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HIV and tuberculosis (TB) remain closely linked public health threats in sub-
Saharan Africa, with South Africa bearing the highest burden of both diseases. In
KwaZulu-Natal, where HIV prevalence peaks among individuals aged 15-49, HIV-
induced immunosuppression significantly increases TB risk. Despite their biological
interplay, HIV and TB are often analysed separately. This study jointly modelled
CD4 cell count and TB diagnosis using a Bayesian latent variable approach to
examine their interdependence among HIV-positive individuals. Data were drawn
from 7,776 HIV-positive individuals aged 15-49 participating in two population-
based cross-sectional surveys (2014-2016) under the HIPSS project. A Bayesian
multivariate latent variable model jointly estimated CD4 cell count (continuous)
and TB diagnosis (binary) using a probit link. Model fitting was conducted in R
using the brms package with Hamiltonian Monte Carlo sampling. The analysis
revealed a moderate negative correlation (-0.38) between predicted CD4 cell
counts and TB probabilities, supporting the inverse biological relationship between
immune suppression and TB risk. Antiretroviral therapy (ARV) use was significantly
associated with improved immune status and reduced TB risk. Other key factors,
such as male sex, lower educational attainment, and high viral load, were linked
to both increased TB susceptibility and lower CD4 cell counts. These findings
demonstrate the utility of joint Bayesian modelling in capturing the interdependence
of comorbid outcomes and highlight the clinical and policy relevance of integrated
HIV-TB programming. They support targeted screening, early treatment initiation,
and resource prioritisation for at-risk populations in high-burden settings like
KwaZulu-Natal.
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1 Introduction

The dual burden of human immunodeficiency virus (HIV) and
tuberculosis (TB) remains a major public health challenge globally,
particularly in sub-Saharan Africa, where the epidemics intersect with
devastating impact. South Africa is among the most severely affected
countries, with KwaZulu-Natal province at the epicentre of the HIV-
TB syndemic. Recent estimates indicate that over 20% of adults in the
province are living with HIV, and TB remains the leading cause of
death among people living with HIV (PLHIV) (1, 2).

CD4 cell count is a critical biomarker of immune function, and its
decline during HIV infection significantly increases susceptibility to
TB. Studies show that PLHIV with CD4 cell counts below 200 cells/
mm?® face several-fold higher odds of developing TB compared to
those with higher counts (3). Conversely, TB infection can accelerate
HIV progression through sustained immune activation (4, 5). This
bidirectional interplay underscores the need for analytical approaches
that can jointly model these interdependent outcomes.

However, most epidemiological studies analyse TB status (binary)
and CD4 cell count (continuous) separately, typically using standard
regression or mixed-effects models (6, 7). These approaches often
overlook latent correlations and shared unobserved risk factors,
potentially biasing estimates and weakening inference.

Joint modelling strategies address this gap by simultaneously
estimating multiple correlated outcomes (8). While such methods have
been applied in HIV progression and survival analysis (9) and for binary
outcomes (10), they are seldom used in HIV-TB research. A few recent
studies have jointly modelled TB diagnosis and CD4 cell count
outcomes using multivariate approaches, particularly within a Bayesian
framework. For instance Gebre and Hussen (11), examined co-infection
risks using joint modelling and concluded that ignoring the correlation
between CD4 cell count and TB outcomes may underestimate joint
disease burden. Another study by Mchunu et al. (12) also utilised joint
modelling to examine the association between CD4 cell count and the
risk of death in TB/HIV data. However, both studies did not account for
shared latent factors that may influence both conditions simultaneously.

Beyond regression-based joint models, a variety of techniques,
such as multivariate latent class models, shared frailty models, and
joint survival models, have enhanced infectious disease research. For
instance Mugwanyaet al. (13), identified adherence profiles using
latent class analysis in PrEP users in Kenya. Work by Kazibwe et al.
(14) applied a frailty model to explore predictors of TB incidence
among PLHIV in Nigeria, while Mollel et al. (15) used frailty-adjusted
Poisson models to assess the effect of TB co-infection and spatial
clustering on HIV mortality in Tanzania. Similarly Gumede-Moyo
et al. (16), employed multivariate survival models to study ART
retention and mortality in Zambia.

Abbreviations: HIV, Human Immunodeficiency Virus; KZN, KwaZulu Natal; HIPSS,
HIV Incidence provincial surveillance system; STls, Sexually transmitted infections;
ART, Anti-retroviral therapy; GIS, Geographical information system; MCMC, Markov
Chain Monte Carlo; Cl, Credible/confidence interval; TB, Tuberculosis; LOESS,
Locally estimated scatterplot smoothing; IRIS, Immune reconstitution inflammatory
syndrome; AME, Average marginal effect; MAR, Missing at random; PPP, Posterior
predictive p-value; ELPD, Expected log predictive density; LOOCYV, Leave-one-out

cross validation; ESS, Effective sample sizes.
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Parallel advances in mechanistic modelling have explored
syndemic dynamics and behavioural feedback mechanisms. These
include models of media-driven psychological fear (17), prevalence-
dependent awareness (18), and COVID-19, related treatment
disruption (19, 20). Demographic-focused models, such as fractional
gender-structured frameworks (21), have also revealed heterogeneity
in co-infection risk. However, these models typically do not
incorporate individual-level clinical biomarkers or support joint
statistical inference.

To address persistent gaps in modelling the interplay between
HIV progression and TB risk, we apply a Bayesian multivariate latent
variable model to jointly analyse binary TB diagnosis and continuous
log-transformed CD4 cell count among PLHIV in KwaZulu-Natal.
This flexible framework accommodates mixed outcome types,
accounts for latent correlations, and enables full posterior inference.
Unlike mechanistic epidemic models, our approach provides
statistically grounded, data-driven insights into the co-dynamics of
immune suppression and TB risk, tailored to clinical and public
health applications.

Bayesian latent variable models are particularly suited to complex
epidemiological data, offering advantages such as the incorporation
of prior knowledge, robustness to sparse or hierarchical structures,
and the ability to model unobserved confounders (e.g., stigma,
nutritional status, or healthcare access) that influence both HIV
progression and TB susceptibility (22). These properties make them
powerful tools for integrated analysis in syndemic contexts like
HIV-TB.

This study makes a novel contribution by being among the first to
apply a Bayesian multivariate probit latent variable framework to
jointly model CD4 cell count and TB diagnosis in a high-burden, real-
world setting. Previous work has typically modelled these outcomes
separately, used less flexible methods, or lacked explicit handling of
latent dependence and unobserved heterogeneity. By addressing these
limitations, our approach enhances both inferential accuracy and
epidemiological relevance, offering a new analytical lens to support
interventions and future research in

targeted syndemic

disease management.

