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Forecasting epidemic peaks with
the index of dispersion of new
cases
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Introduction: The epidemic transition that took place in Europe and North
America during the twentieth century, with the historical decline of infectious
disease epidemics, gradually diverted physicians’ attention from the world of
“microbes.” However, recent epidemics have made the surveillance of new
microorganisms, particularly viruses, in the general population a new public
health priority.

Methods: Most of the highly sophisticated mathematical models currently in
use have failed to accurately predict and describe the latest emerging epidemics
(mad cow disease, HIN1, swine flu, Covid-19, etc.). Predicting the occurrence
of an epidemic remains almost as challenging today as it was in 1760, when
D. Bernoulli defined the notion of endemicity and successfully proposed his
famous Sl equation to describe epidemic dynamics, then applied it to smallpox
epidemics. Finally, it might be more interesting to return to the historical,
more pragmatic approach, especially in a context of uncertainty, by favoring
simpler but robust mathematical models that are more in line with the basic
principles governing the interactions of microorganisms with their hosts, in a
given environment and exposure conditions. For this reason, we will use the
Bernoulli model and the parameters related to the empirical distribution of new
daily or weekly cases observed.

Results: Using the empirical distribution of new cases and the revisited S| model,
we have studied the predictive power of the dispersion index of new cases
and the applications proposed to illustrate our approach concern the Covid-19
epidemic in various developed and developing countries as well as the Dengue
epidemic in the French Antilles. The results obtained show that, except in cases
where the occurrence of vaccination reduces its anticipation capacities, the
dispersion index has a predictive power of the occurrence of epidemic peaks.
Discussion: One limitation of this study is that it is based on official data
that is sometimes affected by changes in health policies (recommendations,
monitoring indicators, data collection methods, etc.), but we believe that the
impact on the quality of the demonstration remains moderate or even modest.
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1 Introduction

The epidemiological transition that took place in Europe and North America during
the 20th century [1], that is, the historical decline in infectious disease epidemics and the
increasing burden of cardiovascular diseases, cancers, and other chronic conditions, has
gradually diverted the attention and training of physicians from the world of “microbes”
(with the exception of nosocomial infections), but recent epidemics in the general
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population have made the surveillance of new microorganisms,
particularly viruses, a new public health priority.

The majority of the highly sophisticated mathematical models
used for this purpose today have often failed to accurately
predict and describe the latest emerging epidemics. For example,
for the estimated global mortality associated with the first 12
months of the 2009 pandemic influenza A HIN1 virus, the global
estimates were more than 15 times higher than the number of
laboratory-confirmed deaths reported worldwide to the World
Health Organization (WHO) [2] for the period April 2009-August
2010, this number being likely only a fraction of the true number
of the deaths due to a low rate of reported cases. Predicting the
occurrence of an epidemic from endemic behavior has indeed
always been a challenge since D. Bernoulli defined in 1760 the
notion of endemic and proposed his SI equation for epidemic
dynamics [3], followed by a series of authors improving the initial
SI model, such as the SIRS model [4-6] up to the most recent
models, based on COVID-19 epidemic data [7]. We thus studied
epidemic forecasting and introduced the dispersion index (equal
to the variance of the empirical distribution of the number of new
cases in a given time window divided by its expectation) as an
effective predictor of the occurrence of epidemic peaks [8-11] from
the variations of daily cases observed during the endemic periods
preceding them [8-11]. In this article, we present a new application
of this forecasting tool to the epidemic peaks of COVID-19 in
different developed (France, Japan, the United Kingdom, and the
USA) and developing (Brazil and Senegal) countries, and of dengue
fever in the French Antilles. Section 2 presents the methodology,
Section 3 the results, Section 4 the discussion, and Section 5 the
conclusions with the perspectives.

2 Methods

2.1 Brief historical reminder

The first mathematical definition of the notion of histogram
was given in 1892 by Pearson [12]. In 1925, Sir Ronald Fisher
used a similar notion of sample frequency diagram [13], and
in 1933, Andrei Kolmogorov introduced the rigorous notion of
empirical distribution linked to the observation of a sample of
independent observations of the same random variable [14]. We
will use this last concept of empirical distribution in the following
sections by recalling the definitions of the parameters related to this
probability distribution.

