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HIV and tuberculosis (TB) remain closely linked public health threats in sub-
Saharan Africa, with South Africa bearing the highest burden of both diseases. In 
KwaZulu-Natal, where HIV prevalence peaks among individuals aged 15–49, HIV-
induced immunosuppression significantly increases TB risk. Despite their biological 
interplay, HIV and TB are often analysed separately. This study jointly modelled 
CD4 cell count and TB diagnosis using a Bayesian latent variable approach to 
examine their interdependence among HIV-positive individuals. Data were drawn 
from 7,776 HIV-positive individuals aged 15–49 participating in two population-
based cross-sectional surveys (2014–2016) under the HIPSS project. A Bayesian 
multivariate latent variable model jointly estimated CD4 cell count (continuous) 
and TB diagnosis (binary) using a probit link. Model fitting was conducted in R 
using the brms package with Hamiltonian Monte Carlo sampling. The analysis 
revealed a moderate negative correlation (−0.38) between predicted CD4 cell 
counts and TB probabilities, supporting the inverse biological relationship between 
immune suppression and TB risk. Antiretroviral therapy (ARV) use was significantly 
associated with improved immune status and reduced TB risk. Other key factors, 
such as male sex, lower educational attainment, and high viral load, were linked 
to both increased TB susceptibility and lower CD4 cell counts. These findings 
demonstrate the utility of joint Bayesian modelling in capturing the interdependence 
of comorbid outcomes and highlight the clinical and policy relevance of integrated 
HIV–TB programming. They support targeted screening, early treatment initiation, 
and resource prioritisation for at-risk populations in high-burden settings like 
KwaZulu-Natal.
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1 Introduction

The dual burden of human immunodeficiency virus (HIV) and 
tuberculosis (TB) remains a major public health challenge globally, 
particularly in sub-Saharan Africa, where the epidemics intersect with 
devastating impact. South Africa is among the most severely affected 
countries, with KwaZulu-Natal province at the epicentre of the HIV–
TB syndemic. Recent estimates indicate that over 20% of adults in the 
province are living with HIV, and TB remains the leading cause of 
death among people living with HIV (PLHIV) (1, 2).

CD4 cell count is a critical biomarker of immune function, and its 
decline during HIV infection significantly increases susceptibility to 
TB. Studies show that PLHIV with CD4 cell counts below 200 cells/
mm3 face several-fold higher odds of developing TB compared to 
those with higher counts (3). Conversely, TB infection can accelerate 
HIV progression through sustained immune activation (4, 5). This 
bidirectional interplay underscores the need for analytical approaches 
that can jointly model these interdependent outcomes.

However, most epidemiological studies analyse TB status (binary) 
and CD4 cell count (continuous) separately, typically using standard 
regression or mixed-effects models (6, 7). These approaches often 
overlook latent correlations and shared unobserved risk factors, 
potentially biasing estimates and weakening inference.

Joint modelling strategies address this gap by simultaneously 
estimating multiple correlated outcomes (8). While such methods have 
been applied in HIV progression and survival analysis (9) and for binary 
outcomes (10), they are seldom used in HIV–TB research. A few recent 
studies have jointly modelled TB diagnosis and CD4 cell count 
outcomes using multivariate approaches, particularly within a Bayesian 
framework. For instance Gebre and Hussen (11), examined co-infection 
risks using joint modelling and concluded that ignoring the correlation 
between CD4 cell count and TB outcomes may underestimate joint 
disease burden. Another study by Mchunu et al. (12) also utilised joint 
modelling to examine the association between CD4 cell count and the 
risk of death in TB/HIV data. However, both studies did not account for 
shared latent factors that may influence both conditions simultaneously.

Beyond regression-based joint models, a variety of techniques, 
such as multivariate latent class models, shared frailty models, and 
joint survival models, have enhanced infectious disease research. For 
instance Mugwanyaet  al. (13), identified adherence profiles using 
latent class analysis in PrEP users in Kenya. Work by Kazibwe et al. 
(14) applied a frailty model to explore predictors of TB incidence 
among PLHIV in Nigeria, while Mollel et al. (15) used frailty-adjusted 
Poisson models to assess the effect of TB co-infection and spatial 
clustering on HIV mortality in Tanzania. Similarly Gumede-Moyo 
et  al. (16), employed multivariate survival models to study ART 
retention and mortality in Zambia.

Parallel advances in mechanistic modelling have explored 
syndemic dynamics and behavioural feedback mechanisms. These 
include models of media-driven psychological fear (17), prevalence-
dependent awareness (18), and COVID-19, related treatment 
disruption (19, 20). Demographic-focused models, such as fractional 
gender-structured frameworks (21), have also revealed heterogeneity 
in co-infection risk. However, these models typically do not 
incorporate individual-level clinical biomarkers or support joint 
statistical inference.

To address persistent gaps in modelling the interplay between 
HIV progression and TB risk, we apply a Bayesian multivariate latent 
variable model to jointly analyse binary TB diagnosis and continuous 
log-transformed CD4 cell count among PLHIV in KwaZulu-Natal. 
This flexible framework accommodates mixed outcome types, 
accounts for latent correlations, and enables full posterior inference. 
Unlike mechanistic epidemic models, our approach provides 
statistically grounded, data-driven insights into the co-dynamics of 
immune suppression and TB risk, tailored to clinical and public 
health applications.

Bayesian latent variable models are particularly suited to complex 
epidemiological data, offering advantages such as the incorporation 
of prior knowledge, robustness to sparse or hierarchical structures, 
and the ability to model unobserved confounders (e.g., stigma, 
nutritional status, or healthcare access) that influence both HIV 
progression and TB susceptibility (22). These properties make them 
powerful tools for integrated analysis in syndemic contexts like 
HIV–TB.

This study makes a novel contribution by being among the first to 
apply a Bayesian multivariate probit latent variable framework to 
jointly model CD4 cell count and TB diagnosis in a high-burden, real-
world setting. Previous work has typically modelled these outcomes 
separately, used less flexible methods, or lacked explicit handling of 
latent dependence and unobserved heterogeneity. By addressing these 
limitations, our approach enhances both inferential accuracy and 
epidemiological relevance, offering a new analytical lens to support 
targeted interventions and future research in syndemic 
disease management.

2 Materials and methods

2.1 Sources of data and study population

This study is based on secondary data from two consecutive, 
population-based cross-sectional surveys conducted under the HIV 
Incidence Provincial Surveillance System (HIPSS). HIPSS is a large-
scale surveillance initiative aimed at monitoring HIV incidence and 
prevalence in KwaZulu-Natal, South  Africa. The first survey was 
conducted between 11 June, 2014, and 18 June, 2015, and the second 
between 8 July, 2015, and 7 June, 2016. Both surveys were carried out 
in the Vulindlela (a rural area) and Greater Edendale (a peri-urban 
area) within the uMgungundlovu District.