2 Materials and methods
2.1 Sources of data and study population

This study is based on secondary data from two consecutive,
population-based cross-sectional surveys conducted under the HIV
Incidence Provincial Surveillance System (HIPSS). HIPSS is a large-
scale surveillance initiative aimed at monitoring HIV incidence and
prevalence in KwaZulu-Natal, South Africa. The first survey was
conducted between 11 June, 2014, and 18 June, 2015, and the second
between 8 July, 2015, and 7 June, 2016. Both surveys were carried out
in the Vulindlela (a rural area) and Greater Edendale (a peri-urban
area) within the uMgungundlovu District.

To ensure representativeness, HIPSS employed a multi-stage
probability sampling method. From 600 enumeration areas (EAs), 591
EAs with at least 50 households were eligible. Of these, 221 EAs were
randomly selected for the 2014 survey and 203 for the 2015 survey.
Within each selected EA, households were systematically sampled,
and one eligible individual from each household was randomly chosen
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after providing written informed consent. The geographic coordinates
of all sampled households were captured using GPS technology to
support spatial analysis and minimise selection bias.

Data quality was rigorously maintained through a series of checks.
During the first month of fieldwork, data were monitored daily,
followed by monthly checks for 6 months, and then quarterly
assessments. The Mobenzi Researcher system (Durban, South Africa)
enabled real-time tracking of field activities, protocol compliance, and
data integrity. Automated systems flagged inconsistencies immediately
for correction. The dataset also includes laboratory-verified HIV test
results from peripheral blood samples, enhancing its epidemiological
value. All data underwent centralised management, rigorous quality
control, and completeness verification.

The 2014 HIPSS survey included 9,812 participants (6,265 females
and 3,547 males), while the 2015 survey included 10,236 participants
(6,431 females and 3,805 males), for a combined total of 20,048
individuals aged 15-49. Among these, 7,839 tested HIV positive, and
7,776 had valid CD4 cell count measurements. Participants with
missing CD4 cell count data (n = 63) were excluded from this analysis,
resulting in a final sample of 7,776. To address missingness in other
variables, we employed multiple imputation by chained equations
(MICE) using the mice package in R. The imputation model included
all variables used in the analysis to preserve multivariable relationships
and ensure congeniality. While some risk of bias remains due to
unmeasured confounding or potential violations of the missing at
random (MAR) assumption, the robust sampling design, inclusion of
auxiliary variables, and principled handling of missing data enhance
the validity and generalisability of our findings.

The choice to focus on individuals aged 15 to 49 years is grounded
in both epidemiological and policy considerations. This age group
encompasses the sexually active and economically productive
population, who are at the highest risk for HIV acquisition and TB
co-infection. It also aligns with national surveillance efforts and
UNAIDS reporting standards, allowing for comparability with
broader public health data and making the results directly relevant for
intervention planning in high-burden regions like KwaZulu-Natal.

2.2 Study variables

Two dependent variables were included in this study. The first one
was CD4 count (continuous), which was log-transformed prior to
modelling. Log transformation helps stabilise variance, improve
normality assumptions, and enhance the interpretability of regression
coeflicients in the context of continuous outcomes. By transforming
CD4 cell counts, the model achieves a better fit and more reliable
inference under the assumption of normally distributed residuals.

The second response variable was TB, which was categorised as a
binary outcome as shown in Equation 1:

Lif individual i from cluster jis TB positive
% :{ 0if individuali from cluster jis TB negative &

The selection of explanatory variables was guided by prior
literature, theoretical relevance, and data availability. Key demographic
(age and gender), socioeconomic (education and income), and
behavioural (ARV use, alcohol use) factors were included to control
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for confounding and to investigate their role in shaping health
outcomes among people living with HIV. Variables such as viral load
suppression and STI diagnosis were also included, given their
biological association with immune response and TB susceptibility.
The year of the survey was added to adjust for temporal effects.

We applied the variance inflation factor (VIF) to check for
multicollinearity before fitting the model. All the VIF values were
quite low, all less than 1.5, showing that multicollinearity was not a
significant concern in the fitted model.

2.3 Statistical analysis

To jointly model the continuous CD4 cell count and the binary TB
diagnosis, we adopted a Bayesian multivariate latent variable
framework. This approach simultaneously accounts for the distinct
nature of each outcome while capturing shared latent influences, such
as unobserved immune vulnerability, socioeconomic conditions, or
healthcare access disparities.

2.3.1 Bayesian joint modelling framework

We jointly model CD4 cell count and TB diagnosis outcomes using
a Bayesian multivariate framework to account for their potential latent
correlation. Let Ycpy ; denote the log-transformed CD4 cell count (a
continuous outcome), and Yrp; the TB diagnosis status (a binary
outcome) for individual i, with covariate vectors X;; and X;, respectively.

2.3.1.1 Likelihood specification
For the continuous CD4 cell count outcome, we assume a
Gaussian distribution, specified in Equation 2:

Yepa =Xyl B+ + &6 ~ N(O,Gz), (2)

For the binary TB outcome, modelled using a probit link, the
specification is given in Equation 3:

Q)_I(Pr(YTB,,- :1)):X2iTﬁ'2 +b;, (3)

where @1 () is the inverse standard normal CDF (probit link),
P and f3, are the respective regression coefficients associated with the
covariates X;; and X,; respectively, and &y; is an independent and
identically distributed random error term that captures residual
variability not explained by the model, assumed to follow a normal
distribution with mean 0 and variance .

2.3.1.2 Priors
We assign weakly informative priors to all model parameters:

BB~ N(o,2.52),o— ~ Student —t3(0,2.5)

b; ~ N(O,z’z),r ~ Student —t3 (0,2.5)

The choice of priors in the model offers several key advantages.
The normal priors for fixed effects provide weak regularisation,
allowing the regression coeflicients to vary while still centring them
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around zero, which is useful when prior information about the
predictors is limited or uncertain. This approach strikes a balance
between flexibility and constraining the model to avoid overfitting
(23). Similarly, the Student-t priors on the intercepts and residual
standard deviations are particularly advantageous in handling
potential outliers and providing robust estimates, as the heavy tails of
the Student-t distribution allow the model to accommodate extreme
values without being overly influenced by them (24). This robustness
is crucial when modelling real-world data that may contain outliers or
unusual patterns. The normal prior on random effects helps to model
individual-level deviations in a hierarchical structure, ensuring that
the random effects are not overfitted, while also promoting stability
and better generalisation of the model (22). Finally, the Student-t prior
for the variance parameter adds flexibility to the modelling of the
random effects’ variance, providing the model with the ability to adapt
to varying levels of uncertainty in individual deviations. Overall, these
priors allow for a well-regularised model that balances flexibility with
robustness, ensuring stable estimates and reliable inference even in the
presence of outliers or limited prior information.

