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This study investigates advanced portfolio optimization techniques that integrate copula 
functions and GARCH models to enhance risk-adjusted performance in the European stock 
market. Traditional methods, such as mean-variance optimization, often fail to capture 
non-linear dependencies and heavy-tailed behaviors observed in financial returns. The 
copula-GARCH framework addresses these limitations by jointly modeling dependence 
structures and time-varying volatility. Using high-performance computing (HPC) resources, 
approximately 10,000 portfolios were simulated to evaluate the effectiveness of different 
copula-GARCH configurations. Several GARCH-type specifications - standard GARCH, 
GJR-GARCH, and exponential GARCH (eGARCH) - were tested in combination with 
various copula families. The analysis focused on EURO STOXX 50 constituents, with 
model estimation based on 2014-2021 data and out-of-sample backtesting conducted 
across three market regimes: the bearish year 2022, the bullish recovery in 2023, and the 
neutral conditions of 2024. Performance was benchmarked against traditional mean-
variance and historical Conditional Value at Risk (CVaR) optimization methods. The 
combination of a Student’s t copula [33, 34] with marginal Student’s t distributions and 
an eGARCH model consistently outperformed alternatives, achieving lower CVaR values 
while maintaining favorable return profiles. This configuration demonstrated superior 
ability to capture tail dependence and asymmetric volatility, which contributed to its 
robustness across diverse market conditions. The findings confirm that copula-GARCH 
models provide a more realistic and adaptable framework for portfolio construction 
under changing market dynamics. By capturing both non-linear dependencies and time-
varying volatility, this approach improves downside-risk control without compromising 
returns. These results highlight the practical value of copula-GARCH optimization for 
risk-averse investors operating in the European equity market.
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1 Introduction

Optimizing financial portfolios involves the careful balancing of expected returns against 
associated risks. Traditional methodologies, such as the mean–variance approach developed by 
Markowitz (1, 2), have long served as foundational tools in this domain. However, these models 
often struggle to adequately represent the complex, non-linear relationships and heavy-tailed 
distributions commonly observed in financial markets (3). In response to these challenges, the 
integration of copula functions with GARCH (Generalized Autoregressive Conditional 
Heteroskedasticity) models has emerged as a more flexible and powerful alternative. These 
methods allow for a more accurate representation of the dynamic dependencies between asset 
returns and the time-varying nature of market volatility (4), making them particularly useful 
for risk-sensitive applications. Following Bollerslev (4), we adopt the GARCH framework, and, 
where relevant, relate it to Engle’s (5) ARCH model. Within the GARCH family, several variants 
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have been proposed to capture different volatility dynamics. In this 
study, we consider multiple GARCH-type models—specifically, the 
standard GARCH, GJR-GARCH (6), and Exponential GARCH (7)—to 
evaluate their performance in modeling asymmetric and time-varying 
volatility. Among these, the eGARCH model plays a central role in our 
empirical analysis due to its ability to capture leverage effects and 
volatility asymmetry, which are prevalent in equity returns.

Asset returns are rarely isolated—co-movements, especially among 
assets within the same sector or geographical area, are common and 
can intensify during periods of market stress. Modeling these joint 
behaviors (8–10) accurately is essential for effective risk assessment and 
robust portfolio construction. This study employs copula-GARCH 
models to simulate the behavior of stocks within the EURO STOXX 50 
Index, compares their effectiveness to that of conventional optimization 
strategies, and assesses their implications for portfolio performance 
and risk management. We use EURO STOXX 50 constituents with 
daily data from 2014 to 2021 for model estimation and generate out-of-
sample evaluations for 2022 (downturn), 2023 (recovery), and 2024 
(neutral) regimes. Our motivation is to provide a risk-averse portfolio 
(11) construction workflow that captures heavy tails and asymmetric 
dependence neglected by mean–variance methods. We aim to quantify 
the out-of-sample benefits of copula–GARCH portfolios when the 
objective is tail-risk minimization (CVaR). Across regimes, portfolios 
based on a Student’s t copula and eGARCH marginals achieve lower 
CVaR while maintaining competitive mean returns relative to historical 
CVaR and mean—variance benchmarks. While the empirical analysis 
highlights the superior performance of the EGARCH specification, the 
study systematically compares several GARCH-family models to 
ensure robustness and consistency in volatility estimation.

Section 2 reviews VaR/ES and volatility modeling; Section 3 
details data and estimation; Section 4 reports backtests; Section 5 
reports results and discussion; Section 6 concludes.