To ensure representativeness, HIPSS employed a multi-stage 
probability sampling method. From 600 enumeration areas (EAs), 591 
EAs with at least 50 households were eligible. Of these, 221 EAs were 
randomly selected for the 2014 survey and 203 for the 2015 survey. 
Within each selected EA, households were systematically sampled, 
and one eligible individual from each household was randomly chosen 

Abbreviations: HIV, Human Immunodeficiency Virus; KZN, KwaZulu Natal; HIPSS, 

HIV Incidence provincial surveillance system; STIs, Sexually transmitted infections; 

ART, Anti-retroviral therapy; GIS, Geographical information system; MCMC, Markov 

Chain Monte Carlo; CI, Credible/confidence interval; TB, Tuberculosis; LOESS, 

Locally estimated scatterplot smoothing; IRIS, Immune reconstitution inflammatory 

syndrome; AME, Average marginal effect; MAR, Missing at random; PPP, Posterior 

predictive p-value; ELPD, Expected log predictive density; LOOCV, Leave-one-out 

cross validation; ESS, Effective sample sizes.
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after providing written informed consent. The geographic coordinates 
of all sampled households were captured using GPS technology to 
support spatial analysis and minimise selection bias.

Data quality was rigorously maintained through a series of checks. 
During the first month of fieldwork, data were monitored daily, 
followed by monthly checks for 6 months, and then quarterly 
assessments. The Mobenzi Researcher system (Durban, South Africa) 
enabled real-time tracking of field activities, protocol compliance, and 
data integrity. Automated systems flagged inconsistencies immediately 
for correction. The dataset also includes laboratory-verified HIV test 
results from peripheral blood samples, enhancing its epidemiological 
value. All data underwent centralised management, rigorous quality 
control, and completeness verification.

The 2014 HIPSS survey included 9,812 participants (6,265 females 
and 3,547 males), while the 2015 survey included 10,236 participants 
(6,431 females and 3,805 males), for a combined total of 20,048 
individuals aged 15–49. Among these, 7,839 tested HIV positive, and 
7,776 had  valid CD4 cell count measurements. Participants with 
missing CD4 cell count data (n = 63) were excluded from this analysis, 
resulting in a final sample of 7,776. To address missingness in other 
variables, we employed multiple imputation by chained equations 
(MICE) using the mice package in R. The imputation model included 
all variables used in the analysis to preserve multivariable relationships 
and ensure congeniality. While some risk of bias remains due to 
unmeasured confounding or potential violations of the missing at 
random (MAR) assumption, the robust sampling design, inclusion of 
auxiliary variables, and principled handling of missing data enhance 
the validity and generalisability of our findings.

The choice to focus on individuals aged 15 to 49 years is grounded 
in both epidemiological and policy considerations. This age group 
encompasses the sexually active and economically productive 
population, who are at the highest risk for HIV acquisition and TB 
co-infection. It also aligns with national surveillance efforts and 
UNAIDS reporting standards, allowing for comparability with 
broader public health data and making the results directly relevant for 
intervention planning in high-burden regions like KwaZulu-Natal.

2.2 Study variables

Two dependent variables were included in this study. The first one 
was CD4 count (continuous), which was log-transformed prior to 
modelling. Log transformation helps stabilise variance, improve 
normality assumptions, and enhance the interpretability of regression 
coefficients in the context of continuous outcomes. By transforming 
CD4 cell counts, the model achieves a better fit and more reliable 
inference under the assumption of normally distributed residuals.

The second response variable was TB, which was categorised as a 
binary outcome as shown in Equation 1:

	
ij

if individual i from cluster j is TB positive
y

if individual i from cluster j is TB negative
1   
0   

= 
 	

(1)

The selection of explanatory variables was guided by prior 
literature, theoretical relevance, and data availability. Key demographic 
(age and gender), socioeconomic (education and income), and 
behavioural (ARV use, alcohol use) factors were included to control 

for confounding and to investigate their role in shaping health 
outcomes among people living with HIV. Variables such as viral load 
suppression and STI diagnosis were also included, given their 
biological association with immune response and TB susceptibility. 
The year of the survey was added to adjust for temporal effects.

We applied the variance inflation factor (VIF) to check for 
multicollinearity before fitting the model. All the VIF values were 
quite low, all less than 1.5, showing that multicollinearity was not a 
significant concern in the fitted model.

2.3 Statistical analysis

To jointly model the continuous CD4 cell count and the binary TB 
diagnosis, we  adopted a Bayesian multivariate latent variable 
framework. This approach simultaneously accounts for the distinct 
nature of each outcome while capturing shared latent influences, such 
as unobserved immune vulnerability, socioeconomic conditions, or 
healthcare access disparities.

2.3.1 Bayesian joint modelling framework
We jointly model CD4 cell count and TB diagnosis outcomes using 

a Bayesian multivariate framework to account for their potential latent 
correlation. Let 4,CD iY  denote the log-transformed CD4 cell count (a 
continuous outcome), and ,TB iY  the TB diagnosis status (a binary 
outcome) for individual i, with covariate vectors 1iX  and 2iX , respectively.

2.3.1.1 Likelihood specification
For the continuous CD4 cell count outcome, we  assume a 

Gaussian distribution, specified in Equation 2:

	 ( )β ε ε σ= + + 2
4, 1i 1 1 1X , ~ 0, ,T

CD i i i iY b N
	

(2)

For the binary TB outcome, modelled using a probit link, the 
specification is given in Equation 3:

	 ( )( ) T
TB i i iY X b1

, 2 2Pr 1 ,β−Φ = = +
	 (3)

where ( )1−Φ ⋅  is the inverse standard normal CDF (probit link), 
β1 and β2 are the respective regression coefficients associated with the 
covariates 1iX  and 2iX  respectively, and ε1i  is an independent and 
identically distributed random error term that captures residual 
variability not explained by the model, assumed to follow a normal 
distribution with mean 0 and variance σ 2.

2.3.1.2 Priors
We assign weakly informative priors to all model parameters:

	 ( ) ( )β β σ −2
1 2 3, ~ 0,2.5 , ~ 0,2.5N Student t

	 ( ) ( )τ τ −2
3~ 0, , ~ 0,2.5ib N Student t

The choice of priors in the model offers several key advantages. 
The normal priors for fixed effects provide weak regularisation, 
allowing the regression coefficients to vary while still centring them 
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around zero, which is useful when prior information about the 
predictors is limited or uncertain. This approach strikes a balance 
between flexibility and constraining the model to avoid overfitting 
(23). Similarly, the Student-t priors on the intercepts and residual 
standard deviations are particularly advantageous in handling 
potential outliers and providing robust estimates, as the heavy tails of 
the Student-t distribution allow the model to accommodate extreme 
values without being overly influenced by them (24). This robustness 
is crucial when modelling real-world data that may contain outliers or 
unusual patterns. The normal prior on random effects helps to model 
individual-level deviations in a hierarchical structure, ensuring that 
the random effects are not overfitted, while also promoting stability 
and better generalisation of the model (22). Finally, the Student-t prior 
for the variance parameter adds flexibility to the modelling of the 
random effects’ variance, providing the model with the ability to adapt 
to varying levels of uncertainty in individual deviations. Overall, these 
priors allow for a well-regularised model that balances flexibility with 
robustness, ensuring stable estimates and reliable inference even in the 
presence of outliers or limited prior information.

