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Dynamical behavior of a
stochastic SEIQRV infectious
model with an
Ornstein-Uhlenbeck process and
general incidence

Wen-He Li and Ke-Jia Wu*

School of Mathematics and Statistics Northeast Petroleum University, Daqing, China

Considering the influence of quarantine and vaccination factors, this
study examines an SEIQRV infectious disease model that incorporates an
Ornstein-Uhlenbeck process and a general incidence function. By accounting
for disease-induced mortality rates among infected individuals, the article
establishes the existence and uniqueness of a global solution for any arbitrary
positive initial value. An adequate condition for disease extinction is also
provided. Simultaneously, by reconstructing a sequence of random Lyapunov
functions, we demonstrate the existence of a unique stationary distribution
indicating that the disease persists over a period of time in a biological
sense. Based on these findings, the precise expression for the probability
density function of the stochastic model near the quasi-equilibrium state
is derived. Finally, the theoretical results are verified through a series of
numerical simulations.
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1 Introduction

SARS-CoV-2, a coronavirus that emerged in late 2019, causes a severe respiratory
illness that can progress to fatal pneumonia [1]. The WHO has characterized the
epidemic as COVID-19 [2]. SARS-CoV-2, is primarily transmitted through three routes:
respiratory aerosol inhalation, immediate human exposure, and droplet transmission
[3]. It is worth noting that the implementation of quarantine and vaccination measures
significantly influences epidemic dynamics. To understand the transmission dynamics
of infectious diseases, many scholars have proposed numerous mathematical models to
predict and control the development of diseases. For instance, Tang et al. [4] developed
a generalized SEIR model of the SEIR-type considering isolation and treatment, which
elucidated the transmission dynamics of COVID-19 and evaluated the effect of public
health interventions on disease infections. Poonia et al. [5] developed a SEIRV model
incorporating vaccination rate, highlighting the critical role of social distancing and
vaccination in epidemic control.
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In 2020, Fosu et al. [6] proposed a SEIQRV general
epidemiological model for COVID-19 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = [� − β̄SI − (μ + δ)S + νE]dt,

dE = [β̄SI − (σ2 + γ + ν + μ)E]dt,

dI = [γ E − (σ1 + ω1 + μ)I]dt,

dQ = [σ1I + σ2E − (ω2 + μ)Q]dt,

dR = [ω1I + ω2Q − μR]dt,

dV = [δS − μV]dt.

(1)

where S(t), E(t), I(t), Q(t), R(t), and V(t) represent the number
of susceptible, exposed, infected, quarantined, recovered, and
vaccinated classes at time t, respectively, and their initial values
are satisfied:

S(0) > 0, E(0) > 0, I(0) > 0, Q(0) ≥ 0, R(0) ≥ 0, V(0) ≥ 0.

The parameters of Equation 1 are defined as follows: β̄ denotes
the transmission rate from susceptible to exposed individuals;
� represents the recruitment rate of susceptible populations; μ

is the natural death rate; δ denotes the vaccination rate among
susceptibles; ν is the transfer rate from exposed back to susceptible;
γ is the progression rate from exposed to infected; σ1 and σ2
represent the quarantine rates for infected and exposed individuals,
respectively; ω1 and ω2 are the recovery rates of infected and
quarantined individuals, respectively.

On this basis, considering that the mechanism of disease
transmission may be influenced by several factors, we introduce the
disease-caused mortality rate h of infected individuals and assume
that this rate exceeds the natural mortality rate. The resulting
deterministic Equation 2 takes the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = [� − β̄SI − (μ + δ)S + νE]dt,

dE = [β̄SI − (σ2 + γ + ν + μ)E]dt,

dI = [γ E − (σ1 + ω1 + μ + h)I]dt,

dQ = [σ1I + σ2E − (ω2 + μ)Q]dt,

dR = [ω1I + ω2Q − μR]dt,

dV = [δS − μV]dt.

(2)

Similar to Fosu et al. [6], here are certain conclusions about
Equation 2:

(1) The basic reproduction number of Equation 2 is R0 =
�β̄γ

(μ+δ)(ω1+σ1+μ+h)(γ+σ2+ν+μ) .
(2) The disease-free equilibrium point is E0 =

(S0, E0, I0, Q0, R0, V0) = ( �
μ+δ

, 0, 0, 0, 0, δ�
μ(μ+δ) ), and the

disease-free equilibrium point E0 is locally asymptotically
stable for R0 < 1.

(3) The endemic equilibrium point is P∗ =
(S∗, E∗, I∗, Q∗, R∗, V∗), and the endemic equilibrium point
P∗ is globally asymptotically stable for R0 > 1, where S∗ =
(ω1+σ1+μ+h)(γ+σ2+ν+μ)

β̄γ
, E∗ = �−(μ+δ)S∗

γ+σ2+μ
, I∗ = γ E∗

ω1+σ1+μ+h , Q∗ =
σ1I∗+σ2E∗

ω2+μ
, R∗ = ω1I∗+ω2Q∗

μ
, V∗ = δ(ω1+σ1+μ+h)(γ+σ2+ν+μ)

β̄γμ
.

However, due to the inherent variability in real-world
populations, viral transmission is subject to stochastic disturbances.
Consequently, a growing body of research in infection dynamics
focuses on the stochastic properties of dynamical systems.

Stochastic epidemic models that incorporate environmental noise
provide a more realistic representation of disease spread than
traditional deterministic models [7]. For instance, Shi et al. [8]
proposed a randomized COVID-19 SEIR model with an Ornstein-
Uhlenbeck process, which contributes to our comprehension of
the dynamic mechanisms. Su et al. [9] applied a randomized
HBV infectious model having normal morbidity, cell-to-cell spread,
and immunological reactions. The consequences of environmental
perturbations on the mathematical model can be realized by
revising the model’s parameters. Two principal ways of changing
the parameters are mentioned [10]. One approach is to pretend that
the parameters are linear functions of Gaussian white noise. Liu
et al. [11] developed an SEIR-based COVID-19 stochastic epidemic
model incorporating independent standard Brownian motion to
analyze transmission dynamics within infected populations. Shi
et al. [12] developed a stochastic SEIRS rabies model incorporating
population diffusion. The other option is to utilize the mean-
reversion process to interfere with the parameters. Wei et al.
[13] established the dynamic behavior of an HIV infection model
featuring two transmission modes. Liu et al. [14] investigated a
viral infectious disease model incorporating latent individuals and
a log-OU process. Ornstein-Uhlenbeck process is notionally and
biologically more relevant. It better characterizes environmental
heterogeneity in biological systems than a linear function of white
noise [15]. Thus, this study adopts the latter assumption. Since
β̄ is biologically important as the rate of transmission between
susceptible and exposed individuals, then we suppose that β̄ of
Equation 2 varies arbitrarily due to environmental perturbations
and it is amenable to the Ornstein–Uhlenbeck process. In this case,
β̄ could be changed to the form below:

dβ(s) = α(β̄ − β(s))ds + θdB(s), (3)

where α > 0 is for the speed of reversal. θ > 0 stands for
the intensity of fluctuation. B(s) is the standard Brownian motion.
The solution of Equation 3 can be expressed as follows: β(s) =
e−αsβ(0) + (1 − e−αs)β̄ + ∫ s

0 e−α(s−x)θdB(x), and β(s) ∼ N(β̄ , θ2

2α
)

as s → ∞. By calculation, it is clear that when s → ∞, we have
E(β(s)) = e−αs

E(β(0)) + (1 − e−αs)β̄ → β̄ , Var(β(s)) =
e−2αtVar(β(0)) + (1 − e−αs) θ2

2α
→ θ2

2α
.