2 Traditional methods

2.1 Markowitz approach

The Markowitz approach (1), also known as mean–variance 
analysis, is a fundamental component of Modern Portfolio Theory. It 
provides a framework for achieving a higher expected portfolio return 
for a given level of risk, or conversely, minimizing risk for a given 
expected return. The expected portfolio return is calculated as:
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where:

	•	 iw  is the weight of the i-th asset in the portfolio,
	•	 ( iE R ) is the expected return of the i-th asset.

This formula allows for the efficient allocation of assets to optimize 
returns while managing risk.

In the Markowitz model, portfolio risk σ p is measured by the standard 
deviation of returns, where the portfolio variance is calculated as:
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The portfolio risk σ p is then:

	 ( )σ = Varp pR

While Markowitz’s portfolio optimization is a cornerstone of 
financial theory, its practical application is limited by several 
assumptions and challenges (12, 13). These include reliance on 
historical data, sensitivity to input estimates, the assumption of 
normality, and the neglect of extreme events and multi-period 
investment horizons. Such limitations underscore the need for more 
advanced models that better capture the complexities of real-world 
financial markets (14, 15).

2.2 Value-at-Risk (VaR)

Value-at-Risk (VaR) is one of the most widely used risk measures 
in financial institutions and regulatory frameworks (16, 17), including 
its incorporation into the Basel II capital adequacy framework, 
highlighting its importance in risk management (18). VaR provides 
a summary measure of the potential loss in value of a financial 
portfolio (19–21) over a defined time horizon, given a specific 
confidence level.

To define VaR, three elements are essential: the time horizon (e.g., 
1 day or 1 month), the confidence level α (commonly 95% or 99%), 
and the base currency. Mathematically, the α-level VaR for the loss 
variable 𝐿 is defined as:

	 ( ) ( ){ }α α= ∈ ≤ ≥VaR inf :L l P L l

where:

	•	 ( )αVaR L  is the Value-at-Risk at confidence level α for the loss 
variable L. It represents the maximum expected loss over a 
specified time horizon with probability α,

	•	 L is the random variable representing portfolio losses,
	•	 α is the confidence level (e.g., 95% or 99%).

While VaR is popular, it has limitations—most notably, it does 
not provide information about losses beyond the VaR threshold (22–
24). For this reason, many risk managers prefer Expected Shortfall 
(ES), also known as Conditional VaR, which captures the average loss 
in the tail beyond the VaR level. We emphasize Expected Shortfall 
(ES) (25), also known as CVaR, as a coherent tail-risk measure [see 
Artzner et al. (26)]. In other words, while VaR only estimates the 
maximum expected loss at a given confidence level, CVaR goes a step 
further by quantifying the expected loss assuming that the loss has 
already exceeded the VaR threshold. This makes it particularly 
valuable for assessing extreme market scenarios and stress-
testing portfolios.

In the context of this study, the CVaR was used as the primary 
optimization criterion within the copula-GARCH framework (20). 
This choice reflects a shift from mean–variance thinking to 
downside risk minimization, recognizing that investors are often 
more concerned with limiting extreme losses than with 
general variance.
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2.3 GARCH

The GARCH model (4) is a generalization of the ARCH model 
[the ARCH precursor to GARCH is due to Engle (5)]. A characteristic 
of the ARCH process is that its conditional standard deviation σ t or 
volatility, is a continuously varying function of the previous values of 
the square of the process. On the other hand, GARCH is a 
generalization in the sense that the variance σ 2

t , or the squared 
volatility, is allowed to depend on the previous squared fluctuations as 
well as on the previous squared values of the process itself (1).

The GARCH model (4) is a generalization of the ARCH model, 
which models time-varying volatility in financial time series. In an 
ARCH process, the conditional standard deviation σ t, or volatility, is 
a function of previous squared values of the process. GARCH extends 
this by allowing the conditional variance σ 2

t  to depend not only on 
past squared fluctuations but also on past values of the variance 
itself (18).

The GARCH(p, q) process is represented by the following formulas:

	 σ= ,t t tX Z 	 (3)
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where:

	•	 t is time,
	•	 p, q are the orders of the ARCH and GARCH components, 

respectively,
	•	α0 is a constant,
	•	σ 2

t  represents the conditional variances,
	•	αi are the ARCH model parameters,
	•	 βi are the GARCH model parameters,
	•	 tX  is the ARCH process,
	•	 tZ  is i.i.d. N(0;1).