To assess the robustness of our model to prior assumptions, 
we conducted a sensitivity analysis by re-fitting the joint model using 
alternative prior distributions, Normal, Half-Normal, Cauchy, and 
Half-Cauchy, for key parameters. Model performance under each 
specification was evaluated using the expected log predictive density 
(ELPD), estimated via leave-one-out cross-validation (LOOCV). 
ELPD values are computed relative to the base model with Student-t 
priors. Higher values indicate better out-of-sample predictive 
performance. The results are summarised in Table 1.

As summarised in Table 1, all alternative prior specifications yielded 
comparable fits to the default Student-t priors, with only minor differences 
in expected log predictive density (ELPD). The largest deviation 
(ΔELPD = −0.6) occurred under the Cauchy prior, which also exhibited 
slower convergence and signs of potential multimodality, consistent with 
the behaviour of heavy-tailed priors. Overall, the similar predictive 
performance across priors supports the robustness of the model to 
reasonable prior choices. These findings suggest that the default prior did 
not unduly influence posterior inference. Furthermore, model diagnostics 
indicated no evidence of convergence issues or multimodality for any 
specification, reinforcing the stability of the MCMC estimation process.

2.3.1.3 Joint model formulation

The joint likelihood for individual ( )= …1, 2, ,i i n  is given by 
Equation 4:

	

( )
( ) ( )

( )( )

i

i

i i i

T
Yi i i T

i i

YT i
i i

L Y Y b

Y X b
X b

bX b

2

2

2 2
1 2 1 2

2

2
1 1 1

2 22

21
2 2 22

1, , | , , ,
2

exp
2

11 exp
22

σ τ
πσ

β
β

σ

β
τπτ

−

β β =

 
− − 

− ×Φ + 
  
 

 
× −Φ + × −  

  	

(4)

Across all n individuals the full likelihood is expressed in 
Equation 5:

	

( )
( )

( )
( )( )

i

i

i i

T
i i i

Yn T
i i

i YT
i i

i

L Y Y b

Y X b

X b

X b

b

2

2

2 2
1 2 1 2

2
1 1 1

22

2 2

1 1
2 2

2

22

, , | , , ,

1 exp
22

,

1

1 exp
22

σ τ

β

σπσ

β

β

τπτ

= −

β β =

  
− −  

−  
     
 
×Φ + × 
 
 −Φ + 
   × −   

  

∏

	

(5)

With ( )= …1, , nb b b .

2.3.1.4 Posterior distribution
The posterior distribution of the parameters is proportional to the 

product of the likelihood and the prior distributions:

	

( )
( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )

ii

Tn i i i

i

YYT T
i i i i

p b Y Y

Y X b

X b X b

p p p p p

22

2 2
1 2 1 2

2
1 1 1

221

1
2 2 2 2

2 22² 2
1 2

, , , , | ,

1 exp
22

1

b| ,

β β σ τ

β

σπσ

β β

β β σ τ τ

=

−

  
− −  

−  
  ∝    
 
×Φ + × −Φ + 
 

× × × × ×

∏

With P (.) indicating prior densities for parameters.

TABLE 1  Comparison of model variants using alternative prior distributions.

Model Variant Prior Specification ∆ELPD (vs. base) SE (∆ELPD)

Base Model Student-t (3,0,2.5) for intercepts and SDs, Normal (0,2.5) for β 0.0 0.0

Half Normal Half-Normal (0, 2.5) for SDs

Normal (0, 2.5) for β

−0.2 0.1

Normal Normal (0, 2.5) for all parameters −0.4 0.1

Half Cauchy Half-Cauchy (0, 2.5) for SDs

Normal (0, 2.5) for β

−0.4 0.1

Cauchy Cauchy (0, 2.5) for all parameters −0.6 0.1
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2.3.2 Bayesian latent variable model
The Bayesian latent variable framework is well-suited for 

analysing multivariate outcomes where at least one of them may 
be binary, unobserved, or subject to measurement error. In this 
study, we jointly modelled a continuous outcome (CD4 cell count) 
and a binary outcome (TB diagnosis) using a shared latent 
variable structure. This framework allows for the estimation of the 
correlation between the latent propensity for TB and the observed 
CD4 cell count, capturing shared variance potentially driven by 
underlying biological mechanisms or sociodemographic  
factors.

To represent the binary TB outcome within a latent structure, 
we use a probit formulation in which the observed TB diagnosis ,TB iY  
arises from an unobserved continuous latent variable ∗

,TB iY . 
Specifically, we define:

Continuous outcome (CD4 cell count) given in Equation 6:

	 ( )β ω ε ε σ= + + 2
4, 1 1 1 1, ~ 0, ,T

CD i i i i iY X N
	

(6)

Latent TB propensity, defined in Equation 7:

	 ( )β ω ε ε∗ = + +, 2 2 2 2, ~ 0,1 ,T
TB i i i i iY X N 	 (7)

The observed TB outcome is then determined as Equation 8:

	

∗ >= 


,
,

1 0
0

TB i
TB i

if YY
otherwise 	

(8)

Where ωi  is the latent variable capturing shared unobserved 
heterogeneity between outcomes.

2.3.3 Joint latent variable formulation
To explicitly model the residual dependence between the 

continuous and binary outcomes, we assume the error terms ε1i and 
ε2i  follow a bivariate normal distribution:

	

i

i
N

21 1 1

2 1
0,

1

ε σ ρσ
ε ρσ

   
 ∼          

This formulation introduces a latent correlation parameter ρ , 
which captures the residual association between CD4 count and the 
latent TB propensity after accounting for observed covariates. This 
enhances the model’s flexibility in representing complex 
biological interdependencies.

The posterior distribution of the parameters is proportional to 
the product of the likelihood and the prior distributions:

	

( ) ( ) ( )

( ) ( )
CD i i i TB i i i

i

i

p Y Y p Y X p Y X

p p

2
1 2 1 2 4, 1 , 2

2
1 2

, , , | , | |, | ,

, , .

β β σ ω ω ω

ω β β σ

∝ ×

× ×

∏

2.4 Parameter estimation

Building on the latent variable specification from Section 2.3.2, 
we now describe the estimation procedure used to fit the joint model.

Let ( ){ } =
= 1i 2i 1i 2i 1

Y ,Y ,X ,X n
i

  denote the observed data for n 
individuals, where 1iY  is the continuous CD4 count and 2iY  is the 
binary TB status.

The likelihood for the ith observation is shown in Equation 9:

	
( ) ( ) ( )( )θ β ω σ β ω= Ν + ×Φ +2

1 1 1 2 2 2|, |, .T T
i i i i i i iL Y X Y X

	
(9)

The full likelihood over all individuals is then given in Equation 10:

	
( ) ( ) ( )( )θ β ω σ β ω

=

 = Ν + ×Φ +  ∏ 2
1 1 1 2 2 2

1
|, |, ,

n
T T

i i i i i i
i

L Y X Y X
	
(10)

Where ( )Φ ⋅  is the cumulative distribution function (CDF) of the 
standard normal distribution.

