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Synchronous regulated biologicalnetworks are often represented as logical
diagrams, where the precise interactions between elements remain obscured.
Here, we introduce a novel type of excitation-inhibition graph based on Boolean
logic, which we term “logical directed graph” or simply, “logical digraph.” Such
a logical digraph facilitates the representation of every conceivable regulatory
interaction among elements, grounded in Boolean interactions. The logical
digraph includes information about connectivity, dynamics, limit cycles, and
attractors of the network. As proof of application, we utilized the logical digraph
to analyze the operations of the well-known neural network that produces
oscillatory swimming in the mollusk Tritonia. Our method enables a seamless
transition between a regulatory network and its corresponding logical digraph,
and vice versa. Additionally, we demonstrate that the spectral properties of
the so-called state matrix provide mathematical evidence explaining why the
elements within attractors and limit cycles contain information about the
dynamics of the biological system. More specifically, the non-zero entries of
the Perron-Frobenius eigenvector of the state matrix indicate the attractors and
limit cycles of the network. We demonstrate that each connected component
of the regulatory network has exactly one attractor or limit cycle. Open software
routines are available for calculating the components of the network, as well
as the attractors and limit cycles. This approach opens new possibilities for
visualizing and analyzing regulatory networks in biology.

KEYWORDS

biological regulatory network, Boolean function, digraph, Perron-Frobenius, Birkhoff-
Vandergraft, Tritonia, spectral matrix analysis, attractor

1 Introduction

Synchronous regulatory networks in biology are formed when a collection of elements,
such as molecules, neurons, or individuals, interact with one another to determine a
dynamic system in discrete time steps. The overall behavior of a synchronous network
is governed by a specific transition function. Detailed experimental investigations into the
workings of synchronous regulatory networks can be enhanced by mathematical models
that replicate the network’s behavior, aiding in the development of new hypotheses and
experiments. In this article, we present a quantitative method based on Boolean algebra to
replicate behaviors and identify missing elements within the network.
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Regulatory networks are typically studied by illustrating
interactions among elements in the network using an excitation-
inhibition graph [1–9]. For example, a and b represent two
interacting elements, each having a binary Boolean behavior.
We may now suppose that activation of a turns b on. Such
activation, or excitation, can be described as a → b. If by
contrast, a inhibits b, the expression will be a � b. That simple
description can now be enriched in Boolean terms by using
1 to indicate an active state and 0 to indicate an inactive or
inhibited state. However, this notation alone is insufficient to
explain more sophisticated interactions. For example, element
a may be activated when element b is inhibited. Alternatively,
element a may remain unchanged upon activation of element
b. Such naturally occurring interactions cannot be described
solely by the excitatory and inhibitory connections. An alternative
approach to describing networks and circuits in biology is
to use the logical electrical diagrams commonly employed in
engineering. However, these diagrams act as black boxes, where the
precise interactions between the elements remain concealed from
sight [5].

To overcome these limitations, we propose a digraph (directed
graph) that we will refer to as a logical digraph of the biological
system. The logical digraph is constructed using eight logical
connectives and their combinations, representing every possible
interaction between any two elements. When combined with
appropriate Boolean functions, the digraph accurately defines
the dynamics of the biological regulatory system. In addition
to being algorithmic, our method reports on the system’s
attractors and limit cycles, which correspond to the Perron-
Frobenius eigenvectors of the state matrix that describes the
transition from one state to another over time. Therefore, the
state matrix contains information about the dynamics of the
biological network [10]. As new concepts arise throughout the
paper, they are applied to the simple neural circuit that controls
swimming in the mollusk Tritonia to exemplify the use of the
logical digraph.

2 The logical digraph of a regulatory
biological system. Definitions and
basic notions

A regulatory biological system and its dynamics can be
described by the quartet of symbols (G, S , F, η). The symbol
G ={g1,. . . ,gn} represents a finite assembly of n elements (genes,
neurons, cells, or nodes), each of which can acquire either
the Boolean active state (on, true) with a value of 1, or the
inactive state (off, false) with a value of 0. We will denote the
set of Boolean values as Z2 = {0,1}, along with their usual
Boolean operations: addition (⊕) and multiplication (⊗), which
are described in Table 1. The glossary contains definitions of the
terms.

In the set Zn
2 = {(a1, . . . , an): ai ∈ Z2 for each j=1,. . . ,n} the j-th

coordinate corresponds to the element gj of G. This set contains all
the possible states (0,1) of the elements of G, which we will refer
to as state-vectors. All the state-vectors of biological system are
contained in S , which is a subset of Zn

2 .

TABLE 1 Values of the Boolean sum and multiplication of two interacting
elements in a regulatory network.

⊕
0 1 ⊗ 0 1

0 0 1 and 0 0 0

1 1 0 1 0 1

The symbol η represents the regulatory network as a digraph
whose vertices are the state vectors (the elements of S). η informs
about the time-evolution of the regulatory cycle. In the expression
(a1, . . . , an) → (b1, . . . , bn), the arrow means that the state
(a1, . . . , an) changes to the state (b1, . . . , bn) in a time unit. These
changes are described by the transfer function F= (f1,. . . , fn) of
the system, and can be defined by n Boolean functions fj: Zn

2 →
Z2 that describe how the elements of G act on element gj. In
other words, the transfer function F goes from Z

n
2 to Z

n
2 and the

arrow (a1, . . . , an) → (b1, . . . , bn) in η means the transfer function
(b1, . . . , bn) = F(a1, . . . , an).

3 Logical connectives

We can now proceed by employing logical connectives
that indicate excitation and inhibition. To begin, we will
again use the excitation connective to clarify the essentials of
utilizing connectives:

1. Excitation. An active a (a = 1) induces the transition of b
from inactive (b= 0) to active (b= 1). The binary value 1 represents
excitation from a to b, and is represented as a→b. However, the
excitation value depends on the initial states of either component.
As shown in Table 2, connective a → b, if a is off (a = 0), b will
remain inactive (b = 0). Note, however, that if b is initially active,
the activation of a also provides a 1 value. In contrast, the initial
value of b remains unchanged when a = 0.

3.1 The identity of a

It is used when a does not change in time. Its logical connective

is a → a or the lace in a, .
As an equivalent to describe the identity in a, we may use one

of the following logical connectives, or a a or
or . This connective express that the interaction of gene
Sp8 to its product protein Sp8 remains constant over time during
development of the mammalian cerebral cortex ([11], P. 3).

2. Inhibition, a � b. In direct inhibition, the activity of a turns
b off. Therefore, the a = 1 value when a is active, produces b =
0. Alternatively, if a is inactive b remains unaffected. That is, b
preserves its original value.