σ2ₜ is the conditional variance only if the innovation Zt follows a 
standard normal distribution. For heavy-tailed innovations such as the 
Student’s t, σ2

t represents the conditional scale parameter, and the 
conditional variance is σ2

t multiplied by the appropriate factor [ν/(ν–2) 
for ν > 2].

The Equations 3 and 4 model provides crucial insights into the 
volatility and risk of financial instruments, enabling more accurate 
risk assessment for portfolios. Additionally, it addresses the limitation 
of the Markowitz model, which assumes constant volatility, offering a 
more realistic view of market dynamics.

2.4 Copulas

Copulas (27, 28), first introduced by Sklar [we refer to Sklar’s 
foundational theorem (29) and the comprehensive monograph by Joe 
(30) for background on copula modeling], have become increasingly 
prominent in modern statistics and data analysis (31) due to their 
flexibility and precision in modeling the joint distribution of 
multivariate random variables. Their versatility has led to widespread 
adoption across diverse disciplines such as finance, insurance, 

econometrics, artificial intelligence, and climatology, while also 
drawing significant interest from probability theorists.

One of the key advantages of copulas lies in their ability to capture 
complex dependency structures that traditional methods, such as 
Pearson correlation, cannot adequately address. While Pearson 
correlation measures only linear relationships, copulas are capable of 
modeling non-linear dependencies and are sensitive to the rank-based 
associations between variables (18). This makes them especially 
valuable in fields where accurate modeling of interdependence 
is crucial.

An n-dimensional copula is a function C:[0,1]n → [0,1] that 
satisfies the following properties (32):

	•	 ∀ ∈  0,1u , C(1,…, 1, ,u  1,…, 1) = ,u
	•	 ∀ ∈  0,1u , C( 1u ,…, nu ) = 0, if at least one of iu is equal to zero.
	•	 C is grounded and n-increasing, meaning the C-volume of every 

box with vertices in [0,1]n  is positive.

Panels in Figure  1 were regenerated using a common linear 
correlation target of ρ ≈ 0.90 across families for comparability and the 
Gumbel panel was enhanced to highlight upper-tail asymmetry.

The copula-GARCH framework offers a more realistic and 
sophisticated approach to simulating future portfolio performance 
under various market conditions. By capturing both the intricate 
dependency structure among assets and the dynamic nature of market 
volatility, this method significantly enhances stress testing and 
scenario analysis, thereby supporting more robust asset allocation 
decisions (33).

Unlike traditional optimization techniques, which often rely on 
assumptions of linear dependence and constant volatility, the copula-
GARCH model accounts for non-linear interactions and time-varying 
risk. This allows for more accurate identification of diversification 
opportunities and the construction of portfolios that are less 
vulnerable to extreme co-movements and large simultaneous losses. 
As a result, portfolios optimized using this approach tend to achieve 
superior risk-adjusted returns.

Traditional methods may overlook these nuanced risk 
characteristics, potentially leading to suboptimal diversification and 
elevated portfolio risk. In contrast, the copula-GARCH approach 
offers a more comprehensive and realistic modeling framework by 
addressing tail dependencies, asymmetries, and volatility clustering. 
This makes it a potentially more effective tool for asset allocation and 
risk management in complex and volatile financial environments.

The following sections detail the construction of the copula-
GARCH algorithm and present the results of simulation-based 
portfolio optimization.

3 Algorithm for constructing a 
portfolio based on copula and GARCH

The investment universe in our study is defined strictly as the 
EURO STOXX 50. Portfolios are constructed to be long-only, with no 
leverage or short sales permitted. Each portfolio is positioned fully at 
inception and then held unchanged throughout the investment 
horizon. As a result, turnover within the period is exactly zero (12, 
13, 34).
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Because no rebalancing occurs during the life of the positions, 
we treat transaction costs and asset holding costs as identical and 
negligible. This means that all reported results are already net of such 
costs, without further adjustments.

Finally, when analyzing portfolio risk and performance over 
time, we  ensure consistency in the treatment of returns. Daily 
portfolio moments are first calculated using standard returns. For 
longer horizons—such as multi-day or annual periods used in 
backtests (e.g., for 2022)—these daily returns are converted to 
log-returns before compounding and Conditional Value-at-Risk 
(CVaR) evaluation. This method guarantees proper time aggregation 
and alignment with VaR/ES measurement.

