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Accurate disaster prediction combined with reliable uncertainty quantification
is crucial for timely and effective decision-making in emergency management.
However, traditional deep learning methods generally lack uncertainty
estimation capabilities, limiting their practical effectiveness in high-risk scenarios.
To overcome these limitations, this study proposes an enhanced Bayesian Deep
Neural Network (BDNN) tailored for flood forecasting, effectively integrating
Variational Inference (VI), Monte Carlo (MC) Dropout, and a Hierarchical
Attention Mechanism. By leveraging hydrological and meteorological data
from the Yellow River basin (2001-2023), the BDNN model not only achieves
superior prediction accuracy (94.6%) but also significantly enhances reliability
through robust uncertainty quantification. Comparative analyses demonstrate
that the proposed approach markedly outperforms conventional models such
as Random Forest, XGBoost, and Multi-layer Perceptron. Ablation studies
further confirm the critical role of the hierarchical attention mechanism in
capturing essential features, while VI and MC Dropout substantially improve
prediction reliability. These advancements highlight the potential of BDNNs
to significantly enhance disaster preparedness and support more informed
emergency response decisions in complex, uncertain environments.

KEYWORDS
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1 Introduction

In recent years, the frequent occurrence of natural disasters such as earthquakes [1],
floods, and typhoons, as well as human-induced incidents including chemical explosions
and traffic accidents, have posed significant threats to public safety [2], leading to
substantial human casualties and economic losses [3], and thus severely challenging social
stability and economic development [4]. An effective disaster prediction system serves
as a fundamental component of emergency management, providing essential support for
disaster prevention, response, and recovery efforts [5, 6]. However, due to the inherent
complexity [7] and uncertainty [8] associated with disaster events, existing predictive and
responsive systems still exhibit notable limitations, highlighting an urgent need for more
efficient and reliable forecasting approaches.
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In recent years, machine learning and deep learning techniques
have been extensively applied to flood prediction, significantly
enhancing both accuracy and real-time forecasting capabilities
[9, 10]. For instance, XGBoost models have gained widespread
adoption due to their superior accuracy and robustness in multi-
step water level forecasting [11]. A study conducted in the
Jungrang urban watershed in South Korea demonstrated that
XGBoost achieved lower prediction errors in both training and
testing phases compared to other tree-based models [12]. Deep
learning methods, such as Convolutional Neural Networks and
Long Short-Term Memory networks, have demonstrated superior
performance in capturing spatial and temporal features [13, 14].
The combined CNN-LSTM model has been successfully applied
to rapidly predict urban flood depth, significantly outperforming
conventional hydrodynamic models [15, 16]. Additionally, hybrid
models have also shown promising performance; for example, the
CNN-GRU-XGBoost model applied to flood flow prediction in the
Xiangjiang River basin in China exhibited lower prediction errors
and higher overall accuracy [17-19].

Although deep
improved the accuracy of disaster prediction, several critical

learning techniques have substantially
challenges remain. Firstly, conventional deep learning models
typically produce single-point predictions without effectively
quantifying predictive uncertainty [20, 21], limiting their utility
in supporting informed risk assessment in disaster management
decisions. Additionally, these models heavily rely on large volumes
of high-quality labeled data for training, whereas disaster-related
datasets are often scarce and incomplete, significantly impacting
model stability and generalization capability [22-24]. Finally,
the inherent “black-box” nature of deep learning models reduces
their interpretability [25], making it difficult for decision-
makers to understand the rationale behind predictions, thereby
further constraining their practical applicability in high-stakes
decision-making scenarios.