4 More logical connectives

The complexity of biological interactions extends well beyond
mere excitation or inhibition. The various ways in which a
may affect b depend on the current state of each interactive
element. Furthermore, one must consider global activity even
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TABLE 2 Connectives, logical propositions, Boolean functions and the values of the 16 actions from a to b.

Logical proposition a OR b excitation (NOTa) AND b
inhibition

NOT
(
a OR b

)
a OR

(
NOTb

)

Boolean function a ⊕ b ⊕ (
a ⊗ b

)
(a ⊕ 1) ⊗ b (a ⊕ 1) ⊗ (

b ⊕ 1
)

(a ⊗ b) ⊕b ⊕ 1

Connective
from a to b

a b a b a b a b

Values
(
a, b

)
(1, 1) 1 0 0 1

(1, 0) 1 0 0 1

(0, 1) 1 1 0 0

(0, 0) 0 0 1 1

Logical proposition a b NOT
(
a b

)
a AND b NOT

(
a AND b

)
Boolean function a ⊕ 1 ⊕ (

a ⊗ b
)

a ⊕ (
a ⊗ b

)
a ⊗ b

(
a ⊗ b

) ⊕ 1

Connective from a to b a b a b a b a b

Values
(
a, b

)
(1, 1) 1 0 1 0

(1, 0) 0 1 0 1

(0, 1) 1 0 0 1

(0, 0) 1 0 0 1

Logical proposition a if and only
if b

[
a AND

(
NOTb

)]
OR[

b AND (NOTa)
] a NOTa

Boolean function a ⊕ b ⊕ 1 a ⊕ b a a ⊕ 1

Connective from a to b a b a b a b

Values
(
a, b

)
(1, 1) 1 0 1 0

(1, 0) 0 1 1 0

(0, 1) 0 1 0 1

(0, 0) 1 0 0 1

Logical proposition b NOTb Tautology Contradiction

Boolean function b b ⊕ 1 1 0

Connective from a to b a b a b a a b

Values
(
a, b

)
(1, 1) 1 0 1 0

(1, 0) 0 1 1 0

(0, 1) 1 0 1 0

(0, 0) 0 1 1 0

when a is inactive, a fact not always considered in this type
of analysis. For this reason, six additional connectives must be
included to represent the dynamics of real biological regulation
networks accurately. Although some have not been biologically
described, we consider all the possible interactions between
connectives. Since regulatory networks commonly have undefined
components, such connectives may serve to hypothesize identities
and interactions.

3. Negation of excitation . A first case occurs if
activation of a inhibits an initially active b, that is

(
1 1

) =

0. In a second case, b remains inactive during the activity of a,
(1 0) = 0. Both cases resemble the inhibition seen above.
However, here the inactivity of a produces inactivation of b,
(0 b) = 0. Alternatively, the initial inactivity of both a and b
produces activation of b, (0 0) = 1. Note that this connective
differs from inhibition. As an example, the identity of gen Sp8
in Giacomantonio and Goodhill [11], p. 3, can be described as
[Emx2 Fgf 8] Sp8 .

4. Negation of inhibition . Unlike the previous case,
any difference in the initial activity between a and b leads to a
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change in the b value. However, inactivity in both a and b, keeps
b inactive.

5. Implication (a b). The activity in both a and b, keeps
b active. In contrast, the inactivity of a produces spontaneous
activation of b; in the other cases, b will remain inactive.

6. Negation of implication . Unlike the implication,
the only case where b is activated is when a is active and b is inactive.
As an example, in Giacomantonio and Goodhill [11] F(t) ==>E(t),
which is equivalent to F(t) & NOT E(t).

7. Disjunction . The activity of b requires the
simultaneous activity of a and b. This connective, also read as a
AND b, is the most abundant in literature. For example, [(NOT
Emx2) Fgf8] Sp8 indicates that the value of Sp8 is the
disjunction of (NOT Emx2) and Fgf8 ([11], p. 3).

8. Negation of disjunction . b becomes inactive when
both a and b are simultaneously active.

5 Combining logical connectives

So far, the interactions between the two elements have been
characterized by a single symbol. The following eight complex
interactions will be defined by a combination of two or more
logical connectives connected by the logical connective “AND”
(or disjunction).

9. Double implication or If and only if. It is represented as
a b AND a b or simply as a b. Means that b will be
active if a and b have the same value (see 3.1).

10. Negation of the double implication . Its
representation is a b AND a b. This means that alternating
the values of a and b will activate b.

11. “a” as an action from a to b (a b). Means that regardless
of its value, b takes the value of a. See also Section 3.1.

12. “NOT a” (as an action from a to b) or Negation of a

. Regardless of the value of a, b takes the opposite, as
shown in the logical diagram of the regulatory system of Tritonia
(Figure 3).

13. “b” (as an action from a to b) (a b). That is,
the value of b remains invariant. This connective may be useful
to test whether an element does not influence a biological
system or if any other connective is needed. The appearance
of this connective suggests that removing a might be possible
because it is redundant. In other case, when we know that
a interacts with b, the appearance of this connective indicates
the presence of another element acting from a to b. See also
Section 1.1.

14. “NOT b” (as an action from a to b) (a b). Means that b
takes on a value that is opposite to its original value, independently

of the value of a. For example, b b means autoinhibition of b.
15. Tautology (as an action from a to b) (a ), b will always

be activated. As will be seen in the example below, this connective
is used for autoexcitation of b as an alternative to the filled circles
used in Cessac and Samuelides ([12], Figure 63).

16. Contradiction (as an action from a to b) (a b). Means
that b will always be inactivated. One use of this connective is the
autoinhibition of b [see also Cessac and Samuelides [12], Figure 63].

TABLE 3 Bijections between a set of logical propositions with n variables
and the corresponding set of Boolean functions.

{P = P(a1, . . . , an) ; P is
a logical proposition}

↔ {f :Zn
2 −→ Z2 : f is a Boolean function}

P(a1, . . . , an) �→ fP (a1, . . . , an) =
⊕

v∈Zn
2

P(v)=1

( ⊗
1≤j≤n
vj=1

aj) ⊗ ( ⊗
1≤j≤n
vj=0

(
1 ⊕ aj

)
)

OR ANDn
j=1

v∈Zn
2

f (v)=1

(
aj = vj

)

Equivalent to
� ANDn

j=1
v∈Zn

2
f (v)=1

(
aj = vj

)

← � f :Zn
2 −→ Z2

Table 2 summarizes the connectives, their logical propositions,
Boolean functions, and values. The strategy now is to define the
logical proposition for each Boolean function in n variables, along
with the corresponding logical digraph and vice versa.