To assess the robustness of our model to prior assumptions,
we conducted a sensitivity analysis by re-fitting the joint model using
alternative prior distributions, Normal, Half-Normal, Cauchy, and
Half-Cauchy, for key parameters. Model performance under each
specification was evaluated using the expected log predictive density
(ELPD), estimated via leave-one-out cross-validation (LOOCV).
ELPD values are computed relative to the base model with Student-t
priors. Higher values indicate better out-of-sample predictive
performance. The results are summarised in Table 1.

As summarised in Table 1, all alternative prior specifications yielded
comparable fits to the default Student-t priors, with only minor differences
in expected log predictive density (ELPD). The largest deviation
(AELPD = —0.6) occurred under the Cauchy prior, which also exhibited
slower convergence and signs of potential multimodality, consistent with
the behaviour of heavy-tailed priors. Overall, the similar predictive
performance across priors supports the robustness of the model to
reasonable prior choices. These findings suggest that the default prior did
not unduly influence posterior inference. Furthermore, model diagnostics
indicated no evidence of convergence issues or multimodality for any
specification, reinforcing the stability of the MCMC estimation process.

2.3.1.3 Joint model formulation

The joint likelihood for individual i(i=12,...,n) is given by
Equation 4:

TABLE 1 Comparison of model variants using alternative prior distributions.

LY YapobilBy, P02 ) =

(le X ,Bl )

207

exp

A1-o(x" s, +bi))1*" y

Across all n individuals the
Equation 5:

2
L(le‘»Yzi)b|[31>B2>0' T

1 (Yn

10.3389/fams.2025.1643745

\/2_

(XZ, P +b; )Yz

! exp[__bf]
2
277? 27

full likelihood is expressed in

)

2):

2
Xy Bi- bi)

ex
\/ 27r0'2

1
X exp
2772 {
by).

With b= (by,...

2.3.1.4 Posterior distribution

T YZI‘
X(D(le' ﬁ2+bi) X

(1 -0 (XziTﬂz +b; ))Hfz‘

207

(5)

W
272

The posterior distribution of the parameters is proportional to the

product of the likelihood and the prior distributions:

p( o0, UL
r 2
” 1 (Yli_Xli ﬂrbi)
oc| i= 1\/271'0' 20°

x(ID(XZiT,BZ +b; )YZI x (1 -

xp(B)x p(f)xp(o” )% p(ble?

<I)(X2iT 5 +b,~))l_yz’

e

With P () indicating prior densities for parameters.

Model Variant Prior Specification AELPD (vs. base) SE (AELPD)

Base Model Student-t (3,0,2.5) for intercepts and SDs, Normal (0,2.5) for 0.0 0.0

Half Normal Half-Normal (0, 2.5) for SDs -0.2 0.1
Normal (0, 2.5) for

Normal Normal (0, 2.5) for all parameters -0.4 0.1

Half Cauchy Half-Cauchy (0, 2.5) for SDs -0.4 0.1
Normal (0, 2.5) for

Cauchy Cauchy (0, 2.5) for all parameters -0.6 0.1
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2.3.2 Bayesian latent variable model

The Bayesian latent variable framework is well-suited for
analysing multivariate outcomes where at least one of them may
be binary, unobserved, or subject to measurement error. In this
study, we jointly modelled a continuous outcome (CD4 cell count)
and a binary outcome (TB diagnosis) using a shared latent
variable structure. This framework allows for the estimation of the
correlation between the latent propensity for TB and the observed
CD4 cell count, capturing shared variance potentially driven by
underlying Dbiological mechanisms or sociodemographic
factors.

To represent the binary TB outcome within a latent structure,
we use a probit formulation in which the observed TB diagnosis Yrg ;
arises from an unobserved continuous latent variable Y*TB,i-
Specifically, we define:

Continuous outcome (CD4 cell count) given in Equation 6:

T 2
Yepa,i = X1 prtwitéai ey ~N(0>0 ) (6)

Latent TB propensity, defined in Equation 7:

Y15, = Xai' Bo+ @i+ 621,621 ~ N(o1), (7)

The observed TB outcome is then determined as Equation 8:

Lif Yirg; >0
Yrp,i = f TB”, (8)
0 otherwise

Where ; is the latent variable capturing shared unobserved
heterogeneity between outcomes.

2.3.3 Joint latent variable formulation

To explicitly model the residual dependence between the
continuous and binary outcomes, we assume the error terms &y; and
&,; follow a bivariate normal distribution:

&1 ~N|o, (712 yolozt
&2i por 1

This formulation introduces a latent correlation parameter p,
which captures the residual association between CD4 count and the
latent TB propensity after accounting for observed covariates. This
the model’s
biological interdependencies.

enhances flexibility in representing complex

The posterior distribution of the parameters is proportional to
the product of the likelihood and the prior distributions:

P(ﬂl,ﬂzﬁzraﬂ Y1>Y2)‘x [T (YepailXuiler)x p(Yrp.ilXai. @)

1

xp(@)x p( B or?)
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2.4 Parameter estimation

Building on the latent variable specification from Section 2.3.2,
we now describe the estimation procedure used to fit the joint model.

Let D ={(Y11,Y21 X1i-X2i )}?:1 denote the observed data for n
individuals, where Y; is the continuous CD4 count and Y; is the
binary TB status.

The likelihood for the ith observation is shown in Equation 9:

L;(0) :N(YliLXliTﬁl +wi|»0'2)x¢’(Y2i (XziTﬁz +wi))- ©)

The full likelihood over all individuals is then given in Equation 10:

n

o107 s 7 00

i=1

Where ® () is the cumulative distribution function (CDF) of the
standard normal distribution.
Taking logs, the full log-likelihood is expressed in Equation 11:

T 2
n N(Yli|rX1i B +alo )

log L(0)= 110g xm(Yzi(XziTﬁ2+a’i)) | "

i=

Expanding the expression we get Equation 12:

(Y._X T4 _0,4)2

n 7110 (21-[(52)7 1i 1i M1 (

log L(0)=3| 2% 20° (F)
=1 +10g(D(Y21 (XZiTBZ +(,Oi))

With parameter vector defined in Equation 13:

e:(Bl,ﬁz,a},az). (13)

The posterior distribution is then defined as:

p(0D) < L(6)-p(0).

Where p(é?) represents the prior distributions assigned to the
model parameters.