Taking logs, the full log-likelihood is expressed in Equation 11:

	

( )
( )

( )( )
Tn i i i

T
i i ii

Y X
L

Y X

2
1 1 1

2 2 21

|, |,
log log .

β ω σ
θ

β ω=

 Ν +
 =  ×Φ +  

∑
	

(11)

Expanding the expression we get Equation 12:

	

( ) ( ) ( )

( )( )

T
i i

T
i

X

X

2
1i 1 1n 2

2
i 1

2i 2 2 i

Y1 log 2log L ,2 2
log Y

β ω

=

 
− − 

− πσ − θ = σ 
 + Φ β +ω  

∑

	

(12)

With parameter vector defined in Equation 13:

	
( )2

1 2, , , .ω σθ = β β
	

(13)

The posterior distribution is then defined as:

	 ( ) ( ) ( )p L| p ,θ θ θ∝ ⋅

Where ( )θp  represents the prior distributions assigned to the 
model parameters.

Due to the non-conjugacy introduced by the probit link and latent 
terms, this posterior is not analytically tractable. Bayesian inference 
was therefore conducted using Markov Chain Monte Carlo (MCMC) 
methods, specifically Hamiltonian Monte Carlo (HMC) as 
implemented in Stan, accessed through the brms package in R. This 
approach efficiently samples from high-dimensional posterior 
distributions while maintaining convergence and computational 
stability. Importantly, MCMC allowed us to explore the full joint 
posterior distribution of model parameters, enabling robust inference 
despite the lack of closed-form solutions.
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2.5 Model diagnostics

Posterior inference was carried out using Markov Chain Monte 
Carlo (MCMC) sampling, with diagnostics and validation techniques 
to ensure reliable estimation. Convergence was assessed using the 
Gelman–Rubin statistic (R-hat) and effective sample size metrics, 
supplemented by trace and posterior density plots to inspect mixing 
and distributional behaviour. Posterior predictive checks were used to 
evaluate how well the model replicated observed data for both 
outcomes, CD4 cell count and TB diagnosis. Additionally, residual 
plots were generated to identify model misfit. To assess the joint 
structure, the correlation between predicted TB probabilities and CD4 
cell counts was examined, validating the contribution of shared 
random effects in capturing latent dependencies.

2.6 Software and implementation

All modelling was conducted in R version 4.4.0, using the brms 
package, which provides a high-level interface to Stan for efficient 
Hamiltonian Monte Carlo (HMC) sampling. The model specified 
separate likelihoods for the two outcomes: a Gaussian likelihood for 
continuous CD4 cell count, and a Bernoulli likelihood with a probit 
link for binary TB diagnosis. A shared random effect structure was 
used to jointly model the two outcomes, while controlling for a 
consistent set of covariates across both components.

3 Empirical results

3.1 Descriptive statistics and joint model 
results

In this study of 7,776 HIV-positive individuals residing in 
Vulindlela and Greater Edendale areas, the distribution of CD4 cell 
counts (log-transformed) indicated generally preserved immune 
function. The mean CD4 count was 6.13 with a standard deviation of 
0.64, while the median was 6.23. CD4 cell count values ranged from 
2.40 to 7.58, with an interquartile range of 5.82 to 6.57, suggesting 
moderate variability around the central values.

Regarding tuberculosis (TB), a total of 2,155 individuals were 
diagnosed with TB, yielding an overall TB prevalence of 27.7% (95% 
CI: 26.7–28.7%). This substantial co-infection rate highlights the 
ongoing dual burden of TB and HIV in this high-prevalence setting. 
Table 2 presents a detailed stratification of TB prevalence and CD4 cell 
count distribution across key demographic, socioeconomic, and 
clinical covariates.

Results from Table 2 reveal significant variations in TB prevalence 
among HIV-positive individuals across demographic, socioeconomic, 
and clinical characteristics. TB prevalence tended to be higher among 
older age groups, males, individuals with lower education levels, and 
those without a source of income. Elevated prevalence was also 
observed among individuals not accessing healthcare services, those 
who consumed alcohol, and those who had never had sex. These 
patterns suggest that social vulnerability, limited healthcare access, 
and certain behavioural or clinical factors may contribute to an 
increased risk of TB in this population.

Table 2 also highlights differences in log-transformed CD4 cell 
counts across similar subgroups. Higher CD4 cell counts were 
generally observed among younger individuals, females, those with 
higher education levels, and individuals on ART. Socioeconomic 
factors such as having a source of income and accessing healthcare 
were also positively associated with CD4 cell count. These findings 
underscore the complex interplay between social determinants, 
clinical care, and immune function in the study population.

Overall, Table  2 provides summary statistics for both TB 
prevalence and CD4 cell count distribution across all covariates. While 
these descriptive findings offer useful preliminary insights into 
potential associations, the results from the joint multivariate Bayesian 
model are emphasised for their capacity to account for both shared 
and outcome-specific predictors, as well as the potential directional 
relationship between TB prevalence and immune status. This 
modelling approach enables a more robust and integrated 
interpretation of the data.

To jointly model TB diagnosis and CD4 cell count among 
HIV-positive individuals aged 15–49 years in KwaZulu-Natal, a 
Bayesian multivariate model was fitted using the brms package in 
R. Table 3 presents the results, including estimated average marginal 
effects (AMEs) for the binary outcome of TB diagnosis and posterior 
means for the continuous outcome of CD4 cell count, each 
accompanied by their respective 95% credible intervals. This joint 
modelling approach quantifies the independent effects of 
sociodemographic and clinical covariates on both outcomes, while 
accounting for potential confounding and shared influences. 
Covariates were deemed statistically significant if their 95% credible 
intervals did not include zero.

Focusing first on TB diagnosis, several sociodemographic and 
clinical covariates showed significant associations with the 
likelihood of being diagnosed with TB. Age emerged as a strong 
predictor of TB diagnosis. Compared to individuals aged 
15–19 years, those aged 30–34 had a 7-percentage point higher 
probability of being diagnosed with TB (AME: 0.07, 95% CrI: 0.02 
to 0.12). This probability increased among those aged 35–39 and 
40–44, with both groups showing a 9-percentage point increase 
(AME: 0.09, 95% CrI: 0.04 to 0.14 and 0.09, 95% CrI: 0.03 to 0.14, 
respectively). The highest marginal effect was observed in the 45–49 
age group, with a 17-percentage point higher likelihood of TB 
diagnosis compared to the reference group (AME: 0.17, 95% CrI: 
0.11 to 0.22).

Gender also had a significant effect, with males showing a 
10-percentage point higher probability of TB diagnosis than females 
(AME: 0.10, 95% CrI: 0.07 to 0.12). Education was another important 
factor. Individuals with incomplete secondary education were slightly 
more likely to be diagnosed with TB (AME: 0.03, 95% CrI: 0.01 to 
0.05), while those with no formal schooling or only pre-primary 
education had a more substantial increase in risk (AME: 0.08, 95% 
CrI: 0.02 to 0.14), compared to those who completed 
secondary education.

