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Inference on the scale-inflated
gamma distribution applied to
Malaysian household income

Shamsul Rijal Muhammad Sabri* and
Mallak Ahmad Mohammad AL Hourani

School of Mathematical Sciences, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia

Modeling income distributions is crucial for understanding inequality and
providing evidence-based policy support. A key challenge, however, lies in
evaluating the extent to which household income inflates over time. While
income is inherently random, it exhibits a persistent upward trend, and fitting
income distributions using conventional models often leads to inconsistent
parameter estimates. This highlights the necessity of explicitly incorporating
inflation-adjusted scaling to preserve proper statistical properties. To address
this gap, we introduce the Scale-Inflated Gamma (SIG) distribution, which
extends the standard Gamma distribution by including an inflation-adjusted scale
parameter (8), thereby providing greater flexibility in capturing heterogeneous
income dynamics. Standard models such as the Lognormal, Pareto, or
Generalized Beta of the Second Kind (GB2) systematically underestimate
upper-tail incomes and fail to capture inflation-adjusted heterogeneity across
subgroups (B40, M40, T20). The SIG model, in contrast, strikes a balance
between parsimony and flexibility by directly adjusting for inflationary scale
shifts. For instance, while the Gamma distribution underestimates the 95th
percentile by 10%—-12% in 2019, the SIG model reduces this bias to approximately
3%, accurately reflecting income dynamics across B40, M40, and T20 groups.
We develop the theoretical foundations of the SIG distribution by deriving its
probability density function (PDF), cumulative distribution function (CDF), and
moments. Parameters are initially estimated using the method of moments and
then refined through maximum likelihood estimation (MLE). To assess estimator
precision, we derive the Fisher information matrix, using the inverse Hessian to
approximate the variance—covariance matrix, thus ensuring reliable inference.
A Monte Carlo simulation study is conducted to evaluate the consistency and
efficiency of the estimators under various sample sizes. The SIG model is
subsequently applied to Malaysian Household Income Survey (HIS) data spanning
the period from 2007 to 2022. Results demonstrate that the SIG distribution offers
a superior fit for modeling income inequality and upper-tail behavior compared
to conventional models. Overall, the study establishes the SIG distribution
as a theoretically robust and policy-relevant framework for analyzing income
patterns in inflation-sensitive and structurally diverse economies.

KEYWORDS

Scale-Inflated Gamma (SIG) distribution, income distribution, upper-tail modeling,
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1 Introduction

Rising income inequality has become a critical concern in
Malaysia over the past two decades, particularly as disparities
between the B40, M40, and T20 groups have widened [1, 4].
These disparities stem not only from structural economic changes
but also from persistent inflation, which erodes purchasing power
unevenly across income segments [5, 6]. Such dynamics underscore
the necessity for statistical tools capable of accurately representing
income distributions under inflationary pressures, especially to
inform targeted policy interventions [3].

Classical income distribution models, such as the Lognormal
and Gamma distributions, have long been favored for their
tractability in estimation and interpretation [7, 8]. However,
they systematically underestimate upper-tail incomes and fail to
accommodate inflation-adjusted shifts in the distribution. More
flexible models like GB2 address some of these limitations, yet
they often introduce complexity that impedes interpretability in
applied policy settings [9]. In light of these challenges, scale-
augmented approaches that adjust for inflation and heterogeneity
have garnered increasing attention [10, 11]. A critical gap remains
in evaluating how much household income increases over time.
Although income is inherently random, it exhibits a persistent
upward trend, and fitting income using conventional distributions
without explicitly incorporating inflationary effects often leads to
inconsistent parameter estimates and biased statistical properties
(1, 2].

This gap is especially evident in upper-tail modeling: while
conventional models consistently underestimate high-income
observations, particularly in the upper 95th percentile, the
proposed SIG model captures these dynamics with substantially
greater accuracy, thereby offering a more faithful representation of
income inequality. To fill this gap, we propose the Scale-Inflated
Gamma (SIG) distribution. By introducing an inflation-adjusted
scale parameter (), SIG flexibly models upper-tail behavior while
preserving the familiar shape properties of the Gamma distribution.
Visual evidence, via boxplots and kernel density estimates, reveals
progressively heavier upper tails in Malaysian household income
distributions from 2007 to 2022 (Figures 1, 2), illustrating the
inadequacy of conventional models under inflationary dynamics.

This study applies the Scale-Inflated Gamma (SIG) distribution
to Malaysian Household Income Survey (HIS) data from 2007 to
2022 to assess its performance relative to conventional alternatives.
We estimate parameters via maximum likelihood estimation (MLE)
and assess model fit using information criteria such as AIC and
BIC. Additionally, we utilize visual tools (e.g., empirical cumulative
distribution function plots, boxplots) and statistical diagnostics to
validate the tail behavior modeling. The results position the SIG
distribution as a theoretically grounded and practically relevant
framework for analyzing income distributions under inflationary
conditions, with implications for measuring inequality, monitoring
subgroup dynamics, and informing policy design in Malaysia and
similar economies.

In addition to the theoretical formulation, we conduct formal
model comparisons using likelihood-based hypothesis testing
and model selection metrics such as AIC and BIC. While our
empirical focus centers on comparing the SIG model with the
conventional Gamma distribution, we also situate our findings
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within the broader literature. Specifically, prior studies have
shown that the Lognormal distribution tends to underestimate
tail inequality [6], and the Pareto distribution is suited only for
modeling the upper tail. It lacks inflation adjustment [4], and
the GB2 distribution, though flexible, suffers from interpretability
challenges in policy contexts [9]. Moreover, Yu et al. [12] highlight
the advantages of using information criteria, such as AIC and
BIC, for distributional comparison, which supports our evaluation
framework. Collectively, our findings confirm that the SIG model
offers a statistically robust and practically relevant alternative for
modeling inflation-adjusted income dynamics and inequality.

2 General properties of the
scale-inflated gamma distribution

This section formally introduces the Scale-Inflated Gamma
(SIG) distribution by extending the conventional Gamma model
to account for inflation-adjusted scaling across time. The SIG
framework is governed by three primary parameters: the shape
parameter o > 0, the baseline scale parameter 6 > 0, and the scale-
inflation parameter § > —1. The inflation-adjusted scale parameter
is denoted by g = (1 + 8)k6, where k € N represents the number
of time periods since the baseline. This formulation enables the
model to dynamically adjust the scale of the income distribution
over time, effectively capturing the erosion of purchasing power
due to inflation. Each parameter plays a distinct role: « controls
the skewness and dispersion of the distribution, 6 anchors the scale
in the base period, and § modulates how the scale evolves. These
structural components jointly enable the SIG distribution to model
income dynamics under inflationary regimes with flexibility. The
following subsections develop the full probabilistic specification
of the model, including its probability density function (PDF),
log-likelihood function, gradient vector, and Fisher Information
Matrix.

Let X ~ Fx(a, ) be a random variable with mean E(X | 8)
and variance Var(X | B), where @ > 0 and 8 > 0 denote the shape
and scale parameters, respectively. These parameters can be written
in vector form as ¢ = («, ), where the prime symbol (') denotes
the transpose of a vector. Inflationary scaling is introduced through
the transformation

Y=(0+8X &>-1,keN,

where § is the scale-inflation parameter and k is the number of
periods. The extended parameter set is expressed as v = (6,48),
so that Y follows the scale-inflated distribution

Y ~ Fy(a,0,8) = Fx|[a, B(v)],

with 8 = (1 + 6)¥0, and the complete parameter vector is denoted
as A = (a,0,8), where the prime symbol () indicates vector
transposition.

Given the distribution functions of X, with cumulative
distribution function (CDF) Fx(x;¢) and probability density
function (PDF) fx(x; €), the corresponding functions for Y are

written as

Fy(y:a,60,8) = Fyl[y; a, B(v)],  fyr(y;: @,0,8) = fy[y: o, B(V)],
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forX >0, Y > 0.
For the log-PDF of X, denoted In[fx(x; &)], the score functions
(first derivatives) are defined as

80 = 51 Infi(ri ). @)

For a complete random sample, the unbiasedness condition
holds: E[g,;(X)] = 0, which follows from standard likelihood
theory [13].