6 Bijection between logical
propositions and Boolean functions

To represent the regulatory network in Boolean terms, we
need to convert logical propositions into Boolean functions. This
connection can be established if a bidirectional equivalence,
also known as tautology, exists, which means that the
conversion holds true under every possible interpretation.
For example, the two logical propositions P and Q are
equivalent if the logical proposition “P if and only if Q” is a
tautology. Table 2 shows that the truth table of the connective
excitation, a b, is identical to the logical proposition OR,
indicating that their Boolean propositions are also the same.
Therefore, a tautology exists, allowing us to substitute one for
the other.

Table 3 shows a bijection between the set of logical propositions
in n variables and the set of Boolean functions from Z

n
2 to Z2, for

each natural number n ≥ 1.

7 From a regulatory biological system
to its logical digraph and vice versa

We will now return to the synchronous biological regulatory
system (G,S , F, η) and will use η to build the transfer function F
(alternatively, we can use F to build η). The Supplementary material
contains a computer routine that calculates the function F from a
predefined regulatory network η.

The logical digraph of a biological regulatory system (G,S , F, η)
has one vertex for each of the n elements of G. Such vertices will
be denoted as g1, . . . , gn (G = {

g1, . . . , gn
}

), and the directed
connectives joining the vertex correspond to the logical connectives
in Table 2. S is the set of state-vectors and F = (

f1, . . . , fn
)

is the
set of Boolean functions that define the regulatory network η. The
glossary at the end defines each term in the text.
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7.1 Attractors and limit cycles

Roughly speaking, an attractor is a directed loop, while a limit
cycle is a directed cycle of length at least 2 in the regulatory network.
That is, attractors and limit cycles are minimal sets of states from
which no escape is possible.

It is now necessary to describe each Boolean function
fi :Zn

2 −→ Z2 in terms of the sum and multiplication of
Z2, such that:

fi (a1, . . . , an) = ⊕
v ∈ Z

n
2

fi (v) = 1

⎛
⎜⎜⎜⎜⎜⎝ ⊗

1 ≤ j ≤ n
vj = 1

aj ⊗
1 ≤ j ≤ n

vj = 0

(
1 ⊕ aj

)
⎞
⎟⎟⎟⎟⎟⎠

To obtain its corresponding logical proposition Pi we apply
the bijection to each Boolean function fi of F, (see Table 3). From
Table 2, we will obtain the logical connectives for every element
in G (including gi ) to the vertex gi. Keep in mind that the
logic digraph is constructed from all the interactions among the
elements, including those formed by an element acting on itself.

8 Application of the logical digraph to
analyze the neural network of
swimming in a mollusk

The well-known and relatively simple neural network
controlling swimming of the mollusk Tritonia offers numerous
advantages for testing mathematical network theory applied to
animal behavior [13]. Like in other invertebrates, swimming in
Tritonia is produced by a sequence of sigmoidal body waves
occurring during alternate cycles of contraction of the ventral
and dorsal muscles. The beauty of such neuronal circuitry lies in
the combination of its simplicity and the reproducibility of the
emerging behavior. Studies conducted by Getting, Katz, and others
[1, 13–17] have shown that swimming is produced by a central
pattern generator integrated by four types of central neurons that
establish a stereotyped connectivity.

Motoneurons transmit output information that alternates the
contraction of dorsal and ventral muscles. In brief, activation of the
Dorsal Interneuron (DI) generates bursts of action potentials that
activate the dorsal motoneurons through excitatory connections.
Swimming begins in the upward direction. Simultaneously the
DI neuron activates the cerebral type 2 (C2) neuron. The C2
neuron responds with a stream of impulses that produce a delayed
excitation of the ventral interneurons (VI). Two types of VI
neurons cooperate to the pattern; however, for this study, it
suffices to condense both into a single representative neuron (see
also Tamvacakis et al. [18]). The VI interneuron connects to the
ventral motoneurons, which cause the ventral contraction of the
animal [19].

As of now, only direct excitatory and inhibitory connections
have been identified. However, the timing of the cyclic activation of
the CPG necessitates additional connections. Reciprocal inhibitory
connections between the DI and VI motoneurons are crucial.
The DI and VI interneurons communicate with one another

through reciprocal inhibitory connections (Figure 1). The activity
of DI neurons suppresses VI neurons, clearing the circuit to
produce a single dorsal output while prolonging the excitation
period of the dorsal motoneurons. Moreover, the excitation of
C2 neurons, followed by the excitation of VI neurons, inhibits
DI and C2 interneurons, allowing a singular ventral output from
the circuit. A third type of connection that contributes to the
duration of the burst of impulses by the DI and VI motoneurons
is excitatory autapses—specifically, synaptic connections that
neurons form onto themselves. Activation of autapses during
bursts of action potentials extends the excitation of the DI or
VI neurons, thereby lengthening the duration of their firing and
creating inhibition of the antagonistic neuron. The network in
Figure 1A is a basic description that utilizes only the excitation
and inhibition connectives to describe the interactions between the
three neuron types.

Based on the information above, the dynamics of the neural
network involved in Tritonia swimming, with three types of
neurons firing in an orderly manner, can be illustrated as the
sequence of steps in Figure 2, where the contribution of neurons
follows the order (ID, IV, C2).

9 Construction of the transfer
function F

We are now ready to build the Boolean function F: Z3
2 −→ Z

3
2,

which in this case is defined as F = (
fDI , fVI , fC2

)
, and its logical

digraph. We must remember that Ft represents the state of the
network at time t, therefore for a sufficiently large t (t ≥ 8, in
this example), the biological system will transit around the entire
dicycle [20–23].

We will start by defining:

1. G ={ID, VI, C2}
and

2. S = {(0,0,0), (1,0,0), (1,0,1), (0,0,1), (0,1,1), (0,1,0), (1,1,0)},

which is the set of state vectors representing the different sequential
working states.

Recall that η is obtained by applying the transfer function F to
each vector of Zn

2 , and that there is a unique arrow from v to F(v),
for every v ∈ Z

n
2 . Therefore,

3. From the network η, we know that:

F (0, 0, 0) = (
fDI (0, 0, 0) , fVI (0, 0, 0) , fC2 (0, 0, 0)

) =
(1, 0, 0) , F (1, 0, 0) = (1, 0, 1) , F (1, 0, 1) = (0, 0, 1) , F (0, 0, 1) =
(0, 1, 1) , F (0, 1, 1) = (0, 1, 0) , F (0, 1, 0) = (1, 1, 0) and
F (1, 1, 0) = (1, 0, 0 ) .

where,

fDI (0, 0, 0) =1,
fVI (0, 0, 0) = 0,
fC2 (0, 0, 0) = 0.
The same procedure must be repeated for every state vector of

the system.
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FIGURE 1

The neuronal circuit of swimming in Tritonia. (A) The basic neuronal circuit that integrates the CPG. DI, dorsal interneuron; VI, ventral interneurons;
C2, cerebral neuron type 2. The DI and VI interneurons connect directly to their respective motoneurons (not shown). Excitatory connections are
indicated by the vertical small bars, while inhibitory connections are represented by circles. The small bar below denotes the swimming-initiating
stimulus. (B) Simultaneous intracellular recordings from each type of neuron. Note the phase differences in the firing patterns of the different neuron
types. Adapted from Getting [19].