Based on Allen [15], β(s) is ergodic. Its asymptotic probability

density function is π(χ) =
√

α

θ
√

π
e−

α(χ−β̄)2

θ2 . Assuming β(0) = β̄ .
Defining β̄(s) to be the time-averaged, we have

β̄(s) = 1
s

∫ s

0
β(x)dx + 1

s

∫ s

0

θ

α
(1 − eα(x−s))dB(x),E(β̄(s))7g5g

= β̄ , Var(β̄(s)) = θ2s
3

+ o(s2).

As s → 0, the variance Var(β̄(s)) tends to zero rather than
infinity. This behavior indicates that the Ornstein-Uhlenbeck
process is more suitable for characterizing the effects of stochastic
perturbations. Because β̄ is a normal number based on its biological
significance, we know that β(s) has a significant probability of being
positive by the property of the normal distribution when θ becomes
small. Letting β+(t) = max{β(s), 0}. Adding Ornstein–Uhlenbeck
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process to Equation 2, we have the stochastic model as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = [� − β+(t)SI − (μ + δ)S + νE]dt,

dE = [β+(t)SI − (σ2 + γ + ν + μ)E]dt,

dI = [γ E − (σ1 + ω1 + μ + h)I]dt,

dQ = [σ1I + σ2E − (ω2 + μ)Q]dt,

dR = [ω1I + ω2Q − μR]dt,

dV = [δS − μV]dt,

dβ(t) = α(β̄ − β(t))dt + θdB(t).

(4)

Since the sixth expression in Equation 4 does not affect the
dynamical analysis, we only have to investigate the stochastic model
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = [� − β+(t)SI − (μ + δ)S + νE]dt,

dE = [β+(t)SI − (σ2 + γ + ν + μ)E]dt,

dI = [γ E − (σ1 + ω1 + μ + h)I]dt,

dQ = [σ1I + σ2E − (ω2 + μ)Q]dt,

dR = [ω1I + ω2Q − μR]dt,

dβ(t) = α(β̄ − β(t))dt + θdB(t).

(5)

The remaining parts of the article are structured according
to the following description. Section 2 investigates whether a
unique global solution exists for Equation 5. Section 3 gives an
adequate condition for the extinction of the epidemic. Section 4
derives a stationary distribution for the Equation 5, which describes
the continuation of the disorder. Section 5 derives the exact
expression of the probability density function through solving
the relevant six-dimensional Fokker–Planck equation. Section 6
illustrates theoretical outcomes with a few numerical simulations.
Section 7 ends with several conclusions.

2 Existence of unique global solution

To analyze the dynamic behavior of Equation 5, it is necessary
first to establish the existence of a global solution. This is a
fundamental requirement for all subsequent proofs. Let M(t) =
(S(t), E(t), I(t), Q(t), R(t), β(t)).

Theorem 2.1. For any initial value M(0) ∈ R
5+ × R , there will

exist a unique global solution M(t) for Equation 5, and it will stay
in R

5+ × R with probability one.

Proof. Since the coefficients of system (1.5) are locally Lipschitz
continuous on R

5+× R for any initial value M(0) ∈ R
5+× R, it

follows that there exists a unique local solution M(t) on t ∈ [0, τe),
where τe denotes the explosion time. To justify that M(t) is global,
we simply prove τe = ∞ a.s..

Let k1 > 0 be large enough to ensure M(0) ∈ R
5+ ×R remains

inside the interval [ 1
k1

, k1]. Then, for every integer m ≥ k1, define a
stopping time as follows:

τm = inf{t ∈[0, τe] :min{S(t), E(t), I(t), Q(t), R(t), eβ(t)} ≤ 1
m

or max{S(t), E(t), I(t), Q(t), R(t), eβ(t)} ≥ m}.
(6)

Set inf φ = ∞(where φ represents the empty set). Obviously,
τm increases monotonically with m → ∞. Define τ∞ = lim

m→∞ τm,
that is, τ∞ ≤ τe. In case we demonstrate that τ∞ = ∞, then
τe = ∞, indicating that M(t) is global and M(t) ∈ R

5+ × R.
Now, assume for contradiction that there exist constants T̄ > 0,

εm ∈ (0, 1) obeys P{τ∞ ≤ T̄} > εm. Accordingly, there is an integer
k2 ≥ k1 such that P{τ∞ ≤ T̄} ≥ εm, ∀m ≥ k2. What’s more,
∀m ≥ k1, t ≤ τm, there has

d(S + E + I + Q + R)
dt

≤ � − μ(S + E + I + Q + R) − δS ≤ �

−μ(S + E + I + Q + R)
(7)

then

S(t) + E(t) + I(t) + Q(t) + R(t) ≤ Λ

μ
, (8)

where S(0) + E(0) + I(0) + Q(0) + R(0) ≤ Λ
μ

. Then define
a non-negative C2-function U(S, E, I, Q, R, β) :R5+ × R → R+,
as follows:

U(S, E, I, Q, R, β) =S − 1 − ln S + E − 1 − ln E + I − 1

− ln I + Q − 1 − ln Q

+ R − 1 − ln R + β2(t)
2

Set A = sup
β∈R

{(αβ̄ + �
μ

) | β(t) | −α | β(t) |2}. Using Itô’s formula,

we obtain

LU =(1 − 1
S

)dS + (1 − 1
E

)dE + (1 − 1
I

)dI + (1 − 1
Q

)dQ

+ (1 − 1
R

)dR + β(t)dβ(t) + 1
2
θ2

=Λ − μ(S + E + I + Q + R) − δS − Λ

S
+ β+(t)I + (δ + μ)

− νE
S

− β+(t)SI
E

+ (σ2 + γ + ν + μ) − γ E
I

+ (σ1 + ω1 + μ + h) − σ1I
Q

− σ2E
Q

+ (ω2 + μ) − ω1I
R

− ω2Q
R

+ μ + αβ(t)(β̄ − β(t)) + 1
2
θ2

≤Λ + β+(t)
�

μ
+ (δ + μ) + (σ2 + γ + ν + μ)

+ (σ1 + ω1 + μ + h)

+ (ω2 + μ) + μ + αβ(t)(β̄ − β(t)) + 1
2
θ2

≤(αβ̄ + �

μ
) | β(t) | −α | β(t) |2 +� + 5μ + δ + γ

+ ν + h + ω1 + ω2 + σ1 + σ2 + 1
2
θ2

≤A + � + 5μ + δ + γ + ν + h + ω1 + ω2 + σ1 + σ2 + 1
2
θ2

: =k̃.
(9)
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Here, k̃ is a positive constant. Integrating inequality from 0 to t and
taking the expectation on both sides

0 ≤ E[U(S(τm ∧ T̄), E(τm ∧ T̄), I(τm ∧ T̄), Q(τm ∧ T̄), R(τm ∧ T̄),

β(τm ∧ T̄))]

= E[U(M(0))] + E[
∫ τm∧T̄

0
LU(M(τ ))dτ ]

≤ E[U(M(0))] + k̃T̄.

For m ≥ k2, let �m = τm ≤ T̄, and there exists P(�m) ≥ εm.
Thus for any ξ ∈ �m, there exists at minimum one in
(S(τm, ξ ), E(τm, ξ ), I(τm, ξ ), Q(τm, ξ ), R(τm, ξ ), eβ(τm ,ξ )) reaches
either m or 1

m . So

E[U(M(0))] + k̃T̄

≥ E[U(S(τm ∧ T̄), E(τm ∧ T̄), I(τm ∧ T̄), Q(τm ∧ T̄), R(τm ∧ T̄),

β(τm ∧ T̄))]

≥ E[1�m(ξ )U(S(τm ∧ T̄), E(τm ∧ T̄), I(τm ∧ T̄), Q(τm ∧ T̄),

R(τm ∧ T̄), β(τm ∧ T̄))]

≥ ε[(m − 1 − ln m) ∧ (
1
m

− 1 + ln m) ∧ 1
4

(ln m)4].