The construction and optimization of a portfolio based on copula 
and GARCH (4) models can be efficiently accomplished using the 
following algorithm:

	•	 Stock selection and obtaining logarithmic returns: choose the 
stocks for the portfolio and compute their logarithmic returns. 
We compute both standard (simple) returns and log-returns. 
Equations 1, 2 for portfolio mean and variance are evaluated 
using standard returns (exact identities), while log-returns are 
used only for time aggregation across horizons.

	•	 Testing for stationarity and the ARCH effect: verify the stationarity 
of the return series and test for the presence of the ARCH effect. 
Stationarity was assessed using Augmented Dickey–Fuller 
(ADF) (35) and KPSS (36) tests. ARCH effects were tested with 
Engle’s (5) LM test.

	•	 GARCH model selection: identify the appropriate GARCH model 
to capture the time-varying volatility in the return series.

	•	 Selection of the marginal distribution: choose the marginal 
distribution that best fits the individual asset returns.

	•	 Copula selection from transformed standardized GARCH residuals: 
select a copula function based on the transformed standardized 
GARCH residuals to model the dependencies between assets. 
We adopt a two-step inference-for-margins (IFM) procedure: (i) 
estimate univariate GARCH parameters and marginal 
distributions; (ii) fit copula parameters to the standardized residuals.

	•	 Simulating returns from the copula function: generate simulated 
returns using the chosen copula function (21).

	•	 Portfolio optimization using CVAR minimization: optimize the 
portfolio based on the simulated returns by minimizing CVaR.

The following algorithm was implemented using R Studio and 
Riga Technical University’s high-performance computing (RTU HPC) 

infrastructure to extend the portfolio optimization method to 10,000 
portfolios. The RTU HPC cluster comprises 34 computing nodes for 
job execution and one head node responsible for cluster management. 
All nodes are interconnected via a high-speed InfiniBand network. 
Each compute node is equipped with two x86_64 architecture 
processors (CPUs), and some nodes also feature 2 or 4 Nvidia Tesla 
graphical accelerators (GPUs). The cluster architecture is 
heterogeneous, combining nodes of varying generations and technical 
specifications (37). Consequently, 100,000 simulations from the 
copula function were performed for each stock to achieve maximum 
likelihood results (see Figure 2).

For each portfolio, 5 stocks were randomly selected from the 
EURO STOXX 50 index. Each portfolio was optimized using three 
models: the Markowitz model, the copula-GARCH model with a 
CVaR minimization approach, and a minimal CVaR model based on 
historical data. The historical data used for optimization and the 
estimation of copula and GARCH parameters covered the period 
from January 1, 2014, to December 31, 2021.

4 Copula and GARCH model selection 
for EURO STOXX 50 index stocks

To identify the most suitable copula for modelling the dependence 
structure between asset returns in the EURO STOXX 50 index (38), a 
comprehensive analysis of all possible pairs of the 50 constituent stocks 
was conducted. The process involved the following steps (39, 40):

4.1 Data collection

Historical daily closing prices for all 50 stocks in the EURO 
STOXX 50 index were collected and transformed into log returns to 
ensure stationarity (41).

4.2 Pairwise analysis

Each of the 1,225 possible pairs of stocks was analyzed to 
determine the best-fitting copula. The copula families considered 
included the Gaussian, Clayton, Gumbel, Frank, and Student’s 
t-copula. In Table 1, you can see the results of the copula selection. 
Counts correspond to the number of pairs for which each copula 
family minimizes the information criterion.

FIGURE 1

Most popular copula densities in finance.
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4.3 Goodness-of-fit testing

For each pair, goodness-of-fit tests, such as the Akaike 
Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) (42), were used to evaluate the copula models. These tests 
penalize for model complexity and help in selecting a model that 
strikes a balance between fit and simplicity.

4.4 Selection criteria

The copula that most frequently emerged as the best fit (43–45) 
across all pairs was chosen as the most suitable for the entire dataset. 
This process revealed that the Student’s t-copula was the most 
appropriate, indicating its effectiveness in capturing the tail 
dependence and heavy tails characteristic of the joint distribution of 
stock returns.

To model the conditional volatility of returns, various GARCH 
models were considered. The process for selecting the most suitable 
GARCH model involved the following steps:

4.5 Data collection

Historical daily closing prices of the EURO STOXX 50 index were 
used to compute the index returns.