Due to the non-conjugacy introduced by the probit link and latent
terms, this posterior is not analytically tractable. Bayesian inference
was therefore conducted using Markov Chain Monte Carlo (MCMC)
methods, specifically Hamiltonian Monte Carlo (HMC) as
implemented in Stan, accessed through the brms package in R. This
approach efficiently samples from high-dimensional posterior
distributions while maintaining convergence and computational
stability. Importantly, MCMC allowed us to explore the full joint
posterior distribution of model parameters, enabling robust inference
despite the lack of closed-form solutions.
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2.5 Model diagnostics

Posterior inference was carried out using Markov Chain Monte
Carlo (MCMC) sampling, with diagnostics and validation techniques
to ensure reliable estimation. Convergence was assessed using the
Gelman-Rubin statistic (R-hat) and effective sample size metrics,
supplemented by trace and posterior density plots to inspect mixing
and distributional behaviour. Posterior predictive checks were used to
evaluate how well the model replicated observed data for both
outcomes, CD4 cell count and TB diagnosis. Additionally, residual
plots were generated to identify model misfit. To assess the joint
structure, the correlation between predicted TB probabilities and CD4
cell counts was examined, validating the contribution of shared
random effects in capturing latent dependencies.

2.6 Software and implementation

All modelling was conducted in R version 4.4.0, using the brms
package, which provides a high-level interface to Stan for efficient
Hamiltonian Monte Carlo (HMC) sampling. The model specified
separate likelihoods for the two outcomes: a Gaussian likelihood for
continuous CD4 cell count, and a Bernoulli likelihood with a probit
link for binary TB diagnosis. A shared random effect structure was
used to jointly model the two outcomes, while controlling for a
consistent set of covariates across both components.

3 Empirical results

3.1 Descriptive statistics and joint model
results

In this study of 7,776 HIV-positive individuals residing in
Vulindlela and Greater Edendale areas, the distribution of CD4 cell
counts (log-transformed) indicated generally preserved immune
function. The mean CD4 count was 6.13 with a standard deviation of
0.64, while the median was 6.23. CD4 cell count values ranged from
2.40 to 7.58, with an interquartile range of 5.82 to 6.57, suggesting
moderate variability around the central values.

Regarding tuberculosis (TB), a total of 2,155 individuals were
diagnosed with TB, yielding an overall TB prevalence of 27.7% (95%
CI: 26.7-28.7%). This substantial co-infection rate highlights the
ongoing dual burden of TB and HIV in this high-prevalence setting.
Table 2 presents a detailed stratification of TB prevalence and CD4 cell
count distribution across key demographic, socioeconomic, and
clinical covariates.

Results from Table 2 reveal significant variations in TB prevalence
among HIV-positive individuals across demographic, socioeconomic,
and clinical characteristics. TB prevalence tended to be higher among
older age groups, males, individuals with lower education levels, and
those without a source of income. Elevated prevalence was also
observed among individuals not accessing healthcare services, those
who consumed alcohol, and those who had never had sex. These
patterns suggest that social vulnerability, limited healthcare access,
and certain behavioural or clinical factors may contribute to an
increased risk of TB in this population.
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Table 2 also highlights differences in log-transformed CD4 cell
counts across similar subgroups. Higher CD4 cell counts were
generally observed among younger individuals, females, those with
higher education levels, and individuals on ART. Socioeconomic
factors such as having a source of income and accessing healthcare
were also positively associated with CD4 cell count. These findings
underscore the complex interplay between social determinants,
clinical care, and immune function in the study population.

Overall, Table 2 provides summary statistics for both TB
prevalence and CD4 cell count distribution across all covariates. While
these descriptive findings offer useful preliminary insights into
potential associations, the results from the joint multivariate Bayesian
model are emphasised for their capacity to account for both shared
and outcome-specific predictors, as well as the potential directional
relationship between TB prevalence and immune status. This
modelling approach enables a more robust and integrated
interpretation of the data.

To jointly model TB diagnosis and CD4 cell count among
HIV-positive individuals aged 15-49 years in KwaZulu-Natal, a
Bayesian multivariate model was fitted using the brms package in
R. Table 3 presents the results, including estimated average marginal
effects (AME:s) for the binary outcome of TB diagnosis and posterior
means for the continuous outcome of CD4 cell count, each
accompanied by their respective 95% credible intervals. This joint
modelling approach quantifies the independent effects of
sociodemographic and clinical covariates on both outcomes, while
accounting for potential confounding and shared influences.
Covariates were deemed statistically significant if their 95% credible
intervals did not include zero.

Focusing first on TB diagnosis, several sociodemographic and
clinical covariates showed significant associations with the
likelihood of being diagnosed with TB. Age emerged as a strong
predictor of TB diagnosis. Compared to individuals aged
15-19 years, those aged 30-34 had a 7-percentage point higher
probability of being diagnosed with TB (AME: 0.07, 95% Crl: 0.02
to 0.12). This probability increased among those aged 35-39 and
40-44, with both groups showing a 9-percentage point increase
(AME: 0.09, 95% Crl: 0.04 to 0.14 and 0.09, 95% CrI: 0.03 to 0.14,
respectively). The highest marginal effect was observed in the 45-49
age group, with a 17-percentage point higher likelihood of TB
diagnosis compared to the reference group (AME: 0.17, 95% Crl:
0.11 to 0.22).

Gender also had a significant effect, with males showing a
10-percentage point higher probability of TB diagnosis than females
(AME: 0.10, 95% CrI: 0.07 to 0.12). Education was another important
factor. Individuals with incomplete secondary education were slightly
more likely to be diagnosed with TB (AME: 0.03, 95% Crl: 0.01 to
0.05), while those with no formal schooling or only pre-primary
education had a more substantial increase in risk (AME: 0.08, 95%
Crl: 0.02 to 0.14),
secondary education.

compared to those who completed

Economic status, as measured by the main source of income, was
also associated with TB diagnosis. Participants who reported receiving
remittances from migrant workers had a significantly lower probability
of TB diagnosis (AME: -0.10, 95% CrI: —0.17 to —0.01) compared to
those with no income, suggesting a potential protective effect of
financial support.
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TABLE 2 Descriptive summary statistics for both TB and CD4 Cell count by each covariate among HIV-positive individuals in Vulindlela and greater
Edendale areas in Umgungundlovu municipality.