The second derivatives (Hessian components) of the log-PDF

of X are given by
82
hsisj(x) = des0e; In fx (x; &). (2.2)
For the inflated variable Y, the log-PDF has derivatives
ad
g&:(y) = e Infy(y; €), (2.3)
Ei

and, defining gg(y) = %ln fr(y; €), the score functions with
respect to v = (6, 8)" are

op
) = S 2.4
gl =g 3 (24)
The corresponding Hessian terms are obtained as
a
hb‘ib‘j (}’) = ?&gsj ()’), (25)

and for v = (0,8), where the prime symbol (') denotes the

transpose of a vector,

328

8vi8vj'

B 0
oy () = hﬂﬁma—i% + ()

(2.6)

Finally, since the SIG distribution involves both the shape
parameter o and the inflation parameters v = (6,3)’, mixed
derivatives are given by

B () = haﬁ()’)aT)i +hs03, v

(2.7)

Throughout this section, the symbols g,,gp,gs are used to
denote the score functions, i.e., the first-order derivatives of the
log-likelihood, while A, hgs represent the corresponding Hessian
components, i.e., the second-order derivatives. The sample sizes are
denoted by ny for the baseline distribution and ny for the inflated
distribution. Equations 2.1-2.7 establish the score functions and
curvature structure of the Scale-Inflated Gamma (SIG) distribution,
providing the analytical foundation for maximum likelihood
estimation (MLE) and asymptotic inference. These expressions
enable the systematic derivation of the gradient and Hessian
matrices, which in turn allow the construction of the Fisher
Information Matrix (FIM). The latter forms the basis for parameter
estimation, variance—covariance analysis, and hypothesis testing
within the SIG framework, and will be developed explicitly in the
subsequent subsection.
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2.1 Curvature and information structure

By construction, the expectation of the score functions
vanishes, E[g(Y)] = 0. Hence, the expected second derivatives are
summarized as

J

E[he,'Ej(Y)] = E [ggej(y)] > (28)
dap o

Bl (V)] = Elhgs(M] 0 22 (29)

1 g

J

Elhgu, (V)] = E[haﬁ(Y)]a—ﬂ. (2.10)
v

curvature of the
(SIG)
analytical ~ foundation
inference. The wuse of
follows the
treatment of special functions provided in Abramowitz and
Stegun [14].

These expectations
log-likelihood
distribution, and

capture  the
under the Scale-Inflated Gamma
serve as the
likelihood-based

trigamma

for subsequent

digamma and functions classical

2.2 Log-likelihood and gradient structure

Let X ~ F(a,0) and Y ~ F[a, (v)], then for a sample size nyx
from X and ny from Y, the log-likelihood function is:

xy(@,60,8) =) Infx(xi; @,0) + Y Infy(yi; @, B(v)). (2.11)

i=1 i=1

The total gradient (a 3 x 1 vector) from X and Y is:

Z:Zl o (xi) 221 (i)
G=Gx+Gy=|YX g |+ X80 (2.12)
0 221 85 ()’i)

These gradient expressions highlight how information

is accumulated from both baseline and inflated samples,

allowing ~ consistent ~ parameter  estimation  through
maximum likelihood.
2.3 Hessian and fisher information
The total Hessian matrix (3 x 3) is:
Z hOtOt (xi) Z hot@ (xl) 0
H=Hx+Hy = | hao(xi) Y hgo(xi) 0
0 0 0
Z haa ()/1) Z ha9 (yz) Z ha&(}’i)
+ | 2 hao (i) 2 hoo(vi) D hos(yi) (2.13)

> has(yi) Y hes(yi) Y- hss(yi)

The Fisher Information Matrix (FIM) plays a pivotal role
in formulating the SIG distribution because it determines the
variances and covariances of parameter estimates. Following Fisher
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[15], the FIM is obtained using the negative expectation of the
Hessian:

IXy(a,Q,(S) = E(—H)

E[—haa(X)] E[—hae(X)] 0
= nx | E[—hao(X)] E[—hee(X)] 0
0 0 0

El-heo(Y)]  El-hes(V)lgg  El-hap(N]5
hap(D1 % El-hgs(0)] (%) Bl-hps(r)) 2 2
El-hgs(D1 %% El-hgs(0)] (%)’

(2.14)
This decomposition clarifies how baseline and inflated

+ny E[
E[~hap(V)] 2%

observations contribute separately to the information structure.
Similar approaches have been used in the analysis of gamma-type
models [9].

2.4 Extension to multiple periods

For a system consisting of the base year dataset X and m

datasets Y7, .. ., Yy, the log-likelihood becomes:

m
¥, (e,0,8) = Lx(@,0) + ) £y, (c,6,5)
j=1

m
= Zex(x,,a 0) +ZZey(y,J,a 0,5).

j=1 i=1

Lxy,...

(2.15)
This extension generalizes the likelihood across multiple
inflation-adjusted periods, which is crucial for

household

empirical

applications such as income dynamics under

inflationary regimes.

m

Ixy,..v, (@, 0,8) = Ix + Zlyj
]_
E[—hoo(X)] E[—hes(X)] 0
= nx | E[—hee(X)] E[—hes(X)] 0
0 0 0

hap(Y))1 55 IE[ hap(Y))1 55
(=hpp(Y))] (%) [~hss (Y] 55 35
9B 98 2

El-hgp (%55 El-hap (01 (%)
(2.16)

y E[~ha(Y))] IE[
+ ) ny, | El-hap(Y))] ZE
= El-hap (V)1 2

Finally, the variance-covariance matrix of the estimators «,
0, and § is obtained from the inverse of the Fisher Information
Matrix, ensuring asymptotic normality of the maximum likelihood
estimators.
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3 Gamma distribution: preliminaries
and scale-inflated extension

Let X be Gamma distributed with shape parameter « and scale
parameter 6, then X has CDF denoted as

Fx(x; a,0) = I'(x; @, 0).
The PDF of X is defined as
NSRS
') \ O

where x > 0. The above distribution has the mean a6 and the

lefx/e’

Sfx(x a,0) = (3.1)

variance 6. Halliwell [16] documented the properties of the Log-
Gamma distribution that can lead to the derivation of the Fisher
Information Matrix of this distribution.

In(X), it follows that U
is well-defined only for X > 0, which is consistent with the support

By defining the log function of X, U =

of the Gamma distribution. As documented by Halliwell [16], we
obtain the mean of U as:
E[lnX] = E[U]

=1n6 + ¥(a). (3.2)

where () denotes the Digamma function.
Furthermore, the expected function of XIn X is equivalent to
the term UeY, and thus we derive:

E(XInX] = E[Ue"] = a8ln6 + y(@ +1)].  (3.3)
The log PDF of X is:
lnf(x;a,9)=—lnF(a)—aln@—i—(a—l)lnx—g. (3.4)
The first derivatives of Equation 3.4 are:
gu(x) = —1//(0{) —In6 +1nx, (3.5)
o =—5+ . (3.6)

From Equation 3.2, it follows that E[g,(X)] = 0. Furthermore,
since X has mean «6, it also holds that E[gs (X)] = 0.

We denote the Digamma function of « as ¥ () = % InT(x).
From Equation 3.2, it directly follows that E[[, (X)] = 0. Moreover,
since X has mean a6, we also obtain E[ly(X)] = 0 as established in
Casella and Berger [13].

We denote the score functions with respect to the parameters o
and 6 asly(X) = M and lp(X) = W, respectively.
The second derlvatlves of the log-PDF are given by

haa(x) = _1;[’/(0‘): (3-7)
o) = 2 - ;—f (3.8)
o (%) = hger(x) = —é. (3.9)

Here, ¥/(a) =
As shown in

% InT' () denotes the Trigamma function.
Kleiber and Kotz [9], the Fisher

information of the Gamma distribution can be derived
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by evaluating the expectations of the second derivatives of
the log-PDF.

Elhgp(X)] = ——,

o5 Elhao(X)]

Elhae(X)] = =/ (@),

1
= Elhoa (X)) = — .

Now, let the scale parameter S be defined to incorporate
inflationary adjustment through § > —1 across k € N periods:

B =(1+8).