2.2 Stationarity breakdown criteria

The transition between the stationary endemic state of a
contagious disease and an epidemic wave will be studied in the
following sections by calculating empirical distribution parameters
in a moving window around the frontier on which we suspect
this transition occurred. The six parameters are the coefficient of
variation, the skewness, the kurtosis, the index of dispersion, the
normality index, and the entropy of the empirical distribution of
the random variable N(#) equal to the new cases of the disease
daily observed.
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Figure 1 shows artificial data in (A)-(C) and real data from the
fourth wave peak of the daily new cases of COVID-19 in the USA in
(D). The differences between the curves of new daily cases and their
corresponding histograms reflect distinct distribution shapes. A
quasi-uniform shape typically appears during the peak period, with
a concentration on the endemic phase in case of a linear, Laplacian,
or Gaussian pattern increase of the newly infected (Figures 1A-C).
In contrast, a concentration in the case of a plateau-like peak with
a quasi-uniform shape during the endemic part in the case of real
data corresponding to the fourth wave of COVID-19 cases peak in
the USA (Figure 1D).

The shape of epidemic peaks is much more effective in
capturing the importance of such events in the general population,
especially if the study of their occurrence is accompanied by a
stratified analysis by age group, some groups being more likely
than others to be infected. Modeling epidemic dynamics therefore
remains essential, but the empirical distribution provides us with
elements (such as its moments or other parameters, such as
its entropy or its coefficient of variation) for understanding the
infectious mechanism of another order: the examination of the
different parameters linked to this distribution shows a significant
change in the range of the distribution, which is all the more spread
out as the peak is high. We therefore move from a probability law
concentrated on a few values in the endemic phase to a law with a
much higher value support. More than the shape of the distribution
(e.g., its entropy), which can change at the endemic/epidemic
transition, it is parameters such as expectation and variance that
will vary greatly. We will show in the following sections, using
concrete examples, that the ratio of these two quantities, variance
to expectation, the dispersion index DI, can be a good predictor
of epidemic peaks because it has a very early increase, detectable
before the significant increase in new daily cases, e.g., 10-14 days
before the peak.

2.3 Parameters of the empirical distribution
of the daily number of new cases

2.3.1 Coefficient of variation (CV)

The daily number of new cases N is an integer variable valued
in {Ny,...,Ny}, and its histogram weights p;, {pi}i=1 4, are defined
as follows:

card({N = N;})

{pi = 7

} 1
Then, the following formulas give the first moments and
dispersion parameters of the empirical distribution {p;};—1 4:

d
Expectation E (N) = Z N p;
i=1

d

Variance V(N) = E (N?) — (E(N))* = Z Ni*p; — E(N)*
i=1

Standard deviation o (N) = [V(N )]%

o (N)

E(N)

Coeflicient of variation CV(N) = (2)

Skewness Skew (N) = E([wlﬂ
o
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FIGURE 1

(A) Linear peak of daily new cases (left) and corresponding histogram (right); (B) Laplacian-shaped peak (left) and corresponding histogram (right); (C)
Gaussian-shaped peak (left) and corresponding histogram (right); (D) Peak of the daily new cases of the COVID-19 fourth wave in the USA (left) and
corresponding histogram.
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N —-E(N
Kurtosis Kurt (N) = E([#]‘L)
o
Dispersion index DI (N) = w];(i](\lj\)’)

Empirical entropy E(N) = — Z ?: 1pi Logpi

We can remark that (i) the value of DI equals 0 for a constant
random variable N and 1 for a Poisson variable and (ii) the value of
the entropy E is maximum and equal to Log(d) when the empirical
distribution is uniform, i.e., when any p; equals 1/d, and E is
minimum and equal to 0 when N is constant.

2.4 Normality index

The normality index KStest is defined as the fitting criterion
of the Kolmogorov-Smirnov test of adequation to the normal
distribution N(E(N), 6(N)) with E(N) and o(N) the expectation and
standard deviation of the empirical distribution of N, respectively.

3 Results

We will now calculate the parameters defined in Section 2 to
see concretely what their potential predictive power is in the case of
two epidemics, COVID-19 and dengue. We will first study them in
isolation and then jointly by looking for the most predictive linear
combination of these parameters.

3.1 Empirical entropy in the COVID-19
outbreak

The data are obtained from Ref. [15]. Figure 2 shows the
empirical distribution of new cases for the first wave in the USA.

The first wave empirical distribution of the new cases in the
USA is defined by the following weights, calculated on a partition
of the set of values of N in six intervals:

p1 = 0.0625, py = 0.1875, p3 = 0.375, py = 0.21875,
ps = 0.09375, ps = 0.0625

Then, if N; denotes the central value of the i interval, the first
moments and CV are equal to as follows:

E(N) = Y ¢ |N;p, =138125, E(N?)