Covariate TB Diagnosis CD4 Cell Count
Cases Prevalence (%) 95% CI Mean SD
Age Group
15-19 334 87 26.05 [21.42, 31.10] 621 0.632
20-24 925 191 20.65 [18.08, 23.40] 6.19 0.595
25-29 1,473 342 23.22 [21.08, 25.46] 6.13 0.623
30-34 1,654 453 27.39 [25.25,29.61] 6.11 0.642
35-39 1,411 41 29.84 [27.46, 32.30] 6.11 0.654
40-44 1,201 364 3031 [27.72, 32.99] 6.11 0.653
45-49 778 297 38.17 (34,75, 41.69] 6.13 0.634
Gender
Female 5,859 1,460 24.92 [23.82, 26.05] 6.20 0.606
Male 1917 695 36.25 [34.10, 38.45] 5.90 0.674

Highest Education

Complete Secondary 2,899 715 24.66 [23.10, 26.28] 6.14 0.626
Incomplete secondary 3,764 1,102 29.28 [27.83, 30.76] 6.13 0.638
No schooling/creche/pre-primary 227 90 39.65 [33.24, 46.33] 6.08 0.674
Primary (Grade 1-7) 577 181 31.37 [27.60, 35.33] 6.09 0.674
Tertiary (Diploma/degree) 309 67 21.68 [17.22,26.70] 6.17 0.609

Main Income

No Income 619 204 32.96 [29.26, 36.81] 6.00 0.666
Other non-farming income 470 132 28.09 [24.06, 32.38] 6.08 0.671
Pension or grants 2,464 675 27.39 [25.64, 29.20] 6.17 0.627
Remittance 107 21 19.63 [12.58, 28.42] 6.12 0.689
Salary and/or wage 4,116 1,123 27.28 [25.93, 28.67] 6.13 0.630

Marital Status

Married 1,299 355 27.33 [24.92,29.84] 6.17 0.626
Single 6,477 1800 27.79 [26.70, 28.90] 6.12 0.638
Viral Load

0 (Suppressed) 3,216 872 27.11 [25.58, 28.69] 6.02 0.681
1 (Unsuppressed) 4,560 1,283 28.14 [26.83,29.47] 6.21 0.592
Sex Ever

No 295 125 42.37 [36.67, 48.23] 6.17 0.652
Yes 7,481 2030 27.14 [26.13, 28.16] 6.13 0.636
On ARVs

No 1,300 223 17.15 [15.14,19.32] 6.07 0.661
Yes 6,476 1932 29.83 [28.72, 30.96] 6.14 0.631
Year

2014 3,929 1,127 28.68 [27.27,30.13] 6.10 0.655
2015 3,847 1,028 26,72 [25.33,28.15] 6.16 0.616

Number of Sexual Partners

1 6,087 1,671 27.45 [26.33, 28.59] 6.13 0.634

2 871 262 30.08 [27.05, 33.25] 6.16 0.609

3+ 818 222 27.14 [24.12, 30.33] 6.08 0.679
(Continued)
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TABLE 2 (Continued)
Covariate N =7776

Cases

10.3389/fams.2025.1643745

CD4 Cell Count
Mean SD

TB Diagnosis

Prevalence (%) 95% ClI

Alcohol Consumption

Never 5,861 1,580 26.96 [25.82,28.11] 6.16 0.631
Yes 1915 575 30.03 [27.98, 32.13] 6.03 0.643
Ever Diagnosed with STI

No 7,037 1954 27.77 [26.72, 28.83] 6.14 0.634
Yes 739 201 27.20 [24.02, 30.56] 6.08 0.660
Accessed Health Care

No 3,407 1,026 30.11 [28.58, 31.69] 6.09 0.652
Yes 4,369 1,129 25.84 [24.55,27.17] 6.16 0.623

Interestingly, individuals who had ever had sexual intercourse were
significantly less likely to be diagnosed with TB than those who had not
(AME: -0.16, 95% CrlI: —0.23 to —0.10). This may reflect confounding
by age, marital status, or health-seeking behaviour. Additionally, those
who were on antiretroviral therapy (ARVs) had a 12-percentage point
higher probability of being diagnosed with TB (AME: 0.12, 95% CrI: 0.10
to 0.14), potentially indicating better case detection among those already
engaged in HIV care services.

Furthermore, individuals who had two sexual partners had a
significantly increased probability of TB diagnosis compared to those
with only one partner (AME: 0.05, 95% CrI: 0.02 to 0.08), suggesting
a possible link between behavioural risk factors and TB exposure.

Lastly, access to health care services was associated with a reduced
probability of TB diagnosis. Participants who had accessed health care
had a 4-percentage point less likely to be diagnosed with TB (AME: -0.04,
95% Crl: —0.06 to —0.02), which may reflect the protective role of
preventive care, early treatment, or improved health literacy among
health service users.

Turning to CD4 cell count, several covariates were significantly
associated with immune status as measured by CD4 levels. Individuals
diagnosed with TB had significantly lower CD4 cell counts (posterior
mean =—0.08; 95% Crl: —0.11 to —0.05), underscoring the
immunosuppressive impact of TB co-infection. Males had notably lower
CD#4 cell counts compared to females (posterior mean = —0.27; 95% Crl:
—0.30 to —0.23), reflecting potential biological or behavioural disparities
in immune status or healthcare utilisation.

Socioeconomic variables showed a consistent pattern. Participants
receiving a pension or grants (posterior mean = 0.09; 95% CrlI: 0.03 to
0.15) or earning a salary or wage (posterior mean = 0.08; 95% Crl: 0.03
to 0.14) had significantly higher CD4 cell counts relative to those with no
income, suggesting a positive link between financial stability and
immune health.

Interestingly, individuals with unsuppressed viral load had higher
CDA4 cell counts (posterior mean = 0.16; 95% Crl: 0.13 to 0.19) than
those with suppressed viral load. This counterintuitive finding may
reflect the timing of CD4 cell count and viral load measurements
(e.g., early ART initiation before viral suppression is achieved), or
confounding factors such as recent seroconversion or treatment
adherence patterns.

Being on antiretroviral therapy (ARVs) was associated with modestly
improved CD4 cell counts (posterior mean = 0.05; 95% Crl: 0.01 to 0.09),
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affirming the benefit of treatment, although the modest effect size may
reflect late initiation or suboptimal adherence in some individuals.

Access to healthcare services was marginally associated with higher
CDA4 cell counts (posterior mean = 0.03; 95% Crl: 0.00 to 0.06). While
the lower bound of the credible interval touches zero, the positive
direction and biological plausibility suggest a potential, albeit modest,
benefit of healthcare access on immune function.

Finally, individuals who had ever had sex showed slightly lower CD4
cell counts (posterior mean = —0.08; 95% Crl: —0.16 to 0.00). Although
the upper bound of the CrI includes zero, the direction of association
may reflect behavioural or demographic factors such as age or sexual
health risk profiles. Given the borderline nature of these results, they
should be interpreted with caution and viewed as suggestive rather
than conclusive.

Having examined the associations between participant
characteristics and both TB diagnosis and CD4 cell count using a
joint Bayesian multivariate framework (as shown in Table 3), it is
essential to assess the adequacy and reliability of the fitted model.
Model diagnostics provide critical insights into convergence,
goodness-of-fit, and the robustness of posterior estimates. This step
ensures that the inferences drawn from the joint model are
statistically sound and not influenced by poor model performance,
inadequate mixing, or convergence issues.

