 Let B =04, a0 =0.6,60 =0.01, A =15, =0.15,
6 =0.04,v = 0.11, y = 0.2, 01 = 0.013, 0 = 0.055, w; = 0.03,
wy; = 0.068 and h = 0.3, then we can calculate B = (0.7952)%,
Ry = 2.4876 > 1, Ry = 1.2732 > 1 and (S$*, E*,I*, Q*,R*, B*) =
(3.1737,2.2148,0.8985, 0.6124, 0.4573, 0.4). Moreover, the solution
M(t) obeys the following normal density function:

®(S,E,I,Q,R, B)
~ N((3.1737, 2.2148, 0.8985,0.6124, 0.4573,0.4), 2,

where
1.8315 —1.0907 —0.3804 0.1646 —0.0645 —0.2256
—1.0907 0.7431 0.2119 —0.0806 0.0201 0.1773
_ | —0.3804 0.2119 0.0860 —0.0375 0.0142  0.0325
0.1646 —0.0806 —0.0375 0.0181 —0.0089 —0.0114
—0.0645 0.0201 0.0142 —0.0089 0.0069 0.0023
—0.2256 0.1773 0.0325 —0.0114 0.0023 0.0833
X107,
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FIGURE 1
The left column shows persistent variations of S(t), E(t), I(t), Q(t), R(t) on deterministic Equation 2 and stochastic Equation 5, respectively. The right
diagram gives the frequency histogram and marginal density function of the Equation 5.
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The trajectories of S(t), E(t), I(t), Q(t), R(t) in Equation 5 with different values for volatility intensity 6.
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The trajectories of S(t), E(t), I(t), Q(t), R(t) in Equation 5 during the period of COVID-19 extinction.
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The trajectories of S(t), E(t), [(t), Q(t), R(t) in Equation 5 with different values for reversion speed «.
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The graph on the left represents the trend of Rg over the range (6, «) € [0.01,0.3] x [0.1, 1.5]. The graph on the right side shows the trend of Rg over
the range (0, «) € [0.001,0.04] x [0.1, 2].

We obtain the marginal functions of S(t), E(t), I(t), Q(t)
and R(?):

dg = 9.321967273.0002(573.1737)2) dp = 14'634587672.8268(E72.2148)2)
@) = 43.0292 —5816.7079(1-0.8985)?

Dy =93 75876—27616.7741(()—0.6124)2

dp = 152 04866—72629.7551(R—0A4573)Z

The dynamical behavior of the solutions is illustrated on the
left-hand side of Figure 1, which shows that the disease exhibits
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significant persistence over time. The right-hand side of Figure 1
gives the frequency histogram and marginal density function of
Equation 5, which indicates that the Equation 5 has a stationary
distribution. Figure 2 presents the frequency fitted-density function
and marginal density function for S(t), E(t), I(t), Q(t), and R(¢t).
From Figure 2, it can be observed that the density function image is
almost identical to the corresponding frequency histogram fitting
curves, which demonstrates that the probability density function of
the stationary distribution follows a Gaussian distribution.

Example 6.2 Choosing f = 0.24, « = 0.6, = 0.25, A = 0.6,
6 =0.16,v =0.28,y = 0.2, 01 = 0.15, 02 = 0.032, w; = 0.045,
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®y = 0.06 and other parameters referring to Example 6.1, then
we can calculate Ry = 0.1617 < 1, Rg = 0.9512 < 1 and there
exists a disease-free equilibrium Ey = (0.216, 0, 0, 0, 0) that is locally
asymptotically stable. It is clearly shown in Figure 3 that the disease
will become extinct over time.

Example 6.3 Taking three different values for the influence of
volatility intensity 6:

0 = 0.005,0 = 0.01,6 = 0.02.

Let reversion speed @« = 1.2, other parameters refer to Example
6.1. We can see that the smaller 6 is, the smaller the fluctuation of
the sample’s trajectory is, and the more stable the disease is after
observing the trajectories of S, E, I, Q, R in Figure 4.

Example 6.4 To investigate the effect of reversion speed o on
COVID-19 disease, take & = 0.01 and other parameters refer to
Example 6.1. Then, we choose three different values for reversion
speed a:

a=05a=08ua=1.3.

From the sample trajectories of S, E, I, Q, R in Figure 5, the larger «
is, the smaller the vibration of the sample motion trajectory is, and
the more stable the disease is.