=Y "% N?p, = 229890625,CV = 0.452737

32 a7
The direct mean of the new cases is equal to # =13913.12
~E(N).
The empirical entropy E is given by:

E(N) = — ) ¢ pilogp; = 0.686

Figure 3 shows the empirical distribution of new cases for the
third wave in Brazil.
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FIGURE 2
Histogram of new cases during the first wave in the USA (1 May to
31 May 2020).
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FIGURE 3
Histogram of new cases during the third wave in Brazil (25
December 2022 to 25 January 2023).

The empirical distribution of the new cases in Brazil during
the third wave is defined by the following weights, calculated on
a partition of the set of values of N in five intervals:

p1 =0.032787, p» = 0.557377, p3 = 0.360656, ps = 0.032787,
p5 = 0.016393

Then, if N; denotes the central value of the it interval, the
expectation E(N) and the CV are equal to as follows:

E(N) =) 2 Nip;= 97131, E(N?)
=Y LIN?p; = 106250003,CV=0.3552

The empirical entropy E is given by:

E(N) = — Z > pilogp; = 0.428

The entropy for Brazil is less than that for the USA because the
empirical distribution is more concentrated.

3.2 Retro-prediction in the COVID-19
outbreak

For checking the predictive power of the parameters calculated
in Section 3.1, we propose to retro-predict the evolution from an
endemic state to an epidemic one in three examples: the fourth
wave in France, the first wave in the USA, and the third wave in
Brazil (data from [15]).
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a vertical full line in red.
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(A) Breakdown parameters and new cases (in gray on the bottom) in Japan during the COVID-19 outbreak. The blue arrows represent the points of
inflection of the DI curve, and the red arrows represent the maxima of the DI peaks; (B) ID index (in blue) as a predictor of the epidemic waves for the
Japan COVID-19 outbreak, with daily new cases superimposed (in green). The x-axis represents time. Blue arrows represent DI inflection points, and

After choosing the same moving window length of
14 days for calculating CV and entropy, the parameter
values are this reported at
the end of the corresponding time interval, as given in

Figure 4.

calculated in window and
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The retro-prediction designed in Figures 4-6 proves indeed
that it is possible to anticipate the occurrence of an epidemic wave
by looking at three predictive events often observed:

1) The parameter coeflicient of variation CV seems
to have a transient increase before the epidemic peak,
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the
a

except for fourth wave in France, corresponding

standard
deviation just before the increase of the empirical mean,

probably to local increase of the endemic
corresponding to a local loss of stability of the stationary
endemic regime.

2) The parameter entropy E has no increase (only slightly in
Figure 4E) before the transition between the endemic and epidemic
phases. This phenomenon, when it exists, could correspond to
a diminution of the randomness of the daily new cases, which

increases exponentially at the start of the epidemic peak, but with

10.3389/fams.2025.1670077

a residual noise around the exponential trend less important than
during the previous endemic phase.

3) Then, because the tendencies shown by the parameters CV
and entropy E are neither constant nor significant, we will study the
predictive effect of all the other breakdown parameters, kurtosis,
skewness, dispersion index DI, and KStest for the COVID-19 data
(data from [15]).

Let us consider now the solution of the Bernoulli SI model,
where mortality and fertility rates are negligible. Then, the
inflection point equation is given in Demongeot et al. [11] and
reported on the daily new cases curve (Figure 5).

IfI (resp. S) denotes the infected (resp. susceptible) number, the
Bernoulli differential equations are given by the following formula:

da B ds B
so0 i —=SOIM® —vI®), - =—-SOI1®), 3)
o dt — S, S,
» 70 o
2 @
T 60 - so &
& sO0 - a0 3 . . . . .
3 ao O - where v is the specific mortality rate due to the disease, B the disease
[ o °
o 3o . g—_ transmission rate, S (t) the number of susceptible individuals, I(t)
g 2° o 3 the number of infected individuals at time t > 0, and the initial
w 10 i = s
B Q @ conditions of the model are: S(0) =S, > 0 and I(0) = 1.
= — VVeel . . . . .
S8 33 8 2 Let us consider the solution of the Bernoulli equation with v =
S 8 8 88 S 0 (mortality rate, negligible in a short period of time) and a is
FIGURE 8 a constant:
Evolution of weekly new emergency entries of Dengue patients (in
blue) and hospital bed occupation rate (red) during the beginning of
2024 in the French Antilles. S,eft=9) S,
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FIGURE 9
(A) Evolution of weekly new confirmed cases of COVID-19 in Senegal (in blue) and of the dispersion index DI (in violet) calculated on a moving
window of 10 days in 2020; (B) Evolution of the confirmed new daily cases of COVID-19 in Senegal (in blue) and of the dispersion index DI (in violet)
calculated in a moving window of 7 days (starting on 22 February 2020) during the 15 first days of March 2020.
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FIGURE 10
(A) Influence of vaccination on waves of France COVID-19 outbreak, with daily new cases (in green) before (left) and after (right) vaccination, with the
percentage of fully vaccinated people superimposed (in red); (B) same as (A) for the United Kingdom. The x-axis represents the time (in months). The
red arrows correspond to local maxima of the first principal component curve, and the blue ones represent its inflection points.