4.6 Model specification

Various GARCH model variants were considered, including the 
standard GARCH, GJR GARCH, Integrated GARCH (iGARCH), and 

Exponential GARCH (eGARCH). The eGARCH model was 
particularly noted for its ability to capture asymmetries in volatility. For 
leverage and asymmetry, we consider GJR-GARCH and eGARCH.

4.7 Model evaluation

The suitability of each GARCH model was assessed using information 
criteria such as the AIC and BIC. These criteria help balance model fit and 
complexity, ensuring that the selected model is both accurate and 
parsimonious (please see numerical results in Table  2). Values are 
averaged across the 50 univariate marginal models (one per stock). 
Copulas are fitted in a second step to standardized residuals (IFM), i.e., 
Table 2 does not report joint (marginal and copula) likelihoods.

The eGARCH model emerged as the most suitable for the EURO 
STOXX 50 index returns due to its superior performance in capturing 
asymmetric volatility effects. This model effectively accounts for the 
phenomenon where negative shocks tend to impact volatility more 
than positive shocks, a common characteristic in financial markets.

5 Results and discussions

The models were tested using data from the year 2022, applying 
the portfolio weights obtained from the optimization to the selected 
shares. Profit and loss (PnL) for all portfolios were calculated as of 
December 29, 2022. The histograms displaying the PnL results are 
presented in Figure 3.

The copula-GARCH models produced more positive values 
compared to the other two models. Table 3 provides a summary of the 
number of instances where each model achieved the highest PnL, 
along with the minimum, maximum, and average values. Additionally, 
the table presents the lowest CVaR index and standard deviation for 
each model.

In 2022, the market experienced a decline due to political events, 
providing an opportunity to assess the model’s effectiveness in a 

FIGURE 2

Algorithm for copula-GARCH model-based portfolio optimization.

TABLE 1  Biselectcop() function results for the stocks.

Clayton Frank Gaussian Gumbel Student

– 3 2 44 1,032
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FIGURE 3

Profit and loss (PnL) histograms as of December 29, 2022.

negative scenario. However, the t-copula eGARCH investment 
portfolio construction yielded significantly better results. For instance, 
Figure  4 illustrates the performance of hypothetical portfolios 
throughout 2022, where the t-copula eGARCH portfolio demonstrates 
greater resilience to market downturns.

Table 4 summarizes the portfolio profit and loss (PnL) on 2023-
01-01 for various models, including a detailed breakdown of the 
copula-GARCH model using different copula types.

The data indicate that the Student’s t (46, 47) copula yields the 
most favorable result, with the lowest loss among all models. Figure 5 
visualizes the evolution of portfolio values under the copula-GARCH 
model using different copulas. While the performance trajectories are 
relatively close, the portfolio constructed with the Student’s t copula 
consistently outperforms the others.

Additional backtesting was conducted using data from 2023, a 
year marked by generally positive market conditions. This provided 
an opportunity to evaluate the model’s performance under favorable 
dynamics. As presented in Table  5, the copula-GARCH model 
outperformed both the historical CVaR and mean–variance models 
in terms of profit and loss (PnL) in 66% of cases. However, not all 

performance metrics were in its favor. The minimum CVaR model, 
based on historical data, more frequently achieved the lowest CVaR 
values and more often reached the maximum portfolio value 
compared to the other models.

To further assess the stability and generalizability of the 
optimization frameworks, a subsequent backtest was performed using 
2024 data. In contrast to the pronounced market downturn in 2022 
and the strong recovery in 2023, the market environment in 2024 was 
more neutral, with no clear directional trend and moderate volatility. 
This created a suitable setting to evaluate model performance under 
relatively stationary market conditions.

Table 6 summarizes the outcomes of this backtesting, based on 
10,000 simulated portfolios generated for each optimization model. 
The copula-GARCH model again delivered strong results, achieving 
the highest performance across several key metrics, including Max 
PnL, Max Mean, Max Min, and lowest CVaR in most instances. The 
historical CVaR model demonstrated an advantage in achieving the 
lowest standard deviation, while the mean–variance model showed 
comparatively weaker performance across all indicators—particularly 
in terms of downside risk control.

These findings underscore the robustness of the copula-GARCH 
approach across varying market regimes. Not only does it perform well 
under stress (as in 2022) and during recovery (as in 2023), but it also 
maintains its effectiveness in more neutral or transitional periods, such 
as 2024. This highlights its value as a reliable and adaptive tool for 
portfolio optimization across diverse market environments.