When m → ∞, we can obtain +∞ < E[U(M(0))] + k̃T̄ <

+∞. Thus, τ∞ = +∞ a.s.; that is, τe = +∞. Hence, the
Equation 5 admits a unique global solution M(t).

Remark 2.1. By Theorem 2.1, we know that Equation 5 has a
unique global solution M(t) ∈ R

5+×R. And if S(0)+E(0)+ I(0)+
Q(0) + R(0) ≤ Λ

μ
, there has S(t) + E(t) + I(t) + Q(t) + R(t) ≤ Λ

μ
.

Thus, we assume that T∗ = {(S, E, I, Q, R, β) ∈ R
5+ × R : 0 <

S + E + I + Q + R ≤ �
μ
} is the invariant set.

3 Extinction

Having established the existence and uniqueness of the
system’s solution, this section presents the sufficient conditions for
eradicating COVID-19, providing a theoretical basis for targeted
disease control efforts. Define

RE
0 =

√
R0+

γ θ�

μ(σ2 + γ + ν + μ)
√

R0πα min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h} .

Theorem 3.1. If RE
0 < 1 , it has

lim sup
t→∞

ln( ω̄1
σ2+γ+ν+μ

E + ω̄2
σ1+ω1+μ+h I)

t

≤ min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(RE
0 − 1) < 0,

, where ω̄1 = γ

(σ1+ω1+μ+h)
√

R0
, ω̄2 = 1.

Proof. Define

Y(E, I) = ω̄1

σ2 + γ + ν + μ
E + ω̄2

σ1 + ω1 + μ + h
I.

Then ω̄1
σ2+γ+ν+μ

E
Y + ω̄2

σ1+ω1+μ+h
I
Y = 1, which means I

Y <

σ1+ω1+μ+h
ω̄2

. Next, define the matrix M0 as follows:

(
0 ¯β�

μ(σ2+γ+ν+μ)
γ

σ1+ω1+μ+h 0

)
.

By direct calculation, one can obtain Equation 10:

(ω̄1, ω̄2)(M0 − I2)

(
E
I

)
= (

√
R0 − 1)(ω̄1E + ω̄2I). (10)

Using Itô’s formula to ln Y , we have

L(ln Y) = 1
Y

(
ω̄1β

+(t)SI
(σ2 + γ + ν + μ)

− ω̄1E

+ ω̄2γ E
σ1 + ω1 + μ + h

− ω̄2I)

≤ 1
Y

(
ω̄1β̄�I

μ(σ2 + γ + ν + μ)
− ω̄1E + ω̄2γ E

σ1 + ω1 + μ + h

− ω̄2I) + 1
Y

ω̄1(β+(t) − β̄)�I
μ(σ2 + γ + ν + μ)

= 1
Y

(ω̄1, ω̄2)(M0 − I2)

(
E
I

)
+ 1

Y
ω̄1(β+(t) − β̄)�I

μ(σ2 + γ + ν + μ)

≤ 1
Y

(
√

R0 − 1)(ω̄1E + ω̄2I) + I
Y

ω̄1 | β(t) − β̄ | �

μ(σ2 + γ + ν + μ)

≤ ω̄1E + ω̄2I
ω̄1

σ2+γ+ν+μ
E + ω̄2

σ1+ω1+μ+h I
(
√

R0 − 1)

+ σ1 + ω1 + μ + h
ω̄2

ω̄1 | β(t) − β̄ | �

μ(σ2 + γ + ν + μ)

≤ min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(
√

R0 − 1)

+ σ1 + ω1 + μ + h
ω̄2

ω̄1 | β(t) − β̄ | �

μ(σ2 + γ + ν + μ)

≤ min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(
√

R0 − 1)

+ γ�

(μ(σ2 + γ + ν + μ)
√

R0
| β(t) − β̄ | .

(11)
Integrating from 0 to t and dividing by t on both sides, we obtain

ln Y(t) − ln Y(0)
t

≤ min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}
(
√

R0 − 1)

+ γ�

μ(σ2 + γ + ν + μ)
√

R0

1
t

∫ t

0
| β(τ ) − β̄ | dτ .

(12)
Taking the superior limit,

lim sup
t→+∞

ln Y(t)
t

≤ min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(
√

R0 − 1)

+ γ�

μ(σ2 + γ + ν + μ)
√

R0

θ√
πα

= min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(
√

R0

+ γ�θ

μ(σ2 + γ + ν + μ)
√

R0πα min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h} − 1)

min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h}(
√

RE
0 − 1),

(13)
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where RE
0 = √

R0 + γ θ�

μ(σ2+γ+ν+μ)
√

R0πα min{σ2+γ+ν+μ,σ1+ω1+μ+h} .

Thus if RE
0 < 1 , we can obtain lim sup

t→+∞
ln Y(t)

t ≤ min{σ2 +

γ + ν + μ, σ1 + ω1 + μ + h}(
√

RE
0 − 1) < 0 a.s.. That means

lim sup
t→+∞

ln E(t)
t < 0, lim sup

t→+∞
ln I(t)

t < 0 a.s., which is to say that

lim
t→+∞ E(t) = 0, lim

t→+∞ I(t) = 0. This indicates that the disease

ultimately becomes extinct with probability one. For COVID-19,
achieving eradication requires maintaining RE

0 < 1 over the long
term. From a mathematical theory perspective, the eradication
of COVID-19 is feasible. However, in the real world, achieving
this goal is extremely challenging due to complex environmental
factors, including population mobility, viral mutations, and animal
reservoirs. It is crucial to note that RE

0 < 1 describes the
epidemic’s transmission trend, not the instantaneous infection
status. In the short term, residual infected individuals may persist
within the population. However, due to the significantly reduced
transmission efficiency of the virus, this will not trigger new large-
scale outbreaks. Over time, the number of infected individuals
will gradually decrease until the final infected person recovers
or is eliminated, at which point the epidemic will be officially
declared over.

Remark 3.1. There is RE
0 → √

R0 as θ → 0, and RE
0 < 1 can

derive R0 < 1. This indicates that RE
0 < 1 can be regarded as a

unifying criterion for both deterministic and stochastic models of
disease extinction.

4 Stationary distribution

Deterministic models have been effective in capturing the
continuity of COVID-19 infection dynamics. However, such
models do not possess a fixed equilibrium state in the stochastic
sense, due to the inherent randomness in disease transmission
and progression. To more accurately characterize the long-term
behavior of the epidemic under uncertainty, we turn to the concept
of a stationary distribution within the stochastic framework. In
this section, we derive sufficient conditions for the existence and
stability of a stationary distribution for the stochastic system
described by Equation 5. These conditions provide theoretical
insights into the circumstances under which the infection is likely
to persist endemically over time.

Lemma 4.1. ([16–18]) For any initial value X(0) = X0 ∈ T∗,
assuming there is a bounded closed domain � ∈ T∗ with a regular
boundary, if

lim inf
t→∞

1
t

∫ t

0
P(x, X0, �)dx > 0, a.s.,

where P(x, X0, �) is the transition probability of X(t). That means
Equation 5 has at least one ergodic stationary distribution.

Define

RS
0 = β̃Λγ

(δ + μ)(σ1 + ω1 + μ + h)(σ2 + γ + ν + μ + c1
�θ

μ
√

πα
)

,

(14)

, where β̃ = (
∫ +∞

0 x
1
4 π(x)dx)4, c1 = β̃Λγ

(δ+μ)2(σ1+ω1+μ+h) .

Theorem 4.1. Assume RS
0 > 1, the solution M(t) of Equation 5 has

at least one stationary distribution π(· ) on T∗.