To build explicitly the Boolean function fDI : Z
3
2 −→

Z2 we have to find all the state-vectors of S that under
fDI are going to give 1. They are (0,0,0), (1,0,0), (0,1,0)
and (1,1,0).

By using bijection, we have:

fDI(aDI , aVI, aC2)

= ⊕
v∈Zn

2
fDI(v)=1

( ⊗
j∈{DI,VI,C2}

vj=1

aj) ⊗ ( ⊗
j∈{DI,VI,C2}

vj=0

(
1 ⊕ aj

)
) =

= ⊕
v∈{(0,0,0),(1,0,0),(0,1,0),(1,1,0)}

( ⊗
j∈{DI,VI,C2}

vj=1

aj) ⊗

( ⊗
j∈{DI,VI,C2}

vj=0

(
1 ⊕ aj

)
) =

= [(1 ⊕ aDI) ⊗ (1 ⊕ aVI) ⊗ (1 ⊕ aC2)] ⊕ [aDI ⊗ (1 ⊕ aVI)

⊗ (1 ⊕ aC2)] ⊕ [(1 ⊕ aDI) ⊗ aVI ⊗ (1 ⊕ aC2)]

⊕[aDI ⊗ aVI ⊗ (1 ⊕ aC2 )]

And by utilizing the known equalities
a ⊗ a = a
a ⊕ a = 0
a ⊕ (a ⊕ 1) = 1
a ⊗ (a ⊕ 1) = 0,

we get that fDI(aDI , aVI , aC2) = (1⊕ aC2) ⊗1. The constant function
1 equals the tautology that represents the excitatory autapse in
Figure 1.

To build fVI , we repeat the procedure. The state vectors with a
1 value under fVI are (0,0,1), (0,1,1) and (0,1,0). Then,

fVI(aDI , aVI , aC2) =
⊕

v ∈ (0, 0, 1) , (0, 1, 1) , (0, 1, 0)}
( ⊗
j ∈ {DI, VI, C2}

vj = 1

aj) ⊗

( ⊗
j ∈ {DI, VI, C2}

vj = 0

(
1 ⊕ aj

)
) =

= [(1 ⊕ aDI) ⊗ (1 ⊕ aVI) ⊗ aC2] ⊕ [(1 ⊕ aDI) ⊗ aVI ⊗ aC2]

⊕[(1 ⊕ aDI) ⊗ aVI ⊗ (1 ⊕ aC2 )] =
= (aDI ⊕ 1) ⊗ [(aVI ⊗ aC2) ⊕ aVI ⊕ aC2] ⊕ 1.

Likewise,

fC2(aDI , aVI , aC2) =
⊕

v ∈ {(1, 0, 0) , (1, 0, 1) , (0, 0, 1)}
( ⊗
j ∈ {DI, VI, C2}

vj = 1

aj) ⊗

( ⊗
j ∈ {DI, VI, C2}

vj = 0

(
1 ⊕ aj

)
) =

= [(aDI ⊗ aC2) ⊕ aDI ⊕ aC2] ⊗ (aVI ⊕ 1)

= [(aDI ⊗ aC2) ⊕ aDI ⊕ aC2] ⊗ (aVI ⊕ 1).

Therefore,

F(aDI , aVI , aC2) =
((1 ⊕ aC2) ⊗ 1, (aDI ⊕ 1) ⊗ [(aVI ⊗ aC2) ⊕ aVI ⊕ aC2] ⊗ 1,

(aDI ⊗ aC2) ⊕ aDI ⊕ aC2] ⊗ (aVI ⊕ 1)).

Again, let’s take fDI(aDI , aVI , aC2) = (1⊕ aC2) ⊕1 to find the
logical connectives in DI. Table 2 shows that the logical proposition
corresponding to 1⊕ aC2 is “NOT(C2)”, which corresponds to:

Let’s now repeat the analysis for VI:

fVI(aDI , aVI , aC2) =(aDI⊕1)⊗[(aVI ⊗ aC2)⊕aVI ⊕ aC2]
with the corresponding logical proposition “NOT(DI) AND

(VI OR C2)”. From Table 2, we obtain the logical digraph in VI:

Finally, we obtain C2:

Frontiers in Applied Mathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2025.1644869
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Takane et al. 10.3389/fams.2025.1644869

FIGURE 2

State vector representation of the sequence of neuronal activation
leading to Tritonia swimming. Each parenthesis contains the
state-dependent “on” (1) or “off” (0) values characterizing the activity
or rest of (ID, IV, C2). The arrows indicate the activation sequence,
which repeats for several cycles once initiated. The dicycle of the
network is shown in red; see Section 10.6.

fC2(aDI , aVI , aC2) =[(aDI ⊗ aC2)⊕aDI ⊕ aC2]⊗(aVI ⊕1),
whose logical proposition is “(DI OR C2) AND NOT(VI)”, and its
logical digraph is:

The assembly of all the components above illustrates the logical
diagram of the neural regulatory network involved in Tritonia
swimming, as shown in Figure 3.

Note that a benefit of the composition of connectives in the
logical digraph, is the possibility to analyze subcompartments
of the network. For example, the interactions from a to b and
from b to c provide the interaction from a to c. Therefore, D1

C2 and are equivalent representations of
DI to C2.

Another observation concerns the equivalence of logical
propositions in Section 1.1. The effect of autapses, shown as
tautologies in Figure 3, enhances the firing of VI and DI
neurons. The functioning of the regulatory network could be
simplified by removing the tautologies that represent these
connections. However, we recommend including all components
that contribute to a more accurate representation of the
circuit dynamics.

The digraph in Figure 3 contrasts with the excitation-inhibition
graph in Figure 1A, which not replicate the functional network.

FIGURE 3

Digraph describing the neural network of Tritonia swimming.

10 Dynamics of the network

In the first part of our paper, we went from the transfer function
F: S −→ S of a biological system to its logical digraph. In this
section, we will discuss the tools for studying the dynamics of a
regulatory network of a biological system.

10.1 Sketch

This section will describe the connected components of η and
the dynamics of the biological system by utilizing the transfer
function F, its orbits, and the state matrix Mη of the regulatory
network η.