To address these challenges, this study proposes an improved
Bayesian Deep Neural Network (BDNN) for flood disaster
prediction. By integrating Variational Inference (VI), Monte Carlo
(MC)
the proposed BDNN not only achieves high accuracy in

Dropout, and a Hierarchical Attention Mechanism,
disaster prediction but also effectively quantifies predictive
uncertainty. Moreover, Bayesian Optimization is employed
to reduce computational complexity, significantly enhancing
real-time performance. Experimental results demonstrate that,
compared to standard BDNNs, the proposed method achieves
a 36% reduction in training time, a 42% decrease in inference
time, and maintains an accuracy exceeding 94.6% on flood
prediction tasks. These optimizations enable the BDNN to operate
efficiently in resource-constrained computing environments,
such as mobile devices and edge-computing platforms, thus
greatly enhancing the timeliness and applicability of disaster
early-warning systems.

The main contributions of this paper are summarized as
follows:

1. We propose an enhanced BDNN framework, integrating VI
and MC Dropout to effectively quantify predictive uncertainty
in flood forecasting, significantly improving the reliability of
predictions.
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2. We incorporate a Hierarchical Attention Mechanism to
strengthen the model’s capability in feature selection, thereby
substantially enhancing predictive accuracy and generalization
performance.

3. We utilize a Bayesian Optimization strategy to reduce
computational complexity, enabling the BDNN to operate
efficiently within resource-constrained environments and
improving its real-time applicability in practical disaster
prediction scenarios.

2 Related work

In recent years, significant advancements have been achieved
in flood prediction, risk assessment, and disaster management
through the application of machine learning and deep learning
techniques. Traditional disaster forecasting approaches typically
rely on physical modeling and statistical analyses; however, these
methods often encounter limitations when dealing with sudden
disaster events due to the inherent complexity and nonlinear
characteristics of the underlying data. The emergence of machine
learning provides more efficient modeling tools for disaster
prediction, considerably enhancing both the scientific rigor and
real-time responsiveness of disaster management practices.

2.1 Flood prediction and risk assessment

In the domain of flood forecasting, machine learning
models have been increasingly adopted to enhance prediction
accuracy. Recent systematic reviews have highlighted the significant
potential of machine learning applications in disaster management,
particularly emphasizing improvements in flood prediction, risk
assessment, and emergency response [26]. Several studies have
summarized various machine learning techniques, discussing their
strengths, limitations, and proposing future research directions
[27]. For instance, integrating hydrological and meteorological data
within machine learning frameworks has notably improved the
accuracy and real-time performance of flood forecasting systems
[28]. Weather forecast-driven machine learning approaches
have demonstrated strong predictive capabilities for agricultural
flood prediction tasks, such as in the Yangtze River basin
[29]. Additionally, combining principal component analysis
with machine learning methods has facilitated spatial-temporal
forecasting of flood inundation events [30, 31].

Gradient Boosting Decision Trees and Convolutional Neural
Networks have been effectively employed to assess flood risks in
regions like the Pearl River Delta, providing detailed analyses of
critical risk factors [32]. Heterogeneous data sources integrated
into machine learning models have also supported robust flood
risk mapping and provided effective decision-making assistance
in regions such as Xinjiang [33]. Furthermore, ensemble learning
methods, including Random Forest and XGBoost, have enhanced
flood susceptibility modeling and improved the precision of flood
risk assessments [34]. Integrating machine learning techniques
with geographic information systems has enabled accurate urban
flood predictions and detailed simulation of flood dynamics across
diverse urban environments [35].
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Despite these advancements, current approaches often exhibit
limited computational efficiency, constraining their real-time
applicability in disaster response. Moreover, existing methods
typically lack sufficient adaptability to rapidly evolving disaster
conditions, thus reducing their effectiveness in unforeseen
scenarios.

2.2 Disaster management and emergency
response

In the field of disaster management, machine learning
techniques combined with remote sensing technologies have been
increasingly employed to enhance emergency response efficiency.
Recent studies have integrated hydrodynamic modeling with
machine learning to provide robust scientific support for urban
flood management [36]. Machine learning approaches have also
been used to forecast the number and distribution of households
affected by floods, assisting governmental authorities in developing
effective rescue strategies [37]. Furthermore, social media data,
such as information extracted from platforms like Weibo, have
been utilized within flood risk assessment models, enabling rapid
situational awareness through timely disaster-related insights [38].
Deep learning methods combined with remote sensing imagery
analysis have improved the capability of assessing dynamic changes
in flood disasters, particularly in accurately determining the spatial
extent of flooding [39].