Economic status, as measured by the main source of income, was 
also associated with TB diagnosis. Participants who reported receiving 
remittances from migrant workers had a significantly lower probability 
of TB diagnosis (AME: –0.10, 95% CrI: −0.17 to −0.01) compared to 
those with no income, suggesting a potential protective effect of 
financial support.
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TABLE 2  Descriptive summary statistics for both TB and CD4 Cell count by each covariate among HIV-positive individuals in Vulindlela and greater 
Edendale areas in Umgungundlovu municipality.

Covariate N = 7,776 TB Diagnosis CD4 Cell Count

Cases Prevalence (%) 95% CI Mean SD

Age Group

15–19 334 87 26.05 [21.42, 31.10] 6.21 0.632

20–24 925 191 20.65 [18.08, 23.40] 6.19 0.595

25–29 1,473 342 23.22 [21.08, 25.46] 6.13 0.623

30–34 1,654 453 27.39 [25.25, 29.61] 6.11 0.642

35–39 1,411 421 29.84 [27.46, 32.30] 6.11 0.654

40–44 1,201 364 30.31 [27.72, 32.99] 6.11 0.653

45–49 778 297 38.17 [34,75, 41.69] 6.13 0.634

Gender

Female 5,859 1,460 24.92 [23.82, 26.05] 6.20 0.606

Male 1917 695 36.25 [34.10, 38.45] 5.90 0.674

Highest Education

Complete Secondary 2,899 715 24.66 [23.10, 26.28] 6.14 0.626

Incomplete secondary 3,764 1,102 29.28 [27.83, 30.76] 6.13 0.638

No schooling/creche/pre-primary 227 90 39.65 [33.24, 46.33] 6.08 0.674

Primary (Grade 1–7) 577 181 31.37 [27.60, 35.33] 6.09 0.674

Tertiary (Diploma/degree) 309 67 21.68 [17.22, 26.70] 6.17 0.609

Main Income

No Income 619 204 32.96 [29.26, 36.81] 6.00 0.666

Other non-farming income 470 132 28.09 [24.06, 32.38] 6.08 0.671

Pension or grants 2,464 675 27.39 [25.64, 29.20] 6.17 0.627

Remittance 107 21 19.63 [12.58, 28.42] 6.12 0.689

Salary and/or wage 4,116 1,123 27.28 [25.93, 28.67] 6.13 0.630

Marital Status

Married 1,299 355 27.33 [24.92, 29.84] 6.17 0.626

Single 6,477 1800 27.79 [26.70, 28.90] 6.12 0.638

Viral Load

0 (Suppressed) 3,216 872 27.11 [25.58, 28.69] 6.02 0.681

1 (Unsuppressed) 4,560 1,283 28.14 [26.83, 29.47] 6.21 0.592

Sex Ever

No 295 125 42.37 [36.67, 48.23] 6.17 0.652

Yes 7,481 2030 27.14 [26.13, 28.16] 6.13 0.636

On ARVs

No 1,300 223 17.15 [15.14,19.32] 6.07 0.661

Yes 6,476 1932 29.83 [28.72, 30.96] 6.14 0.631

Year

2014 3,929 1,127 28.68 [27.27, 30.13] 6.10 0.655

2015 3,847 1,028 26,72 [25.33, 28.15] 6.16 0.616

Number of Sexual Partners

1 6,087 1,671 27.45 [26.33, 28.59] 6.13 0.634

2 871 262 30.08 [27.05, 33.25] 6.16 0.609

3+ 818 222 27.14 [24.12, 30.33] 6.08 0.679

(Continued)
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Interestingly, individuals who had ever had sexual intercourse were 
significantly less likely to be diagnosed with TB than those who had not 
(AME: –0.16, 95% CrI: −0.23 to −0.10). This may reflect confounding 
by age, marital status, or health-seeking behaviour. Additionally, those 
who were on antiretroviral therapy (ARVs) had a 12-percentage point 
higher probability of being diagnosed with TB (AME: 0.12, 95% CrI: 0.10 
to 0.14), potentially indicating better case detection among those already 
engaged in HIV care services.

Furthermore, individuals who had two sexual partners had a 
significantly increased probability of TB diagnosis compared to those 
with only one partner (AME: 0.05, 95% CrI: 0.02 to 0.08), suggesting 
a possible link between behavioural risk factors and TB exposure.

Lastly, access to health care services was associated with a reduced 
probability of TB diagnosis. Participants who had accessed health care 
had a 4-percentage point less likely to be diagnosed with TB (AME: –0.04, 
95% CrI: −0.06 to −0.02), which may reflect the protective role of 
preventive care, early treatment, or improved health literacy among 
health service users.

Turning to CD4 cell count, several covariates were significantly 
associated with immune status as measured by CD4 levels. Individuals 
diagnosed with TB had significantly lower CD4 cell counts (posterior 
mean = −0.08; 95% CrI: −0.11 to −0.05), underscoring the 
immunosuppressive impact of TB co-infection. Males had notably lower 
CD4 cell counts compared to females (posterior mean = −0.27; 95% CrI: 
−0.30 to −0.23), reflecting potential biological or behavioural disparities 
in immune status or healthcare utilisation.

Socioeconomic variables showed a consistent pattern. Participants 
receiving a pension or grants (posterior mean = 0.09; 95% CrI: 0.03 to 
0.15) or earning a salary or wage (posterior mean = 0.08; 95% CrI: 0.03 
to 0.14) had significantly higher CD4 cell counts relative to those with no 
income, suggesting a positive link between financial stability and 
immune health.

Interestingly, individuals with unsuppressed viral load had higher 
CD4 cell counts (posterior mean = 0.16; 95% CrI: 0.13 to 0.19) than 
those with suppressed viral load. This counterintuitive finding may 
reflect the timing of CD4 cell count and viral load measurements 
(e.g., early ART initiation before viral suppression is achieved), or 
confounding factors such as recent seroconversion or treatment 
adherence patterns.

Being on antiretroviral therapy (ARVs) was associated with modestly 
improved CD4 cell counts (posterior mean = 0.05; 95% CrI: 0.01 to 0.09), 

affirming the benefit of treatment, although the modest effect size may 
reflect late initiation or suboptimal adherence in some individuals.

Access to healthcare services was marginally associated with higher 
CD4 cell counts (posterior mean = 0.03; 95% CrI: 0.00 to 0.06). While 
the lower bound of the credible interval touches zero, the positive 
direction and biological plausibility suggest a potential, albeit modest, 
benefit of healthcare access on immune function.

Finally, individuals who had ever had sex showed slightly lower CD4 
cell counts (posterior mean = −0.08; 95% CrI: −0.16 to 0.00). Although 
the upper bound of the CrI includes zero, the direction of association 
may reflect behavioural or demographic factors such as age or sexual 
health risk profiles. Given the borderline nature of these results, they 
should be  interpreted with caution and viewed as suggestive rather 
than conclusive.

Having examined the associations between participant 
characteristics and both TB diagnosis and CD4 cell count using a 
joint Bayesian multivariate framework (as shown in Table 3), it is 
essential to assess the adequacy and reliability of the fitted model. 
Model diagnostics provide critical insights into convergence, 
goodness-of-fit, and the robustness of posterior estimates. This step 
ensures that the inferences drawn from the joint model are 
statistically sound and not influenced by poor model performance, 
inadequate mixing, or convergence issues.