Section 10.2 provides essential definitions to comprehend the
network topology and the flow of information between F and η.

Section 10.3 outlines the basic properties of the transfer
function F.

Section 10.4, defines the properties of the state-matrix Mη and
its spectrum, composed of the eigenvectors and eigenvalues of
Mη. The Spectrum provides us with additional tools to study the
dynamics of the regulatory network η.

Section 10.5 illustrates how to translate information between
the transfer function F and the state-matrix Mη. This transfer of
information will assist us in retrieving the Boolean information of
the network as we study its dynamics over time.

Section 10.6 shows that network η is a digraph, that is, a
graph that instead of edges has arrows (see Figures 2, 4 and the
glossary). η may be connected, as shown in the network in Figure 2,
or it may not be connected, as illustrated in Figure 4, where η

has two connected components. C1 and C2. It is important to
determine whether the network η is connected, as each connected
component contains different biological information. We will need
to construct and analyze each connected component separately to
prevent information overlap that could lead to inaccurate results.

The Supplementary material 1 contains computer programs
designed to determine which components are connected in η. The
Supplementary material 2 includes a computer program intended
to obtain the transfer function F from the regulatory network η.

10.2 Topology of network dynamics

Let us begin this second part by introducing some necessary
definitions for analyzing network dynamics. For further assistance,
the glossary contains definitions of the terms presented in this
study. Figure 5 illustrates the essential configurations of a network.
A simple case arises when one element connects to itself, forming
a loop known as an attractor (Figure 5A). Mathematically, an
attractor v is a fixed point of F. Therefore, F(v)=v. The network
in Figure 4 has two attractors, one at the state vector (0,0,1) and
another at the state vector (0,0,0).

This result provides a means to count the forms of a connected
component with n states. See also [24, 25].

A more complex case shown in Figure 5C arises when a dicycle
in η contains multiple elements connected in series, forming a loop.
This configuration creates a limit cycle, specifically a closed loop
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FIGURE 4

Regulatory network of Tritonia swimming based on pure excitation and inhibition connectives. The network has two connected components C1 and
C2. The loop σ1 in (0,0,1) is the attractor of C1, while the loop σ2 in (0,0,0) is the attractor of C2 (see also Sections 10.2 and 10.6).

5FIGURE

Elementary shapes of a connected network η. Each paragraph describes a connected network (digraph). The dots represent elements, and the
arrows denote connections. (A) A single connected element forms a loop (attractor) without ditrees. (B) An attractor with a ditree. (C) Structure of a
dicycle (limit cycle). (D) A limit cycle receiving two ditrees (on the right and left sides). (E) A simplified representation of a limit cycle with ditrees
labeled as t1, …, tl. Each ditree may contain one or multiple elements.

that establishes a stable feedback system. It is important to note
that an attractor would be a limit cycle of size 1. Mathematically,
there is a set of state-vectors, {v1, . . . , vm} with size m>1,
such that:

F(v1) = v2, . . . , F(vm−1) = vm and F(vm) = v1.

The limit cycle in the neural network of Tritonia swimming
in Figure 2, contains a peripheral element called ditree (T). Most
regulatory networks in biology contain one or more ditrees
(Figures 5B, D, E), which establish unidirectional connections to
the main loop or dicycle of η. A connected component serves as
an input that activates or modulates the dynamics of η. A network
that receives ditrees is known as a connected network.

After defining the components of the biological network,
including their connectivity and topology, the structure-function
relationship can be quantitatively analyzed by examining the
information flow between F and η. Figure 6 summarizes the basis
of this information flow.

Mathematically, a connected component of a network η is
a maximal connected subgraph of its underlying graph |η|. For

instance, the network in Figure 4 has two connected components:
C1 and C2. In contrast, the network in Figure 2 is a connected
network. (For definitions and results of graph theory, see Chartrand
et al. [20]). It should be noted that theoretically, η may be “not
connected,” although most biological cases are connected networks
with multiple inputs and regulatory elements.

10.3 The transfer function F and its orbits

The regulatory network is constructed employing a set-function
F: S → S that we will refer to as the transfer function F and its
compositions, as follows:

Let us recall that S refers to the set of state vectors of the
biological system comprising n elements (genes, cells, etc.). Time
plays a crucial role in the development of this work. Thus, we can
now assign a time-dependence to the evolution of the network as
follows: F0 = IS is the identity function of S , F1 = F, and for
each time t >1, F t =F◦F◦ · · · ◦ F denotes t times its composition.
That is:

F t (v)= F t−1 (F(v)).
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10.3.1 Shape of the digraph of a function
Since F is a set-function, for each v inS , there is a unique w such

that v is sent under F to w, as denoted by F(v) = w. This property
permits the connected components of the network to acquire some
of the shapes described in Figure 5. From each element v in S
emerges one unique arrow to F(v). However, any element of S may
receive two or more arrows.

10.3.2 Connected components and unique
cycles

Every connected component of η has a unique dicycle. The
network η defined by F has as vertices the elements of S and arrows
vη F(v), for each v in S .

The transfer function F: S → S is a set-function. Therefore, all
its compositions Ft are also set-functions from S to S . Since S is a
finite set with s elements, for each v in S , the set {Ft(v): t ≥0}, which
is a subset of S , has at most s elements. Therefore, there exists 0≤m
< t ≤ s such that Fm(v)= Ft(v). This means that, Fm(v)→ Fm+1(v)
→· · ·→Ft(v)= Fm(v) is a dicycle. According to Section 10.3.1, this
dicycle is unique.

10.3.3 Orbits of the transfer function
We will now define the orbit of a state vector v, whose interest

lies in containing information about the evolution of the dynamics
of the network. Mathematically, the orbit of v in S is the set {F t(v): t
≥0} and will be denoted by Ω(v). According to Sections 10.3.1 and
10.3.2, Ω(v) contains a unique dicycle.

An example of topology with orbits and a ditree can be
found in the regulatory network of Tritonia swimming (Figure 7),
which includes two different orbits, one of which incorporates all
the elements:

Ω(v) = {(0,0,0), (1,0,0), (1,0,1), (0,0,1), (0,1,1), (0,1,0), (1,1,0)}
with v=(0,0,0).

The other orbit is the limit cycle of the network (red in
Figure 7):

{(1,0,0), (1,0,1), (0,0,1), (0,1,1), (0,1,1), (0,1,0), (1,1,0)}
= Ω((1,0,0))= Ω((1,0,1))= Ω((0,0,1))= Ω((0,1,1))=

Ω((0,1,0))= Ω((1,1,0)).