Additionally, global flood monitoring methods using low-cost
satellites in conjunction with machine learning have significantly
expanded the spatial coverage of disaster early-warning systems
[40]. Ensemble learning techniques, such as Random Forest and
Radial Basis Function Neural Networks, have facilitated accurate
flood risk evaluations, notably improving prediction accuracy in
regions like the Yangtze River Delta [41]. Machine learning has
also been integrated with hydrological models to establish efficient
flood forecasting methods [42]. Image processing combined
with machine learning has supported rapid post-disaster damage
assessment and effective recovery planning through analysis of
post-event imagery data [43]. Moreover, methods incorporating
Random Forest and Support Vector Machines have effectively
identified high-risk flood-prone areas, enhancing preparedness and
mitigation strategies [44]. A Bayesian convolutional neural network
was developed for predicting urban flood inundation, showcasing
high accuracy and uncertainty quantification for real-time flood
forecasting [45].

However, despite their effectiveness, existing approaches often
rely heavily on historical data patterns, thus limiting their predictive
capability in unprecedented disaster scenarios. Furthermore,
integrating heterogeneous data sources frequently introduces data
inconsistencies, thereby reducing model reliability and robustness
in real-world applications.

3 Methodology

3.1 Bayesian deep neural networks

The fundamental idea underlying BDNNS is treating network
parameters, including weights and biases, as probabilistic random
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variables instead of deterministic constants. Unlike conventional
deep neural networks, BDNNs inherently incorporate uncertainty
quantification through Bayesian inference, enabling the generation
of reliable predictive intervals. Given a dataset D = {(x;, y,-)}i-i ,and
network parameters W, the objective of BDNNSs is to estimate the
posterior distribution of parameters p(W|D):

pDIW)p(W)
pD)
where p(W|D) represents the posterior distribution of network

parameters after observing the data, p(D|W) is the likelihood
function describing the probability of observing the data set D given

p(W|D) = (1

parameters W, p(W) denotes the prior distribution reflecting initial
beliefs about parameters, and p(D) is the evidence serving as a
normalization constant:

(D) = / p(DIW)p(W)dW 2)

Due to the complexity of directly computing this integral,
approximate inference methods are commonly adopted in practice.

3.2 Bayesian inference

Bayesian inference provides the fundamental computational
framework for BDNNs by systematically updating the probability
distribution of network parameters based on observed data.
Specifically, the posterior distribution of the parameters p(W|D)
can be formally represented using Bayes’ theorem as:

p(DIW)p(W)

WD) =-—+——-"——"
PWID) [ p(DIW)p(W)dw

(©)

However, direct analytical computation of this posterior
distribution is typically intractable due to the high dimensionality
and complexity of the integral involved, as illustrated in Figure 1.
To address this computational challenge, we employ VI as
an approximation strategy, introducing a tractable variational
distribution g(W16) with variational parameters 6 to approximate
the true posterior p(W|D).

Figure 1 visually illustrates the process of Bayesian inference
in BDNNs, clearly showing the relationships between the
prior distribution p(W), the true posterior distribution p(W|D),
and the variational approximation g(W|@). Specifically, the
prior distribution p(W) expresses initial assumptions about the
parameters before data observation. The true posterior distribution
p(W|D), usually complex and intractable, represents the updated
beliefs about the parameters after data has been observed. The
variational distribution g(W10) is introduced as a simplified,
computationally feasible distribution used to closely approximate
the true posterior, effectively transforming the complex integral
computation into a manageable optimization problem.

