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The smooth transition
autoregressive models for the
unemployment rate of Latvia

Oksana Pavlenko*

Institute of Applied Mathematics, Riga Technical University, Riga, Latvia

To model potential structural shifts in the data that depend on their historical
values, different smooth transition autoregressive models are constructed and
compared for the changes in the unemployment rate among 15–75-year-old
residents of Latvia, including the popular LSTAR, ESTAR, and LSTAR2 models,
as well as the recently introduced ASTAR model with an asymmetric transition
function. For their estimation, special modifications of the only available function
in the tsDyn package of R software for the classical logistic smooth transition
autoregressive model (LSTAR) are used. The constructed models are also
compared with a linear autoregressive model (AR), an autoregressive model
with Generalized Autoregressive Conditional Heteroscedastic (GARCH) errors,
and a self-exciting threshold model. The first lag of the dependent variable and
the inflation rate are used as threshold variables. LSTAR2 with the first lag as
the threshold variable provides the best fit compared to the other constructed
models for these data. However, other STAR models may provide a significantly
better out-of-sample forecast. Compared to RMSE, the ASTAR out-of-sample
forecast performs better on different horizons. Using the inflation rate as an
external threshold variable does not improve the model. The study indicates that
the new R functions may be useful for economic data analysis.
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1 Introduction

Various time series models are used to forecast macroeconomic and financial variables,
starting with trend, additive seasonality, and linear autoregressive models and continuing
with more sophisticated models such as linear autoregressive integrated moving average
(ARIMA), multiplicative seasonal ARIMA models (SARIMA), vector autoregression
(VAR), and vector error correction (VEC) models [1]. Another extension of autoregressive
models is the inclusion of conditionally heteroscedastic errors through the estimation of
autoregressive moving average (ARMA) with GARCH [1]. The aforementioned models
do not capture structural shifts, which are common in the economic environment. For
this reason, various threshold models have become popular. Threshold autoregression
(TAR) and self-exciting threshold autoregression (SETAR) models may better capture the
observed dynamics of economic variables in the case of structural breaks. Additionally, the
transition between regimes is often gradual rather than abrupt.

Classical threshold and smooth transition autoregressive models (LSTAR, LSTAR2,
and ESTAR), along with their estimation, properties, and applications, are documented
by Kavkler et al. [2], Aydin and Mermi [3], Hansen [4], and Pavlenko and Matvejevs [5].
The challenges associated with their detection, selection, and estimation are discussed by
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Terasvirta [6]. To capture the asymmetry of transitions between
regimes and allow for the estimation of different speeds in
different transition directions, the new, asymmetric transition
function, asymmetric smooth transition autoregression (ASTAR),
is proposed by Pavlenko [7].

The mentioned models are outlined in the next section. Section
3 is devoted to the realization of estimation in R software and
describes the construction and comparison of models for changes
in the unemployment rate in Latvia. Finally, Section 4 presents
the conclusion of the analysis, and Section 5 outlines future
research directions.

2 Materials and methods

2.1 The models

Let us define the models that will be used later.
The linear autoregressive integrated moving average model

(ARIMA(p,d,q)) [1] is usually given by the equation:

∇dYt = a0 +
p∑

i=1

ai∇dYt−i +
q∑

j=1

bjwt−j + wt ,

where (here and further) Yt is the univariate time series; t is the
time; wt is independent identically normally distributed errors with
zero mean; p, d, and q are the orders of the model: p is the largest
autoregressive lag, q is the largest moving average lag, and d is
the order of integration (the number of differences taken); ∇d =
(1 − �)d is the difference operator; �Yt = Yt−1 is the simple lag.

The multiplicative seasonal autoregressive integrated moving
average model (SARIMA(p,d,q)) [8] (P,D,Q)s is defined by
the equation:

�P
(
�s) φ (�)∇D

s ∇dYt = δ + �Q
(
�s) θ (�) wt ,

where s is the number of seasons; P,D, and Q are the orders of
a seasonal part; φ (�) is an autoregressive operator; θ (�) is the
moving average operator;∇D

s = (1 − �s)Dis the seasonal difference
operator; �P (�s) =1- �1�

s − �2�
2s -. . . - �P�Ps is the seasonal

autoregressive operator; �Q (�s) = 1+ �1�
s + �2�

2s+ ... +
�Q�Qs is the seasonal moving average operator.