Proof. Using Itô’s formula to Equation 5,

L(− ln S) = −Λ

S
− νE

S
+ β+(t)I + δ + μ ≤

− Λ

S
+ β+(t)I + δ + μ,

L(− ln E) = −β+(t)SI
E

+ σ2 + γ + ν + μ,

L(− ln I) = −γ E
I

+ σ1 + ω1 + μ + h,

L(− ln Q) = −σ1I
Q

− σ2E
Q

+ ω2 + μ ≤ −σ2E
Q

+ ω2 + μ,

L(− ln R) = −ω1I
R

− ω2Q
R

+ μ,

L(ln(
Λ

μ
− S − E − I − Q − R))

= −Λ + μ(S + E + I + Q + R) + δS + hI
Λ
μ
− S − E − I − Q − R

= −μ + δS + hI
Λ
μ
− S − E − I − Q − R

.

Define V1 = − ln E− c1 ln S− c2 ln I, where c1 will be confirmed in
Equation 16.
Using Itô’s formula to V1, we have

LV1 ≤− β+(t)SI
E

+ σ2 + γ + ν + μ − c1Λ

S
+ c1β

+(t)I

+ c1(δ + μ) − c2γ E
I

+ c2(σ1 + ω1 + μ + h),

≤− 3 3
√

β+(t)c1c2Λγ + c1β
+(t)I + c1(δ + μ)

+ c2(σ1 + ω1 + μ + h) + σ2 + γ + ν + μ,

=− 3 3
√

β̃c1c2Λγ + c1β
+(t)I + c1(δ + μ)

+ c2(σ1 + ω1 + μ + h) + σ2 + γ + ν + μ

+ 3( 3
√

β̃c1c2Λγ − 3
√

β+(t)c1c2Λγ ),

=− 3 3
√

β̃c1c2Λγ + c1(δ + μ) + c2(σ1 + ω1 + μ + h)

+ σ2 + γ + ν + μ + c1β̄I + c1I | β+(t) − β̄ |

+ 3( 3
√

β̃c1c2Λγ − 3
√

β+(t)c1c2Λγ ),

≤− 3 3
√

β̃c1c2Λγ + c1(δ + μ) + c2(σ1 + ω1 + μ + h)

+ σ2 + γ + ν + μ + c1β̄I + c1
�

μ
| β+(t) − β̄ |

+ c1
�θ

μ
√

πα
− c1

�θ

μ
√

πα
+ 3( 3

√
β̃c1c2Λγ

− 3
√

β+(t)c1c2Λγ ).

(15)

Let c1 and c2 satisfy the following equalities

c1(δ + μ) = c2(σ1 + ω1 + μ + h) = β̃Λγ

(δ + μ)(σ1 + ω1 + μ + h)
,
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and note

H(β(t)) = c1
�

μ
| β+(t) − β̄ | −c1

�θ

μ
√

πα
+ 3( 3

√
β̃c1c2Λγ

− 3
√

β+(t)c1c2Λγ ),

then

LV1 ≤ − β̃Λγ

(δ + μ)(σ1 + ω1 + μ + h)
+ σ2 + γ + ν + μ

+c1β̄I + c1
�θ

μ
√

πα
+ H(β(t)). (16)

Define V2 = V1 + c1β̄
σ1+ω1+μ+h I. Applying Itô’s formula to V2,

LV2 ≤ − β̃Λγ

(δ + μ)(σ1 + ω1 + μ + h)
+ σ2 + γ + ν + μ

+ c1
�θ

μ
√

πα
+ c1β̄γ

σ1 + ω1 + μ + h
E + H(β(t)),

= −(σ2 + γ + ν + μ + c1
�θ

μ
√

πα
)(RS

0 − 1)

+ c1β̄γ

σ1 + ω1 + μ + h
E + H(β(t)),

(17)

where RS
0 = β̃Λγ

(δ+μ)(σ1+ω1+μ+h)(σ2+γ+ν+μ+c1
�θ

μ
√

πα
)
.

Denote

W̄ = MV2 − ln S − ln I − ln Q − ln R−

ln(
Λ

μ
− S − I − E − Q − R) + β2(t)

2
,

and

B = sup
β(t)∈R

{5μ + δ + h + σ1 + ω1 + ω2

+(αβ̄ + �

μ
) | β(t) | −1

2
α | β(t) |2 +1

2
θ2},

where M is a sufficiently large positive constant satisfying the
inequality −M(σ2 + γ + ν + μ + c1

�θ
μ
√

πα
)(RS

0 − 1) + B ≤ −2.
It has been observed that W̄ → +∞ as (S, E, I, Q, R, β) toward the
boundary of T∗. Thus, it is essential that it has a minimum value
W̄min. Finally, we obtain a C2-function W: W(S, E, I, Q, R, β) =
W̄(S, E, I, Q, R, β)−W̄min. Using Itô’s formula to W(S, E, I, Q, R, β),

we obtain

LW ≤− M(σ2 + γ + ν + μ + c1
�θ

μ
√

πα
)(RS

0 − 1)

+ M
c1β̄γ

σ1 + ω1 + μ + h
E + MH(β(t)) − Λ

S

+ β+(t)I + δ + 5μ − γ E
I

+ σ1 + ω1 + h − σ2E
Q

+ ω2 +−ω1I
R

− ω2Q
R

− δS + hI
Λ
μ
− S − E − I − Q − R

+ αβ(t)(β̄ − β(t)) + 1
2
θ2

≤− M(σ2 + γ + ν + μ + c1
�θ

μ
√

πα
)(RS

0 − 1)

+ 5μ + δ + h + σ1 + ω1 + ω2 + (αβ̄ + �

μ
) | β(t) |

− 1
2
α | β(t) |2 +1

2
θ2 + M

c1β̄γ

σ1 + ω1 + μ + h
E

− Λ

S
− γ E

I
− σ2E

Q
− ω1I

R
− ω2Q

R

− δS
Λ
μ
− S − E − I − Q − R

− 1
2
α | β(t) |2 +MH(β(t))

: =G(S, E, I, Q, R, β(t)) + MH(β(t)).
(18)

Then we define a closed subset of Dε as follows: Dε =
{(S, E, I, Q, R, β(t) ∈ T∗)|S ≥ ε, E ≥ ε, I ≥ ε2, Q ≥ ε2, R ≥ ε3, S +
E + I + Q + R ≤ Λ

μ
− ε2, ε ≤ β ≤ 1

ε
}. Suppose that ε is a minimal

positive constant sufficient to satisfy the inequalities below.

−2 + M
c1β̄γ

σ1 + ω1 + μ + h
ε ≤ −1,−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− Λ

ε
≤ −1,

−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− γ

ε
≤ −1,−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− ω1

ε
≤ −1,

−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− ω2

ε
≤ −1,−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− σ2

ε
≤ −1,

−2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− δ

ε
≤ −1,−2

+M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− α

2ε2 ≤ −1.

(19)

Frontiers in Applied Mathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2025.1687991
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Li and Wu 10.3389/fams.2025.1687991

The complement of Dε can be divided into eight
domains below:

Dc
1,ε = {(S, E, I, Q, R, β(t)) ∈ T∗|E < ε}, Dc

2,ε

= {(S, E, I, Q, R, β(t)) ∈ T∗|S < ε},
Dc

3,ε = {(S, E, I, Q, R, β(t)) ∈ T∗|E ≥ ε, I < ε2}, Dc
4,ε

= {(S, E, I, Q, R, β(t)) ∈ T∗|I ≥ ε2, R < ε3},
Dc

5,ε = {(S, E, I, Q, R, β(t)) ∈ T∗|Q ≥ ε2, R < ε3}, Dc
6,ε

= {(S, E, I, Q, R, β(t)) ∈ T∗|E ≥ ε, Q < ε2},
Dc

7,ε = {(S, E, I, Q, R, β(t)) ∈ T∗|S ≥ ε, S + E + I + Q + R

>
Λ

μ
− ε2},

Dc
8,ε = {(S, E, I, Q, R, β(t)) ∈ T∗||β(t)| >

1
ε
}.