10.3.4 Shape of the connected components
Since each orbit has a unique dicycle (as seen in Section 10.3.3),

any additional arrow serves as a ditree pointing to the dicycle.
Figure 5 illustrates the general shape of the connected components
of a regulatory network; Sections 10.6 and 10.7 present a method
for constructing them. A computer routine for the same purpose is
included in a Supplementary file.

10.4 The state-matrix of η and its spectral
properties

Now we will define the state matrix, denoted by Mη, which
not only stores information about the transition function (see

Section 10.3) but also provides the temporal dynamics of the
biological system.

To define Mη we must first fix an order in S = {v1, . . . , vs}.
Mη is a real matrix of size s×s, whose ij-th entry is:

Mη(i, j) =
{

1 if vj −→ vi is an arrow in η

0 otherwise

Any order conveys equivalent biological information since the
corresponding state matrices are conjugated.

Observe that Mη+MT
η (where MT

η denotes the transpose matrix
of Mη) is the adjacency matrix of the underlying graph of η. As
an example, we can now define the Mη of the Tritonia swimming
regulatory network η (see Section 10.3.3 or Figure 2) as:

S = {v1 = (1, 0, 0) , v2 = (1, 0, 1) , v3 = (0, 0, 1) , v4 = (0, 1, 1) ,

v5 = (0, 1, 0) , v6 = (1, 1, 0) , v7 = (0, 0, 0 )}.

With such order, the state-matrix Mη of the network is:

Mη =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with eigenvector

⎛
⎜⎜⎜⎜⎝

1
...
1
0

⎞
⎟⎟⎟⎟⎠ of the eigenvalue 1

10.5 Spectrum of Mη

The characteristic polynomial of Mη gives the number of
connected components of η. Furthermore, the Perron-Frobenius
eigenvectors reveal the attractors and limit cycles. We will now
demonstrate that the characteristic polynomials of the state
matrices for the dicycles and ditrees completely characterize the
characteristic polynomial and the spectrum of the state matrix.

10.5.1 Polinomial of the state matrix of a dicycle
The characteristic polynomial pσ (x) of a dicycle σ of size r, is:

pσ (x) =
∏r

k=1
(x− e

2πki
r ),

where
{

e
2πki

r ; k = 1, . . . , r
}

are the r-roots of unity, defined as the

complex numbers z, such that zr=1, and e2πi = 1 (see Chartrand et
al. [20]).

The above result is established, and it is also recognized that the
state matrix of a dicycle σ is as follows:
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FIGURE 6

Information flow between F and η.

FIGURE 7

The network of Tritonia swimming has an orbit that incorporates all the elements Ω(v) = {(0,0,0), (1,0,0), (1,0,1), (0,0,1), (0,1,1), (0,1,0), (1,1,0)} while the
other orbit (red) is the limit cycle of the network.

Mσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with eigenvector

⎛
⎜⎜⎝

1
...
1

⎞
⎟⎟⎠ of the eigenvalue 1

10.5.2 Characteristic polinomial of a ditreee
The characteristic polynomial of a ditree T of size q, is pT(x)=

xq (see Chartrand et al. [20]). By convention (see Section 10.3.3), a
ditree T of η has a size bigger than 1 and contains a unique vertex
in the dicycle of η (see Figure 7).

10.5.3 Polynomial of the state matrix of the
network

Now we can analyze the characteristic polynomial of Mη when
the regulatory network η is connected. Recall that the vertices of η

are the elements of S = {v1, . . . , vs} and that η has a unique dicycle
σ of size r and possibly, T1, ..., Td ditrees with d≥0 and each Th of
size qh. Then the characteristic polynomial of Mη is:

pMη (x) = pσ (x)
∏d

h=1
pTh (x) =

∏r

k=1
(x − e

2πki
r )x(

∑d
h=1 qh)− d.

In this case, 1 is an eigenvalue of Mη with a unique (up to scalar
multiples) eigenvector û = (u1,. . . , us), where ui =1 if vi belongs
to the dicycle, and ui =0 otherwise. Since all the eigenvalues have
modulus equal to r ≤1 (and 1 is also an eigenvalue of Mη), the
maximum of the modulus of these eigenvalues is 1. This maximum
is known as the spectral radius (�Mη

) of Mη and is denoted by:

�MN = max
{||λ|| , with λ being eigenvalue of M

}
The eigenvector û of �Mη is the Perron-Frobenius (eigen)vector

of Mη and gives us a way to find the vertices of η, which form its
attractor or limit cycle, as will be shown in Section 10.6.

10.5.4 The generation of Mη

If η is not connected, we can define an order of S such that Mη

has the following form:

Mη =

⎡
⎢⎢⎢⎢⎣

MC1 0 0
0 MC2 0

. . .
0 0 MCm

⎤
⎥⎥⎥⎥⎦
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with C1, ..., Cm being the different connected components of η

and their respective state-matrices being MC1 ,. . . , MCm (see Section
10.2). Then, the characteristic polynomial of Mη is:

pMη (x) =
∏m

j= 1
pCj (x)

Since Cj is a connected network, pCj (x) has the form described
in Section 10.5.3. Therefore, pMη (x) = (x-1)m(x-λm+1)...(x-λs),
with λm+1,. . . , λs 
= 1. In other words, the maximum power of
x − 1 in the characteristic polynomial of Mη indicates the number
of connected components of η. Section 10.7 contains an algorithm
to find such components.

For example, we can now refer to the network in Figure 4. Its
characteristic polynomial is x8 − 2x7 + x6 = x6(x − 1)2. The
power of x-1 is 2. Therefore, as shown in Figure 4, η has two
connected components.

10.5.5 The transfer function vs. the state-matrix
To gain further insight about the regulatory network, it will

be useful to analyze the relationship between the transfer function
F : S −→ S and the state-matrix Mη, as they collectively store
information about network dynamics. In brief, F informs about the
individual state vectors, and Mη gives the “global connectivity” of
each state vector.

Let s be the number of elements of S , and recall that for each
t≥ 0, F0 = IS , F1 = F and Ft = F ◦. . . ◦F t times the composition
of F, and Mη is a real matrix of size s×s (see Section 10.3).

For each subindex i = 1, . . . , s, denoted by ei is the real column-
vector that has 1 in the i-th coordinate and 0 elsewhere. Now we
have two types of bijective set functions.

The first bijection occurs between the set of state-vectors S and
the collection of vectors {e1, . . . , es }:

S � {e1, . . . , es}
vi � ei

Recall that any real vector is a linear combination of the vectors
e1, . . . , es. Therefore, to study the state-matrix Mη it is enough to
study the image of these vectors under Mη.