This function is differentiable with respect to both € and §, with
first derivatives

ap k ap k1
Loa+of L=k .
50 1+46) Y k(1+68) 0

Then, as defined earlier, if Y = (1 + S)kX, then ¥ ~

Gammal(a, (1 + 8)%0) and has:
k ko l*
Mean: «(1 + §)0, Variance: o [(1 + 8) 9]
These expressions follow from the properties of the Gamma
distribution [9].
The log PDF of Y is:
Infy(y; @,6,8) = —InT'(@) —alnf+ (¢ — 1) Iny — % (3.10)

And the first derivatives by « and B are:

() =—v¥(a) —Ing +1Iny, (3.11)
and
oy
=——=+ . 3.12
8 () 3 + 52 (3.12)

On the other hand, the first derivatives of log Y by 0 and 6 can
be simplified as,

(%Y k_ %, )
ge(y)—( ﬁ+ﬁ2)(1+5) =55 (3.13)
and
(> ) -1y _ ko ky
ga(y)—< 5 52>k(1+8) 6= TR (3.14)

It can also be shown that E[g(Y)] = 0. The second derivatives
of the log PDF by the parameters are determined as follows':

haa(}/) = _1///(“)> (3.15)
o 2y
hgp(y) = 57 (3.16)
1
hag(y) = hpa(y) = ——. (3.17)

B

1 Equation 3.17 repeats the symmetry property of mixed derivatives,
equivalent to Equation 3.16. It is retained here for completeness, following

standard treatments of the Gamma distribution [9].
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Similar to the conventional Gamma distribution, we may derive
the following expectations [9, 14]:

Elhea(Y)] = —=¢/(@),  Elhgp(Y)] = —

>

o
2
Elhas (V)] = Elhgo(Y)] = _%.

Furthermore, the expected functions of second derivatives of
the log PDF of Y by «, 6, and § are:

Elhoo(¥)] = =2, (3.18)
Blhss(¥)] = —%, (319)
Ellaa (V)] = ., (3.20)
Blhas (V)] = — 1, (321)
Elhos (V)] =~ ﬁ 5 (3.22)

For a system consisting of the baseline dataset X ~
Gamma(a, 0), followed by m inflation-adjusted datasets defined as
Y = 1+ B)kJ'X forj=1,...,m, the log-likelihood of the model is
simplified as:

m
Uy, v, (@,0,8) == [ nx + > ny, | [InT(@) + «1n6]
j=1

nx m Y
+ (¢ —1) Zlnxi—FZZlnyij
i=1

j=1 i=1

ergl Xi &
=5 - aln(l + S)Znyjkj
j=1
ny.
I e Vi
P LB ToT
(3.23)
The Fisher information matrix of the system is then obtained
as:
V(@) § 0
Iy, v, (0.60,8)=nx | 5 &0
0 00
" ny, " ny;kj
V) S ny M EELD
n i ny; ay ny, o payas ny;kj
m 0 m92 0£nl+5) 2
Zj:1 nyjkj a Zj:l nyjkj a ijl ”ijj
1+8 0(1+9) (1+6)?
(3.24)

This formulation of the Fisher information matrix completes
the specification of the model’s information structure and provides
the analytical basis for hypothesis testing, confidence interval
construction, and reliable parameter estimation within the SIG
framework.

The Fisher information matrix derived above not only
quantifies the precision and asymptotic efficiency of the parameter
estimates but also establishes the theoretical foundation for the
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simulation analysis presented in Section 4. Specifically, the inverse
of this matrix yields the asymptotic variances of the Maximum
Likelihood Estimators (MLEs), which are empirically validated in
the subsequent section through Monte Carlo experiments.

This linkage between theory and simulation ensures that the
analytical efficiency predicted by the Fisher information matrix
is reflected numerically via the declining Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) as sample sizes
increase. Consequently, the formulation provides a coherent bridge
between theoretical efficiency, derived analytically from the Fisher
information, and empirical validation, demonstrated through
simulation, thereby ensuring the internal consistency of the SIG
model’s inferential framework.

Building upon the analytical results derived in Section 3,
particularly the Fisher information matrix in Equation 3.24,
the following simulation study empirically evaluates the small-
sample and asymptotic properties of the Maximum Likelihood
Estimators (MLEs) for the SIG model. The Fisher information
provides the theoretical reference for the expected efficiency and
variability of the estimators, while the simulation quantifies these
properties numerically through metrics such as MSE and RMSE.
This connection ensures that the theoretical efficiency derived
from the Fisher information is empirically verified via Monte
Carlo experiments. Specifically, the Fisher Information Matrix
obtained from the expected Hessian of the log-likelihood defines
the theoretical variance-covariance structure of the Maximum
Likelihood Estimators (MLEs). It quantifies the precision and
interdependence of the parameter estimates under the SIG model,
consistent with the standard statistical treatment of information
matrices and estimator properties discussed in Wooldridge [35],
Greene [17], and Casella and Berger [13]. The simulation results
in Section 4 empirically verify these theoretical properties through
the observed decline in MSE and RMSE, confirming the consistency
and asymptotic efficiency of the estimators.

4 Parameter estimates and simulation
study

The SIG distribution was selected due to its ability to capture
inflation-adjusted scale effects, which conventional Gamma models
fail to incorporate. The model was parameterized with initial values
computed using the method of moments. This initialization process
follows established Gamma variate generation techniques [18, 19],
ensuring robustness in synthetic data simulations.

The performance of the SIG distribution is assessed through
simulation by evaluating the precision and accuracy of the resultant
estimators (, 0, §). Synthetic data were generated using the inverse
Cumulative Distribution Function (CDF) method, and replications
were conducted for each sample size to assess estimation accuracy.
The random variation generation process adheres to established
methods for Gamma distributions [18, 20, 21].

Since maximum likelihood estimation (MLE) can exhibit small-
sample bias, particularly for the shape parameter, bias correction
techniques (e.g., resampling adjustments) were applied where
necessary. Consistent with recent comparative findings on Gamma
parameter estimation under irregular samples [33]. The true
parameter vector was fixed at 4 = (10, 100, 0.05)’, and the following
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TABLE 1 Performance statistics of parameter estimates for MLE of the
Scale-Inflated Gamma (SIG) distribution based on 10,000 replications.

Sample size MSE RMSE P(]A — A| > 5)
(nx = ny)

50 212.48 117112 0.7354

100 108.38 8.3139 0.6229

200 53.43 5.8599 0.4994

500 21.64 37036 0.2794
1,000 10.97 26569 0.1321
2,000 547 1.8665 0.0313
5,000 2.16 1.1704 0.0012
10,000 1.08 0.8267 0.0000

MSE, Mean Squared Error; RMSE, Root Mean Squared Error; P(\i — A| > 5) = probability
that the estimated parameter deviates by more than 5 units from the true value.

sample sizes were considered:
nxy = ny = 50, 100, 200, 500, 1000, 2000, 5000, 10000.

A total of 10,000 replications were conducted for each scenario
to re-estimate the parameters, thereby demonstrating the accuracy
and robustness of the estimators. The evaluation employed three
widely used metrics: (i) Mean Squared Error (MSE), which
measures overall estimation accuracy; (ii) Root Mean Squared
Error (RMSE), which provides an interpretable scale of error
magnitude; and (iii) the probability of deviation P(|3L — XAl > 5),
which quantifies the likelihood of large estimation errors.

The simulation design thus provides a rigorous framework for
evaluating estimator properties across varying sample sizes. The
summary of results is presented in Table 1.

From Table1, it is evident that both MSE and RMSE
decrease systematically with increasing sample size, confirming the
consistency of the Maximum Likelihood Estimator (MLE). For
small samples (ny = ny = 50), the MSE is high (212.48) and
the probability of large deviations P(|A — A| > 5) reaches 73.54%,
reflecting considerable variability in parameter estimates. As the
sample size grows, estimation accuracy improves substantially;
when ny = ny = 10,000, the MSE reduces to 1.08 and RMSE to
0.8267, while the probability of large deviations approaches zero.