Then, we can obtain the following result from the inequalities

Case 1:(S, E, I, Q, R, β(t)) ∈ Dc
1,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γ

σ1 + ω1 + μ + h
ε ≤ −1.

Case 2:(S, E, I, Q, R, β(t)) ∈ Dc
2,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− Λ

ε
≤ −1.

Case 3:(S, E, I, Q, R, β(t)) ∈ Dc
3,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− γ

ε
≤ −1.

Case 4:(S, E, I, Q, R, β(t)) ∈ Dc
4,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− ω1

ε
≤ −1.

Case 5:(S, E, I, Q, R, β(t)) ∈ Dc
5,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− ω2

ε
≤ −1.

Case 6:(S, E, I, Q, R, β(t)) ∈ Dc
6,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− σ2

ε
≤ −1.

Case 7:(S, E, I, Q, R, β(t)) ∈ Dc
7,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− δ

ε
≤ −1.

Case 8:(S, E, I, Q, R, β(t)) ∈ Dc
8,ε , G(S, E, I, Q, R, β(t)) ≤

− 2 + M
c1β̄γΛ

(σ1 + ω1 + μ + h)μ
− α

2ε2 ≤ −1.

Given the above derivations, it is clear that it has a
sufficiently small constant ε and a closed set Dε such that
G(S, E, I, Q, R, β(t)) ≤ −1, ∀(S, E, I, Q, R, β(t)) ∈ T∗ \ Dε .
For any (S, E, I, Q, R, β(t)) ∈ T∗, denote X =
sup{G(S, E, I, Q, R, β(t)) + MH(β(t))}. Then G(S, E, I, Q, R, β(t)) ≤
X < +∞, ∀(S, E, I, Q, R, β(t)) ∈ T∗.
For any initial value M(0) ∈ T∗, integrating and applying

mathematical expectation, we obtain

0 ≤E[W(M(t))]
t

= E[LW(M(0))]
t

+ 1
t

∫ t

0
E[W(M(τ ))]dτ

≤E[LW(M(0))]
t

+ 1
t

∫ t

0
E[G(M(τ ))]dτ

+ 3M 3
√

c1c2Λγ
1
t

∫ t

0
E[( 3

√
β̃ − 3

√
β+(t))]dτ

+ Mc1
Λ

μt

∫ t

0
E[(| β(τ ) − β̄ | − θ√

πα
)]dτ .

(20)
According to Cai et al. [19] and Zhang and Yuan [20], β(t) has
ergodic property, so

lim
t→+∞

1
t

∫ t

0
|β(ζ ) − β̄|dζ

=
∫ +∞

−∞
|x − β̄|π(x)dζ = θ√

πα
, lim

t→+∞
1
t

∫ t

0

√
β+(ζ )dζ

= (
∫ +∞

0
x

1
4 π(x)dx)2.

(21)

We can derive from that

0 ≤ lim inf
t→+∞

1
t

∫ t

0
E[G(M(τ ))]dτ

= lim inf
t→+∞

1
t

∫ t

0
E[G(M(τ ))IM(τ )∈Dε

]dτ

+ lim inf
t→+∞

1
t

∫ t

0
E[G(M(τ ))IM(τ )∈�∗\Dε

]dτ

≤X lim inf
t→+∞

1
t

∫ t

0
P(M(τ )) ∈ Dεdτ

− lim inf
t→+∞

1
t

∫ t

0
P{(M(τ )) ∈ �∗\Dε}dτ

≤− 1 + (X + 1) lim inf
t→+∞

1
t

∫ t

0
P{(M(τ )) ∈ Dε}dτ .

(22)

Hence, we obtain lim inf
t→+∞

1
t
∫ t

0 P{(M(τ )) ∈ Dε}dτ ≥ 1
X+1 >

0 a.s.. Therefore ∀(M(0)) ∈ T∗, lim inf
t→+∞

1
t
∫ t

0 P{τ , (M(τ )), Dε}dτ ≥
1

X+1 > 0.
According to Lemma 4.1, Equation 5 has a stationary

distribution π(· ) on T∗. Thus, the proof of Theorem 4.1
is completed.

Furthermore, in order to observe the influence of the stochastic
perturbation on RS

0 for numerical simulation, we need to evaluate
the value of β̃ . Let β̃0 ≤ β̃ ≤ β̃1,the calculations for β̃0 and β̃1 are
provided below.

For easier computation, define ρ = θ2

2α
, then π(χ) =

1√
2πρ

e
− (χ−β̄)2

2ρ2 . Let F(χ) = 1√
2π

e−
χ2
2 be the probability density

function of the standard normal distribution and �(χ) =∫ χ

−∞ F(s)ds, then �(+∞) = 1,�(−a) = 1 − �(a). Take Γ (χ) =∫ +∞
0 sχ−1e−sds(χ > 0), then Γ (χ +1) = χΓ (χ), Γ ( 1

2 ) = √
π .Let

K = ∫ +∞
0 χ

1
4 π(χ)dχ . Combining the above definitions and letting
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x = χ−β̄
ρ

, we have

K =
∫ +∞

0
χ

1
4 π(χ)dχ =

∫ +∞

− β̄
ρ

(β̄ + ρx)
1
4

1√
2π

e−
x2
2 dx

= β̄
1
4

∫ +∞

− β̄
ρ

(1 + ρx
β̄

)
1
4

1√
2π

e−
x2
2 dx.

(23)

Since (1 + a)x ≥ 1 + x(x−1)
2 a2(0 < x < 1), the Equation 23 can be

expressed as

K = β̄
1
4

∫ +∞

− β̄
ρ

(1 + ρx
β̄

)
1
4

1√
2π

e−
x2
2 dx ≥ β̄

1
4

∫ +∞

− β̄
ρ

(1 − 3ρ2x2

32β̄2
)

1√
2π

e−
x2
2 dx

≥ β̄
1
4 [

∫ +∞

− β̄
ρ

1√
2π

e−
x2
2 dx − 3ρ2

32β̄2
√

2π

∫ +∞

−∞
x2e−

x2
2 dx]

= β̄
1
4 [�(+∞) − �(− β̄

ρ
)] − 3ρ2

16β̄− 7
4
√

2π

∫ +∞

0
x2e−

x2
2 dx

= β̄
1
4 �(

β̄

ρ
) − 3ρ2

16β̄− 7
4
√

2π

∫ +∞

0

√
2s

1
2 e−sds

= β̄
1
4 �(

β̄

ρ
) − 3ρ2

16β̄− 7
4
√

2π
Γ (

3
2

) = β̄
1
4 [�(

β̄

ρ
) − 3ρ2

32β̄2
]

: = (β̃0)
1
4 .

(24)
Similarly, since (1 + a)x ≤ 1 + xa(0 < x < 1), the Equation 23 can
be also expressed as follows:

K = β̄
1
4

∫ +∞

− β̄
ρ

(1 + ρx
β̄

)
1
4

1√
2π

e−
x2
2 dx ≤ β̄

1
4

∫ +∞

− β̄
ρ

(1 + ρx
4β̄

)
1√
2π

e−
x2
2 dx

≤ β̄
1
4

∫ +∞

−∞
1√
2π

e−
x2
2 dx +

∫ +∞

− β̄
ρ

ρx
4β̄

1√
2π

e−
x2
2 dx

= β̄
1
4 [1 + ρ

4
√

2πβ̄

∫ +∞

− β̄
ρ

xe−
x2
2 dx]

= β̄
1
4 [1 + ρ

4
√

2πβ̄e
β̄2
2ρ2

] : = (β̃1)
1
4 .

