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Dependence modeling and
portfolio optimization with
copula-GARCH: a European
investment perspective

Anastasija Vasiljeva, Andrejs Matvejevs and Jegors Fjodorovs*

Institute of Applied Mathematics, Riga Technical University, Riga, Latvia

This study investigates advanced portfolio optimization techniques that integrate copula
functions and GARCH models to enhance risk-adjusted performance in the European stock
market. Traditional methods, such as mean-variance optimization, often fail to capture
non-linear dependencies and heavy-tailed behaviors observed in financial returns. The
copula-GARCH framework addresses these limitations by jointly modeling dependence
structures and time-varying volatility. Using high-performance computing (HPC) resources,
approximately 10,000 portfolios were simulated to evaluate the effectiveness of different
copula-GARCH configurations. Several GARCH-type specifications - standard GARCH,
GJIR-GARCH, and exponential GARCH (eGARCH) - were tested in combination with
various copula families. The analysis focused on EURO STOXX 50 constituents, with
model estimation based on 2014-2021 data and out-of-sample backtesting conducted
across three market regimes: the bearish year 2022, the bullish recovery in 2023, and the
neutral conditions of 2024. Performance was benchmarked against traditional mean-
variance and historical Conditional Value at Risk (CVaR) optimization methods. The
combination of a Student's t copula [33, 34] with marginal Student's t distributions and
an eGARCH model consistently outperformed alternatives, achieving lower CVaR values
while maintaining favorable return profiles. This configuration demonstrated superior
ability to capture tail dependence and asymmetric volatility, which contributed to its
robustness across diverse market conditions. The findings confirm that copula-GARCH
models provide a more realistic and adaptable framework for portfolio construction
under changing market dynamics. By capturing both non-linear dependencies and time-
varying volatility, this approach improves downside-risk control without compromising
returns. These results highlight the practical value of copula-GARCH optimization for
risk-averse investors operating in the European equity market.
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copula, GARCH, Conditional Value at Risk (CVaR), portfolio optimization, European
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1 Introduction

Optimizing financial portfolios involves the careful balancing of expected returns against
associated risks. Traditional methodologies, such as the mean-variance approach developed by
Markowitz (1, 2), have long served as foundational tools in this domain. However, these models
often struggle to adequately represent the complex, non-linear relationships and heavy-tailed
distributions commonly observed in financial markets (3). In response to these challenges, the
integration of copula functions with GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) models has emerged as a more flexible and powerful alternative. These
methods allow for a more accurate representation of the dynamic dependencies between asset
returns and the time-varying nature of market volatility (4), making them particularly useful
for risk-sensitive applications. Following Bollerslev (4), we adopt the GARCH framework, and,
where relevant, relate it to Engle’s (5) ARCH model. Within the GARCH family, several variants
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have been proposed to capture different volatility dynamics. In this
study, we consider multiple GARCH-type models—specifically, the
standard GARCH, GJR-GARCH (6), and Exponential GARCH (7)—to
evaluate their performance in modeling asymmetric and time-varying
volatility. Among these, the e GARCH model plays a central role in our
empirical analysis due to its ability to capture leverage effects and
volatility asymmetry, which are prevalent in equity returns.

Asset returns are rarely isolated—co-movements, especially among
assets within the same sector or geographical area, are common and
can intensify during periods of market stress. Modeling these joint
behaviors (8-10) accurately is essential for effective risk assessment and
robust portfolio construction. This study employs copula-GARCH
models to simulate the behavior of stocks within the EURO STOXX 50
Index, compares their effectiveness to that of conventional optimization
strategies, and assesses their implications for portfolio performance
and risk management. We use EURO STOXX 50 constituents with
daily data from 2014 to 2021 for model estimation and generate out-of-
sample evaluations for 2022 (downturn), 2023 (recovery), and 2024
(neutral) regimes. Our motivation is to provide a risk-averse portfolio
(11) construction workflow that captures heavy tails and asymmetric
dependence neglected by mean-variance methods. We aim to quantify
the out-of-sample benefits of copula-GARCH portfolios when the
objective is tail-risk minimization (CVaR). Across regimes, portfolios
based on a Student’s t copula and eGARCH marginals achieve lower
CVaR while maintaining competitive mean returns relative to historical
CVaR and mean—variance benchmarks. While the empirical analysis
highlights the superior performance of the EGARCH specification, the
study systematically compares several GARCH-family models to
ensure robustness and consistency in volatility estimation.