3.3 Variational inference

Due to the intractability of the true posterior distribution
p(W|D), Variational Inference seeks a variational distribution

frontiersin.org
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Bayesian Inference in BDNNSs: Prior, Posterior, and Variational Approximation
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FIGURE 1
Illustration of Bayesian inference in BDNNs, showing prior p(W), posterior p(W|D), and variational approximation g(W|6).

q(W|0) parameterized by 6 to approximate the true posterior.
Specifically, the objective of VI is to minimize the Kullback-Leibler
(KL) divergence between the approximate and true posterior:

6* = argmin KL(g(W10)][p(W|D)) 4)

This KL divergence can be expanded explicitly as:

q(W10)
p(W|D)

KL(q(W1)][p(W|D)) = / 4(W1) log )

To simplify the optimization, the Evidence Lower Bound
(ELBO) is maximized instead:

ELBO(0) = Eg(w)e)[log p(DIW)] — KL(q(W|0)I|]p(W))  (6)

Here, the first term represents the expected log-likelihood
under the variational distribution, while the second term

regularizes the approximation toward the prior distribution.

3.4 Monte Carlo sampling
To quantify predictive uncertainty, MC sampling is applied,

which involves drawing multiple parameter samples from the
variational posterior distribution g(W|6):

Wb ~ g(w|e),

s=1,2,..,8 (7)
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For a new input data point x, the predictive mean . is
computed by averaging predictions from these sampled parameters:

S
1
Ypred = 5 D_fEAW) (®)
s=1

Additionally, predictive uncertainty is measured through the
variance of these sampled predictions, calculated as:

S
1
Varlylx, D] ~ < D FEAWS) = yprea)? ©)

s=1

Here, a higher variance indicates greater uncertainty regarding
the prediction.

3.5 Proposed BDNN architecture

The proposed BDNN architecture consists of several key
components illustrated in Figure 2. The input layer captures
relevant hydrological and meteorological features, including
precipitation, water flow rate, sediment content, and historical
disaster records. Subsequent Bayesian hidden layers update
parameters probabilistically via VI. Each hidden layer’s activation
hj is computed as:

hi =o(Wihi_1 + b;), Wi, bj ~q(W|0), i=1,2,...,L (10)

where o (-) is the activation function, and L represents the total
number of hidden layers.
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MC Dropout layers are strategically incorporated to improve
generalization and prevent overfitting, defined by:

h; = Dropout(h;) = m; o h;, m; ~ Bernoulli(p) (11)

Here, m; is a Bernoulli mask vector, and p is the dropout
probability.

A Hierarchical Attention Mechanism dynamically focuses on
the most informative features, with attention weights aj calculated
as:

exp(e;j) T
A== e =v tanh(Wyh;j+ b,) (12)
>k explex)
where W,,b,,v are learnable parameters within the attention
module.

Finally, the Bayesian output layer produces predictions
accompanied by uncertainty estimation. Predictions for the output
layer are calculated by:

y= Wouthr + bouts  Wout> bour ~ q(W|9) (13)

Predicted means and variances for output are again computed
using the Monte Carlo samples from the posterior distribution.
This comprehensive modeling framework effectively integrates
predictive accuracy and uncertainty quantification in disaster
prediction scenarios.

4 Data collection and preprocessing

4.1 Data source

The dataset used in this study was collected from various
hydrological monitoring stations across the Yellow River basin,
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covering the period from 2001 to 2023. It consists of ~10,000
records that include daily measurements of variables such as
annual precipitation, precipitation compared to the previous year,
river channel gradient, initial precipitation, sediment storage, flood
conditions, dredging activities, risk assessment indicators for rivers
and dams, and actual flood occurrence status. These data provide
rich information for model training and lay a solid foundation for
model evaluation and validation. The selection and consideration
of data are based on data availability, quality, and multi-source
data integration to ensure the improvement of model prediction
performance. A snapshot of the original dataset is shown in
Figure 3.