For any time f, we have:

l-a) )
I(t) + S(t) = So 1+ eﬂ(l*a) + 1+ eﬂ(tfa) = So and
_ I(1)
po-o _ 1O o
¢ ss—19 O

If we consider that the epidemic wave starts at time 0, where
I(0) = 1, we have:

S, e Pa B
1+ ePa (©)
Then, a is given by the following equation:
Log(S, — 1)
= =5 ?)
From Bernoulli equation, where v = 0 ; we have:
dl S SpePt=®
I’(t):—:ﬁSIzﬁx o x ¢
ar S, So 14 eflma) © 1 4 Bli-a)
S oPli—a)
BSoe (8)

- (14 eBt—a))?

The sufficient existence condition for a point of inflection of
order 2 for I'(t) in the case that I(f) is three times continuously
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differentiable in a certain neighborhood of a point t; with I’ (¢;) = 0
and I”(t;) # 0. Then, I'(¢) has an inflection point (P;) at time £;,
and by differentiating I'(t) twice, we get:

() = ﬂ o Plt—a) _ 5 2B(t—a) ) - ﬂ
dt? ° (1+ eﬁ(tfu))S ’ dar?
_ 8 ePU=0) (1 — 6ePt=a) 4 2p2B(1=a)) ©)
’ (1+ eBlt-a)?
Then, the equation giving 8 and a from its lowest root x;.
1—6x; +2x7 = 1 — 6Pl - 2¢2P0i=9) — g,
where x; depends on I(¢;) :
I(t;
x; = ePU™D = _ 1) =3-7 (10)
So — I (1)

If we assume now I (0) = 100, then, from the same calculations,
B and a are identified and the time ¢; of the inflection point Py is
calculated from Equation 10 (see Figure 5).

If the dispersion index DI is close to 1, then the behavior is said
to be Poisson-like (variance equals mean), which reflects a normal
random distribution of the number of weekly cases. If it is less
than 1, we speak of under-dispersion: the empirical variance of the
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FIGURE 11
Comparison with a uniform distribution of new weekly cases of (A)
COVID-19 in March 2020 in Senegal and (B) dengue in April 2013 in
the French Antilles.

distribution of the number of cases is less than the empirical mean
of this distribution.

This is the case for an empirical distribution concentrated on
neighboring values. If it is greater than 1, there is overdispersion,
and the empirical variance of the empirical distribution of the
number of new cases is greater than the empirical mean of
this distribution.

This reflects a greater than expected variability of the dispersion
index DI, often linked to unstable or exponential epidemic
dynamics with very rapid growth, which allows the empirical
distribution to cover a large data interval in a short period of
time. A peak of DI may precede the epidemic peak because the
concentration of the cases increases before the number of cases
explode, which provokes a second phase of the decrease of DI
(Figure 6B).

3.3 Retro-prediction of epidemic peaks of
dengue in the French Antilles

By testing the generalizability of the predictive power of the
dispersion index of dengue fever in the French Antilles [16], a
disease with endemic and epidemic phases, we see in Figures 7, 9B,
the limits of the exponential growths and decays of the epidemic
peaks coming from the significant change of the KS index at the
limits of the endemic phase. The anticipation done by the KS index
is equal to approximately 2 weeks (the distance between the KS
indices significantly changes, and the next new cases peak).

In Figure 7A, the forecasting of the epidemic peaks by the
dispersion index peaks in 2013 in the French Antilles is not very
conclusive due to the existence of a shoulder in the first epidemic
peak. Nevertheless, the presence of a peak in the DI curve located
approximately 3 weeks before the peak of new confirmed cases
(Figure 7B) is in favor of a predictive power greater than the

Frontiers in Applied Mathematics and Statistics

10

10.3389/fams.2025.1670077

empirical variance, which seems more decorrelated from the curve
of new cases. In Figure 7C, DI peaks systematically precede the
peaks of new confirmed cases, and their anticipation in 2024 by
the DI peaks is approximately 2 weeks, but it becomes decorrelated
after five peaks.