It follows that β̃0 → β̃ → β̃1 when θ → 0 from the expressions
for β̃0 and β̃1, β̃0 = β̄[�( β̄

ρ
) − 3ρ2

32β̄2 ]4, β̃1 = β̄[1 + ρ

4
√

2πβ̄e
β̄2
2ρ2

]4.

Define

RS
00 = β̃0Λγ

(δ + μ)(σ1 + ω1 + μ + h)(σ2 + γ + ν + μ + c1
S0θ√
πα

)
,

(25)

It is clear that RS
00 ≤ RS

0 and there is RS
00 → RS

0 when θ → 0.
Therefore, if RS

00 > 1, then RS
0 > 1. Moreover, we can observe

RS
00 = β̃0Λγ

(δ + μ)(σ1 + ω1 + μ + h)(σ2 + γ + ν + μ + c1
S0θ√
πα

)

≤ β̄�γ

(μ + δ)(ω1 + σ1 + μ + h)(γ + σ2 + ν + μ)
= R0,

which indicates that if RS
00 > 1, then R0 > 1. Consequently,

when RS
00 > 1, the endemic equilibrium point P∗ of

Equation 2 is stable and Equation 5 has a stationary distribution
π(· ). This suggests that RS

00 > 1 can be viewed as
a harmonized threshold for COVID-19 prevalence for both
deterministic and stochastic systems. Similar to RE

0 , the essence
of RS

0 lies in the average number of healthy individuals that
a single infected person can transmit the disease to within
a susceptible population. It does not directly represent the
actual number of infections occurring during an outbreak
but serves as a core metric for measuring the strength of
an infectious disease’s transmission potential. For COVID-19,
sustained epidemic circulation requires the basic reproduction
number RS

0 to remain stably above 1 over the long term. Thus,
when the virus’s baseline transmissibility β̄ is sufficiently high
(the numerator is sufficiently large) and can offset the effects of
control measures (represented by interventions such as δ, σ1, σ2,
and h) through mutation or waning immunity (reflected in the
dynamics of parameters ν and S∗), RS

0 can stabilize above 1 over the
long term. transforming the outbreak from a transient event into
sustained endemicity.

5 Probability density function

Section 4 demonstrates the existence of a stationary
distribution, indicating that the disease will persist. To better
elucidate the dynamics and statistical properties of the stochastic
system, we will provide an exact expression for the probability
density function of the steady-state distribution in this section.
When R0 > 1 , there will exist a quasi-equilibrium
P̃∗ = (S∗, E∗, I∗, Q∗, R∗, β∗), which satisfies the equations below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� − β∗S∗I∗ − (μ + δ)S∗ + νE∗ = 0,

β∗S∗I∗ − (σ2 + γ + ν + μ)E∗ = 0,

γ E∗ − (σ1 + ω1 + μ + h)I∗ = 0,

σ1I∗ + σ2E∗ − (ω2 + μ)Q∗ = 0,

ω1I∗ + ω2Q∗ − μR∗ = 0,

α(β̄ − β∗) = 0.

(26)

Taking C1 = S− S∗, C2 = E− E∗, C3 = I − I∗, C4 = Q−Q∗, C5 =
R − R∗, C6 = β − β∗, the corresponding linearized system for
Equation 5 is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dC1 = (−m11C1 + m12C2 − m13C3 − m16C6)dt,

dC2 = (m21C1 − m22C2 + m23C3 + m26C6)dt,

dC3 = (m32C2 − m33C3)dt,

dC4 = (−m42C2 + m43C3 − m44C4)dt,

dC5 = (m53C3 − m54C4 − m55C5)dt,

dC6 = −m66C6dt + θdB(t).

(27)
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where

m11 = β̄I∗ + (δ + μ), m12 = ν, m13 = β̄S∗ = m23, m16 = S∗I∗

= m26, m21 = β̄I∗,

m22 = σ2 + γ + ν + μ, m32 = γ , m33 = σ1 + ω1 + μ + h, m42

= σ2, m43 = σ1,

m44 = ω2 + μ, m53 = ω1, m54 = ω2, m55 = μ, m66 = α.

Next, we denote

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−m11 m12 −m13 0 0 −m16
m21 −m22 m13 0 0 m16

0 m32 −m33 0 0 0
0 −m42 m43 −m44 0 0
0 0 m53 −m54 −m55 0
0 0 0 0 0 −m66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

� = diag(0, 0, 0, 0, 0, θ),

C(t) = (C1, C2, C3, C4, C5, C6)T , B(t) = (0, 0, 0, 0, 0, B(t))T .
Then, the Equation 5 can be expressed by a matrix as follows:

dC(t) = GC(t)dt + �dB(t).

Theorem 5.1. If RS
0 > 1, a2 �= 0, a5 �= 0 and a7 �= 0, the solution

M(t) of Equation 5 around the quasi-stationary equilibrium P̃∗

follows a normal probability density function �(S, E, I, Q, R, β) :

�(S, E, I, Q, R, β) = (2π)−3|�|− 1
2

exp[−1
2

(C1, C2, C3, C4, C5, C6)�−1(C1, C2, C3, C4, C5, C6)T],

where

� =b2
1θ

2(J6J5J4J3J2J1)−1�∗[(J6J5J4J3J2J1)T]−1,

�∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 0 c13 0 c15 0
0 −c13 0 −c15 0 c26

c13 0 c15 0 −c26 0
0 −c15 0 c26 0 c46

c15 0 −c26 0 −c46 0
0 c26 0 c46 0 c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, J1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

J2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, J3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 m42

m32
1 0 0

0 0 0 0 1 0
0 0 a1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

J4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 − a3

a2
1 0

0 0 0 − a4
a2

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, J5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 − a6

a5
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

J6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 b2 b3 b4 b5 b6
0 a2a5a7m32 b7 b8 b9 (m11 − m21)

4

0 0 a2a5a7 b10 b11 − (m11 − m21)
3

0 0 0 a5a7 a7 (−m11 + m21 − m55) (m11 − m21)
2

0 0 0 0 a7 −m11 + m21
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Proof. For the proof of Theorem 5.1, we proceed in two steps.
Step 1: We prove that the eigenvalues of matrix G all contain
negative real parts. Step 2: We demonstrate that � is a positive
definite matrix.
Step 1. Defining the characteristic polynomial of a matrix G to be
ϕG(λ), we have the following:

ϕG(λ) = (λ + m66)(λ + m55)(λ4 + q1λ
3 + q2λ

2 + q3λ + q4),

where

q1 =m11 + m22 + m33 + m44 > 0,

q2 =(m11m22 − m12m21) + m11m33 + m11m44

+ (m22m33 − m23m32) + m22m44 + m33m44 > 0,

q3 =m11m22m33 − m11m23m32 − m12m21m33 + m13m21m32

+ (m11m22m44 − m12m21m44) + m11m33m44

+ (m22m33m44 − m23m32m44)

=(m11 − m21)(m22m33 − m32m23)

+ (m21m22m33 − m12m21m33)

+ (m11m22m44 − m12m21m44) + m11m33m44

+ (m22m33m44 − m23m32m44) > 0,

q4 =m11m22m33m44 − m11m23m32m44 − m12m21m33m44

+ m13m21m32m44

=m44[(m11 − m21)(m22m33 − m32m23)

+ m21m33(m22 − m12)] > 0.