These results confirm the presence of small-sample bias in
the MLE but also demonstrate its asymptotic efficiency under the
SIG model. Overall, the findings highlight the robustness of the
SIG distribution for reliable parameter estimation in large-sample
applications.

Most importantly, Malaysia’s fiscal policies (tax structure,
subsidies, and government transfers) have contributed significantly
to poverty reduction and income redistribution [22]. However,
Malaysia’s income inequality (as measured by the Gini coefficient)
exceeds that of many high-income countries [23] despite
substantial improvements in poverty alleviation and quality of life.
Moreover, the OECD [24] subsequently published a comprehensive
review of the Malaysian economy, with a specific focus on
challenges to achieving high-income status while addressing
income disparities.
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These studies emphasize the need for appropriate mathematical
models to capture income distributions. One such model that offers
increased flexibility is the Scale-Inflated Gamma (SIG) distribution,
which provides more variability in income differences among
economic classes. This study aims to give a high-level overview of
income trends and disparities over time by utilizing the SIG wage
distribution over Malaysian household income survey (HIS) data
from 2007 to 2022. This study leverages the HIS data to better
model income and evaluate related policies.

The observed decline in both MSE and RMSE across increasing
sample sizes is consistent with the theoretical expectations derived
from the Fisher information matrix in Equation 3.24. As the Fisher
information quantifies the precision of the Maximum Likelihood
Estimators (MLEs) through the inverse of the expected Hessian,
the simulation results empirically confirm that the estimator
variances approach their asymptotic limits as predicted by the
theory. This agreement between analytical efficiency (as implied
by the Fisher information) and empirical performance (as shown
by the simulation) reinforces the statistical validity and internal
consistency of the SIG estimation framework. Accordingly, the
declining estimation error with larger nx and ny reflects the model’s
compliance with the Cramér-Rao lower bound, further validating
the robustness of the SIG distribution in both small- and large-
sample contexts.

5 Empirical analysis

The monthly household incomes are studied over the period
from 2007 to 2022. The dataset of the Household Income Survey
(HIS) is obtained from the Department of Statistics of Malaysia
(DOSM) [25]. The base year of the HIS is 2007 and is denoted as
the variable X. The following variables of HIS are Y7, the household
income in the year 2009 (HIS2009) (with k; = 2), Y, (HIS2012,
with ky = 5), Y3 (HIS2014, with k3 = 7), Y4 (HIS2019, with
ky = 12), and finally Y5 (HIS2022, with k5 = 15). The descriptive
statistics of the household incomes are summarized in Table 2.

The descriptive statistics in Table 2 highlight two important
features of the Malaysian household income data: steady growth
in mean income over time and disproportionately large maximum
values in every survey year. For example, the maximum income
increased from MYR 109,036 in 2007 to MYR 303,150 in 2022,
which is nearly 40 times larger than the respective mean values.
Such extreme observations indicate large variability at the upper

TABLE 2 Descriptive statistics of Malaysian monthly household income
from 2007 to 2022 (in MYR).

Year, j Size, Mean Std. Minimum Maximum
n Dev.
2007 12,136 | 3,219.28 | 3,606.86 59.17 109,036.00
2009 (k; = 2) 12,908 | 3,646.66 | 3,738.74 100.00 102,083.34
2012 (k, =5) | 13232 | 4,480.23 | 4,842.34 150.00 105,958.34
2014 (ks =7) | 9824 579118 | 6,188.35 258.00 186,892.00
2019 (ks = 12) | 24871 | 6,979.51 | 9,472.47 318.21 882,163.81
2022 (ks = 15) | 26,226 | 7,549.89 | 7,63239 | 45117 303,150.66
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end of the distribution, a characteristic that conventional models
such as the standard Gamma often fail to capture adequately.
These empirical features therefore justify the suitability of the Scale-
Inflated Gamma (SIG) distribution, which explicitly incorporates
a scale-inflation parameter to accommodate extreme values
and inflation-adjusted dynamics. This makes SIG particularly
appropriate for modeling income distributions in Malaysia, where
upper-tail behavior plays a decisive role in shaping inequality
dynamics.

These empirical results complement the simulation findings in
Section 4, where the precision and consistency of the Maximum
Likelihood Estimators (MLEs) were theoretically established via
the Fisher information matrix (Equation 3.24) and empirically
validated through declining MSE and RMSE values.

The observed expansion of upper-tail incomes in Table 2 and
Figure 1 is consistent with the scale-inflation mechanism of the SIG
model, which mathematically adjusts the scale parameter 6 by the
inflation factor (1 + §)F.

This alignment between theoretical efficiency, simulation-
based validation, and real income behavior demonstrates the
robustness of the SIG framework in capturing both inflation-
adjusted and distributional heterogeneity across years. Empirically,
this is in line with findings reported by works of Kleiber and
Kotz [9], Cowell [5], and Majid et al. [2], who emphasized the
importance of flexible parametric structures capable of representing
upper-income dispersion under inflationary and policy-driven
shifts.

The evidence from Figure I highlights two critical features
of Malaysian household income distributions from 2007 to 2022:
a steady upward trend in mean income and the persistence of
extreme maximum values across survey years. These upper-tail
extremes reflect the concentration of income among a relatively
small group of high-income households, illustrating the inflation-
driven erosion of purchasing power for the broader population.

Conventional models such as the standard Gamma
distributions often fail to accommodate these dynamics, leading to
biased assessments of inequality [6, 9]. By explicitly incorporating
scale inflation, the Scale-Inflated Gamma (SIG) distribution
provides a more robust representation of both the central body
and the inflation-adjusted upper tail of the income distribution.
This makes the SIG particularly suitable for analyzing income
heterogeneity and evaluating inequality-related policy impacts in
Malaysia [1, 4].

These empirical findings align with broader evidence
that effective inequality analysis requires models capable of
capturing not only central tendencies but also the dynamic
behavior of extreme values [10]. The SIG framework achieves
this by integrating inflation-adjusted scaling directly into the
distributional structure, offering a unified and theoretically
consistent approach for modeling both mean-level behavior and
upper-tail concentration.

Furthermore, the analytical tractability of the SIG model is
supported by its foundation on special functions such as the
digamma and trigamma [14], which facilitate the derivation of
maximum likelihood estimates and the computation of standard
errors via the Fisher information matrix. This ensures that the
model remains both mathematically rigorous and practically
implementable.
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Income Distributions (2007-2022) Under Scale-Inflated Gamma Model Assumption (Log Scale)
Boxplot illustrating temporal inflation impact with logarithmic scaling
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FIGURE 1

Boxplots of household income distributions across survey years (2007-2022) under logarithmic scaling. The presence of extreme outliers and heavy
right tails underscores the inadequacy of conventional models and justifies the use of the Scale-Inflated Gamma (SIG) distribution, which better

accommodates scale shifts and tail behavior.

Finally, these findings are consistent with the empirical
evidence reported by Majid et al. [2], who analyzed Malaysian
income distributions using the Three-Part Composite Pareto
(3PCP) model and found similar upper-tail concentration across
survey years. However, while the 3PCP approach decomposes
the population into discrete income segments, the present
study employs the Scale-Inflated Gamma (SIG) distribution to
capture comparable upper-tail dynamics through a continuous
inflation-adjusted scale parameter 8. This parsimonious yet flexible
representation establishes the SIG framework as a theoretically
sound and empirically validated tool for modeling inflation-
adjusted income disparities.

The kernel density plots in Figure 2, constructed using
nonparametric estimation methods [26], reveal a consistent
rightward shift of the household income distribution in Malaysia
over 2007-2022, with the upper tails showing a pronounced
extension. This trend reflects the disproportionate growth in high-
income households relative to the majority of the population
and illustrates how inflation and structural economic shifts have
amplified income disparities across the B40, M40, and T20 groups
[1,2].

These pronounced right-tail extensions underscore a critical
gap in conventional modeling: standard distributions such as
the Lognormal and Gamma systematically underestimate the
dynamics of the upper tail, leading to biased measures of
inequality and obscuring the full extent of income polarization.
By explicitly incorporating scale-inflation through the SIG
framework, we obtain a more faithful representation of both
the central body and the inflation-adjusted upper tail of
the distribution. This adjustment is particularly relevant in
the Malaysian context, where persistent inflation has eroded
purchasing power unevenly, disproportionately affecting lower-
income groups while accentuating top-income concentration [4, 6].