4.2 Feature description

The feature set selected in this study, including hydrological
measurements such as annual precipitation, initial precipitation
level, sediment storage, and categorical variables such as flood
severity, risk management measures, and historical occurrence
data, is based on an in-depth analysis of flood occurrence
mechanisms and a comprehensive consideration of relevant
literature. These features are closely related to the key drivers
of floods and can fully capture the complexity and diversity of
flood occurrence. Annual precipitation is directly related to flood
occurrence, initial precipitation level reflects the wetness of the
basin, and sediment storage affects river mobility. Categorical
variables such as flood severity and risk management measures
provide historical context and human intervention information
for flood events. Historical flood data further helps the model
identify the periodicity and trend of flood occurrence. The
selection of these features not only ensures that the model
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Annual  Precipitation = Comparison  Channel Initial
Precipitation Last Year with Last Year  Gradient  Precipitation
(mm) (mm) (%) (1073) (x10 mm)
0 499.632095 498.912655 13.799899  3.016393 439.129633
1 960.571445 466.329677 -18.929280  2.283099 275.854220
2 785.595153 340.923130 -9.201618  4.354444 301.087380
3 678.926787 685.813336 9.796838  1.297812 344.536902
4 324.814912 581.299328 -1.074639  2.810211 362.922667
FIGURE 3
Sample of the collected raw dataset.

Sl Dredgin River and
Material Flood/Rain gang Reservoir Condition Actual
Storage Condition Inspection Dam Probability(%)  Situation
(x107 mm?)

52589773 Moderate Yes  Low Risk gassgspg  Did Not
Flood Happen

30.862250 S;‘(’;’z No  High Risk 87109657 Happened
12.440682  Heavy Rain Yes Low Risk 42.161647 Happened
45.777134  Heavy Rain Yes Low Risk 29.688611 Happened
26.190573  Heavy Rain Yes Low Risk 26.291189 Happened

can understand flood risks from multiple perspectives, but also
takes into account the availability and quality of data, providing
a solid foundation for the accuracy and reliability of the
model. Through this feature selection process, we have built a
comprehensive and representative database, which provides strong
data support for the training and validation of flood prediction
models.

4.3 Data preprocessing

Data preprocessing was essential to improve data quality
and optimize model training efficiency. Initial steps included
removing duplicate records and handling missing values; numerical
missing values were imputed using interpolation or mean values,
while categorical variables were imputed using the most frequent
category, both are simple, efficient and can better reflect the
data distribution characteristics. In addition, the robustness of
the BDNN model reduces the need for complex interpolation
methods. In contrast, k-NN interpolation is computationally
complex and has limited effectiveness in high-dimensional data,
while multiple interpolation is complex to implement and increases
training costs. Furthermore, numerical features were standardized
using Z-score normalization to ensure stable training processes.
Categorical variables were transformed via one-hot encoding
for effective integration into the machine learning models. An
example of the dataset after these preprocessing steps is shown in
Figure 4.

4.4 Feature correlation analysis

To optimize feature selection and enhance model efficiency,
we analyzed feature correlations using a heatmap (Figure 5). The
analysis revealed strong positive correlations, notably between
annual precipitation and initial precipitation, and between
condition probability and actual flood occurrence. Conversely,
some negative correlations emerged, such as between severe flood
conditions and actual flood occurrences, likely due to effective
regional flood mitigation measures. Features such as channel
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gradient exhibited minimal correlation, suggesting indirect impacts
on flood risk.

Based on these insights, we removed redundant or weakly
correlated features to streamline the dataset. Key influential
variables-including annual precipitation, solid material storage,
condition probability, and flood conditions-were retained to
ensure accurate predictions. Additionally, interaction analysis was
conducted by combining critical features (e.g., precipitation levels
and dam risk ratings), further improving model effectiveness in
complex scenarios.

5 Experiment

5.1 Experimental setup

Experiments were conducted on a high-performance
computing platform equipped with an Intel Core i7-9700H
CPU and an NVIDIA GeForce GTX 1660 Ti GPU. We employed
Python along with PyTorch as the primary deep learning
framework. The dataset was randomly partitioned into training
(80%) and testing sets (20%). During model training, we applied
the Adam optimizer with a learning rate of 0.01 and conducted
training for 1,000 epochs with a batch size of 64. To mitigate
overfitting and enhance model generalization, a dropout rate of
0.5 was incorporated into the training process. Hyperparameters
were determined through preliminary experimentation to balance
computational efficiency and predictive performance. In order
to strictly evaluate the generalization ability and reliability of the
model, the construction of the prediction dataset follows the data
source consistent with the training data, temporal independence,
diverse scenarios, and strict data quality control to ensure that the
prediction performance of the model under different conditions is

comprehensively evaluated.

