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Estimating and testing blip
effects of treatments in sequence
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In longitudinal studies, treatments are often assigned in the form of a sequence to
achieve a certain outcome of interest. The blip effect of treatment in sequence
is the net effect of treatment on the outcome. In this article, we introduce a
method of estimating and testing the blip effects via the standardized point
effects of treatments in sequence. First, we apply available methods to estimate
the point effects referring to single-point treatments. Then we standardize the
point effects to a small number of strata of relevance to the blip effects of
interest. Finally, we use the standardized point effects to estimate and test
the blip effects. Our method addresses two issues in complex longitudinal
studies: a dimension reduction without strict treatment assignment conditions
and a targeted analysis of the blip effects of interest across different times. The
simulation study shows that our method achieves unbiased estimates of the blip
effect, maintains nominal coverage probability, and demonstrates high power for
hypothesis testing. A medical example illustrates the application of our method
in observational studies.

KEYWORDS

blip effect, targeted causal inference, point effect, standardized point effect, structural
nested mean model

1 Introduction

In many medical practices, treatments are assigned in the form of a sequence to achieve
a certain outcome of interest. Besides stationary covariates, there are often time-dependent
covariates between treatments, which may have influences from the earlier treatments and
on the subsequent treatments. From the observed treatments, covariates, and outcome, one
wishes to estimate the causal effect of a specified regime of treatments on the outcome.
A special type of such causal effects is the blip effect of treatment in sequence, which
is the causal effect of treatment given all the previous treatments and covariates, while
the subsequent treatments are set at controls [1]. The blip effect describes the net effect
of treatment on the outcome [2] and its modification by covariates, including the time-
dependent ones [3, 4]. Furthermore, the blip effects of treatments are the determining
factors for the causal effect of any regimes of treatment [1, 5]. In this article, we focus
on the blip effects.

Under a certain identifying condition, Robins expressed the blip effect of treatment
in terms of the standard parameters, that is, the conditional means of the outcome
given all the treatments and covariates [1, 6]. Based on the expression, Taubman et al.
introduced a parametric method of estimating the blip effect [7], in which the difficulty

Frontiers in Applied Mathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1650059
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1650059&domain=pdf&date_stamp=2025-10-21
mailto:xwg@hig.se
https://doi.org/10.3389/fams.2025.1650059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1650059/full
https://orcid.org/0000-0003-1897-5730
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Liao et al. 10.3389/fams.2025.1650059

is to model the standard parameter in the presence of the time-
dependent covariates [5]. Alternatively, Almirall et al. expressed the
standard parameter in terms of the blip effects of treatments and the
effects of covariates, including the time-dependent ones [3]. With
the expression, they introduced a parametric method of estimating
the blip effect, where the difficulty is in modeling the effects
of time-dependent covariates. See also other parametric methods
(e.g., [8]).

Due to the modeling difficulties arising from the time-
dependent covariates, the current literature focuses on semi-
parametric methods of estimating the blip effect [22]. One class
of semi-parametric methods is the marginal structural model
based on the inverse probability of treatment weighting [5, 9],
the doubly robust version [10], and other extensions. Another
class of semi-parametric methods is the G-estimation based on
the structural nested mean model (SNMM) describing a pattern
of blip effects [1, 5, 11] and the extensions such as the dynamic
weighted ordinary least squares [12]. Regardless of whether they
are semi-parametric or parametric, these methods typically have
difficulties in estimating and testing a pattern of blip effects
over time.

In the framework of causal inference for single-point
treatments (e.g., [5, 13–15]), every treatment in sequence has a
point effect, which is well studied and can be estimated by available
methods. Under the same identifying condition as Robins [1, 6],
Wang and Yin [16] expressed the point effect of treatment in
terms of the blip effects of treatments and demonstrated that the
blip effects can be estimated via the point effects, where treatment
assignment conditions are needed to reduce the dimensionality
of the point effects. In contrast, in observational studies for
single-point treatments in epidemiology, a common procedure
for estimating the point effect in a certain subpopulation of
interest is to standardize the point effect to that subpopulation.
Furthermore, standardization is of practical significance if one aims
at the treatment effect within a given subpopulation in the case
of heterogeneous treatment effects. It should be more significant
in the context of a sequence of treatments, where the treatment
effects are far more heterogeneous. In this article, we will extend
this epidemiological tool to a sequence of treatments to estimate
and test the blip effects of treatments in sequence in observational
studies.

In Section 2, we describe the relationship between the
blip effect, the point effect, and the standardized point effect
of treatment in sequence in terms of potential variables. In
Section 3, we present the framework for estimating and testing
the blip effect via the standardized point effects. With our
method, we may achieve (1) no need for treatment assignment
conditions, (2) a reduction of the dimension of point effects,
(3) a targeted analysis of blip effects of interest, and (4) an
accommodation of SNMMs across different times. In Section 4,
we illustrate by simulation the finite-sample properties of our
method and compare our method with available ones in terms
of the modeling conditions. In Section 5, we show how to
implement our method by conducting an observational study for
the influence of early cancer diagnosis on 1-year survival and
its modification by age. In Section 6, we conclude the article
with discussions.

2 The blip effects, point effects, and
standardized point effects of
treatments in sequence

2.1 Treatment regime, potential variables
and the blip effect of treatment

Let Dt (t = 1, . . . , T) be a treatment plan, which
would deterministically assign treatments zt to each unit of the
population, although possibly contrary to fact. A treatment regime
is a sequence of such treatment plans, DT

1 = {D1, . . . , DT}. Prior
to D1, there exists a stationary covariate vector X1. Under DT

1 ,
each unit could have a potential time-dependent covariate vector
Xt(Dt−1

1 ) between Dt−1 and Dt (t = 2, . . . , T) and a potential
outcome Y(DT

1 ) of interest, which is assumed to occur after the last
treatment plan DT without loss of generality. The stochastic process
is illustrated by

X1 → D1 → X2(D1) → · · · → XT(DT−1
1 ) → DT → Y(DT

1 ).

These potential variables are denoted by
{XT

1 (DT−1
1 ), DT

1 , Y(DT
1 )}.. Their realizations are {xT

1 , zT
1 , y} =

{x1, z1, x2, . . . , xT , zT , y}. Let Ht(Dt−1
1 ) = {Xt

1(Dt−1
1 ), Dt−1

1 } be
the history of potential covariates and treatment plans before
treatment plan Dt . Its realization is ht = {xt

1, zt−1
1 }. Given ht , we

document the (sub) regime in stratum ht as DT
t = {Dt , . . . , DT},

the potential covariate vector between Ds−1 and Ds as Xs(Ds−1
t )

(s = t + 1, . . . , T), and the potential outcome as Y(DT
t ).

Without loss of generality, we take zt = 0 as the control
treatment and DT

t = 0 = {0, 0, . . . , 0} the control regime. Given
ht , consider two regimes DT

t = {zt , 0} and {0, 0} in stratum ht .
We have the potential outcomes Y(zt , 0) and Y(0, 0). According to
Robins [1] and Hernan and Robins [5], the blip effect of treatment
zt in stratum ht is defined as

φ(ht; zt) = E{Y(zt , 0) | ht} − E{Y(0, 0) | ht},

where the (conditional) expectations are with respect to the
conditional distributions P{Y(zt , 0) | ht} and P{Y(0, 0) | ht}.
Clearly, φ(ht; 0) = 0. The blip effect describes the net effect
of treatment in sequence [2] and its effect modification by the
previous covariates and treatments [3, 4]. Furthermore, the blip
effects of treatments are the determining factors for the causal effect
of any regime of treatments according to Robins [1] and Hernan
and Robins [5].