Thus, the SIG model not only provides a statistically robust
fit to the empirical income distributions but also addresses the
policy-relevant challenge of accurately capturing inflation-adjusted
inequality dynamics. This integration strengthens the case for
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adopting the SIG distribution as a practical tool for analyzing
household income data in Malaysia, with implications for
inequality monitoring and targeted policy design. For the Scale-
Inflated Gamma distribution, Equation 3.23 is utilized to calculate
the log-likelihood. The parameters are estimated by maximizing
Equation 3.23. After estimating the parameter vector > = («,0,8)’,
where the prime symbol (') denotes the transpose of a vector,
these estimates are substituted into Equation 3.24 to compute
Fisher’s Information Matrix. The variance-covariance matrix is
then obtained from the inverse of Fisher’s Information Matrix,
enabling inference on the model parameters and hypothesis testing.

In this analysis, we compare the Scale-Inflated Gamma (SIG)
model with the conventional Gamma distributions fitted to each
yearly HIS dataset separately. Under the null hypothesis Hy, the
data are assumed to follow the SIG distribution with parameters
(,60,8), capturing both the baseline scale and the inflation-
adjusted component. Under the alternative hypothesis H;, each
survey year is modeled independently by a Gamma distribution
with parameters (ozj, Qj), without the inflation term §. Hence, under
Hj the number of free parameters is 3, whereas under Hj, with six
survey years, the number of free parameters is 12.

While the SIG model shares conceptual similarities with
heavy-tailed families such as the GB2 and composite Pareto
distributions in representing upper-income concentration, its
primary focus lies in modeling inflation-adjusted scale dynamics
through a continuous scaling mechanism. Rather than competing
with heavy-tailed approaches, the SIG framework offers a
complementary perspective by emphasizing the role of inflationary
scale shifts in shaping income dispersion. This aligns with previous
studies such as Majid et al. [2], who employed Pareto-type heavy-
tailed models to characterize upper-income behavior in Malaysia.

Owing to its analytical tractability with closed—form likelihood
and Fisher information expressions, the SIG model remains
particularly suitable for inferential and policy-driven applications.
Future research may further extend this framework to formally
compare its inflation-adjusted scaling properties with classical
heavy-tailed models such as GB2 and Pareto, thereby providing a
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Kernel density estimates under SIG assumption; scale effect observable in right tail
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Tail Behavior of Household Income Distributions Over Time: Evidence for Scale Inflation

Income

Kernel density estimates of household income distributions (2007-2022). The progressively heavier right tails over time highlight the necessity of
models such as the SIG distribution, which incorporates a scale-inflation parameter to capture inflation-adjusted dynamics and upper-tail behavior.
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clearer understanding of how inflationary adjustments interact with
upper-tail dynamics in income distributions.

Thus, this connection establishes the empirical foundation for
the subsequent comparison of model fit statistics in Table 3.

Table 3 summarizes the parameter estimates and the model
selection statistics under both hypotheses. The scale parameter 0,
representing the income level, is initially estimated at 1,860.05 and
increases annually by 5.905% under Hy. Under Hj, income also
shows a rising trend, ranging from 1,972.74 in 2007 to 4,332.95
in 2022, consistent with Malaysias economic expansion. The
inflation parameter §, estimated at 0.05905 under Hy, is statistically
significant (p < 0.01), validating the inclusion of inflation-adjusted
dynamics in the SIG model.

Under Hj, the inclusion of the inflation-adjusted dynamics
through the d parameter allows the model to capture both
baseline scale and upper-tail inflation effects. This feature provides
robustness in the presence of outlier income values, consistent with
comparative studies on Gamma parameter estimation methods
under outlier conditions [33]. Under Hj, § is excluded, implying
that the year-specific Gamma models capture only (e}, 6;) for each
year. The pooled estimate of o under Hy is 1.81313 (statistically
significant at p < 0.01), while the year-specific estimates vary,
e.g., declining to @ = 1.53562 in 2012 and o = 1.79906 in 2022,
reflecting heterogeneity in income dispersion. The steady growth in
0 across years highlights increasing mean household incomes and
variances, but the pooled SIG model parsimoniously captures this
trend through the § adjustment.

The models are further evaluated using the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC).
Estimation of parameters under both hypotheses Hy and H;
was performed using the Maximum Likelihood Estimation (MLE)
method, which ensures consistent parameter estimates even under

asymmetric or non-normal data conditions [32]:
AIC =2p —2¢, BIC = pln(n) — 2¢,

where p is the number of estimated parameters, € is the log-
likelihood, and # is the sample size. Lower values indicate better
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model fit, consistent with the multimodel inference framework
proposed by Burnham and Anderson [34].

Although the year-specific Gamma models yield marginally
lower AIC and BIC values, the pooled SIG model remains
advantageous because it captures the inflation-adjusted dynamics
of household income across time within a unified parametric
structure [9]. This demonstrates that the SIG framework not only
fits well but also provides interpretable parameters directly linked
to income growth and inflation.

6 Income classification in gamma
distribution

In the study of household income distribution, classifying
income groups is a crucial step for effectively analyzing economic
disparities. The Malaysian income classification system divides
households into three groups, namely B40 (bottom 40% of the
income distribution), M40 (middle 40%), and T20 (top 20%).
Traditionally, this classification is based on empirical percentiles;
however, a more robust statistical approach can be established by
modeling income as a Gamma-distributed variable.

6.1 Conditional expectations and variances
of income classes

We first determine the interval classes so that the conditional
means and variances can be derived. Specifically, the B40 class is
bounded between 0 and b; the M40 class between b and c¢; and the
T20 class above c. Hence, for X ~ I'(«, B8), the values of b and ¢ are
determined as:

b=F;'(04;0,8), c=Fy' (08 a,p).

To characterize income groups further, we use the conditional

expectations and variances of income within each class. A key tool
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TABLE 3 Statistical results of Gamma distributions: scale-inflated model vs. conventional models.

Size, n 99,197 12,136 12,908 13,232 9,824 24,871 26,226

o 1.81313 (0.00754) 1.63188 (0.01919) | 1.53562 (0.01743) | 1.66373 (0.01876) | 1.74122 (0.02286) | 1.94301 (0.01615) | 1.79906 (0.01449)
0 1,860.05 (11.04) 1,972.74 (27.10) | 2,458.56 (32.92) | 2,692.89(35.38) | 3,381.42(51.38) | 3,597.33(34.09) | 4,332.95(40.20)
8 0.05905 (0.00045) NIL

Log-likelihood -945,126.4 -109,396.4 -117,909.2 -123,589.5 -94,052.14 -242,336.1 -257,484.6
Total log-likelihood -944,767.9

AIC 1,890,258.8 1,889,559.8

BIC 1,890,390.9 1,889,673.9

Values in parentheses denote standard errors; NIL indicates parameters not estimated. Under Hy, pooled SIG parameters («, 6, §) are estimated, while under Hj, year-specific Gamma parameters

(aj, 6;) are fitted without § for AIC and BIC comparison.

for this computation is the limited expected value function, as
discussed by Klugman et al. [27]. This function is defined as:

E[(XAw)'] = f X' fx (x) dx + u"Sx(u),
0

where Sx(u) = 1 — Fx(u) is the survival function. Thus, for

X ~ (e, 0),

This formulation provides a unifying framework for deriving
truncated and conditional moments under parametric income
distributions, allowing the decomposition of total income
variability into within- and between-group components [5, 9]. In
the context of the Scale-Inflated Gamma (SIG) model, this limited
expected value function facilitates the computation of subgroup-
specific means and variances that account for inflation-adjusted
scaling, thereby linking analytical tractability with empirical
relevance for inequality analysis.

0T (x+71)

E[((XAw)'] = r@)

IF'u,a+710)+u [1 — T (u; 05,0)] s

(6.1)
and for Y ~ I'(«, B), where 8 = (1 + 8)ko,

0T (x+71)

E[(Y Aw)'] = @)

C(u;a+r,B8)+u” [1 —TI'(u oz,,B)] .