3.2 Model fit and diagnostics

This section presents a comprehensive evaluation of model fit and 
convergence to validate the credibility of the Bayesian estimates from 
the joint model. Diagnostics include trace and density plots to assess 
MCMC chain mixing, R-hat and effective sample sizes for sampling 
efficiency, residual plots to evaluate fit, posterior predictive checks 
(PPCs) to examine predictive performance, and an analysis of the 
correlation between predicted TB probabilities and CD4 cell counts 
to investigate joint outcome behaviour.

3.2.1 Convergence diagnostics
Trace and density plots were used to assess convergence and 

posterior distribution behaviour for both sub models. Figure  1 
displays the trace and density plots for the TB sub model. The chains 
exhibit consistent mixing without divergences or trends, and the 

TABLE 2  (Continued)

Covariate N = 7,776 TB Diagnosis CD4 Cell Count

Cases Prevalence (%) 95% CI Mean SD

Alcohol Consumption

Never 5,861 1,580 26.96 [25.82, 28.11] 6.16 0.631

Yes 1915 575 30.03 [27.98, 32.13] 6.03 0.643

Ever Diagnosed with STI

No 7,037 1954 27.77 [26.72, 28.83] 6.14 0.634

Yes 739 201 27.20 [24.02, 30.56] 6.08 0.660

Accessed Health Care

No 3,407 1,026 30.11 [28.58, 31.69] 6.09 0.652

Yes 4,369 1,129 25.84 [24.55, 27.17] 6.16 0.623
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TABLE 3  Estimated average marginal effects and posterior means with 95% credible intervals for covariates associated with TB diagnosis and CD4 cell 
count among HIV-positive individuals.

Covariate TB diagnosis CD4 cell count

AME 95% CI Posterior Mean 95% CI

Intercept -- -- 6.13 [6.02, 6.24]

TB Diagnosis (ref: No)

Yes -- -- −0.08 [−0.11, −0.05]

Age Group (ref: 15–19)

20–24 0.00 [−0.05, 0.05] 0.00 [−0.07, 0.09]

25–29 0.04 [−0.01, 0.08] −0.04 [−0.12, 0.03]

30–34 0.07 [0.02, 0.12] −0.07 [−0.15, 0.01]

35–39 0.09 [0.04, 0.14] −0.06 [−0.13, 0.02]

40–44 0.09 [0.03, 0.14] −0.06 [−0.14, 0.02]

45–49 0.17 [0.11, 0.22] −0.03 [−0.12, 0.05]

Gender (ref: Female)

Male 0.10 [0.07, 0.12] −0.27 [−0.30, −0.23]

Education (ref: Complete Secondary)

Incomplete secondary (Grade 8-11/NTC1/2) 0.03 [0.01, 0.05] 0.00 [−0.02, 0.03]

No schooling/creche/pre-primary 0.08 [0.02, 0.14] −0.04 [−0.12, 0.05]

Primary (Grade 1–7) 0.02 [−0.02, 0.07] −0.03 [−0.08, 0.03]

Tertiary (Diploma/degree) −0.03 [−0.08, 0.02] 0.02 [−0.05, 0.09]

Main Income (ref: No Income)

Other non-farming income −0.03 [−0.08, 0.02] 0.06 [−0.01, 0.13]

Pension or grants −0.02 [−0.05, 0.03] 0.09 [0.03, 0.15]

Remittance (migrant worker sending money home) −0.10 [−0.17,-0.01] 0.05 [−0.08, 0.17]

Salary and/or wage −0.03 [−0.08, 0.02] 0.08 [0.03, 0.14]

Marital Status (ref: Married)

Single 0.02 [−0.01, 0.04] −0.03 [−0.07, 0.01]

Viral Load (ref: 0 (Suppressed))

1 (Unsuppressed) 0.00 [−0.02, 0.02] 0.16 [0.13, 0.19]

Sex Ever (ref: No)

Yes −0.16 [−0.23,-0.10] −0.08 [−0.16, 0.00]

On ARVs (ref: No)

Yes 0.12 [0.10, 0.14] 0.05 [0.01, 0.09]

Number of Partners (ref:1)

2 0.05 [0.02, 0.08] 0.04 [−0.01, 0.08]

3 0.01 [−0.03, 0.03] −0.02 [−0.07, 0.03]

Alcohol (ref: No)

Yes 0.01 [−0.02, 0.03] −0.01 [−0.04, 0.03]

STI Diagnosed (ref: No)

Yes 0.01 [−0.02, 0.04] −0.04 [−0.08, 0.01]

Accessed Health Care (ref: No)

Yes −0.04 [−0.06,-0.02] 0.03 [0.00, 0.06]

Year (ref: 2014)

2015 0.01 [−0.02, 0.03] 0.01 [−0.02, 0.04]
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density plots show smooth, unimodal distributions, suggesting good 
convergence and stable posterior estimation.

Similarly, Figure 2 presents the trace and density plots for the CD4 
cell count sub model, showing well-mixed chains and smooth 
posterior distributions, confirming that both sub models yielded 
robust and interpretable estimates.

To further confirm sampling stability, we  examined R-hat 
values and effective sample sizes (ESS). All R-hat values for both 
outcomes were exactly 1.00, indicating excellent chain convergence. 
Bulk and Tail ESS values exceeded the recommended threshold of 
1,000, supporting the reliability and efficiency of the 
sampling process.

3.2.2 Residual analysis
Model residuals were analysed to inspect fit for each outcome. 

Figure 3 shows Pearson residuals plotted against fitted values. The TB 
diagnosis model exhibits a mild curvature in residuals, hinting at minor 

model misspecification or unaccounted non-linearity. However, 
residuals largely remain within acceptable bounds. In contrast, the CD4 
cell count model displays a symmetric residual pattern centred around 
zero, with no systematic deviation, suggesting a well-fitting model.

3.2.3 Posterior predictive checks and model 
calibration

Posterior predictive checks (PPCs) were conducted to assess the 
model’s ability to replicate key features of the observed data. Figure 4 
shows a density overlay and scatter average comparison for both 
outcomes. For TB diagnosis, predicted probabilities aligned well with 
observed outcomes, particularly showing higher predicted risk for 
TB-positive individuals. For CD4 cell counts, the overlay of observed 
and predicted densities revealed a good fit, though the upper tail was 
slightly underestimated.

To further evaluate model calibration, we  examined the full 
posterior predictive distributions of summary statistics. For the TB 

FIGURE 1

Trace and density plots for significant TB covariates.
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binary outcome, we compared the observed total number of TB cases 
to simulated totals from the posterior predictive distribution 
(Figure 5). The observed count fell near the centre of the simulated 

distribution, and the Bayesian posterior predictive p-value (PPP) was 
0.52. This value suggests the model can replicate the observed TB 
prevalence without significant bias.

FIGURE 2

Trace and density plots for significant CD4 cell count covariates.