The interest of the epidemic forecasting lies in the fact that
a predictive advantage is related to the ability to organize care
logistics before the increase in new cases becomes too significant.
Figure 8 shows that mobilization of emergency departments and
then of hospital beds is highly correlated with the curve of new
confirmed cases. Since the dispersion index curve anticipates the
latter, any forecast of a sudden increase in cases allows emergency
care personnel to mobilize and hospital staff, responsible for bed
logistics, to prepare for the necessary future transfers between
clinical services.

3.4 Retro-prediction of epidemic peaks of
COVID-19 in Senegal

By using a 10-day rolling window, the peaks of new cases of
COVID-19 in Senegal [15], which started in March and October
2020, can be predicted from Figure 9A by the DI curve, which
presents a peak reaching its maximum about 3 weeks before the
new cases peak.

3.5 Influence of the vaccination

The anticipatory power of the dispersion index can be
reinforced by looking at the principal component analysis (PCA)
on all the breakdown parameters able to predict the academic peaks
(Figure 10), and whose first principal component, PC1, contains DI
as the variable having the highest weight:

PC1 = 8.8710% Kurt + 1.7310 2 E + 1.2510% Skew + 2.5102
CV +9.96107'DI + 1.05107° KS.

There is a notable difference between the prediction of
an epidemic peak before and after vaccination. Indeed, in
Figures 10A, B, on the right, we observe that the anticipation by
the dispersion index DI decreases sharply. One explanation for
this phenomenon could be the increasing heterogeneity of the
population between its unvaccinated part and its part vaccinated
one or more times. This phenomenon will be studied more
systematically for other countries and other epidemics in a
future study.

4 Discussion

We can explain the behavior of the DI curves in previous
examples by considering simple cases of empirical distribution for
the random variable N, which is equal to the number of new cases
of a contagious disease. In the endemic phase, let us suppose that
this distribution is either uniform on the interval [a,b], U(a,b), or
Poisson of parameter A, P(\) [17].

In the uniform continuous case, DI = (b - a)2/6(b + a) {or DI
= [(b - a+1)2 - 1]/6(b + a) in the uniform discrete case}. Then,
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FIGURE 12
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accesses to query information on influenza.
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if a = 0, DI = b/6 and if b starts to increase, DI increases. In the
Poisson case, DI = 1 and only a change of distribution type can
cause an increase of DI, as in Figure 11, for the epidemic peaks of
dengue in 2013 in the French Antilles of dengue in March 2013, and
of COVID-19 in April 2020 in Senegal.

In the epidemic peak case, there is a progressive shift from a
uniform or Poisson distribution [17] to the geometric one G(p)
during the growth, with a change of the value of its parameter
p after the inflection of the exponential growth curve. During
the transition from the endemic to the epidemic phase, let us
suppose that the parameters a and b of the uniform distribution
U(a,b) change as follows: a(t) = e and b(t) = e<*7), where ¢
represents the duration of the time window on which the empirical
distribution is calculated. If we denote R(t) = b(t)/a(t), we observe
in the first exponential phase of growth of the new cases N that R(t)
equals 7. Then, at the transition between the endemic phase and
the epidemic one, if the empirical distribution remains close to the
uniform law U(a(t),b(t)), the dispersion index DI(t) increases when

frontiersin.org


https://doi.org/10.3389/fams.2025.1670077
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Demongeot et al.

10.3389/fams.2025.1670077

Il 19521
Il 18-195
B 165-18
[ 15-165
[] 135-15

FIGURE 14

Chikungunya [22]; (C) mean annual temperature; (D) rainfall level.

Comparison between (A) the French departments in which Aedes albopictus appeared in 2011 [21]; (B) the occurrence of cases of Dengue, Zika, and

7 is large until the following value is obtained:

_RO-1? @) e
PO SRo+) ~ s+ n 6 o

When the of new cases value is translated
toward high values but keeps the same width, variance
remains constant, but then
DI diminishes.