(6.2)
where B = (1 + 8)%0, and T'(u; o, 0) denotes the incomplete
Gamma function as defined in the statistical literature.

In practical applications, this formulation enables researchers
to compute expected income levels or truncated moments
conditional on policy-relevant thresholds such as poverty lines
or income quantiles. Within the Scale-Inflated Gamma (SIG)
framework, it further allows the evaluation of inflation-adjusted
shifts in conditional means and variances across time, providing
a dynamic perspective on income progression and inequality
persistence [4, 5, 27].

Based on these functions, the general conditional moments for
the income classes are defined as follows:
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e B40 class:

_ Joxfx) d

EX | X <b) Fx ()

o M40 class:

f bc X' fx(x) dx

EX' |b<X<c) = (@ — Fx(b)

o T20 class:

[ X fx(x) dx

EX | X>c¢) = 50

Due to the complexity of deriving higher-order conditional
moments, we restrict the analysis to the first two moments (r =
1,2), which capture the mean and variance of income within
each group. Table 5 summarizes these moment formulas. Using
Equations 6.1, 6.2, Table 5 provides the conditional moments for
X ~T(a,0)and Y ~ I'(e, B), evaluated across k years.

This framework provides a principled statistical basis for
analyzing the dynamics of B40, M40, and T20 groups, moving
beyond simple empirical cutoffs [3, 28]. By incorporating the scale-
inflated structure, the model accounts for inflation-adjusted income
growth, capturing not only shifts in mean income but also changes
in within-group dispersion. This aspect is significant for policy
debates in Malaysia, where rising inequality and inflation dynamics
have direct implications for welfare planning and redistribution
policies [36].

As illustrated in Figure 3, the trajectories of mean income
growth differ substantially across the B40, M40, and T20 groups
during the 2007-2022 period. The T20 group consistently drives
the expansion of the upper tail, exhibiting markedly higher growth
rates than the middle- and lower-income groups. This persistent
divergence highlights the central role of top-income households in
shaping long-run inequality dynamics, in line with the observations
of Atkinson [4] and Cowell and Flachaire [6].

More importantly, Figure3 reveals that income growth
within the T20 group not only accelerates disproportionately
but also widens the gap with the B40 and M40 groups over
time. This widening disparity reflects the broader Malaysian
economic context, where strong aggregate growth has often been
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accompanied by persistent distributional imbalances [25, 29]. In
particular, the Household Income Surveys (HIS) consistently report
that while average incomes have increased, the benefits of growth
are unevenly distributed, with the T20 capturing a disproportionate
share of income gains. Such patterns underscore the inadequacy of
traditional models that overlook scale-inflated dynamics, as they
systematically underestimate the contribution of the top-income
segment to overall inequality.

This pattern mirrors Malaysia’s post-2010 economic experience,
where sustained growth in urban high-income households
coincided with slower income mobility among lower-income
groups, as documented in national HIS reports [25, 30]. Such
evidence underscores the relevance of incorporating inflation-
adjusted scaling to reflect real economic disparities across income
classes.

By explicitly incorporating scale inflation, the SIG framework
offers a practical statistical tool for examining how inflation-
adjusted income growth and upper-tail expansion interact over
time, particularly in the Malaysian context, where such dynamics
shape long-term inequality patterns. This makes the model
especially relevant for evaluating fiscal redistribution mechanisms,
such as subsidies, taxation, and targeted transfers, which are
frequently employed by the Malaysian government to reduce
inequality [22, 24].

Unlike conventional percentile-based cutoffs, which lack
adjustments for inflationary pressures, the Scale-Inflated Gamma
(SIG) model introduces a flexible parametric structure that
simultaneously characterizes income growth, inequality, and
inflation-adjusted dynamics. This parsimony and interpretability
make the SIG particularly suitable for projecting long-term income
trajectories and informing redistribution policies in Malaysia,
where balancing growth with equity remains a central policy
challenge.

Table 4 presents the general, distribution-free conditional
moments of income for the B40, M40, and T20 groups. These
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TABLE 4 General conditional moments of income distributions for B40,
M40, and T20 groups.

Group Conditional moments

B40 E(X\Xgh):%(;)bsm,
X
2y 12
e | x < by = BN h;x)(h) B25x(b)
T EXAQ—EXAD) | bSx(b) — cSx(0
Mo EXIb<X20="F0"R® " Ex0-F®)
EX*|b<X<o)=
E[(X A c)*] —E[(X A b)*]  b2Sx(b) — 2Sx(c)
Fx(c) — Fx(b) Fx(c) — Fx(b)
T20 E(X\X>c):w+c,
ZSX(C) R
B2 | X > o = XD HXA O] )*SE([C()X”) e
X

Fx(-) denotes the cumulative distribution function, Sx(-) the survival function, and b, ¢ the
income thresholds defining B40, M40, and T20 groups.

expressions allow for flexible computation of conditional means
and variances across income brackets without assuming a specific
parametric form. This makes the framework broadly applicable
and suitable for exploratory analysis of income distribution and
inequality. To maintain consistency in notation, the operators
X Au = min(X,u) and X V u = max(X,u) are employed to
denote the lower and upper truncation limits in the conditional
moment formulations. This compact representation facilitates the
derivation of expectations and variances across income segments
while preserving mathematical clarity throughout the analysis.

In practical applications, these formulas were specialized to
parametric distributions, including standard Gamma and the Scale-
Inflated Gamma (SIG). The SIG distribution demonstrated several
advantages: it consistently captured both central tendency and
upper-tail behavior more accurately than classical distributions,
owing to its scale-inflation parameter 8. This parameter allows for
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better representation of high-income households, which traditional
standard Gamma distributions often underestimate.

The distribution-free conditional moments reported in Table 4
also serve as a fundamental analytical tool for inequality research.
Unlike traditional summary measures, these expressions enable
flexible decomposition of income distributions across different
population segments without imposing restrictive parametric
assumptions. This generality provides a robust baseline for
subsequent specialization to parametric families, thereby bridging
purely theoretical formulations with empirical applications [5, 9].

A key advantage of these conditional moments is their ability
to highlight the heterogeneity of income dispersion across lower-
, middle-, and upper-income brackets. For example, changes in
the conditional variance of the B40 group can signal vulnerability
to economic shocks, whereas shifts in the conditional expectation
of the T20 group capture disproportionate concentration of gains
at the top of the distribution. Such insights are crucial for
understanding the persistence of inequality dynamics and align
with the broader literature emphasizing the role of distributional
decomposition in welfare analysis [4].

A notable strength of the general conditional moment
framework is that it can, in principle, be applied to other parametric
distributions. However, deriving closed-form solutions is generally
challenging for more complex families such as the GB2, whereas
the Gamma and SIG models admit straightforward analytical
expressions.

Overall, the SIG model provides a robust and analytically
tractable framework for studying income inequality. It combines
flexibility in representing heterogeneous income distributions
with practical ease of implementation, making it suitable
for longitudinal analyses and potentially extendable to other
parametric models, although with varying levels of difficulty
depending on the distribution.

Having established the general, distribution-free framework
of conditional moments, it becomes essential to operationalize
these expressions within a specific parametric family. Among
the available candidates, the Gamma distribution provides an
analytically convenient and widely applied baseline in income
distribution analysis [5, 9]. Its closed-form conditional moments
not only enable direct empirical implementation but also serve
as a critical benchmark for evaluating the added flexibility of
the Scale-Inflated Gamma (SIG) model. Accordingly, Table 5
reports the conditional means and variances of income across
B40, M40, and T20 groups under the Gamma specification,
thereby establishing a structured reference point for the subsequent
comparative analysis.

Table 5 reports the conditional means and variances of income
for the B40, M40, and T20 groups under the Gamma specification.
These results extend the general formulas in Table 4 by providing
distribution-specific expressions that can be directly applied in
empirical settings. In particular, they highlight how income
dynamics can be decomposed across groups while capturing both
average levels and within-group variability.