FIGURE 3

Residual plots for TB and CD4 cell count.
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Similarly, for the CD4 cell count outcome, the distribution of 
simulated mean CD4 values is shown in Figure 6. The observed mean 
CD4 cell count (blue line) was centrally located within the posterior 
predictive distribution, indicating that the model accurately 
reproduced both the central tendency and variability of CD4 cell 
count levels.

3.2.4 Joint outcome behaviour and latent 
correlation

Figure 7 plots predicted TB probabilities against predicted CD4 
cell counts, showing a clear inverse relationship consistent with 
biological expectations. A locally estimated scatterplot smoothing 
(LOESS) curve illustrates a steady downward trend, indicating that 
individuals with lower predicted CD4 cell counts had higher predicted 
TB probabilities. The estimated correlation between individual-level 
predicted means was −0.38, and the posterior distribution of this 
latent correlation yielded a mean of −0.36 with a 95% credible interval 
of (−0.47, −0.25), reinforcing the negative association between 
immune suppression and TB susceptibility.

Together, these diagnostics affirm that the joint Bayesian model is 
well-specified, convergent, and capable of accurately reproducing 
observed data for both outcomes. The consistency of the posterior 

predictive distributions with the observed data, along with strong 
convergence and biologically coherent latent structure, supports the 
validity and interpretability of the inferences drawn from this model.

4 Discussion

This study applied a Bayesian joint multivariate probit model to 
simultaneously assess predictors of tuberculosis (TB) diagnosis 
(binary outcome) and CD4 cell count (continuous outcome) among 
people living with HIV (PLHIV) aged 15–49  in KwaZulu-Natal, 
South Africa. By explicitly modelling the latent correlation between 
these outcomes, the approach captures their underlying biological and 
epidemiological interdependence. This represents a methodological 
advance over separate univariate models, which often ignore shared 
unobserved risk factors and may lead to biased or 
incomplete inferences.

Several socio-demographic and behavioural factors were 
significantly associated with TB diagnosis. Individuals aged 30–49 
had elevated TB odds, reflecting patterns observed nationally and 
globally, where this economically active group faces higher HIV 
prevalence and cumulative TB exposure (2, 25). Male gender was 

FIGURE 4

Posterior predictive checks for TB and CD4 cell count.

FIGURE 5

Posterior predictive distribution of TB cases.
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also associated with increased TB risk (AME = 0.10), consistent with 
studies highlighting gender disparities in TB due to behavioural 
risks, occupational exposure, and reduced healthcare utilisation 
among men (26, 27).

Educational attainment emerged as a protective factor. Individuals 
with lower education had higher odds of TB, likely reflecting delayed 
care-seeking, lower health literacy, and limited awareness of TB 
symptoms and prevention (28). Notably, those receiving remittances 
were less likely to be  diagnosed with TB (AME = −0.10). While 
literature on remittances and TB is sparse, this may suggest that 
financial support from external sources improves living conditions 
and facilitates healthcare access, mitigating TB vulnerability, echoing 
broader findings on socioeconomic buffers in infectious disease 
epidemiology (29).

Behavioural factors showed nuanced effects. Reporting two or 
more sexual partners was associated with increased TB risk, consistent 
with literature linking high-risk sexual behaviour to co-infection 
vulnerability and network-driven transmission (30). Conversely, 
having ever had sex was associated with reduced TB odds, an 
unexpected finding that may reflect unmeasured confounders, such 

as relationship stability, community engagement, or health-
seeking patterns.

Antiretroviral therapy (ART) use was positively associated with 
TB diagnosis (AME = 0.12), likely reflecting TB immune 
reconstitution inflammatory syndrome (IRIS). This condition occurs 
when ART-induced immune recovery unmasks previously latent 
TB. Studies in sub-Saharan Africa and India report IRIS incidence 
rates ranging from 7 to 54%, particularly among individuals with low 
baseline CD4 cell counts or high mycobacterial burden (31). In 
contrast, access to healthcare was negatively associated with TB 
(AME = −0.04), underscoring the importance of early and sustained 
engagement with HIV care services (32).

CD4 count was inversely associated with TB diagnosis 
(posterior mean = −0.08), reflecting the well-established 
relationship between immune suppression and TB risk. Declining 
CD4 cell count levels compromise host immune responses, 
increasing susceptibility to both reactivation of latent TB and new 
infections. Work by Buziashvili et al. (33) reported similar findings 
in a multinational cohort, while Lu et al. (34) found TB risk declines 
steeply as CD4 cell counts rise above 300 cells/mm3. These results 

FIGURE 7

Correlation between TB and CD4 cell count.

FIGURE 6

Posterior predictive distribution of mean CD4 cell count.
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reinforce the importance of early ART initiation to preserve 
immune function and reduce TB risk.

In our CD4 sub-model, individuals diagnosed with TB also had 
lower CD4 cell counts, confirming the reciprocal clinical pattern 
observed in HIV–TB co-infection. This finding strengthens evidence 
that TB often presents in more immunocompromised individuals, and 
that TB itself may further depress immune function. These dynamics 
support public health strategies focused on early HIV diagnosis and 
timely ART uptake to prevent co-infection.

Gender disparities were also evident in immune status. Male 
participants exhibited significantly lower CD4 counts than females, 
potentially due to delayed ART initiation, lower healthcare utilisation, 
or broader structural vulnerabilities. This aligns with findings from 
fractional gender-structured models (21), which underscore the 
influence of gender in shaping HIV–TB trajectories. Our model, 
which found both elevated TB risk and lower CD4 cell counts among 
men, further highlights the need to incorporate gender-sensitive 
strategies in both research and intervention design.

Socioeconomic factors influenced immune outcomes as well. 
Participants earning wages or receiving pensions had higher CD4 cell 
counts, consistent with studies linking income stability to better 
nutritional status, ART adherence, and healthcare access (35). These 
findings underscore the role of economic stability in improving 
immunological outcomes among PLHIV.

As expected, ART use was positively associated with CD4 cell 
count (posterior mean = 0.05), reaffirming its central role in immune 
restoration (32). Interestingly, viral load showed a positive association 
with CD4 count (posterior mean = 0.16), a counterintuitive result that 
may reflect measurement timing. For instance, some participants may 
have had improving CD4 cell count levels but had not yet achieved full 
viral suppression. Alternatively, the data may include individuals in 
early ART stages where CD4 cell count recovery precedes virologic 
control. This finding warrants further exploration.

This study contributes to syndemic epidemiology by applying a 
joint Bayesian latent variable model to simultaneously estimate TB 
diagnosis and CD4 cell count, while accounting for their residual 
correlation. The model revealed a biologically plausible negative latent 
correlation (ρ = −0.38), likely capturing the influence of unmeasured 
shared factors, such as nutritional status, healthcare access, stigma, 
and co-infections, that simultaneously affect immune suppression and 
TB risk. Traditional models that analyse these outcomes separately 
often fail to account for such underlying dependencies, potentially 
leading to biased estimates or underestimation of uncertainty (36). In 
contrast, our latent variable framework improves statistical efficiency 
and enhances robustness by explicitly modelling unmeasured 
heterogeneity and residual dependencies (37), providing a clearer 
reflection of the interconnected nature of TB and 
HIV-related immunodeficiency.