3.2 Model fit and diagnostics

This section presents a comprehensive evaluation of model fit and
convergence to validate the credibility of the Bayesian estimates from
the joint model. Diagnostics include trace and density plots to assess
MCMC chain mixing, R-hat and effective sample sizes for sampling
efficiency, residual plots to evaluate fit, posterior predictive checks
(PPCs) to examine predictive performance, and an analysis of the
correlation between predicted TB probabilities and CD4 cell counts
to investigate joint outcome behaviour.

3.2.1 Convergence diagnostics

Trace and density plots were used to assess convergence and
posterior distribution behaviour for both sub models. Figure 1
displays the trace and density plots for the TB sub model. The chains
exhibit consistent mixing without divergences or trends, and the
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TABLE 3 Estimated average marginal effects and posterior means with 95% credible intervals for covariates associated with TB diagnosis and CD4 cell
count among HIV-positive individuals.

Covariate TB diagnosis CD4 cell count

95% CI Posterior Mean 95% ClI

Intercept -- -- 6.13 [6.02, 6.24]

TB Diagnosis (ref: No)

Yes - - —0.08 [~0.11, —0.05]
Age Group (ref: 15-19)

20-24 0.00 [~0.05, 0.05] 0.00 [~0.07, 0.09]
25-29 0.04 [~0.01, 0.08] —0.04 [~0.12, 0.03]
30-34 0.07 [0.02,0.12] —0.07 [~0.15,0.01]
35-39 0.09 [0.04,0.14] —0.06 [-0.13,0.02]
40-44 0.09 [0.03,0.14] —0.06 [~0.14, 0.02]
45-49 0.17 [0.11,0.22] —0.03 [~0.12, 0.05]

Gender (ref: Female)

Male 0.10 [0.07,0.12] -0.27 [-0.30, —0.23]

Education (ref: Complete Secondary)

Incomplete secondary (Grade 8-11/NTC1/2) 0.03 [0.01, 0.05] 0.00 [-0.02, 0.03]
No schooling/creche/pre-primary 0.08 [0.02, 0.14] —-0.04 [-0.12, 0.05]
Primary (Grade 1-7) 0.02 [—0.02, 0.07] —0.03 [—0.08, 0.03]
Tertiary (Diploma/degree) —0.03 [—0.08, 0.02] 0.02 [-0.05, 0.09]

Main Income (ref: No Income)

Other non-farming income —0.03 [—0.08, 0.02] 0.06 [-0.01,0.13]
Pension or grants —0.02 [—0.05, 0.03] 0.09 [0.03, 0.15]
Remittance (migrant worker sending money home) —0.10 [-0.17,-0.01] 0.05 [-0.08,0.17]
Salary and/or wage —0.03 [-0.08, 0.02] 0.08 [0.03, 0.14]

Marital Status (ref: Married)

Single ‘ 0.02 ‘ [—0.01, 0.04] ‘ —-0.03 ‘ [-0.07,0.01]

Viral Load (ref: O (Suppressed))

1 (Unsuppressed) 0.00 [—0.02, 0.02] 0.16 [0.13,0.19]
pp:

Sex Ever (ref: No)

Yes ‘ -0.16 ‘ [~0.23,-0.10] ‘ -0.08 ‘ [~0.16, 0.00]
On ARVs (ref: No)

Yes ‘ 0.12 ‘ [0.10,0.14] ‘ 0.05 ‘ [0.01, 0.09]
Number of Partners (ref:1)

2 0.05 [0.02, 0.08] 0.04 [~0.01, 0.08]
3 0.01 [~0.03, 0.03] -0.02 [~0.07,0.03]
Alcohol (ref: No)

Yes ‘ 0.01 ‘ [~0.02, 0.03] ‘ -0.01 [~0.04, 0.03]
STI Diagnosed (ref: No)

Yes ‘ 0.01 ‘ [~0.02, 0.04] ‘ -0.04 [~0.08,0.01]

Accessed Health Care (ref: No)

Yes ‘ —0.04 ‘ [—0.06,-0.02] ‘ 0.03 ‘ [0.00, 0.06]
Year (ref: 2014)
2015 ‘ 0.01 ‘ [—0.02, 0.03] ‘ 0.01 ‘ [-0.02, 0.04]
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FIGURE 1
Trace and density plots for significant TB covariates.

density plots show smooth, unimodal distributions, suggesting good
convergence and stable posterior estimation.

Similarly, Figure 2 presents the trace and density plots for the CD4
cell count sub model, showing well-mixed chains and smooth
posterior distributions, confirming that both sub models yielded
robust and interpretable estimates.

To further confirm sampling stability, we examined R-hat
values and effective sample sizes (ESS). All R-hat values for both
outcomes were exactly 1.00, indicating excellent chain convergence.
Bulk and Tail ESS values exceeded the recommended threshold of
1,000, the
sampling process.

supporting reliability and efficiency of the

3.2.2 Residual analysis

Model residuals were analysed to inspect fit for each outcome.
Figure 3 shows Pearson residuals plotted against fitted values. The TB
diagnosis model exhibits a mild curvature in residuals, hinting at minor
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model misspecification or unaccounted non-linearity. However,
residuals largely remain within acceptable bounds. In contrast, the CD4
cell count model displays a symmetric residual pattern centred around
zero, with no systematic deviation, suggesting a well-fitting model.

3.2.3 Posterior predictive checks and model
calibration

Posterior predictive checks (PPCs) were conducted to assess the
model’s ability to replicate key features of the observed data. Figure 4
shows a density overlay and scatter average comparison for both
outcomes. For TB diagnosis, predicted probabilities aligned well with
observed outcomes, particularly showing higher predicted risk for
TB-positive individuals. For CD4 cell counts, the overlay of observed
and predicted densities revealed a good fit, though the upper tail was
slightly underestimated.

To further evaluate model calibration, we examined the full
posterior predictive distributions of summary statistics. For the TB
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FIGURE 2
Trace and density plots for significant CD4 cell count covariates.
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FIGURE 3
Residual plots for TB and CD4 cell count.

binary outcome, we compared the observed total number of TB cases
to simulated totals from the posterior predictive distribution
(Figure 5). The observed count fell near the centre of the simulated
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distribution, and the Bayesian posterior predictive p-value (PPP) was
0.52. This value suggests the model can replicate the observed TB
prevalence without significant bias.
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Posterior predictive checks for TB and CD4 cell count.
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FIGURE 5
Posterior predictive distribution of TB cases.

2150

Simulated Total TB Cases

I I I I I
2200 2250 2300 2350

Similarly, for the CD4 cell count outcome, the distribution of
simulated mean CD4 values is shown in Figure 6. The observed mean
CDA4 cell count (blue line) was centrally located within the posterior
predictive distribution, indicating that the model accurately
reproduced both the central tendency and variability of CD4 cell
count levels.