2.2 Observable variables, identifying
condition and the point effect

Corresponding to the potential variables, we have a sequence of
observable treatment variables ZT

1 = {Z1, Z2, . . . , ZT}, a sequence
of observable covariate vectors XT

1 = {X1, X2, . . . , XT}, and the
observable outcome Y . The stochastic process is illustrated by

X1 → Z1 → X2 → · · · → XT → ZT → Y .
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Suppose that the observable variables {XT
1 , ZT

1 , Y} have the
same support as the potential variables {XT

1 (DT−1
1 ), DT

1 , Y(DT
1 )},

that is, the observable variables take the same values as the
potential variables. Like the realizations of the potential variables,
the observed values of the observable variables are denoted by
{zT

1 , xT
1 , y}. Let Ht = {Xt

1, Zt−1
1 } be the history of covariates and

treatment variables before treatment variable Zt . Its realization
is ht = {xt

1, zt−1
1 }. In the following, we will use P(.) to denote

the probability distribution of discrete variables or the density
distribution of continuous variables. The joint distribution of
{XT

1 , ZT
1 , Y} factorizes into

P(XT
1 , ZT

1 , Y) = P(X1)P(Z1 | h1) · · ·P(XT | hT−1, zT−1)P(ZT | hT)

P(Y | hT , zT).

To identify the blip effect by the observable variables
{XT

1 , ZT
1 , Y}, Robins introduced the identifying condition [1, 6]:

(a) The consistency assumption: if the observed treatments zT
1 are

equal to the realizations of DT
1 , then the observed covariates xT

1 are
equal to the realizations of the potential covariates XT

1 (DT−1
1 ), and

the observed outcome y is equal to the realization of the potential
outcome Y(DT

1 ). (b) The assumption of no unmeasured confounders:
given ht , treatment Zt is conditionally independent of XT

t+1(DT−1
t )

and Y(DT
t ). (c) The positivity assumption: if P(Ht = ht) > 0, then

0 < P(Zt | ht) < 1.
The standard parameter for the conditional distribution P(Y |

hT , zT) is the conditional mean μ(hT , zT) = E(Y | hT , zT). Under
the identifying condition, Robins expressed the blip effect in terms
of the standard parameters [1, 6]. If the time-dependent covariate
Xt is a posttreatment variable from the earlier treatments Zt−1

1
and a confounder for the subsequent treatments ZT

t , however, it
is highly difficult to specify a model for the standard parameters.
Alternatively, Almirall et al. expressed the standard parameter in
terms of the blip effects of treatments and the effects of covariates
[3]. However, it is highly difficult to specify models for the covariate
effects.

Now consider the mean μ(ht , zt) = E(Y | ht , zt) (t =
1, 2, · · · , T); for t = T, it is the standard parameter. Then the point
effect of treatment zt in stratum ht is defined as

θ(ht; zt) = μ(ht , zt) − μ(ht , 0).

Notably, the treatment variable Zt does not have posttreatment
variables. Thus, this point effect refers to the effect of treatment
in single-point causal inference and can be estimated by available
methods [5, 13–15].

Under the identifying condition as Robins [1, 6], Wang and
Yin expressed the point effect in terms of the blip effects [2,
16]. In designed experiments, where the treatment assignment
condition is known and may reduce the dimensionality of the
point effects, they demonstrated that the blip effect can be
estimated via the point effects. In observational studies, where
the treatment assignment is unknown, we will express the blip
effect in terms of the standardized point effects and estimate and
test the blip effect via the standardized point effects, as will be
shown below.

2.3 Standardized point effects vs. blip
effects of treatments in sequence

Standardization is a procedure in epidemiology for estimating
the point effect in strata of interest in the population.
Here we extend it to a sequence of treatments. We divide
the population at time t into a small number of disjoint
strata. Let St indicate strata consisting of ht at time t. The
standardized point effect of treatment zt in stratum St is
defined as

�(St; zt) = E{θ(ht; zt) | St}, (1)

where the expectation is with respect to P(Ht = ht | St). The set
of the standardized point effects �(St; zt) is far smaller than that of
the point effects θ(ht; zt). Clearly, �(ht; zt) = θ(ht; zt) in the case
of St = ht .

In the Appendix, we prove

Theorem 1. Under the identifying condition, the standardized
point effect is expressed in terms of the blip effects by

�(St; zt) = E{φ(ht; zt) | St} +
∑T

s=t+1 E{φ(hs; zs) | St , zt}−
−∑T

s=t+1 E{φ(hs; zs) | St , 0}
(2)

where the first expectation is with respect to P(Ht = ht | St), the
second one to P(Xs

t+1 = xs
t+1, Zs−1

t+1 = zs−1
t+1, Zs = zs | ht , zt) P(Ht =

ht | St) , and the third one to P(Xs
t+1 = xs

t+1, Zs−1
t+1 = zs−1

t+1, Zs = zs |
ht , 0) P(ht | St). Notably, the equation is �(ST; zT) = E{φ(hT; zT) |
ST} at t = T.

Equation 2 is true without any treatment assignment conditions
and thus applicable to observational studies. It is interesting
to examine Equation 2 in the presence of a certain treatment
assignment condition. Generally, if the treatment assignment
satisfies P(Zt | ht) = P(Zt | St), then we have the point effect of
zt in St given by θ(St; zt) = μ(St , zt) − μ(St , 0), where μ(St , zt) =
E(Y | St , zt).
In the Appendix, we prove

Theorem 2. Suppose that treatment assignment satisfies the
condition P(Zt | ht) = P(Zt | St) besides the identifying
condition. Then the point effect is expressed in terms of the blip
effects by

θ(St; zt) = E{φ(ht; zt) | St , zt} +
∑T

s=t+1 E{φ(hs; zs) | St , zt}−
−∑T

s=t+1 E{φ(hs; zs) | St , zt = 0}
(3)

where the first expectation is with respect to P(Ht = ht | St , zt),
the second one to P(Hs = hs, Zs = zs | St , zt), and the third
one to P(Hs = hs, Zs = zs | St , 0). Notably, the equation is
θ(ST; zT) = E{φ(hT; zT) | ST , zT} at t = T.

Equation 3 can be used with a certain treatment assignment
condition, applicable only for designed experiments. Sometimes
in observational studies, the treatment assignment condition can
be approximated by subclassification [13], and then, Equation 3 is
also applicable.
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3 Estimating and testing blip effects
via standardized point effects of
treatments

3.1 Estimating the standardized point
effects of treatments

First, we specify strata St (t = 1, . . . , T) in accordance with
the blip effects of interest, aiming to improve the estimation and
hypothesis testing of the blip effects of interest (i.e., the targeted
analysis of blip effects). For instance, if we aim to analyze the
modification of the blip effect by age and sex, then we specify strata
by disjoint ranges of age and sex at times t = 1, . . . , T. Second,
we estimate the point effect θ(ht; zt) in stratum St by available
methods, for instance, modeling the mean μ(ht , zt). Finally, we
estimate the standardized point effect in stratum St according to
Equation 1,

�(St; zt) = E{θ(ht; zt) | St},

where the expectation is with respect to the distribution P(Ht =
ht | St).

For a finite sample, the expectation becomes a sum of the point
effect with respect to the probability distribution P(Ht = ht | St)
if ht is discrete, or with respect to the probability distribution
P(Ht = ht | St) dν(ht) if ht is continuous, where ν(.) is a proper
measure of Ht . In both cases, the probability is estimated by the
corresponding proportion denoted by P̂(Ht | St). Together with
θ̂(ht; zt), we obtain �̂(St; zt).

There is considerable flexibility in estimating the standardized
point effect �(St; zt). Besides the usual regression, one can also
estimate the point effect and the standardized counterpart by
applying the propensity score-based subclassification method [13],
the doubly robust method [14, 15], and others.

While it is straightforward to estimate �(St; zt), it may not
be easy to estimate the correlations between �̂(St; zt) at different
times. In contrast, the correlations between point effects θ̂(ht; zt)
at different times are negligible conditional on all treatments
and covariates {hT , zT}, for instance, they are equal to zero for
normally distributed outcomes [2, 16], so are the correlations
between �̂(St; zt) at different times conditional on all treatments
and covariates {hT , zT}.