Section 2 reviews VaR/ES and volatility modeling; Section 3
details data and estimation; Section 4 reports backtests; Section 5
reports results and discussion; Section 6 concludes.

2 Traditional methods
2.1 Markowitz approach

The Markowitz approach (1), also known as mean-variance
analysis, is a fundamental component of Modern Portfolio Theory. It
provides a framework for achieving a higher expected portfolio return
for a given level of risk, or conversely, minimizing risk for a given
expected return. The expected portfolio return is calculated as:

n

E(Ry)=Ywi*E(R)), 1

i=1

where:

o w; is the weight of the i-th asset in the portfolio,
o E(R;) is the expected return of the i-th asset.

This formula allows for the efficient allocation of assets to optimize
returns while managing risk.

In the Markowitz model, portfolio risk &, is measured by the standard
deviation of returns, where the portfolio variance is calculated as:

n n

Var(Rp):ZZW,-*wj*cov(R,-,Rj) (2)
i=1j=1
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The portfolio risk o is then:
Op =, /Var(RP)

While Markowitz’s portfolio optimization is a cornerstone of
financial theory, its practical application is limited by several
assumptions and challenges (12, 13). These include reliance on
historical data, sensitivity to input estimates, the assumption of
normality, and the neglect of extreme events and multi-period
investment horizons. Such limitations underscore the need for more
advanced models that better capture the complexities of real-world
financial markets (14, 15).

2.2 Value-at-Risk (VaR)

Value-at-Risk (VaR) is one of the most widely used risk measures
in financial institutions and regulatory frameworks (16, 17), including
its incorporation into the Basel II capital adequacy framework,
highlighting its importance in risk management (18). VaR provides
a summary measure of the potential loss in value of a financial
portfolio (19-21) over a defined time horizon, given a specific
confidence level.

To define VaR, three elements are essential: the time horizon (e.g.,
1 day or 1 month), the confidence level a (commonly 95% or 99%),
and the base currency. Mathematically, the a-level VaR for the loss
variable L is defined as:

VaR, (L)=inf{leR:P(L<I)2af

where:

e VaR, (L) is the Value-at-Risk at confidence level a for the loss
variable L. It represents the maximum expected loss over a
specified time horizon with probability «,

o L is the random variable representing portfolio losses,

o ais the confidence level (e.g., 95% or 99%).

While VaR is popular, it has limitations—most notably, it does
not provide information about losses beyond the VaR threshold (22—
24). For this reason, many risk managers prefer Expected Shortfall
(ES), also known as Conditional VaR, which captures the average loss
in the tail beyond the VaR level. We emphasize Expected Shortfall
(ES) (25), also known as CVaR, as a coherent tail-risk measure [see
Artzner et al. (26)]. In other words, while VaR only estimates the
maximum expected loss at a given confidence level, CVaR goes a step
further by quantifying the expected loss assuming that the loss has
already exceeded the VaR threshold. This makes it particularly
valuable for assessing extreme market scenarios and stress-
testing portfolios.

In the context of this study, the CVaR was used as the primary
optimization criterion within the copula-GARCH framework (20).
This choice reflects a shift from mean-variance thinking to
downside risk minimization, recognizing that investors are often
more concerned with limiting extreme losses than with
general variance.
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2.3 GARCH

The GARCH model (4) is a generalization of the ARCH model
[the ARCH precursor to GARCH is due to Engle (5)]. A characteristic
of the ARCH process is that its conditional standard deviation o; or
volatility, is a continuously varying function of the previous values of
the square of the process. On the other hand, GARCH is a
generalization in the sense that the variance o7, or the squared
volatility, is allowed to depend on the previous squared fluctuations as
well as on the previous squared values of the process itself (1).

The GARCH model (4) is a generalization of the ARCH model,
which models time-varying volatility in financial time series. In an
ARCH process, the conditional standard deviation oy, or volatility, is
a function of previous squared values of the process. GARCH extends
this by allowing the conditional variance o7 to depend not only on
past squared fluctuations but also on past values of the variance
itself (18).