While joint models have been applied in studies of HIV 
progression and survival (12, 38), their use in high-burden HIV–
TB contexts, particularly involving mixed outcome types, remains 
limited. Compared to copula-based methods, such as Clayton or 
Frank copulas, that impose strong and often restrictive parametric 
assumptions about the dependency structure (39), our approach 
avoids the need to specify a particular copula form and is therefore 
more robust to model misspecification. Similarly, fully 
semiparametric models, although flexible, may suffer from 
instability and convergence challenges in high-dimensional or 

large-scale datasets due to weak regularisation and computational 
complexity (40). By combining interpretability, flexibility, and 
computational tractability, our Bayesian framework offers a 
practical and scalable alternative for modelling co-occurring 
health outcomes in syndemic settings.

Implemented using the brms package in R with Hamiltonian 
Monte Carlo (via Stan), our model supports both continuous and 
binary outcomes, incorporates prior information, and yields full 
posterior distributions for all parameters. This enhances transparency 
in uncertainty estimation and model interpretation, and offers 
improved convergence behaviour relative to traditional MCMC 
approaches. Such features make this framework particularly well-
suited to complex, noisy datasets arising from routine surveillance 
systems in resource-limited settings, including many countries in East 
and Central Africa, where data quality and missingness pose 
ongoing challenges.

Finally, while recent advances in mechanistic modelling, including 
feedback systems, behavioural responses, and syndemic interactions, 
offer important system-level insights, they are often simulation-based 
and rely on strong structural assumptions (17, 19, 21). Our empirical 
Bayesian framework complements these approaches by offering a 
data-driven method for identifying individual-level dependencies 
between outcomes. This combination of empirical grounding and 
flexibility positions the model as a valuable tool for both predictive 
analytics and the design of targeted interventions in regions facing 
intertwined HIV and TB epidemics.

The associations observed in this study align with earlier research 
on the social and immunological determinants of HIV–TB 
co-infection. For example, our finding that lower CD4 cell count 
predicts higher TB risk mirrors the results of (33, 34), who reported 
similarly strong inverse associations in varied geographic settings. The 
gender disparities we observe, higher TB odds and lower CD4 cell 
counts among men, are consistent with gender-structured models 
(21), reinforcing the need for male-targeted interventions. In contrast 
to previous studies that analysed TB and CD4 cell count separately 
(35, 36), our joint latent variable approach accounts for shared 
unobserved risk factors, thereby enhancing both statistical efficiency 
and interpretability. This methodologically advances the literature by 
enabling joint modelling of mixed outcome types in a high-burden, 
real-world context. Furthermore, compared to copula-based or 
semiparametric models (39, 40), our framework offers a 
computationally stable, interpretable alternative suitable for public 
health application.

In summary, this study provides novel empirical insights into the 
immuno-epidemiological dynamics of HIV–TB co-infection and 
introduces a flexible, interpretable, and statistically rigorous modelling 
approach that can be extended to other syndemic settings.

5 Contribution of the study

This study advances HIV-TB research by applying a Bayesian 
joint modelling approach that simultaneously estimates TB 
diagnosis and CD4 cell count, capturing their latent correlation and 
improving estimation efficiency. It provides context-specific 
insights into how demographic, socioeconomic, and clinical 
factors, such as gender, education, income, ARV use, and healthcare 
access, shape TB risk and immune status. The use of rigorous 
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diagnostics reinforces the robustness of the findings, while the 
inverse association between TB risk and CD4 cell count supports 
integrated modelling in co-infection research. These findings offer 
actionable evidence for targeted interventions in high-
burden settings.

6 Implications of the study findings

This study highlights key clinical and public health priorities. 
Identifying risk factors such as male gender, low education, unstable 
income, and limited healthcare access calls for targeted TB and HIV 
interventions. The joint modelling approach supports integrated care 
strategies, reflecting the biological and statistical link between 
immunosuppression and TB risk. The observed negative correlation 
between TB probability and CD4 cell count reinforces the need for 
combined monitoring tools. These findings can guide early HIV 
diagnosis, timely ART initiation, and the incorporation of 
socioeconomic support in TB/HIV programmes, while also 
showcasing the utility of Bayesian methods in complex 
health analyses.

7 Strengths and limitations

This study’s primary strength lies in its use of a Bayesian joint 
modelling framework, which enables simultaneous estimation of TB 
diagnosis (binary) and CD4 cell count (continuous), while accounting 
for their latent correlation. This approach improves statistical 
efficiency and captures the underlying biological linkage between 
immunosuppression and TB risk. The analysis is further strengthened 
by the use of nationally representative, population-based data from a 
high HIV/TB burden setting, and comprehensive model diagnostics 
confirming good fit and convergence.

However, several limitations should be acknowledged. Firstly, the 
cross-sectional design precludes any inference about temporal 
relationships or causality. CD4 cell count is a dynamic, time-varying 
biomarker, and its association with TB may change over the course of 
disease progression or with the initiation and continuation of 
antiretroviral therapy (ART). Our static model cannot capture these 
longitudinal dynamics, limiting the interpretation of the timing and 
directionality of effects. Secondly, the routine health records used in 
the analysis may be subject to data quality issues, including under-
reporting or misclassification of TB diagnoses, inconsistent CD4 cell 
count measurements, and inaccuracies in behavioural or self-reported 
variables. These sources of measurement error may affect the precision 
and robustness of the model estimates.

8 Future research

Future research should build on this foundation to incorporate 
longitudinal data, additional biomarkers (e.g., viral load trajectories), 
and causal structures to inform precision public health responses in 
high-burden regions. Spatial and predictive modelling approaches 
could also be used to identify geographic and individual-level TB/HIV 
co-infection risks, enabling more targeted interventions and 
personalised care.

9 Conclusion

This study applied a Bayesian joint modelling framework to 
simultaneously analyse TB diagnosis (binary) and CD4 cell count 
(continuous) outcomes among HIV-positive individuals in a high-
burden setting. By accounting for the latent correlation between these 
interdependent health indicators, the approach provided more robust 
and biologically coherent inferences than would be possible through 
separate models.

Key findings confirmed well-established associations, including 
the inverse relationship between CD4 cell count and TB risk, the 
beneficial effects of ARV use, and the impact of socioeconomic factors 
on immune function. Male gender, lower education levels, and higher 
viral load were associated with greater TB vulnerability and poorer 
immune status, reflecting the complex interplay of structural, 
behavioural, and biological determinants.

Posterior predictive checks and diagnostic evaluations supported 
model adequacy and convergence, while the observed correlation 
between predicted TB probability and CD4 cell count (−0.38) 
reinforced the appropriateness of a joint multivariate approach. 
Unexpected findings, such as the paradoxical association between 
sexual activity and TB risk or the positive link between viral load and 
CD4 cell count, highlight areas for further longitudinal or 
qualitative investigation.

These results emphasise the importance of integrated care 
models that address both TB and HIV simultaneously and 
underscore the need for gender-sensitive, socioeconomically 
informed public health strategies. The use of joint modelling 
techniques provides a powerful tool for advancing our understanding 
of co-epidemic dynamics and guiding more targeted interventions 
in high-burden settings.
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