If the empirical distribution becomes geometric G(p) during
the first exponential phase of the growth curve of N, DI(t) = 1/p —1,
the value is reached before the inflection point of the growth curve
of N. In the neighborhood of PI, if the growth of N is quasi-linear,

then the empirical distribution is uniform, with R(t) constant.

range

expectation increases, and

After passing PI, the new cases curve can be represented by the
solution of the SI Bernoulli Equation 3, where k is the exponential
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growth parameter:

S(0)ekt

0= @y

(12)
where S(0) is the expectation of the susceptible number during the
endemic phase. Hence, I(t) progressively saturates at value S(0) and
R(t) tends to 1, causing the decrease of DI(t).

In the stochastic case, we can consider the number X(t) of new
cases at time t. X(t) is a solution of the Bernoulli equation having an
additional noise W(t) of mean 0 and variance o.

EXMt)+W) =X(t)+ 0

V(X(t) + W) = E((X(t) + W)?) — E2(X(t) + W)
= X*(t) + o> — X2(t) = o

At the transition between endemic and epidemic states, DI
= V/E = o¢%/X(t) increases because E remains constant and V
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increases due to the widening of the range of values of W.
Then, DI(t) decreases before the peak because X(t) increases,
with the width of the range of its values remaining constant. In
any case (stochastic or deterministic), the temporal behavior of
DI(t) corresponds to a peak of the dispersion index curve with a
maximum before the inflection point of the new cases curve, and
then the dispersion peak anticipates the epidemic one.

We used data from one of the most reliable and comprehensive
database available (Worldometer©) based solely on official data
from the ministries of health of worldwide countries and practically
identical to the WHO peer reviewed data, and we observed
no differences in our work between models based on data
from countries with highly organized health surveillance systems
(France, the United Kingdom, and the USA) and data from
emerging/developing countries (Brazil, Senegal), which leads us
to believe that the impact of delayed or missing data on the
quality of the demonstration remains moderate or even modest.
Many other forecasting methods have been proposed. For example,
on data from the COVID-19 pandemic in France, functional
estimation or ARIMA (Autoregressive Integrated Moving-Average
model) predictions allow extrapolation over a week [18], but with
generally underestimated results (Figure 12A). Neural networks,
for example, deep learning methods, such as GRU (Gated Recurrent
Unit), have also been used, often with an underestimation at the
boundary between the endemic phase and the epidemic phase
(Figure 12B) due to the weight of endemic data in the learning
process near the boundary [19]. In the cases cited above, the
prediction by the dispersion index DI is earlier (Figure 10A), even
if it does not give a precise indication of the magnitude of the
predicted epidemic peak.

One limitation of this study is that it is based on official
data that is sometimes affected by changes in health policies
data
methods, etc.), but we believe that the impact on the

(recommendations, monitoring indicators, collection
quality of the demonstration remains moderate or even
modest. This gives us the opportunity to point out that
the basic principles of health surveillance and intervention
epidemiology are not always respected by the experts and
institutions that should be ensuring compliance, especially
in crises. Indeed, it is during health crises that we must be
most rigorous in applying methods and best practices so as
not to add confusion to contextual uncertainties, regardless
of the pressures of any kind that may be exerted (political,

economicg, etc.).

5 Conclusion and perspectives

We have described a method for predicting the occurrence of
epidemic peaks after endemic periods based on surveillance of new
disease cases. Other approaches are possible, including those using
Web traffic data [20] (Figure 13) and disease vector (e.g., Aedes
albopictus) surveillance [18, 19, 21, 22] (Figure 14).

In the case of the Web traffic data, it can be noted that
despite the effectiveness of the INFLU kun sentinel network
of general practitioners in Japan, the existence of alerts, which
anticipate the occurrence of a flu epidemic by a few days,
is based on the number of tweets concerning the exchange
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of information on the Web between potential patients [19].
Concerning the surveillance of a possible vector of the disease,
such as the tiger mosquito Aedes albopictus (in the case of
the diseases it carries, such as the dengue, the zika, and the
chikungunya [23-27]), combined with the monitoring of geo-
climatic factors favoring the reproduction of the vector, the
anticipation time interval is important, but less reliable, given
the very long delay in the constitution of a reservoir of infected
hosts large enough for the vector to become very infectious.
In this case, the surveillance of the chronic endemic cases
remains an excellent means of predicting the occurrence of
epidemic peaks. Combined with global monitoring of web traffic
by searching for keywords exchanged concerning the disease,
but without intrusion into individual exchanges, the dispersion
index method proposed in this article could be a good tool for
predicting outbreaks of infectious diseases, such as COVID-19.
The monitoring of epidemic aftershocks, which remain, is a major
public health challenge.
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