The GARCH(p, q) process is represented by the following formulas:

Xt = O-tZt 5 (3)
2 3 2 L,
O =0 +Za,~Xt_,- +Zﬂj0t_j, (4)
i=1 j=1
where:
o tistime,
o p, q are the orders of the ARCH and GARCH components,
respectively,

e () is a constant,
2 . .
« oy represents the conditional variances,

a; are the ARCH model parameters,
; are the GARCH model parameters,
X; is the ARCH process,

Z,isiid. N(O;1).

o’ is the conditional variance only if the innovation Z, follows a
standard normal distribution. For heavy-tailed innovations such as the
Student’s t, ¢* represents the conditional scale parameter, and the
conditional variance is 6% multiplied by the appropriate factor [v/(v-2)
forv>2].

The Equations 3 and 4 model provides crucial insights into the
volatility and risk of financial instruments, enabling more accurate
risk assessment for portfolios. Additionally, it addresses the limitation
of the Markowitz model, which assumes constant volatility, offering a
more realistic view of market dynamics.

2.4 Copulas

Copulas (27, 28), first introduced by Sklar [we refer to Sklar’s
foundational theorem (29) and the comprehensive monograph by Joe
(30) for background on copula modeling], have become increasingly
prominent in modern statistics and data analysis (31) due to their
flexibility and precision in modeling the joint distribution of
multivariate random variables. Their versatility has led to widespread
adoption across diverse disciplines such as finance, insurance,
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econometrics, artificial intelligence, and climatology, while also
drawing significant interest from probability theorists.

One of the key advantages of copulas lies in their ability to capture
complex dependency structures that traditional methods, such as
Pearson correlation, cannot adequately address. While Pearson
correlation measures only linear relationships, copulas are capable of
modeling non-linear dependencies and are sensitive to the rank-based
associations between variables (18). This makes them especially
valuable in fields where accurate modeling of interdependence
is crucial.

An n-dimensional copula is a function C:[0,1]n — [0,1] that
satisfies the following properties (32):

e Vue[01,C(L,.., Lu, 1,..., 1) =u,

o Yu 6[0,1:, C(uy,..., uy) = 0, if at least one of u;is equal to zero.

o Cis grou;lded and n-increasing, meaning the C-volume of every
box with vertices in [0,1]" is positive.

Panels in Figure 1 were regenerated using a common linear
correlation target of p ~ 0.90 across families for comparability and the
Gumbel panel was enhanced to highlight upper-tail asymmetry.

The copula-GARCH framework offers a more realistic and
sophisticated approach to simulating future portfolio performance
under various market conditions. By capturing both the intricate
dependency structure among assets and the dynamic nature of market
volatility, this method significantly enhances stress testing and
scenario analysis, thereby supporting more robust asset allocation
decisions (33).

Unlike traditional optimization techniques, which often rely on
assumptions of linear dependence and constant volatility, the copula-
GARCH model accounts for non-linear interactions and time-varying
risk. This allows for more accurate identification of diversification
opportunities and the construction of portfolios that are less
vulnerable to extreme co-movements and large simultaneous losses.
As a result, portfolios optimized using this approach tend to achieve
superior risk-adjusted returns.

Traditional methods may overlook these nuanced risk
characteristics, potentially leading to suboptimal diversification and
elevated portfolio risk. In contrast, the copula-GARCH approach
offers a more comprehensive and realistic modeling framework by
addressing tail dependencies, asymmetries, and volatility clustering.
This makes it a potentially more effective tool for asset allocation and
risk management in complex and volatile financial environments.

The following sections detail the construction of the copula-
GARCH algorithm and present the results of simulation-based
portfolio optimization.

3 Algorithm for constructing a
portfolio based on copula and GARCH

The investment universe in our study is defined strictly as the
EURO STOXX 50. Portfolios are constructed to be long-only, with no
leverage or short sales permitted. Each portfolio is positioned fully at
inception and then held unchanged throughout the investment
horizon. As a result, turnover within the period is exactly zero (12,
13, 34).
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Clayton (p=0.90, 6=6.73) Gumbel (p=0.90, 6~3.61)

Copula Scatter Plots (Normal margins, target p=0.90) - Yellow on White

Gaussian (p=0.90) Student t (v=5, p=0.90)

FIGURE 1
Most popular copula densities in finance.

Because no rebalancing occurs during the life of the positions,
we treat transaction costs and asset holding costs as identical and
negligible. This means that all reported results are already net of such
costs, without further adjustments.

Finally, when analyzing portfolio risk and performance over
time, we ensure consistency in the treatment of returns. Daily
portfolio moments are first calculated using standard returns. For
longer horizons—such as multi-day or annual periods used in
backtests (e.g., for 2022)—these daily returns are converted to
log-returns before compounding and Conditional Value-at-Risk
(CVaR) evaluation. This method guarantees proper time aggregation
and alignment with VaR/ES measurement.