3.2 Estimating and testing the blip effects
of treatments without treatment
assignment conditions

In most practices, the blip effects follow a certain pattern
described by SNMM. Because the blip effect is a linear effect, that is,
the difference in mean between potential outcomes, SNMM is often
of the form

φ(ht; zt) =
k∑

j=1

γjfj(ht , zt),

which is indexed by the blip effect vector γ = (γ1, . . . , γk) of
small dimension, where it is required that fj(ht , zt = 0) = 0. For

instance, φ(ht; zt) = γtzt (t = 1, ..., T), in which ft(ht , zt) = zt and
fs(ht , zt) = 0 if s �= t. In this case, the blip effects at different times
are different and can be estimated recursively at t = T, ..., 1 [5, 12].
However, the blip effects may be the same across different times,
for instance, φ(ht; zt) = γ1zt , in which f1(ht , zt) = zt . It is far more
difficult to estimate γ1 than γt [3, 12].

With SNMM, Equation 2 becomes

�(St; zt) =
k∑

j=1

γjbj(St , zt), t = 1, 2, . . . , T. (4)

where bj(ST , zT) = E{fj(hT , zT) | ST}, and for t = 1, . . . , T − 1,

bj(St , zt) = E{fj(ht , zt) | St}+

T∑
s=t+1

E{fj(hs, zs) | St , zt} −
T∑

s=t+1
E{fj(hs, zs) | St , 0}.

Here, the first expectation is with respect to P(Ht = ht | St),
the second to P(Xs

t+1 = xs
t+1, Zs−1

t+1 = zs−1
t+1, Zs = zs | ht , zt)

P(Ht = ht | St), and the third to P(Xs
t+1 = xs

t+1, Zs−1
t+1 =

zs−1
t+1, Zs = zs | ht , 0) P(Ht = ht | St). For a finite sample,

these expectations become summations, where the probabilities are
P(Ht | St) and P(Xs

t+1, Zs−1
t+1, Zs | ht , zt) if covariates and treatments

are discrete, or P(Ht | St) dν(ht) and P(Xs
t+1, Zs−1

t+1, Zs | ht , zt)
dν(xs

t+1, zs−1
t+1, zs) if covarites and treatments are continuous. In

both cases, the probabilities are estimated by the corresponding
proportions denoted by P̂(Ht | St) and P̂(Xs

t+1, Zs−1
t+1, Zs | ht , zt).

This equation does not need any treatment assignment conditions
and thus can be applied to observational studies.

Conditional on all treatments and covariates {hT , zT} prior to
outcome Y , we apply Equation 4 as a regression model to estimate
the blip effect vector γ . The �(St; zt) has been estimated in Section
3.1. The conditional correlation between �̂(St; zt) at diffrent times
is approximately zero, as described in Section 3.1. The probabilities
are estimated by the corresponding proportions, which are subject
to no variability. The regression yields γ̂ . However, the covariates
and treatments {hT , zT} are not ancillary to γ . Therefore, we
need to incorporate the variability of {hT , zT} when estimating
the covariance matrix cov(γ̂ ). This can be achieved by, say, the
bootstrap method.

Notably, the estimands �(St; zt), E{fj(ht , zt) | St}, E{fj(hs, zs) |
St , zt}, and E{fj(hs, zs) | St , 0} are those in the framework of
causal inference for single-point treatments. The conditions for
the consistency and asymptotic normality of their estimates are
well studied and often assumed to be satisfied in practice; see,
for instance, Rosenbaum and Rubin [13] and Hernan and Robins
[5]. Therefore, if these estimates are consistent and asymptotically
normal, it follows from Equation 4 that γ̂ is consistent and
asymptotically normal. With γ̂ and cov(γ̂ ), we perform the Wald
test on γ .
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3.3 Estimating and testing the blip effects
of treatments with treatment assignment
conditions

Now, suppose the treatment assignment condition P(Zt | ht) =
P(Zt | St). With SNMM, Equation 3 becomes

θ(St; zt) =
k∑

j=1

γjbj(St , zt), t = 1, 2, . . . , T. (5)

where bj(ST , zT) = E{fj(hT , zT) | ST , zt}, and for t = 1, . . . , T − 1,

bj(St , zt) = E{fj(ht , zt) | St , zt}+

T∑
s=t+1

E{fj(hs, zs) | St , zt} −
T∑

s=t+1
E{fj(hs, zs) | St , 0}.

Here, E{fj(ht , zt) | St , zt} is with respect to P(Ht = ht | St , zt),
E{fj(hs, zs) | St , zt} to P(Hs = hs, Zs = zs | St , zt), and E{fj(hs, zs) |
St , 0} to P(Hs = hs, Zs = zs | St , 0). This equation needs treatment
assignment conditions and thus applies only to designed studies.

In analogous to Equation 4, we apply Equation 5 to estimate
and test γ . Conditional on all treatments and covariates {hT , zT}
prior to outcome Y , we use this equation as a regression model
to estimate the blip effect vector γ . The θ(St; zt) is estimated by
available methods, for instance, calculating the difference between
the averages of the outcome in strata {St , zt} and {St , 0}. The
conditional correlation between θ̂(St; zt) at different times is
approximately zero, as described in Section 3.1. The probabilities
are estimated by the corresponding proportions, which are subject
to no variability. The regression yields γ̂ . We apply the bootstrap
method to estimate the covariance matrix cov(γ̂ ) incorporating
the variability of {hT , zT}. If the estimates Ê{fj(ht , zt) | St , zt},
Ê{fj(hs, zs) | St , zt}, and Ê{fj(hs, zs) | St , 0} are consistent and
asymptotically normal as often assumed in causal inference for
single-point treatments, so is γ̂ . With γ̂ and cov(γ̂ ), we may
conduct the Wald test on γ .

Several statements can be made comparing the two methods
based on Equations 4 and 5. First, the former method is applicable
to observational studies, whereas the latter is applicable only to
designed studies. Second, both methods reduce the dimension of
point effects, simplifying the regression. Third, the former allows
for standardizing the point effects in accordance with the blip
effects of interest, leading to a targeted analysis of blip effects,
in comparison to the latter. For instance, a complete randomized
trial of treatments in sequence does not allow for an analysis
of the modification of blip effects by any covariates. Finally, the
designed studies are still superior due to the fact that the identifying
conditions are satisfied by design in comparison to observational
studies.

4 Simulation study

In this section, we study by simulation the finite-sample
properties of our method for estimating and testing the blip effect
and compare our method with available methods in the literature in

terms of modeling conditions. In Section 5, we will illustrate how to
apply our method in a medical observational study.

4.1 Our method for estimating the blip
effects

Suppose a treatment sequence of length T = 3. The treatment
variables Zt are dichotomous with zt = 0, 1 (t = 1, 2, 3). The
time-dependent covariates Xt are polytomous with xt = 0, 1, 2, 3
(t = 2, 3). Conditional on all treatment and time-dependent
covariates {z1, x2, z2, x3, z3}, the outcome Y follows the normal,
Bernoulli, or Poisson distribution. A summary of the variables
is {Z1, X2, Z2, X3, Z3, Y} in the temporal order, with observations
{z1, x2, z2, x3, z3, y}. In the Supplementary material, we describe the
simulation study in detail. The relevant codes developed for the
simulation are given by Yin [17].

From the treatment sequence, we have 73 = 1 + 8 + 64 point
effects of treatments,⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ(z1 = 1) = μ(z1 = 1) − μ(z1 = 0),
θ(z1, x2; z2 = 1) = μ(z1, x2, z2 = 1) − μ(z1, x2, z2 = 0),
θ(z1, x2, z2, x3; z3 = 1) = μ(z1, x2, z2, x3, z3 = 1)

−μ(z1, x2, z2, x3, z3 = 0).