3.2.4 Joint outcome behaviour and latent
correlation

Figure 7 plots predicted TB probabilities against predicted CD4
cell counts, showing a clear inverse relationship consistent with
biological expectations. A locally estimated scatterplot smoothing
(LOESS) curve illustrates a steady downward trend, indicating that
individuals with lower predicted CD4 cell counts had higher predicted
TB probabilities. The estimated correlation between individual-level
predicted means was —0.38, and the posterior distribution of this
latent correlation yielded a mean of —0.36 with a 95% credible interval
of (—0.47, —0.25), reinforcing the negative association between
immune suppression and TB susceptibility.

Together, these diagnostics affirm that the joint Bayesian model is
well-specified, convergent, and capable of accurately reproducing
observed data for both outcomes. The consistency of the posterior
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predictive distributions with the observed data, along with strong
convergence and biologically coherent latent structure, supports the
validity and interpretability of the inferences drawn from this model.

4 Discussion

This study applied a Bayesian joint multivariate probit model to
simultaneously assess predictors of tuberculosis (TB) diagnosis
(binary outcome) and CD4 cell count (continuous outcome) among
people living with HIV (PLHIV) aged 15-49 in KwaZulu-Natal,
South Africa. By explicitly modelling the latent correlation between
these outcomes, the approach captures their underlying biological and
epidemiological interdependence. This represents a methodological
advance over separate univariate models, which often ignore shared
unobserved risk factors and may lead to biased or
incomplete inferences.

Several socio-demographic and behavioural factors were
significantly associated with TB diagnosis. Individuals aged 30-49
had elevated TB odds, reflecting patterns observed nationally and
globally, where this economically active group faces higher HIV

prevalence and cumulative TB exposure (2, 25). Male gender was
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Posterior predictive distribution of mean CD4 cell count.
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Correlation between TB and CD4 cell count.
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also associated with increased TB risk (AME = 0.10), consistent with
studies highlighting gender disparities in TB due to behavioural
risks, occupational exposure, and reduced healthcare utilisation
among men (26, 27).

Educational attainment emerged as a protective factor. Individuals
with lower education had higher odds of TB, likely reflecting delayed
care-seeking, lower health literacy, and limited awareness of TB
symptoms and prevention (28). Notably, those receiving remittances
were less likely to be diagnosed with TB (AME = —0.10). While
literature on remittances and TB is sparse, this may suggest that
financial support from external sources improves living conditions
and facilitates healthcare access, mitigating TB vulnerability, echoing
broader findings on socioeconomic buffers in infectious disease
epidemiology (29).

Behavioural factors showed nuanced effects. Reporting two or
more sexual partners was associated with increased TB risk, consistent
with literature linking high-risk sexual behaviour to co-infection
vulnerability and network-driven transmission (30). Conversely,
having ever had sex was associated with reduced TB odds, an
unexpected finding that may reflect unmeasured confounders, such
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as relationship stability, community engagement, or health-
seeking patterns.

Antiretroviral therapy (ART) use was positively associated with
TB diagnosis (AME =0.12), likely reflecting TB immune
reconstitution inflammatory syndrome (IRIS). This condition occurs
when ART-induced immune recovery unmasks previously latent
TB. Studies in sub-Saharan Africa and India report IRIS incidence
rates ranging from 7 to 54%, particularly among individuals with low
baseline CD4 cell counts or high mycobacterial burden (31). In
contrast, access to healthcare was negatively associated with TB
(AME = —0.04), underscoring the importance of early and sustained
engagement with HIV care services (32).

CD4 count was inversely associated with TB diagnosis
(posterior the well-established
relationship between immune suppression and TB risk. Declining

mean = —0.08), reflecting
CD4 cell count levels compromise host immune responses,
increasing susceptibility to both reactivation of latent TB and new
infections. Work by Buziashvili et al. (33) reported similar findings
in a multinational cohort, while Lu et al. (34) found TB risk declines
steeply as CD4 cell counts rise above 300 cells/mm’. These results
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reinforce the importance of early ART initiation to preserve
immune function and reduce TB risk.

In our CD4 sub-model, individuals diagnosed with TB also had
lower CD4 cell counts, confirming the reciprocal clinical pattern
observed in HIV-TB co-infection. This finding strengthens evidence
that TB often presents in more immunocompromised individuals, and
that TB itself may further depress immune function. These dynamics
support public health strategies focused on early HIV diagnosis and
timely ART uptake to prevent co-infection.

Gender disparities were also evident in immune status. Male
participants exhibited significantly lower CD4 counts than females,
potentially due to delayed ART initiation, lower healthcare utilisation,
or broader structural vulnerabilities. This aligns with findings from
fractional gender-structured models (21), which underscore the
influence of gender in shaping HIV-TB trajectories. Our model,
which found both elevated TB risk and lower CD4 cell counts among
men, further highlights the need to incorporate gender-sensitive
strategies in both research and intervention design.

Socioeconomic factors influenced immune outcomes as well.
Participants earning wages or receiving pensions had higher CD4 cell
counts, consistent with studies linking income stability to better
nutritional status, ART adherence, and healthcare access (35). These
findings underscore the role of economic stability in improving
immunological outcomes among PLHIV.

As expected, ART use was positively associated with CD4 cell
count (posterior mean = 0.05), reaffirming its central role in immune
restoration (32). Interestingly, viral load showed a positive association
with CD4 count (posterior mean = 0.16), a counterintuitive result that
may reflect measurement timing. For instance, some participants may
have had improving CD4 cell count levels but had not yet achieved full
viral suppression. Alternatively, the data may include individuals in
early ART stages where CD4 cell count recovery precedes virologic
control. This finding warrants further exploration.

This study contributes to syndemic epidemiology by applying a
joint Bayesian latent variable model to simultaneously estimate TB
diagnosis and CD4 cell count, while accounting for their residual
correlation. The model revealed a biologically plausible negative latent
correlation (p = —0.38), likely capturing the influence of unmeasured
shared factors, such as nutritional status, healthcare access, stigma,
and co-infections, that simultaneously affect immune suppression and
TB risk. Traditional models that analyse these outcomes separately
often fail to account for such underlying dependencies, potentially
leading to biased estimates or underestimation of uncertainty (36). In
contrast, our latent variable framework improves statistical efficiency
and enhances robustness by explicitly modelling unmeasured
heterogeneity and residual dependencies (37), providing a clearer
of the of TB
HIV-related immunodeficiency.

reflection interconnected  nature and

While joint models have been applied in studies of HIV
progression and survival (12, 38), their use in high-burden HIV-
TB contexts, particularly involving mixed outcome types, remains
limited. Compared to copula-based methods, such as Clayton or
Frank copulas, that impose strong and often restrictive parametric
assumptions about the dependency structure (39), our approach
avoids the need to specify a particular copula form and is therefore
fully

semiparametric models, although flexible, may suffer from

more robust to model misspecification. Similarly,

instability and convergence challenges in high-dimensional or
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large-scale datasets due to weak regularisation and computational
complexity (40). By combining interpretability, flexibility, and
computational tractability, our Bayesian framework offers a
practical and scalable alternative for modelling co-occurring
health outcomes in syndemic settings.