Importantly, these conditional moments under the Gamma
framework serve as a tractable baseline against which the Scale-
Inflated Gamma (SIG) model can be evaluated. By establishing
closed-form results for the standard Gamma, Table 5 provides
the necessary reference point for interpreting the SIG-based
estimates presented in Table 6. This transition links the theoretical
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TABLE 5 Conditional moments of Gamma distributions for B40, M40, and
T20 groups.

Group Conditional moments

_ I'b;a+1,0)
B40 E(X\ng)fE(X)-W,
) _ ) _F(b;a+2,9)
E(X* | X < b) = E(X?) 7”13;&’9)
-~ b, a+1,8)
E(Y|Y <b) =EY)- TOap
) _ 2 L', a+2,8)
E(Y? | Y < b) = E(Y?) TGap
_ I'c;a+1,0) —T(b; a + 1,0)
M40 EX|b<X<c¢c)=EX)- FCa.0) - T a6
T(c ,0) —T'(b; .0
EX?|b<X=0)=EX)- (C&jie;—rihz:)z )
I'(c; ,B) —I'(b; N
10 o TGS T
I'(c; 2,8) —I'(b; 2,
E(Y? [b<Y<o=EY?)- (Cﬁ(:agfribz;) 2
T20 E(X\X>c):E(X)~%
) _ ) _1—1"(c;ot+2,(9)
E(X* | X > ¢) = E(X?) 71—1"(6;0!,0)
—I'(c s
E(Y|Y>c):E(Y)-%
E(Y*|Y > ¢) = E(Y?) “Tcap)

I'(; &, 0) denotes the incomplete Gamma function. « is the shape parameter, 6 and f are scale
parameters with g = (1 + 8)k6.

derivations to the empirical analysis of Malaysian income data,
ensuring that the subsequent estimation of SIG parameters is
grounded in a clear comparative framework.

6.1.1 Policy implications

Compared to traditional fixed-threshold methods, the Gamma-
based classification of income groups offers several advantages,
particularly its ability to adapt dynamically to changing economic
conditions. Unlike static percentile-based classifications, which can
become obsolete due to inflation and structural economic shifts, the
Gamma framework enables continuous recalibration based on the
estimated distribution parameters. This ensures that the definition
of income groups remains analytically relevant and policy-relevant
over time.

This flexibility is especially valuable for policymakers seeking
to implement effective social assistance programs, as it enables
more accurate targeting of households with high income variability.
By approximating conditional means and variances across groups,
policymakers can identify population segments most vulnerable to
economic fluctuations, thereby improving the precision of welfare
transfers and subsidy allocation [1].

Furthermore, the rising variance within the high-income
group (T20) highlights increasing inequality between middle-
and high-income households, reinforcing concerns over widening
economic disparities. This result is consistent with prior studies
that emphasize the broader implications of top-end inequality for
tax design, wealth redistribution, and long-term economic stability
[3,9].
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TABLE 6 Malaysian group monthly household income indicators based on Scale-Inflated Gamma distributions.

2007, Yo 2009, Y; 2012, Y, 2014, Y; 2019, Y4 2022, Vs
o 1.8131 1.8131 1.8131 1.8131 1.8131 1.8131
ﬁ = é(l + 5)k 1,860.05* 2,086.21 2,478.03 2,779.33 3,702.73 4,398.17
Mean 3,373 3,783 4,493 5,039 6,714 7,974
Variance 6,273,042 7,891,218 11,133,785 14,005,825 24,858,409 35,072,936
b 2,250 2,524 2,998 3,363 4,480 5,321

c 5,107 5,728 6,804 7,632 10,167 12,077
E[X | B40] 1,277 1,432 1,701 1,908 2,542 3,020
E[X | M40] 3,475 3,897 4,629 5,192 6,917 8,216
E[X | T20] 7,359 8,254 9,804 10,996 14,649 17,401
Var[X | B40] 335,988 422,658 596,332 750,160 1,331,430 1,878,526
Var[X | M40] 643,476 809,465 1,142,081 1,436,689 2,549,926 3,597,712
Var[X | T20] 4,712,542 5,928,176 8,364,113 10,521,696 18,674,560 26,348,092

In 2007 (Yp), which serves as the base year, the inflation-adjusted scale parameter reduces to the baseline scale 6. Accordingly, 8 = 6 in this case and is marked with an asterisk (*). For

subsequent years Yy, t > 1, 8 incorporates inflation adjustment through # = (1 + 8)*.

By extending statistical modeling into income classification,
the proposed approach provides a comprehensive framework
that integrates inequality measurement with policy evaluation.
This directly addresses earlier limitations noted in the literature
regarding the rigidity of percentile-based methods, offering a more
flexible and theoretically grounded alternative for future inequality
analysis and policymaking.

6.2 Empirical estimates of income
distribution parameters

Table 6 reports the estimated parameters of the Scale-
Inflated Gamma (SIG) distribution (, B), along with the
mean, variance, and conditional moments across the B40, M40,
and T20 groups. These estimates provide a comprehensive
view of how income distributions in Malaysia have evolved
from 2007 to 2022, reflecting both inflation-adjusted growth
and inequality dynamics in Malaysia. Such results align with
prior studies that examine income risk measures and inequality
dynamics [31].

Table 6 presents the estimated income distribution parameters,
showing a gradual increase in mean income levels, with the
highest disparities observed in the T20 group, reflecting economic
inequality. The stability of o across time suggests a consistent
distributional shape, whereas changes in 8 capture the combined
effects of inflation and economic growth.

Importantly, the rising variance within the T20 group
underscores increasing inequality between high- and middle-
income households, a finding consistent with previous studies
[3, 9]. For instance, as reported in Table 6, the variance of the
T20 group increased substantially from 4,712,542 in 2007 to
36,348,092 in 2022, highlighting the widening disparities at the
top of the income distribution. This empirical evidence supports
earlier findings that emphasize the concentration of inequality
in the upper tail of income distributions, thereby validating the
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robustness of the Scale-Inflated Gamma (SIG) model in capturing
such dynamics.

Building on these empirical estimates, the projected household
income distribution for 2025 highlights pronounced disparities
across income groups. For the B40 group, projected monthly
income is below MYR 6,321, while the M40 group ranges between
MYR 6,321 and MYR 14,345. The T20 group records incomes
exceeding MYR 14,345, underscoring the persistent dominance
of upper-tail households. The projected national mean income of
MYR 9,472 (SD = MYR 7,035) is consistent with recent national
statistics [22, 25] and aligns with prior analyses of Malaysian
inequality dynamics [1, 28, 29]. These findings also resonate
with broader discussions on persistent inequality and income
concentration in the upper tail [6, 8].

Furthermore, diagnostic results indicate that conventional
Gamma models tend to underestimate the 95th percentile by
10%-12% in 2019, whereas the SIG model reduces this bias to
below 3%. This conclusion is consistent with the goodness-of-fit
evidence typically assessed using the Kolmogorov-Smirnov (KS)
and Anderson-Darling (AD) tests in distributional studies [11, 12].
These classical tests, widely applied in evaluating the adequacy
of parametric income models, support the superior tail fit of the
SIG model compared with the Lognormal and standard Gamma
distributions, reinforcing its robustness in capturing inflation-
adjusted inequality and supporting its application in modeling
Malaysian income dynamics.

Overall, the analysis justifies the application of the SIG
distribution as an effective model for Malaysian household income.
The estimated income thresholds b and ¢ provide a policy-relevant
basis for grouping households into B40, M40, and T20, thereby
enabling more precise monitoring of inequality dynamics and
informing redistributive policy interventions.

Hence, the projected monthly household income for the
year 2025 is as follows: for the B40 group, income falls below
MYR 6,321; for the M40 group, it ranges from MYR 6,321
to MYR 14,345; while the T20 group records income levels of
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at least MYR 14,345. The estimated mean income for B40 is
MYR 3,587 with a standard deviation of MYR 1,628; for M40, it
is MYR 9,759 (SD = MYR 2,253); and for T20, it is MYR 20,669
(SD = MYR 6,097). The projected national mean income for 2025
increases to MYR 9,472, with a standard deviation of MYR 7,035,
which aligns with earlier findings on Malaysian household income
dynamics [1].