6 Conclusion

We acknowledge that the present portfolio analysis does not fully 
incorporate well-documented stylized facts such as heavy tails, 

TABLE 2  GARCH models results.

GARCH models AIC BIC LogLik

sGARCH −6.307543 −6.291929 5527.254

eGARCH −6.356534 −6.337798 5571.146

gjrGARCH −6.347582 −6.328845 5563.308

iGARCH −6.308296 −6.295805 5526.913

Values are averaged across the 50 univariate marginal models (one per stock). Copulas are 
fitted in a second step to standardized residuals (IFM), i.e., Table 2 does not report joint 
(marginal and copula) likelihoods (LogLik).
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volatility clustering, leverage/asymmetry, and long memory (11). 
Future work will incorporate ARFIMA–FIGARCH marginals (48, 49) 
with t-innovations, time-varying copulas (50), and formal goodness-
of-fit testing (51). Out-of-sample evaluation will include rolling and 
expanding windows, risk backtesting in the Fissler–Ziegel and Acerbi–
Szekely (25) frameworks, turnover constraints and explicit trading 
costs, and robust baseline comparisons. To mitigate overfitting and 
data-snooping, future studies will apply White’s Reality Check (2000) 
and Hansen’s SPA test (2005), and report bootstrap-based uncertainty 
bands (25, 48–53).

This research investigated the application of copula-GARCH 
models in portfolio optimization, with a particular focus on 
enhancing risk management for portfolios of European equities. 
The study highlights the critical role of proper model 
calibration—especially in selecting copula families, GARCH 
specifications, and initial parameters—in achieving accurate and 
dependable results.

A structured methodological approach was developed, combining 
an in-depth review of existing literature with extensive empirical 
testing. Using the R programming language in the RStudio 
environment, simulations were run on 10,000 portfolios, supported 
by high-performance computing resources. The model employed a 
Student’s t-copula to capture tail dependencies between assets and an 
exponential GARCH (eGARCH) model to account for time-varying 
and asymmetric volatility.

Across three distinct market conditions—downturn (2022), 
recovery (2023), and stability (2024)—the copula-GARCH model 
consistently outperformed traditional optimization methods, 
including mean–variance and historical CVaR approaches, 
particularly in minimizing Conditional Value at Risk (CVaR). This 
consistent performance across diverse regimes affirms the model’s 
effectiveness in mitigating downside risk without compromising 
return potential.

By capturing both complex interdependencies and dynamic volatility 
patterns, the copula-GARCH framework offers a more nuanced and 

TABLE 3  The number of positive outcomes for each model.

Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR

t-copula eGARCH 5,712 5,071 6,371 5,805 2,507 4,301

Historical CVaR 2,431 2,204 2,505 2,104 3,805 5,699

MV min risk 1857 2,314 1,124 2091 3,688 0

PnL equals profit and loss; CVaR equals Conditional Value at Risk; MV min risk equals minimum variance portfolio.

FIGURE 4

Trajectories of three hypothetical portfolios in 2022.

TABLE 4  Portfolio PnL across different models.

Model Portfolio PnL as of 
2023.01.01, $

Mean–variance −2254.75

Historical CVaR −2844.71

Copula-GARCH min 

CVaR model

Student copula −911.73

Gumbel copula −1347.49

Frank copula −1268.85

Clayton copula −1482.41

Gaussian copula −1134.33

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean–variance 
minimum-variance portfolio.
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FIGURE 5

Portfolio value comparison using different copulas in the copula-GARCH model.

TABLE 5  The number of positive outcomes for each model.

Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR

t-copula eGARCH 6,605 3,104 4,203 5,201 4,709 3,435

Historical CVaR 2,605 2001 4,705 4,107 2,104 6,565

MV min risk 790 1,401 1,092 692 3,187 0

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean–variance minimum-variance portfolio.

TABLE 6  The number of positive outcomes for each model.

Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR

t-copula eGARCH 4,107 4,786 4,232 4,531 5,241 2,401

Historical CVaR 3,685 2,729 4,029 3,483 2,213 7,599

MV min risk 2,208 2,485 1739 1986 2,546 0

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean–variance minimum-variance portfolio.

adaptive approach to portfolio construction. The findings of this study 
support the practical value of CVaR-based optimization using copula-
GARCH models, especially in environments marked by non-linear 
relationships and heightened uncertainty. As such, this approach presents 
a compelling alternative to conventional optimization techniques for 
modern portfolio managers seeking improved resilience and performance.
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