We divide the population at time t = 2 into strata {x2 = j}
(j = 0, 1, 2, 3) and the population at time t = 3 into strata {x3 = j}
(j = 0, 1, 2, 3). Then we may obtain the following nine standardized
point effects,⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(z1 = 1) = θ(z1 = 1),
�(x2 = j; z2 = 1) = ∑

z1
θ(z1, x2 = j; z2 = 1)P(z1 = z1 | x2 = j),

�(x3 = j; z3 = 1) = ∑
z1,x2,z2

θ(z1, x2, z2, x3 = j; z3 = 1)
P(z1, x2, z2 | x3 = j).

Our method, based on Equation 4, is applicable when
estimating the blip effects without treatment assignment
conditions. To evaluate the performance of this method,
however, we will compare it with a method based on Equation 5,
which is only applicable with a certain treatment assignment
condition. Thus, we choose a strong treatment assignment such
that the assignment of z2 depends only on x2 and that of z3 only
on x3; however, the simulation can readily be extended to weaker
treatment assignment conditions. Thus, the treatment assignment
satisfies the condition P(Zt | ht) = P(Zt | xt) (t = 2, 3), so we have
the following nine standardized point effects,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ(z1 = 1) = μ(z1 = 1) − μ(z1 = 0),
θ(x2 = j; z2 = 1) = μ(x2 = j, z2 = 1) − μ(x2 = j, z2 = 0),

j = 0, 1, 2, 3,
θ(x3 = j; z3 = 1) = μ(x3 = j, z3 = 1) − μ(x3 = j, z3 = 0),

j = 0, 1, 2, 3.

Suppose two specific SNMMs, SNMM1 and SNMM2, are of the
following form. With SNMM1, the blip effects are⎧⎪⎨⎪⎩

φ(z1 = 1) = γ1
φ(z1, x2 = j; z2 = 1) = γ2j j = 0, 1, 2, 3
φ(z1, x2, z2, x3 = j; z3 = 1) = γ3j, j = 0, 1, 2, 3
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TABLE 1a Estimate and variance of the blip effect obtained in Section 4 with our methods.

Estimate and variance in column for the blip effect

γ1 γ20 γ21 γ22 γ23 γ30 γ31 γ32 γ33

Normal outcome

True value −2 3 −3 −2 0 3 −3 −2 0

Method (i)
−1.99 2.99 −2.98 −1.99 0.00 2.99 −3.01 −1.97 0.00

0.03 0.18 0.09 0.05 0.07 0.07 0.08 0.15 0.04

Method (ii)
−2.00 2.99 −2.98 −1.99 0.00 2.99 −3.01 −1.97 0.00

0.03 0.16 0.09 0.05 0.04 0.07 0.08 0.14 0.04

Method (iii)
−2.00 2.99 −2.99 −1.98 0.00

0.03 0.06 0.04 0.06 0.03

Method (iv)
−2.00 2.99 −2.99 −1.99 0.00

0.03 0.05 0.04 0.06 0.02

Dichotomous outcome

True value −0.2 0.15 −0.15 −0.15 0.0 0.15 −0.15 −0.15 0.0

Method (i)
−0.198 0.151 −0.149 −0.145 0.002 0.149 −0.152 −0.148 −0.006

0.001 0.004 0.005 0.004 0.005 0.004 0.004 0.004 0.005

Method (ii)
−0.199 0.153 −0.149 −0.145 0.003 0.150 −0.152 −0.149 −0.005

0.001 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005

Method (iii)
−0.199 0.151 −0.152 −0.148 −0.001

0.001 0.002 0.002 0.002 0.002

Method (iv)
−0.200 0.152 −0.152 −0.148 −0.001

0.001 0.002 0.002 0.002 0.002

Poisson outcome

True value −4 3 −2 −2 0 3 −2 −2 0

Method (i)
−3.96 2.96 −2.02 −2.02 −0.02 3.02 −2.02 −2.07 −0.03

0.11 0.45 0.49 0.44 0.49 0.49 0.44 0.52 0.47

Method (ii)
−3.98 2.98 −2.01 −2.02 −0.01 3.01 −2.02 −2.05 −0.03

0.11 0.44 0.42 0.44 0.41 0.49 0.44 0.49 0.48

Method (iii)
−3.98 2.99 −2.01 −2.03 −0.03

0.10 0.23 0.25 0.27 0.22

Method (iv)
−3.98 3.00 −2.01 −2.03 −0.02

0.10 0.23 0.23 0.26 0.20

• Three outcome types: normal, dichotomous and Poisson.
• Nine blip effects: γ1 = φ(z1 = 1); γ2j = φ(z1, x2 = j; z2 = 1), j = 0, 1, 2, 3; γ3j = φ(z1, x2, z2, x3 = j; z3 = 1), j = 0, 1, 2, 3.
• Four modeling methods: method (i) using Equation 5 and SNMM1; method (ii) using Equation 4 and SNMM1; method (iii) using Equation 5 and SNMM2; method (iv) using Equation 4

and SNMM2. Methods (i) and (iii) need treatment assignment conditions whereas methods (ii) and (iv) do not. SNMM1 imposes no constraint on blip effects whereas SNMM2 imposes
the constraint on blip effects: γ2j = γ3j (j = 0, 1, 2, 3).

For every estimation, a total of 1000 data sets are used with a sample size of 1000 units.
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TABLE 1b Wald test on the blip effect at the 0.05 significance level: coverage probability of 95 % confidence interval (coverage) and power of the test
(power).

Coverage and power in column for the casual effect

γ1 γ20 γ21 γ22 γ23 γ30 γ31 γ32 γ33

Normal outcome

True value −2 3 −3 −2 0 3 −3 −2 0

Method (i)
0.95 0.94 0.95 0.95 0.95 0.95 0.94 0.96 0.95

1.00 0.68 0.89 0.98 0.96 0.96 0.94 0.68 1.00

Method (ii)
0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.96 0.95

1.00 0.70 0.89 0.99 1.00 0.96 0.95 0.71 1.00

Method (iii)
0.94 0.95 0.95 0.96 0.94

1.00 0.97 1.00 0.98 1.00

Method (iv)
0.94 0.95 0.95 0.96 0.95

1.00 0.99 1.00 0.98 1.00

Dichotomous outcome

True value −0.2 0.15 −0.15 −0.15 0.0 0.15 −0.15 −0.15 0.0

Method (i)
0.96 0.96 0.94 0.95 0.96 0.96 0.95 0.95 0.94

0.84 0.30 0.33 0.31 0.30 0.33 0.34 0.32 0.36

Method (ii)
0.95 0.96 0.94 0.95 0.95 0.96 0.95 0.95 0.94

0.84 0.30 0.32 0.31 0.30 0.33 0.32 0.31 0.36

Method (iii)
0.96 0.95 0.95 0.96 0.95

0.88 0.58 0.54 0.49 0.59

Method (iv)
0.96 0.96 0.95 0.96 0.94

0.88 0.58 0.53 0.50 0.59

Poisson outcome

True value −4 3 −2 −2 0 3 −2 −2 0

Method (i)
0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.93

0.86 0.33 0.29 0.34 0.31 0.31 0.32 0.30 0.35

Method (ii)
0.94 0.95 0.95 0.95 0.94 0.95 0.94 0.94 0.93

0.85 0.34 0.35 0.34 0.34 0.31 0.32 0.30 0.36

Method (iii)
0.95 0.94 0.95 0.95 0.95

0.87 0.57 0.51 0.53 0.61

Method (iv)
0.95 0.94 0.95 0.95 0.95

0.88 0.58 0.54 0.55 0.64

Null hypothesis: blip effect equals to true value; alternative hypothesis: blip effect equals to true value plus c, where c = 1 for the normal- and Poisson-distributed outcomes and c = 0.1 for the
dichotomous outcome.