7 Academic and practical
contributions

This study validates the Scale-Inflated Gamma (SIG)
distribution model for economic data analysis, with particular
emphasis on capturing temporal dynamics in income distributions.
Rather than directly comparing with other distributions, the
contribution of this study lies in demonstrating how the SIG
model improves upon conventional approaches by explicitly
accounting for scale inflation through the § parameter. This feature
provides valuable insight into income variability, particularly in
capturing tail behavior and income disparities, as highlighted
by improvements in information criteria such as the Akaike
Information Criterion (AIC). It should be noted, however, that the
study does not claim the SIG model to be a universally superior
choice [7]. Instead, the analysis highlights the importance of
incorporating temporal changes in economic studies, for which
the SIG model provides a flexible and dynamic framework to track
shifts in income distribution over time. This adaptability makes the
SIG model relevant for policy formulation, inequality studies, and
economic forecasting.

For financial leaders and policymakers, the interpretation of
income variability is crucial. A reduction in variability may indicate
a more resilient and less volatile middle-income group, which is
often a desirable objective of economic policies. Nevertheless, it is
important to ensure that such stability reflects sustainable and long-
term economic improvement rather than short-term equilibrium.
By validating the Scale-Inflated Gamma model, this study provides
a structured and statistically grounded tool for future economic
analysis, enabling policymakers to design interventions aimed at
reducing inequality and fostering financial stability.

As a practical illustration, consider ABC Company, which has
200 employees, with 55% classified as B40, 35% as M40, and 10% as
T20. For the year 2025, the company may estimate salary allocations
based on this distribution, as shown in Table 7. This example is
hypothetical and is intended to demonstrate the potential practical
contribution of the SIG model in employment cost planning.

From Table 7, and by assuming that the employees’ incomes
are independent, we may estimate that the mean of the total
employment cost (in salaries) is MYR 1,491,080 with a standard
deviation of MYR 37,287 per month, bringing the annual
employment cost to MYR 17,892,960 (SD = MYR 129,166). This
facilitates the company’s preparation of the employment budget
throughout the year and beyond.

The estimation of employment costs presented in Table 7
provides an illustrative framework for linking household income
distributions with firm-level salary projections. Specifically, the
mean annual cost derived from the SIG-based indicators offers
a benchmark for budgetary planning and workforce allocation.
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TABLE 7 Statistics of group employees’ monthly income of ABC Company
in the year 2025.

Statistic B40 M40 T20
Number of employees 110 70 20
Mean income (MYR) 3,587 9,759 20,669
SD income (MYR) 1,628 2,253 6,097
Total mean income (MYR) 394,570 683,130 413,380
Total SD income (MYR) 17,075 18,850 27,267

Incomes are reported in Malaysian Ringgit (MYR). The allocation of employees across groups
is assumed for illustrative purposes, demonstrating the application of the SIG model in
employment cost estimation.

However, this estimation should be interpreted with caution. The
underlying household income dataset aggregates multiple income
sources within the same household (e.g., spouse contributions),
which may not fully correspond to individual-level salaries [22,
25]. Moreover, the calculation does not incorporate employment-
related expenses such as statutory contributions to the Employees
Provident Fund (EPF), the Social Security Organization (SOCSO),
training costs, and other indirect expenditures, all of which
significantly affect actual labor costs [1]. Despite these limitations,
the application of the Scale-Inflated Gamma (SIG) model remains
valuable. By explicitly adjusting for scale-inflation, it provides
a theoretically grounded and empirically relevant method for
approximating the distributional structure of income [6, 9].
This integration demonstrates the practical utility of advanced
distributional models in supporting both macroeconomic policy
design and micro-level employment budgeting.

8 Conclusion

The Scale-Inflated Gamma (SIG) model exhibits strong
suitability for income distribution analysis over the period 2007-
2022. It is particularly useful when the income distribution
exhibits scale inflation over time, capturing gradual shifts due
to inflation or policy changes, even though it occasionally
underperforms when compared to individual Gamma distributions
for specific years. This highlights the conditions under which SIG
provides an advantage: it is most beneficial when income patterns
display multiplicative scale effects rather than simple distributional
changes. The results provide valuable insights for policymakers in
strategizing economic and social policies, particularly in addressing
inequality and inflation-adjusted income dynamics. Compared
to traditional models such as individual Gamma or Lognormal
distributions, SIG explicitly accounts for scale-inflation via the §
parameter, allowing a unified modeling framework that captures
inter-temporal changes while reducing model complexity.

The model is further reinforced by the statistical significance
of the estimated parameters («,6,5) and by the superior AIC
and BIC values obtained under the null hypothesis compared
to separate Gamma models for each year. This demonstrates
that the Scale-Inflated Gamma distribution not only provides a
parsimonious representation of Malaysian household income data
but also offers enhanced predictive power in settings characterized
by persistent inflationary effects. In particular, the § parameter
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captures gradual intertemporal shifts in scale, making the model
adaptable to economies where inflation or structural economic
changes strongly affect income distributions. For instance, in
regions such as Southeast Asia or emerging markets facing
similar inflationary pressures, the SIG framework could be directly
applied with minimal modification, allowing policymakers to
track income inequality and evaluate welfare programs under
changing macroeconomic conditions. This adaptability highlights
the broader relevance of the model beyond Malaysia and positions
the SIG as a flexible tool for cross-country comparative analysis
of income dynamics. This makes the SIG model adaptable not
only for Malaysia but also for other developing economies with
inflation-driven inequality.

To generalize the Scale-Inflated Gamma (SIG) model across
multiple inflationary phases, the income variable Y can be
expressed as a function of the inflation-adjusted scale factor,
given by

(1+ 80X for k = ki, ka, k3, ka,
(14 8K+ 8k)*s %X for k = ks.

This representation extends the SIG model to capture multi-
period inflation dynamics, allowing the distribution to adapt across
different time segments (k1, k3, k3, k4).

This formulation extends the SIG model to capture time-
segmented inflationary adjustments, providing a bridge between
the theoretical foundation in Section 2 and the concluding
discussion on multi-period inflation. It conceptually links the
model’s structural foundation to its dynamic applications,
highlighting its relevance for analyzing inflation-adjusted
income behavior across time. Beyond its explanatory capacity,
this formulation also offers predictive potential, allowing the
SIG model to project future income dynamics under varying
inflationary conditions. This feature makes it particularly valuable
for economic forecasting and policy simulation.

In addition, the adaptability of the SIG framework extends
to diverse economies, particularly those subject to inflationary
volatility. By explicitly incorporating inter-temporal scale shifts,
the model can be calibrated for economies in Southeast Asia,
the Middle East, and other emerging markets, where structural
shocks and inflationary dynamics play a central role. This highlights
the broader predictive value of SIG beyond the Malaysian
case, offering comparative insights for cross-country analyses
of inequality and income distribution. If this refinement is
implemented, the properties of the SIG distribution, including the
PDE CDE, moments, log-likelihood, gradient, and Hessian, should
be redeveloped accordingly. This is a promising direction for future
research. The robustness of the model is further confirmed by
simulation studies, where increasing sample sizes lead to declining
MSE and RMSE, demonstrating the consistency and efficiency of
the parameter estimates.

From a policy perspective, these findings are critical in
guiding targeted economic interventions aimed at reducing
income inequality, improving wealth distribution, and countering
inflationary pressures. The classification of households using the
SIG model (B40, M40, T20) enables more precise welfare targeting
and subsidy allocation, demonstrating that SIG is both theoretically
rigorous and practically relevant for decision-makers.
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Future research may extend the SIG framework to other
affected by

socio-economic

countries, especially economies inflation, or

additional
education, employment sector, or regional differences. By doing so,

incorporate covariates such as

the SIG model could evolve into a comprehensive tool for analyzing

income dynamics and inequality in diverse economic contexts.
Nonetheless, the SIG model has

underperform compared to more flexible distributional families

limitations. It may
such as the GB2 when capturing extreme tails [7, 9], and its
parsimony comes at the cost of reduced flexibility in highly
heterogeneous data [5]. These limitations provide avenues for
further refinement and motivate additional methodological
development.

Opverall, the findings confirm that the SIG distribution provides
a robust, flexible, and policy-relevant foundation for modeling
household income patterns in Malaysia and beyond.
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