The construction and optimization of a portfolio based on copula
and GARCH (4) models can be efficiently accomplished using the
following algorithm:

o Stock selection and obtaining logarithmic returns: choose the
stocks for the portfolio and compute their logarithmic returns.
We compute both standard (simple) returns and log-returns.
Equations 1, 2 for portfolio mean and variance are evaluated
using standard returns (exact identities), while log-returns are
used only for time aggregation across horizons.

Testing for stationarity and the ARCH effect: verify the stationarity
of the return series and test for the presence of the ARCH effect.
Stationarity was assessed using Augmented Dickey-Fuller
(ADF) (35) and KPSS (36) tests. ARCH effects were tested with
Engle’s (5) LM test.

o GARCH model selection: identify the appropriate GARCH model
to capture the time-varying volatility in the return series.

Selection of the marginal distribution: choose the marginal
distribution that best fits the individual asset returns.

Copula selection from transformed standardized GARCH residuals:
select a copula function based on the transformed standardized

GARCH residuals to model the dependencies between assets.
We adopt a two-step inference-for-margins (IFM) procedure: (i)
GARCH parameters
distributions; (ii) fit copula parameters to the standardized residuals.

estimate univariate and marginal

Simulating returns from the copula function: generate simulated
returns using the chosen copula function (21).

Portfolio optimization using CVAR minimization: optimize the
portfolio based on the simulated returns by minimizing CVaR.

The following algorithm was implemented using R Studio and
Riga Technical University’s high-performance computing (RTU HPC)
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infrastructure to extend the portfolio optimization method to 10,000
portfolios. The RTU HPC cluster comprises 34 computing nodes for
job execution and one head node responsible for cluster management.
All nodes are interconnected via a high-speed InfiniBand network.
Each compute node is equipped with two x86_64 architecture
processors (CPUs), and some nodes also feature 2 or 4 Nvidia Tesla
(GPUs). The cluster
heterogeneous, combining nodes of varying generations and technical

graphical accelerators architecture is
specifications (37). Consequently, 100,000 simulations from the
copula function were performed for each stock to achieve maximum
likelihood results (see Figure 2).

For each portfolio, 5 stocks were randomly selected from the
EURO STOXX 50 index. Each portfolio was optimized using three
models: the Markowitz model, the copula-GARCH model with a
CVaR minimization approach, and a minimal CVaR model based on
historical data. The historical data used for optimization and the
estimation of copula and GARCH parameters covered the period
from January 1, 2014, to December 31, 2021.

4 Copula and GARCH model selection
for EURO STOXX 50 index stocks

To identify the most suitable copula for modelling the dependence
structure between asset returns in the EURO STOXX 50 index (38), a
comprehensive analysis of all possible pairs of the 50 constituent stocks
was conducted. The process involved the following steps (39, 40):

4.1 Data collection

Historical daily closing prices for all 50 stocks in the EURO
STOXX 50 index were collected and transformed into log returns to
ensure stationarity (41).

4.2 Pairwise analysis

Each of the 1,225 possible pairs of stocks was analyzed to
determine the best-fitting copula. The copula families considered
included the Gaussian, Clayton, Gumbel, Frank, and Students
t-copula. In Table 1, you can see the results of the copula selection.
Counts correspond to the number of pairs for which each copula
family minimizes the information criterion.
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Stock selection and
obtaining logarithmic
returns

Stationarity and
ARCH effect
statistical tests

Copula selection from
transformed standardized
GARCH residuals

FIGURE 2
Algorithm for copula-GARCH model-based portfolio optimization.
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Simulation of
new returns
from Copula

Selection of
the marginal
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minlm
i

Portfolio optimization from
obtained returns by CvVaR
minimization method

GARCH model
selection

—)

TABLE 1 Biselectcop() function results for the stocks.

Clayton

Frank ‘ Gaussian ‘ Gumbel ‘ Student

- 3 2 44 1,032

4.3 Goodness-of-fit testing

For each pair, goodness-of-fit tests, such as the Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) (42), were used to evaluate the copula models. These tests
penalize for model complexity and help in selecting a model that
strikes a balance between fit and simplicity.