Implemented using the brms package in R with Hamiltonian
Monte Carlo (via Stan), our model supports both continuous and
binary outcomes, incorporates prior information, and yields full
posterior distributions for all parameters. This enhances transparency
in uncertainty estimation and model interpretation, and offers
improved convergence behaviour relative to traditional MCMC
approaches. Such features make this framework particularly well-
suited to complex, noisy datasets arising from routine surveillance
systems in resource-limited settings, including many countries in East
and Central Africa, where data quality and missingness pose
ongoing challenges.

Finally, while recent advances in mechanistic modelling, including
feedback systems, behavioural responses, and syndemic interactions,
offer important system-level insights, they are often simulation-based
and rely on strong structural assumptions (17, 19, 21). Our empirical
Bayesian framework complements these approaches by offering a
data-driven method for identifying individual-level dependencies
between outcomes. This combination of empirical grounding and
flexibility positions the model as a valuable tool for both predictive
analytics and the design of targeted interventions in regions facing
intertwined HIV and TB epidemics.

The associations observed in this study align with earlier research
on the social and immunological determinants of HIV-TB
co-infection. For example, our finding that lower CD4 cell count
predicts higher TB risk mirrors the results of (33, 34), who reported
similarly strong inverse associations in varied geographic settings. The
gender disparities we observe, higher TB odds and lower CD4 cell
counts among men, are consistent with gender-structured models
(21), reinforcing the need for male-targeted interventions. In contrast
to previous studies that analysed TB and CD4 cell count separately
(35, 36), our joint latent variable approach accounts for shared
unobserved risk factors, thereby enhancing both statistical efficiency
and interpretability. This methodologically advances the literature by
enabling joint modelling of mixed outcome types in a high-burden,
real-world context. Furthermore, compared to copula-based or
(39, 40),
computationally stable, interpretable alternative suitable for public

semiparametric models our framework offers a
health application.

In summary, this study provides novel empirical insights into the
immuno-epidemiological dynamics of HIV-TB co-infection and
introduces a flexible, interpretable, and statistically rigorous modelling

approach that can be extended to other syndemic settings.

5 Contribution of the study

This study advances HIV-TB research by applying a Bayesian
joint modelling approach that simultaneously estimates TB
diagnosis and CD4 cell count, capturing their latent correlation and
improving estimation efficiency. It provides context-specific
insights into how demographic, socioeconomic, and clinical
factors, such as gender, education, income, ARV use, and healthcare
access, shape TB risk and immune status. The use of rigorous
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diagnostics reinforces the robustness of the findings, while the
inverse association between TB risk and CD4 cell count supports
integrated modelling in co-infection research. These findings offer
actionable evidence for interventions

targeted in high-

burden settings.

6 Implications of the study findings

This study highlights key clinical and public health priorities.
Identifying risk factors such as male gender, low education, unstable
income, and limited healthcare access calls for targeted TB and HIV
interventions. The joint modelling approach supports integrated care
strategies, reflecting the biological and statistical link between
immunosuppression and TB risk. The observed negative correlation
between TB probability and CD4 cell count reinforces the need for
combined monitoring tools. These findings can guide early HIV
diagnosis, timely ART initiation, and the incorporation of
socioeconomic support in TB/HIV programmes, while also
showcasing the utility of Bayesian methods in complex
health analyses.

7 Strengths and limitations

This study’s primary strength lies in its use of a Bayesian joint
modelling framework, which enables simultaneous estimation of TB
diagnosis (binary) and CD4 cell count (continuous), while accounting
for their latent correlation. This approach improves statistical
efficiency and captures the underlying biological linkage between
immunosuppression and TB risk. The analysis is further strengthened
by the use of nationally representative, population-based data from a
high HIV/TB burden setting, and comprehensive model diagnostics
confirming good fit and convergence.

However, several limitations should be acknowledged. Firstly, the
cross-sectional design precludes any inference about temporal
relationships or causality. CD4 cell count is a dynamic, time-varying
biomarker, and its association with TB may change over the course of
disease progression or with the initiation and continuation of
antiretroviral therapy (ART). Our static model cannot capture these
longitudinal dynamics, limiting the interpretation of the timing and
directionality of effects. Secondly, the routine health records used in
the analysis may be subject to data quality issues, including under-
reporting or misclassification of TB diagnoses, inconsistent CD4 cell
count measurements, and inaccuracies in behavioural or self-reported
variables. These sources of measurement error may affect the precision
and robustness of the model estimates.

8 Future research

Future research should build on this foundation to incorporate
longitudinal data, additional biomarkers (e.g., viral load trajectories),
and causal structures to inform precision public health responses in
high-burden regions. Spatial and predictive modelling approaches
could also be used to identify geographic and individual-level TB/HIV
co-infection risks, enabling more targeted interventions and
personalised care.
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9 Conclusion

This study applied a Bayesian joint modelling framework to
simultaneously analyse TB diagnosis (binary) and CD4 cell count
(continuous) outcomes among HIV-positive individuals in a high-
burden setting. By accounting for the latent correlation between these
interdependent health indicators, the approach provided more robust
and biologically coherent inferences than would be possible through
separate models.

Key findings confirmed well-established associations, including
the inverse relationship between CD4 cell count and TB risk, the
beneficial effects of ARV use, and the impact of socioeconomic factors
on immune function. Male gender, lower education levels, and higher
viral load were associated with greater TB vulnerability and poorer
immune status, reflecting the complex interplay of structural,
behavioural, and biological determinants.

Posterior predictive checks and diagnostic evaluations supported
model adequacy and convergence, while the observed correlation
between predicted TB probability and CD4 cell count (—0.38)
reinforced the appropriateness of a joint multivariate approach.
Unexpected findings, such as the paradoxical association between
sexual activity and TB risk or the positive link between viral load and
CD4 cell count, highlight areas for further longitudinal or
qualitative investigation.

These results emphasise the importance of integrated care
models that address both TB and HIV simultaneously and
underscore the need for gender-sensitive, socioeconomically
informed public health strategies. The use of joint modelling
techniques provides a powerful tool for advancing our understanding
of co-epidemic dynamics and guiding more targeted interventions
in high-burden settings.
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