Thus, for SNMM1, we have γ =
(γ1, γ20, γ21, γ22, γ23, γ30, γ31, γ32, γ33). With SNMM2, it is
further required that γ2j = γ3j, so there are only four different
blip effects in addition to γ1. Thus for SNMM2, we have
γ = (γ1, γ20, γ21, γ22, γ23).

Under SNMM1 or SNMM2, we will estimate and test the blip
effect by applying Equation 4 to �(z1 = 1), �(x2; z2 = 1),
and �(x3; z3 = 1) or by applying Equation 5 to θ(z1 = 1),
θ(x2; z2 = 1), and θ(x3; z3 = 1). Specifically, method (i) uses
Equation 5 and SNMM1, with treatment assignment condition.
Method (ii) uses Equation 4 and SNMM1, without a treatment

assignment condition. Method (iii) uses Equation 5 and SNMM2,
with treatment assignment condition. Method (iv) uses Equation 4
and SNMM2, without a treatment assignment condition. With
methods (i)–(iv), we obtain the estimate and variance for the
estimated blip effect as well as the coverage probability and the
power for the hypothesis testing of the blip effect. The result is
presented in Table 1a.

From Table 1b, the following observations can be made for
estimating and testing the blip effects. First, all four methods
achieve unbiased estimates and the nominal level of the coverage
probability. Second, as compared to methods (i) and (ii) with
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TABLE 2 Comparison of our method with available methods in Section 4: estimate and variance for the blip effect; Wald test on the blip effect at the
0.05 significance level: coverage probability of 95 % confidence interval (coverage) and power of the test (power).

Estimate and variance in column for the causal effect

γ1 γ20 γ21 γ22 γ23 γ30 γ31 γ32 γ33

True value −2 3 −3 −2 0 3 −3 −2 0

Method (iv)
−1.99 3.01 −2.98 −2.00 −0.00

0.05 0.11 0.09 0.13 0.04

Method (v)
−2.16 2.81 −2.94 −1.94 −0.22 3.00 −2.99 −1.98 −0.01

0.39 0.43 0.33 0.28 0.51 0.15 0.15 0.34 0.09

Method (vi)
−2.02 3.04 −2.99 −1.99 −0.01 3.00 −2.99 −1.98 −0.01

0.25 0.49 0.30 0.18 0.28 0.15 0.15 0.34 0.09

Method (vii)
−1.97 3.01 −2.97 −2.00 0.00 3.00 −2.99 −1.98 −0.01

0.05 0.31 0.19 0.10 0.13 0.15 0.15 0.34 0.09

Coverage and power in column for the causal effect

γ1 γ20 γ21 γ22 γ23 γ30 γ31 γ32 γ33

True value −2 3 −3 −2 0 3 −3 −2 0

Method(iv)
0.96 0.95 0.95 0.94 0.96

0.99 0.86 0.91 0.82 1.00

Method(v)
0.94 0.89 0.97 0.97 0.89 0.94 0.94 0.95 0.95

0.43 0.40 0.24 0.22 0.39 0.75 0.73 0.38 0.91

Method(vi)
0.94 0.95 0.96 0.95 0.93 0.94 0.94 0.95 0.95

0.52 0.27 0.41 0.56 0.52 0.75 0.73 0.38 0.91

Method(vii)
0.95 0.95 0.95 0.96 0.95 0.94 0.94 0.95 0.95

0.98 0.40 0.59 0.83 0.78 0.75 0.73 0.38 0.91

• Nine blip effects: γ1 = φ(z1 = 1); γ2j = φ(z1, x2 = j; z2 = 1), j = 0, 1, 2, 3; γ3j = φ(z1, x2, z2, x3 = j; z3 = 1), j = 0, 1, 2, 3.
• Null hypothesis: blip effect equals to true value; alternative hypothesis: blip effect equals to true value plus 1.
• Four methods: method (iv) our method based on Equation 4 and SNMM2; method (v) parametric method based on the well-known G-formula; method (vi) marginal structural model

based on the inverse probability of treatment weighting; and method (vii) G-estimation based on SNMM1. SNMM1 has no constraint on blip effects across t = 2, 3 as compared to
SNMM2.

The outcome type is normal. For each analysis, a total of 1000 data sets are used with a sample size of 500 units. The covariance matrix for the blip effects is estimated using 500 bootstrap
replications.

SNMM1, methods (iii) and (iv) may impose SNMM2 across times
t = 2, 3, reducing the number of blip effects and thus resulting in a
smaller variance and a greater power for estimating and testing the
blip effects. Third, methods (ii) and (iv) are based on Equation 4
and achieve nearly the same results as methods (i) and (iii) based
on Equation 5, demonstrating that our method performs equally
well with or without treatment assignment condition.

4.2 Comparison of our method with
available methods

As described above, our method (iv) uses SNMM2 and
Equation 4 when estimating and testing the blip effect without any
treatment assignment conditions. Here, we compare this method
with the following three available methods in the literature. Method
(v) is the parametric method based on the well-known G-formula
expressing the blip effect in terms of the standard parameters [5, 7].

Method (vi) is the marginal structural model based on the inverse
probability of treatment weighting [5, 9]. Method (vii) is the G-
estimation based on SNMM1 [1, 5, 11, 12]. These methods are
reviewed in the introduction and also described in the context of
the simulation in the Supplementary material.

With methods (iv)–(vii), we obtain the estimate and variance
for the blip effect as well as the coverage probability and power for
the hypothesis testing of the blip effect. The result is presented in
Table 2. As seen from Table 2, all four methods achieve unbiased
estimates and the nominal level of the coverage probability. Our
method (iv) achieves the smallest variance and largest power due
to SNMM2. Methods (v) and (vi) yield sizable variances and low
powers due to the difficulty of imposing any SNMMs. Method (vii)
yields a smaller variance and a larger power than methods (v) and
(vi) due to SNMM1, but a larger variance and smaller power than
method (iv) due to the difficulty of imposing SNMM2. In general,
it is difficult to introduce SNMMs across different times with the
G-estimation.
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It is also interesting to compare our method (iv) with method
(vii) in terms of other modeling conditions than SNMM. With
method (iv), we only need models for the point effects, which
in this simulation are the three models for μ(z1), μ(z1, x2, z2),
and μ(z1, x2, z2, x3, z3) plus SNMM2. Standardization does not
need additional models. With method (vii), we need the following
models. First, a model for μ(x3, z3), which is smaller than
μ(z1, x2, z2, x3, z3) due to the treatment assignment condition.
Second, a model for the baseline E{Y(D2 = 0, D3 = 0) | x2}
together with SNMM1 at t = 2. Third, a model for baseline
E{Y(D1 = 0, D2 = 0, D3 = 0) together with SNMM1 at t = 1.
In general, the baseline E{Y(DT

t = 0) | ht} with the G-estimation
is typically subject to model misspecification in comparison to the
baseline E(Y | ht , zt = 0) with our method; for this reason, the
doubly robust version of the G-estimation may be used [5, 12].
Although it is not needed in the simple setting of this article, we
may have a doubly robust version of our method by obtaining the
doubly robust estimates for the point effects.

5 Influence of early diagnosis on
cancer survival

5.1 Data and the identifying condition

In Sweden, patients usually seek medical help at hospitals
near their residential areas. When cancer is diagnosed, they may
stay at the diagnosing hospital or transfer to another hospital
for treatment. The hospital that diagnoses cancer is called the
diagnosing hospital, while the one that treats cancer is called the
treating hospital. To evaluate the performance of diagnosing and
treating hospitals, one may study the blip effects of diagnosing and
treating hospitals among cancer patients after adjusting for patients’
differences.