An autoregressive model with generalized autoregressive
conditionally heteroscedastic errors [1] AR(r)+GARCH(p,q) is
given by:

Yt = α0 + α1Yt−1 + . . . + αr Yt−r + wt

wt = νt
√

ht , where σ 2
ν = 1

ht = α0 +
q∑

i=1

αiw2
t−i +

p∑
i=1

βiht−i

The self-exciting threshold autoregressive (SETAR) model [1]
is defined as:

Yt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(1)
0 + ∑p1

i=1 a(1)
i Yt−i + w(1)

t , for Yt−d ≤ r1,

. . .

a(k)
0 + ∑pk

i=1 a(k)
i Yt−i + w(k)

t , for rk−1 < Yt−d ≤ rk

,

where p1,. . . , pk are orders of regression equations in corresponding
regimes, d is the delay parameter, and r1,. . . , rk are thresholds.

The smooth transition autoregressive model [1] STAR is
defined as:

Yt = α0 + α1Yt−1 + . . . + αp Yt−p + G(γ , x, th) [β0 + β1 Yt−1

+ . . . + βp Yt−q
] + wt ,

where G(γ , x, th) is the transition function, γ is a smoothness
coefficient (one or two), th is a threshold value (one or two),
and x is the threshold variable (a significant lag of the dependent
variable Y, such as Yt−1 or may be their combination or some
exogenous variable.)

The most popular transition functions are as follows.

• First-order logistic smooth transition autoregressive
model (LSTAR):

G(γ , x, th) = 1
1 + e−γ (x−th )

,

• Exponential smooth transition autoregressive
model (ESTAR):

G
(
γ , x, th

) = 1 − e−γ (x−th)2
, γ > 0,

• Second-order logistic smooth transition autoregressive
model (LSTAR2):

G(γ , x, th1, th2) = 1
1 + e−γ (x−th1)(x−th2 )

,

where th1 and th2 are the threshold values.
A detailed description of the transition functions of STAR

models is given by Kavkler et al. [2].
The recently developed asymmetric smooth transition function

(ASTAR) [7]

G(th, x, γ1, γ2) = 1 − 1.5
1 + 0.5e−γ1(x−th) + 0.5eγ2(x−th)

.

introduces asymmetry into the transition mechanism, enabling
faster or slower regime switching depending on the direction of
change. Here, there are two smoothness parameters γ1 and γ2,
which also should be estimated. Large γ1 and small γ2 makes the
first transition faster and the second transition slower (and vice
versa). The parameters γ1 and γ2 must be of the same sign for the
function value to be between 0 and 1, which is mandatory for a
transition function. If both parameters are negative, γ2 regulates
the speed of the first transition and γ1 regulates the second. Similar
to LSTAR2, the ASTAR transition function may not reach 0 fully
under some smoothness parameters. Its minimum lies between
0 and 0.25. The imperfection of the ASTAR function is a small
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shift of the minimum from the threshold value when γ1 �= γ2.
It is not significant if the difference between γ1 and γ2 is not
unbelievably huge.

2.2 Estimation

Both smooth transition autoregressive models and self-
exciting threshold autoregressive models are typically estimated
with conditional least squares. Moreover, maximum likelihood
estimation under the assumption of normally distributed errors can
be used for STAR models. In this case, both methods are equivalent
[2, 3].

Conditional on the parameters of a transition function(
γ1, γ2, th1, and th2

)
, the estimates of regimes’ equations’

coefficients αi, βi can be estimated by least squares. These
parameters, that is, γ1, γ2, th1, and th2, are obtained using grid
search—which is two-dimensional for LSTAR and ESTAR models
and three-dimensional for LSTAR2 and ASTAR models—by
minimizing residual variance [3].