The second type of bijection is established between the orbit of
vi under F, {Ftvi : t ≥ 0}, and the orbit of ei under the matrix Mη,
{Mt

ηei : t ≥ 0}. Recall that any real vector is a linear combination
of the vectors e1, . . . , es. Therefore, for each state vector vi, we have
one bijection:

{Ftvi : t ≥ 0} � {Mt
ηei : t ≥ 0}

Ftvi � Mt
ηei

10.6 The connected components of the
network η

We can now discuss a method for finding the connected
components of η. As mentioned earlier, each connected component
must be studied separately to prevent mixing information that
could lead to false results.

10.6.1 Number of connected components of η

As described in Section 10.5.4, the characteristic polynomial
of Mη is pMη (x)= (x-1)m(x-λm+1)...(x-λs), where λm+1,. . . , λs
are different from 1. Therefore, η has m different connected
components. Moreover, the non-zero entries of the eigenvectors
associated with the eigenvalue 1 are the vertices of the attractors
and limits cycles of η.

Following the example in Figure 4 and (Section 10.5.4), the
vertices of η are:

v1=(0,1,0), v2=(0,0,0), v3=(1,0,0), v4=(1,1,1), v5=(0,1,1),
v6=(1,0,1), v7=(1,1,0) and v8=(0,0,1).

The characteristic polynomial of Mη is pMη (x) = x6(x-
1)2, with the power of x-1 being 2. Therefore, η has two
connected components. The eigenvectors of 1 that give the
vertices in attractors and limit cycles are (0,1,0,0,0,0,0,1)T and
(0,0,0,0,0,0,0,1)T , with their non-zero entries corresponding to the
state-vectors v2 and v8. To get the attractors and limit cycles we
calculate their orbits Ω(v2) = {v2} and Ω(v8) = {v8}. Therefore, η

has exactly two attractors, one in v2 = (0,0,0) and the other in v8
=(0,0,1), as we can confirm in Figure 4.

10.6.2 Vertices of the connected components of
η

With the attractors and limit cycles of the network η, we need
to identify the vertices in the connected components they define.
Using orbits again, if a vertex v is in a connected component C, the
complete orbit Ω(v) is contained in C and Ω(v) contains the dicycle
of C. Therefore, two state vectors belong to the same connected
component if their orbits have a non-empty intersection. Moreover,
they must share the same dicycle.

Following the example in Figure 4 and Section 10.2, we get that
the vertices v1= (0,1,0), v3= (1,0,0), v4= (1,1,1), v5= (0,1,1), v6=
(1,0,1), v7= (1,1,0), and v8=(0,0,1) form a connected component,
while the other connected component is a loop in v2= (0,0,0), as
one can verify in Section 10.5.4.

10.7 An algorithm to construct the
connected components of η

We can now reconstruct the dynamics of the network
using the following cookbook, which can be algorithmized at
every step:

1. Obtain Mη using any order of S .
2. η has m different connected components, where m is the

maximal power of x-1 in the characteristic polynomial pMη (x).
That is:

pMη (x)=(x-1)m (x -λm+1)...(x-λs), with λm+1,. . . , λs different
from 1.

The set of vertices corresponding to the non-zero coordinates
of the eigenvectors associated with eigenvalue 1 forms the vertices
of the dicycles of η.

Now select one of those vertices, say v, then the orbit Ω(v)
must be the attractor or limit cycle of a connected component of
the network η.
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FIGURE 8

Structure of the regulatory network of Tritonia Swimming, displaying
a unique ditree v7→ v1.

3. Now we will build each connected component.
Assuming that m different dicycles (say σ1, . . . , σm) correspond

to m different connected components, we must now find
their state vectors. According to Section 10.6.2, two state
vectors belong to the same connected component if their orbits
intersect non-empty.

10.8 Topology of the network

By demonstrating that each connected component of η has
exactly one attractor or limit cycle designated by the Perron-
Frobenius eigenvector of the network’s state matrix, this section
provides mathematical evidence showing how attractors and limit
cycles illustrate the temporal dynamics of the biological system. The
technique is described in Figures 1, 2, 7 of the Tritonia regulatory
network section. The Perron-Frobenius Theorem shows that these
attractors and limit cycles define the “phenotype” of the biological
system. In other words, if v is the state vector of one connected
component, η′ of η and M’, the defined state matrix η′, then the
evolution of v in time m, given by (M’)mv, tends to the attractor or
limit cycle of evolution η′. Moreover, each connected component
of the network can be analyzed as a separate biological subsystem,
independently of those describing other connected components
(see Section 10.3).

In summary, the regulatory network of a synchronous
biological system may include different connected components,
each representing an independent subsystem. Therefore, we should
evaluate each component separately. This reflects the nature of a
connected regulatory biological network. As shown above, such
networks have a single attractor or limit cycle. According to the
Perron-Frobenius theorem, the attractor reflects the system’s time-
dependent behavior. By definition, this attractor is stable.

10.8.1 The regulatory network of Tritonia
The regulatory network η of Tritonia swimming is a connected

network with the following seven state vectors:

v1 = (1, 0, 0) , v2 = (1, 0, 1) , v3 = (0, 0, 1) , v4 = (0, 1, 1) ,

v5 = (0, 1, 0) , v6 = (1, 1, 0) .

The 7 by 7 state matrix and its eigenvector u with eigenvalue
1 have been presented in section 10.6.1. In Figure 8 note that η has

a unique ditree v7 → v1 with v7 = (0,0,0). The ij-th entry of Mη

occurs into the ith row and the jth column, and acquires a 1 value if
there is an arrow in η from vj to vi.

As described in Section 10.5, the ith entry corresponds to the
state-vector vi, which has a value of 1, indicating that it is at limit
cycle. Moreover, 1 is the spectral radius of Mη and its eigenvector is
the Perron-Frobenius vector of the state-matrix.

As we will see in Section 10.5, for certain matrices such as Mη, if
η is a connected network, the Perron-Frobenius vector, u, acquires
the following asymptotic property:

lim
m−→∞ Mm

η v = αv u with αv > 0

For every v in K = {
∑7

i=1 aizi : ai ≥ 0 for i=1,. . . ,7}. This set
K is built with the orbits of the state-vectors of the network defined
in Sections 10.3.3 and 10.5.5. For Tritonia swimming, the vectors zi
are the following:

z1= (0,1,1,1,1,1,0) vector associated to the orbit v1.
z2= (1,0,1,1,1,1,0) vector associated to the orbit v2.
z3= (1,1,0,1,1,1,0) vector associated to the orbit v3.
z4= (1,1,1,0,1,1,0) vector associated to the orbit v4.
z5= (1,1,1,1,0,1,0) vector associated to the orbit v5.
z6= (1,1,1,1,1,0,0) vector associated to the orbit v6.
z7= (1,0,0,0,0,0,1) vector associated to the orbit v7.