The data used in this study contain the information on
1, 070 stomach cancer patients from a clinical study during the
period between 1988 and 1995 in hospitals located in central and
northern Sweden [18]. Stomach cancer is highly malignant with
a poor prognosis, so the 1-year survival is a good measure of the
performance of both diagnosing and treating hospitals. A question
of medical relevance is which types of diagnosing and treating
hospitals, large vs. small, perform better on cancer outcomes, where
the large type refers to the regional or county hospitals and the
small type to local hospitals. One concern is that young patients
diagnosed at local hospitals tend to have poor prognoses. This
phenomenon is known as doctors’ delay in the area of cancer
diagnosis, but little studied statistically [19].

The diagnosing hospital is the treatment variable Z1 at time
t = 1: z1 = 0 for small type and z1 = 1 for large type. The treating
hospital is the treatment variable Z2 at t = 2: z2 = 0 for small type
and z2 = 1 for large type. The outcome of interest is Y : y = 1 for
a successful 1-year survival and y = 0 otherwise. The stationary
covariates X1 = (X11, X12, X13) before Z1 were measured with
gender X11, geographic area X12 and age X13. Gender was x11 = 0
for female and x11 = 1 for male. Geographic area was categorized
into rural x12 = 0 vs. urban x12 = 1. Age took continuous values
x13. The time-dependent covariate between Z1 and Z2 was cancer

TABLE 3 Descriptive statistics for the data of 1067 patients in Section 5:
frequencies or means (standard deviations) of covariates and outcome
across the diagnosing and treating hospitals.

Frequency or mean (standard deviation) on levels of

z1 = 0 z1 = 1 z2 = 0 z2 = 1

N 440 627 366 701

x11 = 0 167 238 147 258

= 1 273 389 219 433

x12 = 0 258 298 211 345

= 1 182 329 155 356

x13 70.86
(11.20)

70.87
(11.64)

71.95
(10.63)

70.29
(11.83)

x2 = 1 63 112 52 123

= 2 50 68 44 74

= 3 132 134 102 154

= 4 195 313 168 340

y = 0 252 368 217 403

= 1 188 259 149 298

• Stationary covariates: x11 = 0, 1 for female and male; x12 = 0, 1 for rural and urban
residential areas; x13 age.

• Time-dependent covariate between diagnosis and treatment: x2 = 1, 2, 3, 4 for cancer
stages.

• Outcome: y = 0, 1 death within 1 year after diagnosis or survival.
• Hospital types: z1 = 0, 1 small and large diagnosing hospitals; z2 = 0, 1 small and large

treating hospitals;

stage X2, taking the values x2 = 1, 2, 3, 4 for cancer stages. The
descriptive statistics are given in Table 3. The data and code are
given by Yin [17].

Notably, the data are unbalanced between diagnosing and
treating hospitals: 981 patients did not transfer, 80 of them from
small diagnosing hospitals to large ones, and only 6 from large to
small diagnosing hospitals. According to Swedish medical experts,
it was a typical transferal pattern. The small sample size and
unbalanced data contribute to the small significance of our results.
The confounding situation is described below.

Due to the long-term social welfare system and the relatively
uniform culture in Sweden, most of the stationary covariates, such
as education and socioeconomic status, have similar distributions
across different hospitals and thus do not confound the blip effect.
As a common practice in many epidemiological research studies
in Sweden, the assumption of no unmeasured confounders is
approximately satisfied for diagnosing hospital Z1, at least after
conditioning on gender x11, residential area x12, and age x13.
Similarly, the assumption of no unmeasured confounders is also
approximately satisfied for treating hospital Z2 conditional on the
cancer stage x2 and the diagnosing hospital z1 in addition to
(x11, x12, x13). The causal DAG for diagnosing and treating hospital
types is given in Figure 1.

Without further examining the validity of the identifying
condition, we will focus on the inference part of the medical
example; interested readers may find a large body of literature on
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FIGURE 1

Causal DAG for diagnosing and treating hospital types in the medical examples of Section 5. Exposure: Z1 for diagnosing hospital and Z2 for treating
hospitals. Stationary covariates: X1 = X11, X12, X13 for gender, residential area, and age. Time-dependent covariates between Z1 and Z2: X2 for four
cancer stages. Outcome: Y for one-year survival. Unmeasured covariates: U1 unmeasured covariates before Z1 and U2 unmeasured covariates
before Z2. Neither confounds Z1 and Z2. This observational study mimics sequential randomized trial. Notably, diagnosing hospital Z1 does not have
direct influence on outcome Y as indicated by the missing arrow from Z1 to outcome Y.

sensitivity analysis of the causal effect to the identifying condition
(e.g., [20, 21]).

5.2 Estimating the standardized point
effects

Because we aim at the effect modification of the blip effect by
age, we divide the population at t = 1 into two strata U and L,
where S1 = U is the one with age x13 smaller than the median and
S1 = L with age x13 larger than or equal to the median. So, we have
two standardized point effects �(S1; z1 = 1).

A large variety of methods are available for estimating the
point effect in the framework of causal inference for single-point
treatments (e.g., [5, 13–15]). As an illustration, we use the usual
regression to estimate the point effects of diagnosing hospital z1.
Because the sample is small and only three stationary covariates—
that is, x11, x12, x13—are involved in the estimation, we model the
conditional mean μ(x11, x12, x13, z1) = E(Y | x11, x12, x13, z1) in
the whole data set. For the sake of presentation, we use the linear
model to estimate the point effect. Notably, we may use the logistic
model, which only improves the estimation slightly.

We exclude the residential area x12 at a significance level of 0.05,
consistent with medical observations indicating that the residential
area is less influential than gender and age. Finally, we obtain the
regression model,

μ(x11, x13, z1) = β1 + x11β2 + x13β3 + z1θ1. (6)

From this model, we obtain the point effects of z1 = 1 in
stratum (x11, x13),

θ(x11, x13; z1 = 1) = μ(x11, x13, z1 = 1)−μ(x11, x13, z1 = 0) = θ1,

which is the same for all (x11, x13). The standardized point effects
are obtained by �(S1; z1 = 1) = E{θ(x11, x13; z1 = 1) | S1}
with respect to P(X11 = x11, X13 = x13 | S1), where the point
effect is estimated above while the probability is estimated by the
corresponding proportion. Clearly, �(S1; z1 = 1) = θ1 from
Model 6. Therefore, we have the estimate �̂(S1; z1 = 1) = θ̂1, but

the variance of �̂(S1; z1 = 1) is obtained by adjusting the variance
of θ̂1 to the size of sub sample S1.

To estimate the point effects of treating hospital z2, we
model the mean μ(x11, x12, x13, z1, x2, z2). We exclude x12 at the
significance level of 0.05. Furthermore, age x13 has rather different
influences on cancer survival for different cancer stages x2, so we
model the conditional mean separately for different x2. Finally, we
obtain the regression model,{

μ(x11, x13, x2 = 1, z2) = β4 + x11β5 + x13β6 + z2θ21,0 + z2x13θ21,3
μ(x2 = j, z2) = β7j + z2θ2j, j = 2, 3, 4

(7)
From this model, we obtain the point effects of z2 = 1 in

stratum (x11, x13, x2) for early cancer stage x2 = 1,

θ(x11, x13, x2 = 1; z2 = 1)
= μ(x11, x13, x2 = 1, z2 = 1) − μ(x11, x13, x2 = 1, z2 = 0)
= θ21,0 + x13θ21,3.

Averaging it with respect to P(X11 = x11, X13 = x13 | x2 = 1),we
obtain the average point effect of z2 = 1 in stratum x2 = 1,

θ21 = θ21,0 + E(X13 | x2 = 1)θ21,3.

In cancer stage x2 = j = 2, 3, 4, we have,

θ(x2 = j; z1 = 1) = μ(x2 = j, z1 = 1) − μ(x2 = j, z1 = 0) = θ2j.

Because the point effects are equal to the blip effects for the last
treatment z2 = 1, we use the point effects of z2 = 1 as a special case
of the standardized point effects in estimating and testing the blip
effects of z1 = 1 and z2 = 1.