Different non-linear optimization methods can be used to
minimize the sum of squared residuals. The Newton–Raphson
algorithm and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm are the most often used algorithms [2].

Terasvirta [6] provides a detailed discussion of the estimation
process and its associated challenges.

As admitted by Kavkler et al. [2], numerical optimization
is more stable if the transition function is standardized before
optimization: in the case of LSTAR, γ should be divided by the
sample standard deviation, but in the cases of ESTAR and LSTAR2,
γ should be divided by the sample variance of the variable. Dividing
by the sample standard deviation is also advisable in the case of
ASTAR due to the structure of the transition function.

Terasvirta [6] emphasized that, even if convergence is achieved,
the model’s validity still needs to be analyzed. Due to the presence
of local minima, especially in relatively short time series, it is
important to verify that the obtained estimates are reasonable
(e.g., if the threshold values fall within the range of the series and
the two thresholds differ). Such tests are not always implemented
in software estimation functions. Additionally, it is essential to
examine the residuals and their autocorrelation. In general, a more
parsimonious model is preferred. If some coefficients of the model,
other than γ, appear non-significant, it is better to exclude at least
part of them from the model. However, Tong [9] and Terasvirta
[10] recommend avoiding the exclusion of the intercept. Figure 1
shows the typical behavior of the transition functions.

3 Results and discussion

3.1 Model estimation in R

tsDyn is a popular R package for non-linear time series models
with regime switching. It offers estimation functions only for
SETAR and LSTAR, without the option to estimate ESTAR or
LSTAR2. Since R is open-source software, the code of the function
lstar() for LSTAR estimation [11] can be used as a base for
developing new functions to estimate other models. The function

already allows for different equation orders, which is preferable
to some other software functions that estimate STAR models with
equal-order equations only.

3.1.1 Construction of lstar2(), estar(), and astar()
functions

The function lstar() is modified into lstar2(), estar(), and astar()
functions for LSTAR2, ESTAR, and ASTAR model estimation
[7, 12–15].

The modification is performed using the available lstar()
function code in the R documentation by making the necessary
adjustments for each model specifically. These adjustments are
as follows:

In the case of ASTAR, one smoothness parameter is
replaced with two smoothness parameters, gamma1 and gamma2,
throughout the whole program, including checking the initial
parameter values set by the user, grid search, estimation, and output
construction. The function code is modified by implementing
the new formula of the transition function while using the two
smoothness parameters mentioned above. The sigmoid() function
used in lstar() is replaced with the direct formula of the new
transition function. Moreover, modifications are made to the
internal lstar() function gradEhat(). To create the Jacobian matrix,
which is used for the optimization of coefficients αi and βi,
gradEhat() is adjusted for the new model by adding a derivative by
the new variable, replacing gamma with gamma1 and gamma2. The
special dsigmoid() function for the derivative of a sigmoid function
is not used anymore, but the derivatives of the new transition
function are taken manually and placed in the code.

In the case of ESTAR, the number of parameters remains the
same as in the initial lstar() function. Only the transition function is
replaced with the new one. The sigmoid() and dsigmoid() functions
are replaced with direct new functions and expressions of their
derivatives with all parameters.

In the case of LSTAR2, one threshold coefficient from
lstar() is replaced with two parameters, th1 and th2, throughout
the entire code. The new transition function is implemented,
and its derivatives are integrated into gradEhat(). The number
of derivatives is increased by one due to the additional
threshold parameter.

3.1.2 lstar2() and astar() function additions
A few additional improvements were made while creating the

lstar2() and astar() functions. An option was added for the user
to choose between two types of STAR model forms, which can be
useful for interpreting the results. Namely, the transition function
can be used only for the “high” regime regression, in the form of
multiplier G(), or it can also be used as a multiplier for the “low”
regime regression, in the form of 1 - G().

More possibilities are given to users in defining starting
values for transition function variables. Specifically, an option
has been added to set starting values for a part of the variables,
allowing the user to define all three variables; define gamma (or
gamma1 and gamma2 for ASTAR), allowing for the function to
choose the threshold coefficient(s) by using grid search; or choose
the starting values for the threshold th (or th1, th2 for LSTAR2),
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allowing the function to choose gamma (gamma1 and gamma2) by
grid search.