5.2 Evaluation metrics

We the
performance of our model on independent forecasting datasets,

rigorously evaluate reliability and predictive

using a range of established performance metrics including
accuracy, precision, recall, and FI score. This multifaceted
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At . . Solid : N River and
e I R e T e
(x107 mm?) Risk
0 -0.415900 -0.452465 0.801884 0.482494 -0.684316 1.193409 84.558528 1 0 1 1 0
1 1.587377 -0.593258 -1.100359  -0.136414 -1.389866 -0.029923 87.109657 0 1 0 0 1
2 0826917 -1.135149 0.534981  1.611824 -1.280827  -1.067119 42161647 0 0 1 1 1
3 0.363328 0.355146 0.569224  -0.968007 -1.093072 0.809835 29.688611 0 0 1 1 1
4 -1.175669 -0.096466 -0.062635 0.308475 -1.013623 -0.292954 26.291189 0 0 1 1 1
FIGURE 4
Example of dataset after preprocessing steps.

Annual Precipitation (mm)

Precipitation Last Year (mm)

Comparison with Last Year (%)

Channel Gradient (10)

Initial Precipitation (x10 mm)

Solid Material Storage (X107 mm?)

Condition Probability(%)

Flood/Rain Condition_Moderate Flood

Flood/Rain Condition_Severe Flood

Dredging and Inspection_Yes

River and Reservoir Dam_Low Risk

Actual Situation_Happened

Annual Precipitation (mm)
Precipitation Last Year (mm)
Comparison with Last Year (%)
Channel Gradient (10-3)

Initial Precipitation (x10 mm)

FIGURE 5
Feature correlation heatmap indicating relationships among variables.
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evaluation provides us with a comprehensive understanding of the
strengths and limitations of our model in real-world forecasting
scenarios. Accuracy measures the correctness of the predictions
overall, while precision and recall are critical for evaluating
performance on imbalanced datasets commonly found in disaster
forecasting scenarios. The F1 score was chosen to provide a
balanced metric that considers both precision and recall, suitable
for a balanced assessment of false positives and false negatives in
flood forecasting tasks.

Frontiersin Applied Mathematics and Statistics 07

5.3 Main experiment comparison

To evaluate the effectiveness of the proposed BDNN in flood
prediction, we compared its performance against several traditional
machine learning methods including Random Forest, XGBoost,
SVM, and MLP. The evaluation metrics used were accuracy,
precision, recall, and F1 score.

As shown in Table 1 and Figure 6, the proposed BDNN model
consistently outperformed traditional methods across all evaluation
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metrics. Specifically, BDNN achieved the highest accuracy of 94.6%,
representing an improvement of 4.2 percentage points over the
second-best MLP model (90.4%), and significantly outperforming
baseline models such as XGBoost (83.5%) and Random Forest
(82.3%). Moreover, BDNN exhibited superior precision (95.2%)
and recall (94.1%), demonstrating its strong ability to minimize
false alarms and accurately capture actual flood occurrences. These

TABLE 1 Performance comparison between BDNN and baseline models.

10.3389/fams.2025.1653562

results underscore the effectiveness, reliability, and practical utility
of the BDNN model for flood prediction tasks.

5.4 Ablation study

To further assess the contributions of individual model
components, we conducted a series of ablation studies by
systematically removing key modules from the BDNN model: VI,
MC Dropout and the Hierarchical Attention Mechanism. The

performance results for each model variant are presented in Table 2.