4.4 Selection criteria

The copula that most frequently emerged as the best fit (43-45)
across all pairs was chosen as the most suitable for the entire dataset.
This process revealed that the Student’s t-copula was the most
appropriate, indicating its effectiveness in capturing the tail
dependence and heavy tails characteristic of the joint distribution of
stock returns.

To model the conditional volatility of returns, various GARCH
models were considered. The process for selecting the most suitable
GARCH model involved the following steps:

4.5 Data collection

Historical daily closing prices of the EURO STOXX 50 index were
used to compute the index returns.
4.6 Model specification

Various GARCH model variants were considered, including the
standard GARCH, GJR GARCH, Integrated GARCH (iGARCH), and
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Exponential GARCH (eGARCH). The eGARCH model was
particularly noted for its ability to capture asymmetries in volatility. For
leverage and asymmetry, we consider GJR-GARCH and eGARCH.

4.7 Model evaluation

The suitability of each GARCH model was assessed using information
criteria such as the AIC and BIC. These criteria help balance model fit and
complexity, ensuring that the selected model is both accurate and
parsimonious (please see numerical results in Table 2). Values are
averaged across the 50 univariate marginal models (one per stock).
Copulas are fitted in a second step to standardized residuals (IFM), i.e.,
Table 2 does not report joint (marginal and copula) likelihoods.

The eGARCH model emerged as the most suitable for the EURO
STOXX 50 index returns due to its superior performance in capturing
asymmetric volatility effects. This model effectively accounts for the
phenomenon where negative shocks tend to impact volatility more
than positive shocks, a common characteristic in financial markets.

5 Results and discussions

The models were tested using data from the year 2022, applying
the portfolio weights obtained from the optimization to the selected
shares. Profit and loss (PnL) for all portfolios were calculated as of
December 29, 2022. The histograms displaying the PnL results are
presented in Figure 3.

The copula-GARCH models produced more positive values
compared to the other two models. Table 3 provides a summary of the
number of instances where each model achieved the highest PnL,
along with the minimum, maximum, and average values. Additionally,
the table presents the lowest CVaR index and standard deviation for
each model.

In 2022, the market experienced a decline due to political events,
providing an opportunity to assess the model’s effectiveness in a
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negative scenario. However, the t-copula eGARCH investment
portfolio construction yielded significantly better results. For instance,
Figure 4 illustrates the performance of hypothetical portfolios
throughout 2022, where the t-copula eGARCH portfolio demonstrates
greater resilience to market downturns.

Table 4 summarizes the portfolio profit and loss (PnL) on 2023-
01-01 for various models, including a detailed breakdown of the
copula-GARCH model using different copula types.

The data indicate that the Student’s t (46, 47) copula yields the
most favorable result, with the lowest loss among all models. Figure 5
visualizes the evolution of portfolio values under the copula-GARCH
model using different copulas. While the performance trajectories are
relatively close, the portfolio constructed with the Student’s ¢ copula
consistently outperforms the others.

Additional backtesting was conducted using data from 2023, a
year marked by generally positive market conditions. This provided
an opportunity to evaluate the model’s performance under favorable
dynamics. As presented in Table 5, the copula-GARCH model
outperformed both the historical CVaR and mean-variance models
in terms of profit and loss (PnL) in 66% of cases. However, not all

TABLE 2 GARCH models results.

GARCH models AIC BIC LogLik
SGARCH —6.307543 —6.291929 5527.254
eGARCH —6.356534 —6.337798 5571.146
girGARCH —6.347582 —6.328845 5563.308
iGARCH —6.308296 —6.295805 5526.913

Values are averaged across the 50 univariate marginal models (one per stock). Copulas are
fitted in a second step to standardized residuals (IFM), i.e., Table 2 does not report joint
(marginal and copula) likelihoods (LogLik).

10.3389/fams.2025.1675120

performance metrics were in its favor. The minimum CVaR model,
based on historical data, more frequently achieved the lowest CVaR
values and more often reached the maximum portfolio value
compared to the other models.

To further assess the stability and generalizability of the
optimization frameworks, a subsequent backtest was performed using
2024 data. In contrast to the pronounced market downturn in 2022
and the strong recovery in 2023, the market environment in 2024 was
more neutral, with no clear directional trend and moderate volatility.
This created a suitable setting to evaluate model performance under
relatively stationary market conditions.