To analyze estimated model results, summary, and predictions,
and to perform a comparison with other models available
in the R environment, a few more modifications are made
by adjusting tsDyn:::predict.nlar(), tsDyn:::print.lstar(), and
tsDyn:::print.summary.lstar() for the new models estimated by
lstar2() and astar().

3.1.3 STAR model estimation with the new
functions

LSTAR2, ESTAR, and ASTAR estimation is performed similarly
to LSTAR model estimation using conditional least squares to
estimate the coefficients. These function definitions in the R
environment for users are as follows:

lstar2(x, m, d, steps, series, mL, mH, mTh, thDelay, thVar, th1,
th2, gamma, trace, include, control, starting.control, tp),

estar(x, m, d, steps, series, mL, mH, mTh, thDelay, thVar, th,
gamma, trace, include, control, starting control, tp), and

astar(x, m, d, steps, series, mL, mH, mTh, thDelay, thVar, th,
gamma1, gamma2, trace, include, control, starting.control, tp),

where the arguments are similar to the lstar() function, except
for the possible initial values of two thresholds, th1 and th2 (for
lstar2), initial values of two smoothness parameters, gamma1 and
gamma2 (for astar), and the type of model form, tp (1 or 2).

3.2 Data analysis

As in most other countries, the unemployment rate in Latvia,
like many other economic variables, is highly unstable. It can be
expected to vary across different periods, influenced by various
economic and political shocks.

3.2.1 The data
Our analysis is based on publicly available monthly data of the

unemployment rate among 15–75-year-old residents of Latvia for
the period January 2002 to June 2025, published by the Central
Statistical Bureau of Latvia [16].

Examining the shape of our data in Figure 2, we notice that
it is strongly non-stationary, with breaks, likely several. Especially
during the Great Financial Crisis of 2008, the unemployment rate
increased sharply. Then, it gradually decreased until the COVID-19
pandemic, when it sharply increased again, although not for as long
as in 2008. After a short period of gradual decrease until the spring
of 2023, we observe a rather calm period, which is still continuing.

Such heterogeneous dynamics may require a threshold model.
This is also confirmed by statistical tests. The Augmented Dickey-
Fuller test cannot reject a unit root with a confidence probability
larger than 0.9056. The Zivot-Andrews test, however, rejects the
unit root hypothesis and supports the alternative hypothesis of a
stationary series with a structural break at an unknown point in the
intercept, the linear trend, or both, with a confidence probability
greater than 0.95.

FIGURE 1

Typical behavior of the transition functions.

FIGURE 2

Unemployment rate in Latvia (2002M1–2025M5).

To remove the strong trend in the series, we take first
differences (see them in Figure 3) and further analyze the changes
in the unemployment rate, constructing models based on them.

Currently, the Augmented Dickey–Fuller test rejects the unit
root with a p-value of 0.026.

Although we do not see strong evidence of non-stationarity
in the correlogram (autocorrelation and partial autocorrelation
functions; Figure 4), at least in the first 18 lags, Tsay’s test rejects
the null hypothesis that the time series follows an autoregressive
process and accepts the alternative hypothesis of non-linearity with
a p-value close to zero (5.423247e-07).

The Zivot–Andrews test rejects a unit root in the series of
differences and accepts the alternative hypothesis of a stationary
series with a break at an unknown point with a confidence
probability larger than 0.99.

Then, the threshold non-linearity test rejects H0 of being
an autoregressive process and accepts H1 of being a threshold
autoregressive model for all lags up to at least 12, with p-values
close to zero. Moreover, the special Terasvirta [6] non-linearity test
is applied to test non-linearity against STAR models and to choose
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among the smooth transition models. By testing regression orders
up to 12, linearity is rejected for all of them.

As follows from the tests, a threshold or smooth transition
autoregressive model can describe our data better than linear
autoregressive models.