As seen from Models 6 and 7, residential area x12 does
not appear in μ(x11, x13, z1) and μ(x11, x13, x2, z2) and thus are
irrelevant to the standardized point effects and the blip effects of
treatments. Hence, we remove x12 from the following development.

5.3 Estimating and testing the blip effects

The point effect of diagnosing hospital results from both
diagnosing and treating hospitals and thus cannot be used to
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evaluate the diagnosing hospital. In comparison, the blip effect
of the diagnosing hospital represents the causal effect of the
diagnosing hospital, while setting the treating hospitals as small
ones, and thus can be used for evaluation.

To study the phenomenon of doctors’ delay in cancer diagnosis
[19], we suppose that the blip effect of large diagnosing hospital
φ(x11, x13; z1 = 1) is a linear function of age x13, that is,
age modifies the blip effect. Furthermore, because Z2 is the last
treatment variable in the treatment sequence, the blip effect of
z2 is equal to the point effect of z2 as obtained from Model 7.
Summarizing these observations, we specify an SNMM of the
following form,⎧⎪⎨⎪⎩

φ(x11, x13; z1) = γ1,0z1 + γ1,3x13z1
φ(x11, x13, z1, x2 = 1; z2) = γ21,0z2 + γ21,3x13z2
φ(x11, x13, z1, x2 = j; z2) = γ2jz2, j = 2, 3, 4.

(8)

Thus, SNMM 8 is indexed by γ = (γ1,0, γ1,3, γ21,0, γ21,3,
γ22, γ23, γ24). Let γ1 = E{φ(x11, x13; z1 = 1)} be the blip effect of a
large diagnosing hospital z1 = 1 in the whole population. Then we
have γ1 = γ1,0 + E(X13)γ1,3, so γ1,3 is the modification of the blip
effect γ1 by age. Let γ21 = E{φ(x11, x13, z1, x2; z2 = 1) | x2 = 1} be
the blip effect of large treating hospital z2 = 1 in low cancer stage
x2 = 1. Then we have γ21 = γ21,0 + E(X13 | x2 = 1)γ21,3, so γ21,3
is the modification of the blip effect γ21 by age in low cancer stage
x2 = 1. The blip effect of z2 = 1 in cancer stage x2 = j = 2, 3, 4 is
γ2j.

Because the blip effect φ(x11, x13; z1 = 1) is indexed by two
parameters γ1,0 and γ1,3 under SNMM, as expressed in Equation 8,
we need two standardized point effects �(S1; z1 = 1) =
E{θ(x11, x13; z1 = 1) | S1} with respect to P(X11 = x11, X13 =
x13 | S1) for S1 = U, L, as described and estimated in Section 5.2.
Now by applying Equation 2 or Equation 4 to �(S1; z1 = 1), we
obtain

�(S1; z1 = 1) = E{φ(x11, x13; z1 = 1) | S1} + E{φ(x11, x13, z1 = 1,
x2; z2) | S1, z1 = 1} − E{φ(x11, x13, z1 = 0, x2; z2) | S1, z1 = 0}.

Here the first expectation is with respect to the P(X11 = x11, X13 =
x13 | S1), so we have

E{φ(x11, x13; z1 = 1) | S1} = γ1,0 + γ1,3E(x13 | S1).

The second expectation is with respect to P(X2 = x2, Z2 = z2 |
x11, x13, z1 = 1) P(X11 = x11, X13 = x13 | S1) and the third one to
P(X2 = x2, Z2 = z2 | x11, x13, z1 = 0) P(X11 = x11, X13 = x13 | S1).
By using φ(x11, x13, z1, x2; z2 = 0) = 0, the second and third
expectations are, for z1 = 1, 0,

E{φ(x11, x13, z1, x2; z2) | S1, z1} =∑
j=1,2,3,4 E{φ(x11, x13, z1, x2 = j; z2 = 1)

P(x2 = j, z2 = 1 | x11, x13, z1) | S1}

with respect to P(X11 = x11, X13 = x13 | S1). Now by inserting
SNMM, as provided in Equation 8, we obtain

E{φ(x11, x13, z1, x2; z2) | S1, z1} = γ21,3E{x13P(x2 = 1, z2 = 1 |
x11, x13, z1) | S1}
+γ21,0E{P(x2 = 1, z2 = 1 | x11, x13, z1) | S1}
+∑4

j=2 γ2jE{P(x2 = j, z2 = 1 | x11, x13, z1) | S1}.

Let A = E(x13 | S1). Let B and Cj (j = 1, 2, 3, 4) be the mean
differences,

B = E{x13P(x2 = 1, z2 = 1 | x11, x13, z1 = 1) | S1}−
E{x13P(x2 = 1, z2 = 1 | x11, x13, z1 = 0) | S1};

Cj = E{P(x2 = j, z2 = 1 | x11, x13, z1 = 1) | S1}−
E{P(x2 = j, z2 = 1 | x11, x13, z1 = 0) | S1}.

Then we have

�(S1; z1 = 1) = γ1,0 + γ1,3A + γ21,3B + γ21,0C1 +
∑

j=2,3,4 γ2jCj,

S1 = U, L (9)

Using the observed proportions P̂(x2, z2 | x11, x13, z1) and
P̂(x11, x13 | S1), we obtain the estimates Â, B̂, and Ĉj without
modeling.

Now we consider the blip effect of treating hospital z2. It is equal
to the point effect of z2, because Z2 is the last treatment variable
in the treatment sequence. Thus, from Model 7 in Section 5.2 and
SNMM 8, we obtain

θ21,0 = γ21,0, θ21,3 = γ21,3, θ2j = γ2j j = 2, 3, 4. (10)

The estimates of θ21,0, θ21,3 and θ2j are obtained from Section
5.2. Now, conditional on all covariates and treatments
{x11, x13, z1, x2, z2}, we use Equations 9 and 10 together as a
regression model to estimate γ , where the response variables are
�̂(S1; z1 = 1) = θ̂1, θ̂21,0, θ̂21,3 and θ̂2j; the explanatory variables
are Â, B̂, Ĉj and one. The bootstrap method is used to obtain
the covariance matrix cov(γ̂ ) incorporating the variability of all
treatments and covariates. With γ̂ and cov(γ̂ ), we conduct the
hypothesis testing on γ . The result is presented in Table 4. For the
sake of comparison, we also present the results for the point effects
of z1 = 1 and z2 = 1.

5.4 Causal analysis of blip effects based on
Table 4

From Table 4, we see that the point effect of a large treating
hospital z2 = 1 is equal to the blip effect of z2 = 1, that is, θ2j = γ2j
in cancer stage x2 = j (j = 1, 2, 3, 4). We also see that the point
effect of a large diagnosing hospital z1 = 1 is not equal to the blip
effect of z1 = 1, that is, θ1 �= γ1.

The following observations are medically interesting. First,
patients with the moderate cancer stage x2 = 2, 3 benefit from
large treating hospitals z2 = 1 as seen from γ̂22 = 0.111 (p-value
= 0.223) and γ̂23 = 0.056 (p-value = 0.382), despite somewhat
small significance. The possible reason is due to the skillful medical
workers and good facilities at these hospitals. Second, patients with
the advanced cancer stage x2 = 4 benefit slightly from small
treating hospitals z2 = 0 as seen from γ̂24 = −0.016 < 0
(p-value = 0.617), possibly due to good care at these hospitals,
despite small significance. Third, for the low cancer stage x2 = 1,
there is a modification of the blip effect of a large treating hospital
z1 = 1 by age x13, as seen from γ̂21,3 = 0.010 per year (p-
value = 0.083). Because φ̂(x11, x13, z1, x2 = 1; z2 = 1) = γ̂21,0 +
x13γ̂21,3 = −0.678 + 0.010x13 > 0 for x13 > 68, patients
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TABLE 4 Point effects and blip effects of diagnosing and treating hospitals on 1-year cancer survival in Section 5: estimate, p-value and 95 % CI.