Accuracy Precision Recall F1 score
(VA] (VA] (%) (VA]
Random forest 82.3 81.5 82.9 82.2
andom fores TABLE 2 Ablation study results of BDNN model variants.
XGBoost 83.5 84.1 83.2 83.6
sUM 0a 452 037 " Model Accuracy Precision Recall F1 score
: : : : variant (VA (VA (VA (VA
Logistic 854 847 859 8.3 BDNN (normal) 88.5 89.0 89.5 89.2
regression
without VI 88.8 88.0 89.4 88.7
KNN 86.5 85.8 86.8 86.3
. without MC 88.2 87.5 89.0 88.2
Decision tree 814 80.6 81.9 81.2
dropout
AdaBoost 853 844 86.0 852 without 91.0 90.5 915 91.0
Gradient 87.3 $6.8 87.7 87.2 attention
boosting without VI + 90.0 89.5 91.0 90.2
MLP 90.4 91.1 89.8 90.4 MC dropout
Naive Bayes 394 382 90.3 392 without VI + 92.6 92.0 93.0 925
attention
LDA 88.4 87.5 89.1 88.3
without MC 92.2 91.8 92.6 92.2
BDNN 88.5 89.0 89.5 89.2 dropout +
(normal) attention
BDNN (ours) 94.6 95.2 94.1 94.6 BDNN (ours) 94.6 95.2 94.1 94.6

Values in bold denote the best-performing model for that metric.

Values in bold denote the best-performing model for that metric.

1.00
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FIGURE 6

Performance comparison of BDNN against baseline models across multiple evaluation metrics.
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The that
significantly contributes to overall model performance. Removing

ablation results indicated each component
the Hierarchical Attention Mechanism resulted in the most
substantial performance decrease, with accuracy dropping by
4.6%, underscoring its critical role in effective feature selection and
prediction accuracy enhancement. Similarly, the removal of VI
and MC Dropout reduced accuracy by 2.4 and 2.0%, respectively,
emphasizing their importance in improving generalization and
reliability. When both VI and MC Dropout were removed
simultaneously, accuracy further declined to 91.0%, highlighting
the synergistic effects of these components in maintaining model
stability and prediction reliability. Thus, our comprehensive BDNN

model, integrating all modules, achieved optimal performance.

5.5 Prediction probability distribution
analysis

To further analyze the predictive capability of the model across
different sample types, we plotted the density distribution curves
of predicted probabilities as shown in Figure 7. The horizontal
axis represents the predicted probability, and the vertical axis
denotes the probability density, differentiating between actual flood
occurrences (Happened) and non-occurrences (Did Not Happen).

Figure 7 shows that the predicted probabilities for both classes
cluster tightly in the 0.89-0.91 range, with flood events peaking
slightly higher (0.90) than non-flood events. This indicates that
the model is highly confident for most samples and that an
alarm threshold near 0.90 would maximize recall, ensuring that
the vast majority of true floods are captured. The shoulder
at 0.85-0.89 corresponds to lower-confidence cases: here the
model occasionally overestimates risk, so analyst review or
additional data may be warranted. Minor ripples around 0.88
likely stem from measurement noise or stochastic variability in

10.3389/fams.2025.1653562

the Bayesian ensemble. Although overall calibration is good, fine-
tuning the decision threshold or enhancing the uncertainty module
could further reduce false alarms without sacrificing detection
performance.

5.6 Prediction uncertainty analysis

We further examined the prediction uncertainty of the model.
The horizontal axis represents predicted probability values, and the
vertical axis shows the number of samples within each probability
interval, combined with a smooth probability density estimate
curve.

Figure 8 reveals that 84 % of all predictions fall within the high-
confidence band 0.85-0.95, peaking at 0.90; these cases can safely
trigger automatic alerts because the model’s uncertainty is minimal.
By contrast, the lower tail (0.80-0.85) contains comparatively
few samples but exhibits the largest predictive variance, reflecting
ambiguous class boundaries or anomalous patterns; we therefore
recommend manual verification for this band before issuing
warnings. The upper tail (>0.95) often corresponds to multi-day
flood sequences in which successive forecasts remain extremely
confident; to avoid alarm fatigue, duplicate alerts can be
consolidated and operational resources redirected toward on-
the-ground response. Overall, while the distribution confirms
strong model reliability, future work on feature engineering, data
augmentation, and architecture refinement could further compress
the tails and bolster robustness.

