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To address the issue that polynomial approximation methods strongly depend on 
the analytical form of the objective function, this study proposes a new minimax 
polynomial approximation method based on the Chebyshev equioscillation theorem. 
It constructs near-optimal solutions through discrete sample points, introduces 
a threshold relaxation strategy to locate equioscillation points, and establishes a 
coefficient solution framework based on linear equations. Experiments cover both 
noiseless and noisy data scenarios. Compared with methods such as the Least 
Squares Method (LSM), the results show that the maximum absolute error of the 
proposed method is effectively reduced, and it performs excellently under different 
data densities and distributions. This can provide theoretical support for extreme 
deviation suppression in engineering fields, especially in safety-critical systems.
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Highlights

	•	 Develop a minimax polynomial approximation method based on Chebyshev's theorem 
for discrete data.

	•	 Introduce a threshold relaxation strategy and linear equation - based coefficient solving 
for discrete approximation.

	•	 Significantly reduce the maximum absolute error compared to traditional methods, 
suitable for engineering error control.

1 Introduction

In existing research in the field of polynomial approximation, a research team from Stanford 
University, USA (1), based on the reproducing kernel Hilbert space theory in functional analysis, 
proposed a discrete data polynomial approximation framework. By constructing specific 
reproducing kernel functions, discrete sample points are mapped to a high-dimensional feature 
space, enabling optimal approximation of functions in the high-dimensional space. This breaks 
through the limitations of traditional polynomial approximation in terms of discrete data 
dimension and complexity, providing new ideas for solving approximation problems of high-
dimensional discrete data, but the actual application and deployment cost is high. Meanwhile, 
scholars from the Technical University of Munich, Germany (2), aiming at the discrete minimax 
approximation problem, proposed an algorithm based on dynamic programming. By orderly 
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partitioning discrete point sets and solving them step by step, the time and 
space complexity of the algorithm are effectively reduced, enabling rapid 
processing of large-scale discrete data. A research team from Peking 
University (3) conducted in-depth research on the equioscillation 
characteristics of discrete point sets. By introducing the concept of 
discrete norm, they discretized and transformed the traditional 
equioscillation theorem, making it suitable for discrete data scenarios. 
They proposed a judgment criterion for discrete equioscillation points, 
which comprehensively considers the distribution characteristics of 
sample points and the change trend of function values, and can effectively 
construct minimax approximation polynomials based on discrete data. A 
research group from Tsinghua University (4), aiming at the problem that 
the traditional Remez algorithm is prone to fall into local optimal 
solutions in discrete scenarios, introduced a random perturbation 
mechanism and an adaptive step size adjustment strategy, which 
effectively avoided the premature convergence of the algorithm. 
Combining the ideas of intelligent optimization algorithms, they designed 
a hybrid iterative algorithm, improving the efficiency and accuracy of the 
algorithm in searching for optimal polynomials in discrete data.

It can be  concluded that there are still urgent problems to 
be solved in the research on discrete data in the field of polynomial 
approximation. A unified and perfect system for the optimality theory 
of polynomial approximation under discrete data has not yet been 
formed. Research on the compatibility and complementarity between 
different theoretical methods needs to be strengthened. Traditional 
minimax methods are difficult to apply directly because they require 
complete function information. The lack of a theoretical system leads 
to a lack of unified guidance for method design in discrete scenarios. 
Therefore, constructing a minimax approximation method based on 
discrete sample points, which has both theoretical rigor and 
engineering practicability, can provide theoretical support for error 
control strategies in engineering fields.