Example 6.5 In the following, we examine the impact of
the Ornstein-Uhlenbeck process on the COVID-19 disease by
modifying the parameter values of volatility intensity 6 and
reversion speed o in R(S) and Rg. For RS, we choose 6 € [0.01,0.3]
and « € [0.1,1.5] and other parameters refer to example 6.1.
For Rg, we choose 6 € [0.001,0.04] and @ € [0.1,2] and
other parameters refer to example 6.2. As shown in Figure 6, as 0
decreases and « increases, Ry exhibits an increasing trend, which
suggests that the disease will continue to exist in the future, while
RE displays a decreasing trend, which indicates that the disease will
tend to become extinct after a long time.

7 Conclusion

This of COVID-19
transmission with Ornstein-Uhlenbeck processes. Compared

study investigates the dynamics
with the common linear combination of white noise, this study
assumes that the transmission rate parameter S of the susceptible
and exposed satisfies a mean-reversion process. This approach
avoids the unbounded variance of 8 as the time step decreases and
offers greater biological realism. In addition, taking into account
the effect of transmission mechanisms, we introduced disease-
caused mortality for I(f) and assumed that the disease-caused
mortality rate h was greater than the natural mortality rate .
For Equation 5, we first establish the existence and uniqueness
of a global positive solution and prove its boundedness via the
construction of a nonnegative Lyapunov-type function. On this
basis we analyze the dynamical behavior of Equation 5 and derive

the following key results:
(1) we fully utilize the ergodicity of the Ornstein-Uhlenbeck
process to derive two critical values R§ and RE related to disease
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persistence and extinction, where

s /§AV
Ry

- (5+u)(al+w1+u+h)(az+V+V+M+Clﬂ§%))

RE = /Ro+

yOA
(o2 +y + v+ p)VReramin{oy + y + v+ p,01 + o1 + pu+ h}’

When R(S) > 1, it indicates that the stochastic system has a
stationary distribution, meaning that the disease will persist over
time. To further determine the size relationship between R§ and
Ry, we define an Rgo such that Rgo < R(S) and RSO < Ry. It follows
that when R} > 1 thereis RY > 1and Ry > 1. This suggests that
RS, > 1 can be considered as a harmonized threshold for disease
prevalence for both deterministic and stochastic systems.

When RE < 1 indicates that the disease will become extinct
over time. And Rg < 1 can derive Ry < 1. This shows that
RE < 1 can be regarded as a unifying condition for deterministic
and stochastic models of disease extinction.

(2) To further investigate the dynamical behavior of the
disease, a display expression for the probability density function
in the quasi-equilibrium nearby was derived by solving the sixth-
order Fokker-Planck Equation 28. And we draw an image of the
probability density function as shown in Figure 1.

(3) We verify our theoretical results with numerical simulations
and find that both larger fluctuation intensity and smaller speed of
regression may lead to extinction of the disease.

This study proposes a stochastic SEIRQV model incorporating
an Ornstein-Uhlenbeck process. By introducing a quarantine
compartment, the model comprehensively accounts for the
combined effects of vaccination and quarantine measures on the
transmission of infectious diseases. To evaluate model performance
and the effectiveness of isolation measures, we conducted a
comparative analysis of simulation results against an existing
stochastic SEIV model [22]. Our findings suggest that integrating
natural mortality rates with artificial isolation policies enhances
our model’s precision in estimating disease extinction probabilities
and steady-state distributions. The interaction between isolation
and other compartments generates a modified critical threshold
condition, more accurately reflecting the impact of combined
intervention measures. Compared with existing stochastic SEIR
models [23], this model captures richer covariance structures
across all compartments. Moreover, the variance and covariance
terms explicitly depend on isolation and vaccination rates, which
provides a stronger theoretical basis for evaluating the variability
and potential outcomes of disease control strategies.

In summary, our study presents a more realistic stochastic
model that overcomes the limitations of the white noise model
in simulating the dynamics of COVID-19 infection. Although we
have made a breakthrough in this aspect, we still need to exploit
other valid approaches to compensate for the limitations of the
study. For example, further explore harmonized thresholds for
disease persistence and extinction, find a more suitable method and
theory to determine the uniqueness of the stationary distribution,
consider incorporating more compartmental models into COVID-
19 infectious disease research, and integrate age structures to study
differences in susceptibility and contact patterns across age groups.
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