Estimate, p-value, and 95% CI in column for various effects

θ1 θ21 θ22 θ23 θ24

Point effect

−0.014 −0.018 0.111 0.056 −0.016

0.624 0.703 0.223 0.382 0.617

(−0.071, 0.042) (−0.110, 0.074) (−0.067, 0.290) (−0.070, 0.182) (−0.081, 0.048)

γ1 γ21 γ22 γ23 γ24

Blip effect

−0.025 −0.018 0.111 0.056 −0.016

0.236 0.703 0.223 0.382 0.617

(−0.067, 0.017) (−0.110, 0.074) (−0.067, 0.290) (−0.070, 0.182) (−0.081, 0.048)

Estimate, p-value and 95% CI for modification of the blip effect γ1 by age

Baseline parameter γ1,0: 0.060, 0.365, (−0.070, 0.0190)
Modification parameter γ1,3: −0.001, 0.165, (−0.03, 0.000)

Estimate, p-value and 95% CI for modification of the blip effect γ21 by age

Baseline parameter γ21,0: −0.678, 0.060, (−1.384, 0.029)
Modification parameter γ21,3: 0.010, 0.083, (−0.001, 0.020)

• Five point effects: θ1 for diagnosing hospital z1 = 1; θ2j for treating hospital z2 = 1 given cancer stage j = 1, 2, 3, 4. See also Models 6 and 7 in Section 5.2 for description and notation.
• Five blip effects: γ1 for diagnosing hospital z1 = 1; γ2j for treating hospital z2 = 1 given cancer stage j = 1, 2, 3, 4. See also SNMM 8 in Section 5.3 for description and notation.
• Modification of the blip effect by age: γ1,3 modifying the blip effect γ1 of z1 = 1; γ21,3 modifying the blip effect γ21 of z2 = 1 in low cancer stage. See also SNMM 8 in Section 5.3 for

description and notation.

of age > 68 benefit from large treating hospitals z2 = 1. This
observation reflects the fact that old patients usually have more
comorbidities, and large hospitals are probably better at dealing
with comorbidities.

Fourth, patients benefit overall from small diagnosing hospitals
z1 = 0 as seen from γ̂1 = −0.025 (p-value = 0.236). However,
there is a modification of the blip effect of a large diagnosing
hospital z1 = 1 by age x13, as seen from γ̂1,3 = −0.001 per
year (p-value = 0.165). Because φ̂(x11, x13; z1 = 1) = γ̂1,0 +
x13γ̂1,3 = 0.060 − 0.001x13 > 0 for x13 < 60, patients of age
< 60 benefit from large diagnosing hospital z1 = 1. This reflects
the delay in diagnosing stomach cancer among young patients at
small diagnosing hospitals, where cancer in young patients is rare
(phenomenon of doctors’ delay).

To summarize the key medical findings from this analysis,
large and small hospitals differ in diagnosing stomach cancer.
Small hospitals demonstrate greater effectiveness in detecting early-
stage cases due to shorter examination wait times. However, they
need to pay closer attention to younger patients, who are often
underrecognized in smaller facilities.

6 Conclusion

In many practices, a single-point treatment often fails
to achieve the desired outcome. More often, a sequence of
treatments is implemented, where a new situation often arises
from the early treatments and also influences the assignment
of subsequent treatments. Under such circumstances, designing
and conducting sequential randomized trials is significantly

more challenging than conducting randomized trials for single-
point treatments. Consequently, data arising from a sequence of
treatments are often observational, where treatment assignments
are unknown.

The blip effect is such a parameter that involves all steps of
the complex stochastic process, making it highly challenging to
estimate and test in a single step with a single model without bias
and loss of efficiency. In this article, we estimate and test the blip
effects of treatments in sequence via the standardized point effects
of treatments without requiring treatment assignment conditions.
As described in Sections 2 and 3, our method is implemented
in three steps. First, we choose strata reflective of our scientific
interest in the blip effects. Second, we estimate the point effects
using available methods within the framework of causal inference
for single-point treatments, and then standardize these estimated
point effects in strata to reduce their dimensionality. Finally, we use
the estimated standardized point effects to estimate and test the blip
effects by the usual regression. These steps are familiar to applied
statisticians.

Our method resembles the G-estimation, both using SNMMs
and the identifying condition [1, 5, 11, 12]. Two comments
are given comparing the two methods. First, as described in
Sections 2.3 and 3 and demonstrated by simulations in Section
4, our method places emphasis on different aspects, that is,
the pattern of blip effects over time and a targeted analysis of
blip effects. Second, both methods require a strong identifying
condition for all blip effects in the population. The requirement
is the major limitation for using the two methods in many
realistic problems. In contrast, due to the targeted analysis, our
parameters of interest are fewer than those with the G-estimation.
We conjecture that our method should be more robust to the
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identifying condition. However, the simulation and real example
in this article do not permit a thorough evaluation of the
usefulness of these properties in addressing complex problems
under varying assumptions in comparison to available methods
such as the G-estimation. Therefore, comprehensive simulation
studies and real-world examples are needed to explore more
realistic scenarios and challenges in further development of
this article.
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Appendix

Proofs for Equations 2 and 3

Proof of Equation 2: Under the identifying condition, by
applying Equation 17 in Theorem 2 of Wang and Yin [16] and using
φ(ht; zt = 0) = 0, we obtain

θ(ht; zt) = φ(ht; zt) +
T∑

s=t+1
E{φ(hs; zs) | ht , zt}

−
T∑

s=t+1
E{φ(hs; zs) | ht , 0}

where the first expectation is with respect to P(Xs
t+1, Zs−1

t+1, Zs |
ht , zt) and the second one to P(Xs

t+1, Zs−1
t+1, Zs | ht , 0). This equation

implies a rather intuitive observation, where the point effect is a
sum of the blip effects of individual treatments in sequence on the
outcome. Averaging the above equation with respect to P(Ht | St),
we obtain Equation 2.

Proof of Equation 3: We will prove that Equation 2 becomes
Equation 3 under the assignment condition P(Zt | ht) = P(Zt | St).
The condition implies the probability equalities P(Ht | St) =
P(Ht | St , zt) = P(Ht | St , 0), so we have

E{μ(ht , zt) | St} = E{μ(ht , zt) | St , zt} = μ(St , zt).

In contrast, according to Equation 1 we have

�(St; zt) = E{θ(St; zt) | St} = E{μ(ht , zt) | St} − E{μ(ht , 0) | St}.

Thus, the left-hand side of Equation 2 becomes

�(St; zt) = μ(St , zt) − μ(St , 0) = θ(St; zt),

which is the left-hand side of Equation 3. With the above
probability equalities, we have that the first expectation in the
right-hand side of Equation 2 becomes

E{φ(ht; zt) | St} = E{φ(ht; zt) | St , zt},

which is the first expectation in the right-hand side of Equation 3.
Because of P(Ht | St) = P(Ht | St , zt) = P(Ht , Zt | St , zt),
the probability in the second expectation of the right-hand side of
Equation 2 is

P(Xs
t+1, Zs−1

t+1, Zs | ht , zt)P(Ht | St)

= P(Xs
t+1, Zs−1

t+1, Zs | ht , zt)P(Ht , Zt | St , zt) = P(Ht , Zt , Xs
t+1,

Zs−1
t+1, Zs | St , zt).

Furthermore, because of Hs = {Ht , Zt , Xs
t+1, Zs−1

t+1},
we have

P(Ht , Zt , Xs
t+1, Zs−1

t+1, Zs | St , zt) = P(Hs, Zs | St , zt).

Thus, the second expectation in the right-hand side of Equation 2
becomes the second expectation in the right-hand side of
Equation 3. Similarly, we prove that the third expectation in
the right-hand side of Equation 2 becomes the third one in
the right-hand side of Equation 3. Therefore we have proved
Equation 3.
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