Figure 9 illustrates the meaning of the limit just described.
Now, we will contextualize the previous facts.

10.8.2 Perron-Frobenius eigenvector of Mη

According to the Jordan decomposition theorem, the
eigenvalues and eigenvectors of a matrix determine the behavior of
the linear function defined by the matrix [26–28]. More specifically,
the spectral radius of the state-matrix Mη provides an asymptotic
prediction of the behavior of the connected network over time (see
Section 10.8).

The set K of real vectors is defined by the orbits of the
state vectors of η (see Section 10.3.3). K is invariant under the
state-matrix Mη, meaning that for every vector v in K, Mηv
also lies in K. Moreover, for t ≥ 0, Mt

ηv K approaches the
ray determined by the Perron-Frobenius eigenvector û, with its
unique eigenvalue ρ(Mη) = 1 (see Section 10.5.3). Such ray is the
asymptote of Mt

ηv which informs about the temporal dynamics of
the biological network.

10.8.3 A cone associated to η

To construct the set K, we must remember that the vertices
of η are the state vector S = {v1, . . . , vs}, with {v1, . . . , vm} being
the dicycle or the network. If m=1, {v1, . . . , vm} represents the
attractor. Otherwise, {v1, . . . , vm} represents the limit cycle of η.

Now we will define the real vectors in s coordinates. For 1≤ i
≤ s, the vector zi contains the information about the state-vectors
in the orbit of the state-vector vi. In the following equation, the
jth-coordinate is:
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FIGURE 9

Geometric interpretation of the Birkhoff-Vandergraft theorem. The
non-negativity of the Mη matrix allows the use of the
Perron-Frobenius theorem described in Section 10.8.4. û is the
Perron-Frobenius vector; K is the set of real vectors v, and Mt

ηv is the
state matrix of η for a vector v over time t.

zi(j)=

{
1 if vj belongs to the orbit of vi
0 otherwise

Remember that the orbit of vi is:

Ω(vi) = {Ft(vi) : t≥ 0},

which is the set of compositions of F(vi) in section 10.5.3.
We can now define K as the set of non-negative linear

combinations of z1, . . . , zs.,

K = {
∑s

i=1
aizi : ai ≥ 0 for i = 1, . . . , s}.

10.8.4 Future behavior of the biological system
We have obtained the following asymptotic result: For every v

in K, the following limit exists:

lim
m−→∞ Mm

η v = αv û with αv > 0

The above result originates from the Birkhoff-Vandergraft
Theorem [27], which generalizes the Perron-Frobenius theorem
[25, 26].

In the equation above, û is truly a “limit vector” that predicts
the future behavior of the biological system. Moreover, as stated
in Section 10.5, the non-zero entries of û correspond to the
state-vectors of the limit cycle (the attractor) of the network.
The behavior of attractors in asynchronous systems is adequately
described in Cessac and Samuelides [12].

10.9 An algorithm to find the attractors
and the limit cycles of η

It is easy to identify the attractors and limit cycles
of small regulatory systems. However, finding the

attractors or limit cycles becomes harder when we
don’t know if the network is connected. The following
algorithm is created to identify the attractors and
limit cycles.

1. Find all the connected components of η (see Section 10.9).
2. Let C1, ..., Cm be the different connected components of η and

MC1 , ..., MCm their respective state-matrices.
3. For each h=1, . . . , m, calculate an eigenvector of MCh , û(h)

with a 1 eigenvalue. The state-vectors of S , associated with the
non-zero coordinates of û(h) form the limit cycle of Ch.

11 Conclusions

1. We introduce a method for detecting and illustrating various
interactions among the components that control the operation of
regulated biological networks.

2. A logical digraph of the regulatory biological network is
built using eight logical connectives from Boolean algebra, which
together accurately depict all possible interactions among the
network’s elements.

3. Rules are provided to convert the components of the network
from logical to Boolean representation.

4. The transfer function, its orbits, and the state matrix of the
network enable us to identify the topology of the network, including
its limit cycles, attractors, and dynamics.

5. The spectrum of the state matrix determines the Perron-
Frobenius eigenvalues, which predict the time evolution of
the network.

6. An algorithm plus three software routines are
provided to find the attractors and limit cycles of biological
regulatory systems, to build their state matrix and to
find the eigenvectors in systems with a large number
of elements.
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Glossary

Set-function f : A→ B Each element a of A is associated with a unique element of B that we will denote by f(a)

(Logical) proposition A statement that is either true or false but not both

P,Q,R,Pi Denote propositions

Connected graph A graph where every two vertices are connected by a sequence of edges (path)

Subgraph of a graph A graph all of whose vertices and edges are contained in the larger graph

Digraph Directed graph or network

Tree Connected graph without cycles

Ditree Directed tree

Dicycle Directed cycle

|η| Underlying graph of the digraph η (change arrows by edges)

Connected component “C” of a graph G A maximal connected subgraph of G. That is, there is no larger connected subgraph of G containing C

Connected component
of a digraph η

Digraph associated with a connected component of |η|

Logical digraph Digraph with logical connectives (Table 2)

n, s, r, m Natural numbers

Z2 = {0, 1} , ⊕, ⊗ Boolean values, sum, product (Table 1)

Z
n
2 The set of vectors with n entries in Z2

f : Zn
2 → Z2 Boolean function

(G,S , F, η) Regulatory biological system

G ={g1 ,. . . ,gn} A finite assembly of n elements (genes, neurons, cells or nodes)

g1 ,. . . ,gn Denote genes, neurons, cells or nodes

S A subset of Zn
2 . Its elements are called state-vectors of the system

F: S → S The transfer function of the system F=(f1 ,. . . ,fn) with fj : Zn
2 → Z2 a Boolean function

(F◦F)(v) F(F(v)). Since F(v) is in S , we can apply F to F(v)

F t t times its composition, F◦F◦ · · · ◦ F

Ω(v) = {F t(v): t ≥0} Orbit of v

η Regulatory network = digraph whose set of vertices is S and an arrow v → F (v) for each v in S

Attractor A loop in the regulatory network

Limit cycle A dicycle in the regulatory network

Mη A real matrix called the state-matrix of η

α,β,λ Eigenvalues (see the next line)

Mηv= αv v is an eigenvector of Mη with corresponding eigenvalue α

Spectrum of Mη The eigenvalues and eigenvectors of Mη

w is a scalar multiple of v If there exists a number α such that w= αv

Modulus or
Absolute value of α, |α|

|α|= √
α2

ρ
(
Mη

)
The spectral radius of Mη . That is, the maximum of the modulus of the eigenvalues of Mη .

r-root of unit A complex number z such that zr=1. There are r different r-roots of unity:
{

e
2πki

r ; k = 1, . . . , r
}
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