3.2.2 Model choice and comparison
Henceforth, the period up to August 2024 is used as the training

period to estimate the models, and the last 9 months are used as the
testing period.

The Terasvirta [6] test shows mixed results when choosing
between the LSTAR and ESTAR models. Specifically, the primary
test based on Terasvirta’s Taylor expansion selection procedure
suggests the LSTAR, but an auxiliary test points to ESTAR as the
model most likely to have the best fit. The best decision in this case
is to estimate and compare both models. Additionally, ARIMA,
SARIMA, ARMA+GARCH, SETAR, LSTAR2, and ASTAR of the
best possible order and parameters, with possibly better properties
(full, stationary, parsimonious), are estimated for comparison.

FIGURE 3

Autocorrelation (ACF) and partial autocorrelation function (PACF) of
the differences in unemployment rate.

Models of all types with orders less than 4 are not full, but
orders greater than 4 appear less parsimonious. Additionally,
the constant term, which allows for a non-zero intercept, is
kept in all models, despite being insignificant for some of them,
because its inclusion may improve predictive performance [9, 10].
The model selection procedure for each type of model includes
the estimation of various models and different validity tests to
exclude the presence of unit roots, residual correlation, squared
residual correlation, and heteroscedasticity. Candidate models are
compared with information criteria, RMSE, residual variance, and
significance of coefficients. A manual comparison is preferred over
an automatic procedure for more thorough information processing
and to maintain a similar structure when choosing among valid
and equally or almost equally good models. The first lag of
unemployment rate changes is used as a threshold variable that has
an economic justification. Finally, the following models are chosen:

AR(4)

Yt = −0.0221 + 1.0499Yt−1 − 0.2497Yt−2 − 0.4103Yt−3

+ 0.4216 Yt−4 + wt ,

SARIMA(1,0,3)(2,0,0)[12]

(
1 + 0.0009B12 − 0.0647B24) (1 − 0.8974B) Yt

= (
1 + 0.1502B − 0.1963B2 − 0.4152B3) wt

The best chosen SARIMA model is excluded from further
consideration and comparison because it is not full, its seasonal
terms are not significant, and any changes in orders do not make
the seasonal terms significant.

AR(4)+GARCH(1,1)

Yt = −0.008 + 1.0137Yt−1 − 0.1865Yt−2 − 0.3538Yt−3

+ 0.3133Yt−4 + wt

wt = νt
√

ht ,

ht = 0.0058 + 0.2478w2
t−1 + 0.6033ht−1

FIGURE 4

Differences in the unemployment rate in Latvia (2002M2–2025M5).
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TABLE 1 Comparison of models with RMSE, RV, and AIC (using lag1 as a
threshold variable for STAR and SETAR).

Model RMSE RV AIC Goodness
of fit

AR(4) 0.1923 0.0388 −97.327

AR(4)+GARCH(1,1) 0.1931 0.0387∗ −117.729

SETAR 0.1839 0.0335 −901

LSTAR 0.1846 0.0338 −898

LSTAR2 0.1782 0.0314 −915 Fits the best

ESTAR 0.1863 0.0342 −895

ASTAR 0.1838 0.0336 −898

∗Unconditional. The best model is highlighted in bold.

SETAR

Yt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.0711 + 0.7757Yt−1 − 0.201Yt−2 − 0.4337Yt−3

+ 0.2534Yt−4 + w(1)
t , if Yt−1 ≤ 0

−0.0288 + 1.2005Yt−1 − 0.2838Yt−2 − 0.3865Yt−3

+ 0.4219Yt−4 + w(2)
t , if Yt−1 > 0

LSTAR

Yt = −0.1026 + 0.7299Yt−1 − 0.2258Yt−2 − 0.4204Yt−3

+ 0.3608Yt−4

+ 1
1 + e−24.0836(Yt−1+0.111)

[0.0718 + 0.486Yt−1 − 0.0163Yt−2] + wt ,

LSTAR2

Yt = −0.0287 + 1.0161Yt−1 − 0.2609Yt−2 − 0.3914Yt−3

+ 0.2848Yt−4

+
(

1
1 + e−10.0012(Yt−1+0.8979)(Yt−1−0.835)