By calculation, we can obtain q1q2−q3 > 0, q1q2q3−q2
3−q2

1q4 > 0.
Therefore, according to the Hurwitz criterion, the eigenvalues of
the matrix G all contain negative real parts.
Step 2. Based on Markov theory [21], the probability density
function �(S, E, I, Q, R, β) of the Equation 5 can be expressed by
the following Fokker–Planck equation,

− θ2

2
∂2

∂C2
6
� + ∂

∂β
[(−m66C6)�] + ∂

∂C1
[(−m11C1

+ m12C2 − m13C3 − m16C6)�]

+ ∂

∂C2
[(m21C1 − m22C2 + m23C3 + m26C6)�]

+ ∂

∂C3
[(m32C2 − m33C3)�]

+ ∂

∂C4
[(−m42C2 + m43C3 − m44C4)�]

+ ∂

∂C5
[(m53C3 − m54C4 − m55C5)�] = 0.

(28)

The equation can be expressed as a Gaussian distribution �(C) =
c exp{− 1

2 CΥ CT}, where c is a constant and Υ satisfies Υ �2Υ +
GTΥ + Υ G = 0. Then if Υ is a positive definite matrix, denote
Υ −1 = � , we obtain �2 + G� + �GT = 0.
Through the calculations in the Appendix 1, we obtain the
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transition matrix G6 as follows:

G6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−d1 −d2 −d3 −d4 −d5 −d6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where d1 = m66+m55+q1, d2 = (m55+q1)m66+m55q1+q2, d3 =
(m55q1 + q2)m66 + m55q2 + q3, d4 = (m55q2 + q3)m66 + m55q3 +
q4, d5 = (m55q3 + q4)m66 + m55q4, d6 = m66m55q4.
Next, we can transform the equation into the following form:

J6J5J4J3J2J1�
2(J6J5J4J3J2J1)T + G6[J6J5J4J3J2J1�

2(J6J5J4J3J2J1)T]

+ 6J5J4J3J2J1�
2(J6J5J4J3J2J1)T]GT

6 = 0.
(29)

Assuming �∗ = 1
b2

1θ
2 J6J5J4J3J2J1�

2(J6J5J4J3J2J1)T , then �2 +
G6�

∗ + �∗GT
6 = 0,

where � = diag(1, 0, 0, 0, 0, 0), �∗ =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 0 c13 0 c15 0
0 −c13 0 −c15 0 c26

c13 0 c15 0 −c26 0
0 −c15 0 c26 0 c46

c15 0 −c26 0 −c46 0
0 c26 0 c46 0 c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

c11 = (d1d6 − d2d5)2 + (d4d5 − d3d6)(d2d3 + d5 − d1d4)
c00

,

c13 =− d2d2
5 + d2

3d6 − d1d5d6 − d3d4d5

c00
,

c15 =d1d3d6 − d1d4d5 + d2
5

c00
, c26 = d2

1d6 − d1d2d5 + d3d5

c00
,

c46 =d2
1d4 + d2

3 − d1d2d3 − d1d5

c00
,

c66 = (d1d4 − d5)2 + (d1d2 − d3)(d2d5 − d3d4 − d1d6)
c00

,

c00 =2d6[d5((d1d4 − d5)2 − (d1d2 − d3)(d3d4 − d2d5))

+ d6(d1(d2
1d6 − d1d2d5 + d3d5) − d3(d2

1d4 + d2
3

− d1d2d3 − d1d5)

− d1d5(d1d2 − d3))].

�∗ is a positive definite matrix, which means that � =
b2

1θ
2(J6J5J4J3J2J1)−1�∗[(J6J5J4J3J2J1)T]−1 is a positive definite

matrix. Therefore, the normal probability density function around
the quasi-stationary equilibrium P̃∗ can be expressed by

�(S, E, I, Q, R, β) = (2π)−3|�|− 1
2 exp[−1

2
(S − S∗, E − E∗, I − I∗,

Q − Q∗, R − R∗, β − β∗)

�−1(S − S∗, E − E∗, I − I∗, Q − Q∗, R − R∗, β − β∗)T].

Remark 5.1. By Theorem 5.1 it follows that the solution
M(t) of Equation 5 satisfies the normal density
function N((S∗, E∗, I∗, Q∗, R∗, β∗), �) around P̃∗. If

RS
0 = β̃Λγ

(δ+μ)(σ1+ω1+μ+h)(σ2+γ+ν+μ+c1
�θ

μ
√

πα
)

> 1, then

(S(t), E(t), I(t), Q(t), R(t)) has a unique normal density function

�(S, E, I, Q, R) = (2π)−
5
2 | �(5) |− 1

2

exp[−1
2

(C1, C2, C3, C4, C5)�(5)−1
(C1, C2, C3, C4, C5)T],

where we define �(5) as the fifth-order principal subform of �.
Therefore S(t), E(t), I(t), Q(t) and R(t) will converge to the marginal
density function �S, �E , �I , �Q and �R, respectively:

�S(S) = 1√
2πϕ1

e
− (S−S∗)2

2ϕ2
1 , �E(E) = 1√

2πϕ2
e
− (E−E∗)2

2ϕ2
2 ,

�I(I) = 1√
2πϕ3

e
− (I−I∗)2

2ϕ2
3 , �Q(Q) = 1√

2πϕ4
e
− (Q−Q∗)2

2ϕ2
4 ,

�R(R) = 1√
2πϕ5

e
− (R−R∗)2

2ϕ2
5 ,

where ϕ2
i is the i-th element on the main diagonal of �, respectively.

6 Numerical simulations

We will use Milstein’s higher-order method for numerical
simulations. Then, transform the Equation 5 into the following
discrete system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Si+1 = Si + [� − xiSiIi − β̄SiIi − (μ + δ)Si + νEi]Δt,

Ei+1 = Ei + [xiSiIi + β̄SiIi − (σ2 + γ + ν + μ)Ei]Δt,

Ii+1 = Ii + [γ Ei − (σ1 + ω1 + μ + h)Ii]Δt,

Qi+1 = Qi + [σ1I + σ2Ei − (ω2 + μ)Qi]Δt,

Ri+1 = Ri + [ω1Ii + ω2Qi − μRi]Δt,

xi+1 = xi − αxiΔt + θ
√

Δtξi + θ2

2 (ξ 2
i − 1)Δt.

(30)

where Δt > 0 represents the time increment, (Si, Ei, Ii, Qi, Ri, xi)
is the corresponding value of the ith iteration of Equation 5. In
addition, ξi denotes the random variables that satisfy the standard
normal distribution.
Example 6.1 Let β̄ = 0.4, α = 0.6, θ = 0.01, � = 1.5, μ = 0.15,
δ = 0.04, ν = 0.11, γ = 0.2, σ1 = 0.013, σ2 = 0.055, ω1 = 0.03,
ω2 = 0.068 and h = 0.3, then we can calculate β̃ = (0.7952)4,
R0 = 2.4876 > 1, RS

0 = 1.2732 > 1 and (S∗, E∗, I∗, Q∗, R∗, β∗) =
(3.1737, 2.2148, 0.8985, 0.6124, 0.4573, 0.4). Moreover, the solution
M(t) obeys the following normal density function:

�(S, E, I, Q, R, β)

∼ N((3.1737, 2.2148, 0.8985, 0.6124, 0.4573, 0.4)T , �),

where

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.8315 −1.0907 −0.3804 0.1646 −0.0645 −0.2256
−1.0907 0.7431 0.2119 −0.0806 0.0201 0.1773
−0.3804 0.2119 0.0860 −0.0375 0.0142 0.0325
0.1646 −0.0806 −0.0375 0.0181 −0.0089 −0.0114
−0.0645 0.0201 0.0142 −0.0089 0.0069 0.0023
−0.2256 0.1773 0.0325 −0.0114 0.0023 0.0833

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×10−3.
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FIGURE 1

The left column shows persistent variations of S(t), E(t), I(t), Q(t), R(t) on deterministic Equation 2 and stochastic Equation 5, respectively. The right
diagram gives the frequency histogram and marginal density function of the Equation 5.