Table 6 summarizes the outcomes of this backtesting, based on
10,000 simulated portfolios generated for each optimization model.
The copula-GARCH model again delivered strong results, achieving
the highest performance across several key metrics, including Max
PnL, Max Mean, Max Min, and lowest CVaR in most instances. The
historical CVaR model demonstrated an advantage in achieving the
lowest standard deviation, while the mean-variance model showed
comparatively weaker performance across all indicators—particularly
in terms of downside risk control.

These findings underscore the robustness of the copula-GARCH
approach across varying market regimes. Not only does it perform well
under stress (as in 2022) and during recovery (as in 2023), but it also
maintains its effectiveness in more neutral or transitional periods, such
as 2024. This highlights its value as a reliable and adaptive tool for
portfolio optimization across diverse market environments.

6 Conclusion

We acknowledge that the present portfolio analysis does not fully
incorporate well-documented stylized facts such as heavy tails,
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TABLE 3 The number of positive outcomes for each model.
Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR
t-copula e GARCH 5,712 5,071 6,371 5,805 2,507 4,301
Historical CVaR 2,431 2,204 2,505 2,104 3,805 5,699
MV min risk 1857 2,314 1,124 2091 3,688 0

PnL equals profit and loss; CVaR equals Conditional Value at Risk; MV min risk equals minimum variance portfolio.

volatility clustering, leverage/asymmetry, and long memory (11).
Future work will incorporate ARFIMA-FIGARCH marginals (48, 49)
with ¢-innovations, time-varying copulas (50), and formal goodness-
of-fit testing (51). Out-of-sample evaluation will include rolling and
expanding windows, risk backtesting in the Fissler-Ziegel and Acerbi-
Szekely (25) frameworks, turnover constraints and explicit trading
costs, and robust baseline comparisons. To mitigate overfitting and
data-snooping, future studies will apply White’s Reality Check (2000)
and Hansen’s SPA test (2005), and report bootstrap-based uncertainty
bands (25, 48-53).

This research investigated the application of copula-GARCH
models in portfolio optimization, with a particular focus on
enhancing risk management for portfolios of European equities.
The study highlights the critical role of proper model
calibration—especially in selecting copula families, GARCH
specifications, and initial parameters—in achieving accurate and
dependable results.

A structured methodological approach was developed, combining
an in-depth review of existing literature with extensive empirical
testing. Using the R programming language in the RStudio
environment, simulations were run on 10,000 portfolios, supported
by high-performance computing resources. The model employed a
Student’s t-copula to capture tail dependencies between assets and an
exponential GARCH (eGARCH) model to account for time-varying
and asymmetric volatility.
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TABLE 4 Portfolio PnL across different models.

Model Portfolio PnL as of
2023.01.01, $
Mean-variance —2254.75
Historical CVaR —2844.71
Copula-GARCH min | Student copula —911.73
CVaR model Gumbel copula ~1347.49
Frank copula —1268.85
Clayton copula —1482.41
Gaussian copula —1134.33

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean-variance
minimum-variance portfolio.

Across three distinct market conditions—downturn (2022),
recovery (2023), and stability (2024)—the copula-GARCH model
consistently outperformed traditional optimization methods,
including mean-variance and historical CVaR approaches,
particularly in minimizing Conditional Value at Risk (CVaR). This
consistent performance across diverse regimes affirms the model’s
effectiveness in mitigating downside risk without compromising
return potential.

By capturing both complex interdependencies and dynamic volatility
patterns, the copula-GARCH framework offers a more nuanced and
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TABLE 5 The number of positive outcomes for each model.

Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR
t-copula e GARCH 6,605 3,104 4,203 5,201 4,709 3,435
Historical CVaR 2,605 2001 4,705 4,107 2,104 6,565
MV min risk 790 1,401 1,092 692 3,187 0

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean-variance minimum-variance portfolio.

TABLE 6 The number of positive outcomes for each model.
Model Max PnL Max Min Max Max Max Mean Min Std Min CVaR
t-copula e GARCH 4,107 4,786 4,232 4,531 5,241 2,401
Historical CVaR 3,685 2,729 4,029 3,483 2,213 7,599
MV min risk 2,208 2,485 1739 1986 2,546 0

PnL, profit and loss; CVaR, Conditional Value at Risk; MV min risk, mean-variance minimum-variance portfolio.

adaptive approach to portfolio construction. The findings of this study
support the practical value of CVaR-based optimization using copula-
GARCH models, especially in environments marked by non-linear
relationships and heightened uncertainty. As such, this approach presents
a compelling alternative to conventional optimization techniques for
modern portfolio managers seeking improved resilience and performance.
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