)

[0.3543 − 0.4202Yt−1 + 0.4808] + wt ,

ESTAR

Yt = −0.0431 + 1.2628Yt−1 − 0.3976Yt−2 − 0.4942Yt−3

+ 0.3453Yt−4

+
(

1
1 + e−4(Yt−1−0.1)2

)

[0.1211 − 0.4221Yt−1 + 0.4343Yt−2] + wt ,

ASTAR

Yt = −0.0108 + 1.1365Yt−1 − 0.2411Yt−2 − 0.3789Yt−3

+ 0.3517Yt−4

+
(

1 − 1.5
1 + 0.5e−15.0001(Yt−1+0.5098) + 0.5e0.0144(Yt−1+0.5098)

)

[−0.3495 − 0.4744Yt−1 − 0.5494Yt−2] + wt .

Comparing the fit of the chosen AR(4), AR(4)+GARCH(1,1),
LSTAR, SETAR, LSTAR2, ESTAR, and ASTAR models using the
root mean squared error loss (RMSE), (unconditional) residual

TABLE 2 Comparison of models with RMSE (using inflation as a threshold
variable for STAR and SETAR).

Model RMSE RV AIC

SETAR 0.1886 0.0352 −885

LSTAR 0.1894 0.0355 −885

LSTAR2 0.1880 0.0353 −884

ESTAR 0.1894 0.0358 −882

ASTAR 0.1931 0.0361 −878

For each indicator, the best value is highlighted in bold.

TABLE 3 Estimates of the coefficients of the chosen LSTAR2 model.

Coefficient Estimate Std. Error t value Pr(>|z|)

const.L −0.0287 0.0118 −2.4365 0.0148

phiL.1 1.0161 0.0591 17.1861 <2.2e−16

phiL.2 −0.2609 0.0743 −3.5102 0.0004

phiL.3 −0.3914 0.0739 −5.2999 1.159e−07

phiL.4 0.2848 0.0537 5.3008 1.153e−07

const.H 0.3543 0.182 1.9469 0.0515

phiH.1 −0.4202 0.3427 −1.2262 0.2201

phiH.2 0.4808 0.502 0.9579 0.3381

Gamma 10.0012 6.5182 1.6241 0.1044

th1 −0.8979 0.0659 −13.6328 <2.2e−16

th2 0.836 0.0448 18.6666 <2.2e−16

Non-linearity test of full-order LSTAR2 model against full-order AR model F = 8.7688;
p-value = 1.1871e-.06.

variance (RV), and Akaike Information Criterion (AIC), LSTAR2
displays the best goodness-of-fit (Table 1). ASTAR is the second
best according to RMSE.

Taking into account the economic relationship between
unemployment and inflation and the possibility of using an external
variable as the threshold function, the STAR models are fitted using
inflation as a threshold variable. The necessary inflation data for
the period from February 2002 to June 2025 are retrieved from
the site of the Central Statistical Bureau of Latvia [17]. However,
there is no improvement when comparing the STAR models with
the previously chosen LSTAR2 model (see Table 2).

Therefore, there is no reason to use inflation as a threshold
variable in the considered STAR models.

3.2.3 Analysis of the best model
The majority of the coefficients of the estimated best-chosen

LSTAR2 model are statistically significant (Table 3).
The non-linearity test rejects the linear autoregressive model

and accepts the logistic smooth transition model, with a p-value
of 1.1871e-06. The thresholds are estimated as −0.8979 and 0.836.
Therefore, −0.031 is the level primarily corresponding to the
second regime. The smoothness coefficient is 10.0012, indicating a
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TABLE 4 Forecast RMSE of the difference in unemployment by different models.