FIGURE 2

The figure shows the fitting curves of the frequency histogram and margin density function in the Equation 5.
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FIGURE 3

The trajectories of S(t), E(t), I(t), Q(t), R(t) in Equation 5 during the period of COVID-19 extinction.

FIGURE 4

The trajectories of S(t), E(t), I(t), Q(t), R(t) in Equation 5 with different values for volatility intensity θ .
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FIGURE 5

The trajectories of S(t), E(t), I(t), Q(t), R(t) in Equation 5 with different values for reversion speed α.

FIGURE 6

The graph on the left represents the trend of RS
0 over the range (θ , α) ∈ [0.01, 0.3] × [0.1, 1.5]. The graph on the right side shows the trend of RE

0 over
the range (θ , α) ∈ [0.001, 0.04] × [0.1, 2].

We obtain the marginal functions of S(t), E(t), I(t), Q(t)
and R(t):

�S = 9.3219e−273.0002(S−3.1737)2
, �E = 14.6345e−672.8268(E−2.2148)2

,

�I = 43.0292e−5816.7079(I−0.8985)2
,

�Q = 93.7587e−27616.7741(Q−0.6124)2
,

�R = 152.0486e−72629.7551(R−0.4573)2
.

The dynamical behavior of the solutions is illustrated on the
left-hand side of Figure 1, which shows that the disease exhibits

significant persistence over time. The right-hand side of Figure 1
gives the frequency histogram and marginal density function of
Equation 5, which indicates that the Equation 5 has a stationary
distribution. Figure 2 presents the frequency fitted-density function
and marginal density function for S(t), E(t), I(t), Q(t), and R(t).
From Figure 2, it can be observed that the density function image is
almost identical to the corresponding frequency histogram fitting
curves, which demonstrates that the probability density function of
the stationary distribution follows a Gaussian distribution.
Example 6.2 Choosing β̄ = 0.24, α = 0.6, θ = 0.25, � = 0.6,
δ = 0.16, ν = 0.28, γ = 0.2, σ1 = 0.15, σ2 = 0.032, ω1 = 0.045,
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ω2 = 0.06 and other parameters referring to Example 6.1, then
we can calculate R0 = 0.1617 < 1, RE

0 = 0.9512 < 1 and there
exists a disease-free equilibrium E0 = (0.216, 0, 0, 0, 0) that is locally
asymptotically stable. It is clearly shown in Figure 3 that the disease
will become extinct over time.
Example 6.3 Taking three different values for the influence of
volatility intensity θ :

θ = 0.005, θ = 0.01, θ = 0.02.

Let reversion speed α = 1.2, other parameters refer to Example
6.1. We can see that the smaller θ is, the smaller the fluctuation of
the sample’s trajectory is, and the more stable the disease is after
observing the trajectories of S, E, I, Q, R in Figure 4.
Example 6.4 To investigate the effect of reversion speed α on
COVID-19 disease, take θ = 0.01 and other parameters refer to
Example 6.1. Then, we choose three different values for reversion
speed α:

α = 0.5, α = 0.8, α = 1.3.

From the sample trajectories of S, E, I, Q, R in Figure 5, the larger α

is, the smaller the vibration of the sample motion trajectory is, and
the more stable the disease is.
Example 6.5 In the following, we examine the impact of
the Ornstein-Uhlenbeck process on the COVID-19 disease by
modifying the parameter values of volatility intensity θ and
reversion speed α in RS

0 and RE
0 . For RS

0, we choose θ ∈ [0.01, 0.3]
and α ∈ [0.1, 1.5] and other parameters refer to example 6.1.
For RE

0 , we choose θ ∈ [0.001, 0.04] and α ∈ [0.1, 2] and
other parameters refer to example 6.2. As shown in Figure 6, as θ

decreases and α increases, RS
0 exhibits an increasing trend, which

suggests that the disease will continue to exist in the future, while
RE

0 displays a decreasing trend, which indicates that the disease will
tend to become extinct after a long time.

7 Conclusion

This study investigates the dynamics of COVID-19
transmission with Ornstein-Uhlenbeck processes. Compared
with the common linear combination of white noise, this study
assumes that the transmission rate parameter β of the susceptible
and exposed satisfies a mean-reversion process. This approach
avoids the unbounded variance of β as the time step decreases and
offers greater biological realism. In addition, taking into account
the effect of transmission mechanisms, we introduced disease-
caused mortality for I(t) and assumed that the disease-caused
mortality rate h was greater than the natural mortality rate μ.
For Equation 5, we first establish the existence and uniqueness
of a global positive solution and prove its boundedness via the
construction of a nonnegative Lyapunov-type function. On this
basis we analyze the dynamical behavior of Equation 5 and derive
the following key results:

(1) we fully utilize the ergodicity of the Ornstein-Uhlenbeck
process to derive two critical values RS

0 and RE
0 related to disease

persistence and extinction, where

RS
0 = β̃Λγ

(δ + μ)(σ1 + ω1 + μ + h)(σ2 + γ + ν + μ + c1
�θ

μ
√

πα
)

,

RE
0 =

√
R0+

γ θ�

μ(σ2 + γ + ν + μ)
√

R0πα min{σ2 + γ + ν + μ, σ1 + ω1 + μ + h} .

When RS
0 > 1, it indicates that the stochastic system has a

stationary distribution, meaning that the disease will persist over
time. To further determine the size relationship between RS

0 and
R0, we define an RS

00 such that RS
00 ≤ RS

0 and RS
00 ≤ R0. It follows

that when RS
00 > 1 there is RS

0 > 1 and R0 > 1. This suggests that
RS

00 > 1 can be considered as a harmonized threshold for disease
prevalence for both deterministic and stochastic systems.

When RE
0 < 1 indicates that the disease will become extinct

over time. And RE
0 < 1 can derive R0 < 1. This shows that

RE
0 < 1 can be regarded as a unifying condition for deterministic

and stochastic models of disease extinction.
(2) To further investigate the dynamical behavior of the

disease, a display expression for the probability density function
in the quasi-equilibrium nearby was derived by solving the sixth-
order Fokker–Planck Equation 28. And we draw an image of the
probability density function as shown in Figure 1.

(3) We verify our theoretical results with numerical simulations
and find that both larger fluctuation intensity and smaller speed of
regression may lead to extinction of the disease.

This study proposes a stochastic SEIRQV model incorporating
an Ornstein-Uhlenbeck process. By introducing a quarantine
compartment, the model comprehensively accounts for the
combined effects of vaccination and quarantine measures on the
transmission of infectious diseases. To evaluate model performance
and the effectiveness of isolation measures, we conducted a
comparative analysis of simulation results against an existing
stochastic SEIV model [22]. Our findings suggest that integrating
natural mortality rates with artificial isolation policies enhances
our model’s precision in estimating disease extinction probabilities
and steady-state distributions. The interaction between isolation
and other compartments generates a modified critical threshold
condition, more accurately reflecting the impact of combined
intervention measures. Compared with existing stochastic SEIR
models [23], this model captures richer covariance structures
across all compartments. Moreover, the variance and covariance
terms explicitly depend on isolation and vaccination rates, which
provides a stronger theoretical basis for evaluating the variability
and potential outcomes of disease control strategies.

In summary, our study presents a more realistic stochastic
model that overcomes the limitations of the white noise model
in simulating the dynamics of COVID-19 infection. Although we
have made a breakthrough in this aspect, we still need to exploit
other valid approaches to compensate for the limitations of the
study. For example, further explore harmonized thresholds for
disease persistence and extinction, find a more suitable method and
theory to determine the uniqueness of the stationary distribution,
consider incorporating more compartmental models into COVID-
19 infectious disease research, and integrate age structures to study
differences in susceptibility and contact patterns across age groups.
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