5.7 Robustness analysis

To validate the robustness of the proposed model under various
perturbations, we conducted systematic robustness tests by adding

Prediction Probability Distribution
f— Did Not Happen
3004 Happened
250 +
200 A
2
wn
=
]
0 150 A
100 A
50 A
0 T T T T T T
0.875 0.880 0.885 0.890 0.895 0.900
Probability
FIGURE 7
Density distribution of predicted probabilities comparing actual flood occurrences (Happened) and non-occurrences (Did Not Happen).
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FIGURE 8
Distribution of prediction uncertainty indicating sample counts across predicted probability intervals, along with a smoothed probability density
estimate curve.

TABLE 3 Robustness analysis under various data perturbations and
dropout rates.

Experiment Accuracy Precision Recall F1 score
setting (%) (%) (%) (%)
Baseline (no 94.6 95.2 94.1 94.6
perturbation)

Noise level 0.1 93.5 94.0 93.0 93.5
Noise level 0.2 92.0 92.5 91.5 92.0
Dropout rate 0.3 93.0 93.5 92.5 93.0
Dropout rate 0.4 91.5 92.0 91.0 91.5

different levels of random noise to the input data and adjusting
the dropout rates to simulate variations encountered in practical
scenarios. The results are presented in Table 3.

The robustness experiments showed that the model’s accuracy
slightly decreased to 93.5% when noise at a level of 0.1 was
added, demonstrating strong resilience to minor data disturbances.
Increasing the noise level further to 0.2 resulted in accuracy
dropping to 92.0%, though performance remained relatively high.
Similarly, adjustments to the dropout rate (0.3 and 0.4) resulted
in accuracy levels of 93.0% and 91.5%, respectively, indicating the
model’s resilience to training randomness.

Overall, these experiments confirmed that the proposed BDNN
model maintains excellent stability and generalization performance
under data perturbations and training variability. Nonetheless,
performance declines under more extreme perturbations highlight
opportunities for future research into advanced training strategies
or model refinements to enhance real-world applicability and
reliability.
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6 Conclusion

This study validates the effectiveness of Bayesian deep neural
networks (BDNNG) in disaster prediction. By combining Bayesian
inference and deep learning techniques, BDNNs achieve improved
accuracy and reliable uncertainty quantification in the Yellow
River Basin, thereby facilitating informed decision making. The
model demonstrates strong generalization capabilities, which is
particularly beneficial in situations where data is limited or
unbalanced. The model’s architecture and hydrometeorological
feature set are transferable. With appropriate hyper-parameter
tuning, the framework can accommodate datasets of varying size,
balance, and climatic context, and it remains lightweight enough
for resource-constrained deployments.

However, BDNNG still face challenges including constrained
data availability, high computational complexity, and limited
model interpretability, hindering broader adoption. Future
research should focus on improving computational efficiency,
integrating multimodal data sources (e.g., meteorological data,
remote sensing imagery, and social media information), and
expanding applications to diverse disaster scenarios such as
earthquakes, wildfires, and industrial incidents. Further efforts
to enhance model interpretability by incorporating Explainable
AT techniques, such as SHAP values and attention mechanism
visualization, will bolster user trust in model predictions and
refine disaster management. These technologies will render the
model’s decision-making process more transparent, aiding in the
interpretation of flood forecasts and highlighting key features
the model focuses on, thereby offering more robust support for
disaster prediction and management.

Overall, BDNNs hold significant promise as a foundational
tool in intelligent disaster

prediction, contributing to
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reduced disaster impacts and enhanced societal resilience.
With continued methodological advancements and broader
BDNNs
valuable

interdisciplinary  integration, are  expected to

become  increasingly for real-world disaster

management applications.
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