Mod./F.horizon 3 4 5 6 7 8 9 Average

SETAR 0.157 0.137 0.197 0.171 0.161 0.150 0.145 0.160

LSTAR 0.154 0.135 0.189 0.165 0.154 0.145 0.147 0.155

LSTAR2 0.144 0.125 0.183 0.158 0.155 0.147 0.140 0.150

ESTAR 0.187 0.191 0.180 0.119 0.159 0.167 0.161 0.166

ASTAR 0.162 0.148 0.170 0.123 0.135 0.131 0.123 0.142

For each horizon and for the average, the best value of RMSE is highlighted in bold.

FIGURE 5

Forecast of the difference in unemployment by different models.

moderate transition, which means that the transition is neither too
fast nor too slow.

The number of estimated coefficients in the regimes of
the chosen LSTAR2 model is different, which leads to a
more parsimonious model. Some coefficients remain insignificant
because, by excluding them from the model, the estimation
procedure does not converge.

According to the Diebold–Mariano test for predictive accuracy
of the constructed models for in-sample one-step forecasts in the
sample period until August 2024, one can reject the null hypothesis
that the two models have the same forecast accuracy and accept
the alternative that the LSTAR2 forecast is more accurate than the
LSTAR forecast with a p-value of 0.04368 and is more accurate than
ASTAR with a p-value of 0.04562.

In Figure 5, the data with forecasts for nine steps, i.e., for
the period September 2024–May 2025, are based on the previous
data. The ESTAR, AR, and GARCH forecasts tend to be rather
high, whereas the LSTAR forecast is the lowest. For the first three
moments, nearly all models except ESTAR recognize the decrease
in the change in unemployment rate rather well. Furthermore, they
become more spread and fail to capture fluctuations accurately, yet
they do not deviate far from the real values.

The RMSEs of the forecasts for different horizons ranging from
3 to 9 by the chosen STAR and SETAR models are presented
in Table 4. We see that LSTAR2 gives the best RMSE for short
horizons (3 and 4). Furthermore, ASTAR mostly appears to be the

FIGURE 6

Forecast of the future values of the difference in unemployment by
different models.

best. Moreover, it has the lowest average RMSE among all STAR
and SETAR models. Thus, the ASTAR forecast is better for the
longer period.

Figure 6 shows the prediction of the difference in the
unemployment rate for the next 9 months based on all available
data up to May 2025. We see that the forecasts have similar patterns,
predicting the highest value in June, followed by a decrease until
October, with a small, slower but gradual increase until January,
with a possible turn again, with the ESTAR, AR, and GARCH
forecasts remaining more pessimistic (with a larger increase in
the unemployment rate). According to the other models, the
difference is predicted to be negative, which means a decrease in the
unemployment rate. Considering that the unemployment rate was
less than 7% over the last few months, our forecasts may indicate
economic overheating.

4 Conclusion

The differences in the unemployment rate in Latvia are
explored with various tests, proving that they have structural breaks
and follow a threshold or a smooth transition model.

The second-order logistic smooth transition autoregressive
model is found to have a better fit for these series than linear
autoregression with and without conditionally heteroscedastic
errors, better than the self-exciting threshold autoregression,

Frontiers in Applied Mathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2025.1673247
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Pavlenko 10.3389/fams.2025.1673247

the smooth transition autoregressive model with a logistic
transition function of the first order, the exponential smooth
transition autoregression, and the asymmetric smooth transition
autoregression. However, the best out-of-sample forecast,
according to the average RMSE, considering horizons from 3 to 9,
is given by the ASTAR model.

The conducted analysis illustrates that the new asymmetric
transition function ASTAR for the STAR model, as well as
the recently developed R estimation procedures for LSTAR2,
ESTAR, and ASTAR, are useful for modeling and forecasting
financial data with structural shifts. The built-in option to use
different orders for the regimes’ equations allows choosing more
parsimonious models.

5 Future research directions

Future research could investigate the use of the STAR
models, particularly with the new ASTAR transition function,
across a broader range of economic and financial data to better
assess their utility for different datasets. Enhancing estimation
methods, especially in how parameter restrictions are managed,
could improve the accuracy and reliability of estimated models.
Additionally, the asymmetric transition function requires further
examination to better understand its behavior and to make any
necessary adjustments.
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