2 Discrete approximation method 
based on equal amplitude oscillation 
theorem

Given a discrete sample point set ( ){ } =
=

1
, N

i i i
D x y  of an unknown 

continuous function ( )∈f x  C [a, b], where xi ∈ [a, b], yi = f (xi) + δi, δi 
is observation noise, this study can construct an nth-degree polynomial 

( )np x  ∈ n , n  represents the space of polynomials of degree ≤n, 
minimize the maximum absolute error on the discrete point set:

	 ( )
( )

∈ ∈
−

,
min max

n n i i

i n i
p x y D

y p x


∣ ∣

Aiming at the problem of traditional minimax approximation 
(continuous optimization on C [a, b]), constructing an algorithm needs 
to break through the contradiction between the finiteness of sample 
points and the continuity assumption of the equal-amplitude oscillation 
theorem, including not only the relaxed positioning of discrete equal-
amplitude oscillation points: identifying point sets that meet 
approximate equal-amplitude oscillation conditions in finite samples; 
but also the construction of error-controllable polynomials: establishing 
a coefficient solving method based on systems of linear equations and 
introducing threshold parameters to balance the theory; and multi-
dimensional error characteristic analysis: revealing the trade-off between 

the method’s extreme error suppression and overall error distribution 
through comparative experiments with the least squares method.

As shown in Figure 1, the polynomial approximation algorithm 
based on the equioscillation theorem proceeds as follows: First, an 
initial point set including interval endpoints and uniformly 
distributed intermediate points is selected via stratified sampling. 
The point set is iteratively updated using the alternating 
equiamplitude error property. This involves calculating current 
errors, estimating the maximum error, and replacing the point with 
the largest error deviation according to the priority function, while 
adaptively adjusting the threshold ε based on noise level. A linear 
system with Vandermonde matrix and sign vector is constructed. 
Column pivoting QR decomposition reduces matrix ill-conditioning, 
and Tikhonov regularization helps solve polynomial coefficients and 
maximum error. Finally, the optimal approximation polynomial and 
maximum absolute error are output, realizing minimax error control 
for discrete data.

2.1 Discretized reconstruction of the equal 
amplitude oscillation theorem

Chebyshev’s equal-amplitude oscillation theorem states (5) that 
the necessary and sufficient condition for ( )∗

np x  to be the minimax 
approximation polynomial of f(x) on [a, b] is that there exist n + 2 
points +< <…< ∈  0 1 1 ,nx x x a b  such that:

	 ( ) ( ) ( )ii n i nf x p x f p i n||1 , 0,1, , 2∗ ∗
∞− = − − = … +

Calculate errors

Adaptive adjustment of ε

Output

Selection of initial point set

 
FIGURE 1

Algorithm flowchart.
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Where 
[ ]

( ) ( )n n
x a b

f p f x p x
,

|| || max | |∗ ∗
∞

∈
− = −  is the uniform norm. In 

discrete scenarios, since not all points on [a, b] can be obtained, it is 
assumed that there is a subset = {(

iaS x , +
= ⊆2
0)}

i

n
a iy D  in the sample 

points such that the error function approximately satisfies the 
alternating equal-amplitude condition on S, i.e.:

	 ( ) ( ) ( )i i

i
a n a i iy p x A1 , | |∈ ∈ ∈− = − + ≤

Where A is the estimated maximum error and 0.01∈=  is the 
allowable deviation threshold. This fact is a disadvantage of the 
proposed method, since it does not allow us to guarantee an accuracy 
higher than 0(10–2).

In discrete scenarios, directly ignoring the error term ϵi will 
lead to an underestimation of the deviation between the model and 
actual data, especially in noisy environments. This simplification 
may introduce uncontrollable input errors. It is necessary to 
incorporate the error term into the model and clarify its boundary 
constraints. Based on the discretization extension of the Chebyshev 
equioscillation theorem, the existence of the error term is an 
inevitable result of the deviation between discrete samples and 
continuous functions, and its magnitude should match the noise 
level of the input data. Therefore, the modified discrete 
equioscillation condition is:

	 ( ) ( ) ( )i i

i
a n a iy p x A 2 max1 ,|| ||∈ ∈ ∈− = − + ≤

In the formula, 
iay represents the function observation value 

corresponding to the sample point ( );
i ia n ax p x  is the calculated value 

of the n-th degree approximation polynomial at ( )−; 1
i

i
ax  is the 

alternating sign term satisfying the equioscillation characteristic, 
ensuring that the error presents an alternating positive and negative 
distribution at the sample points; A is the maximum error amplitude 
to be estimated, reflecting the overall deviation level between the 
approximation polynomial and the objective function; ϵi is the 
comprehensive error term, including unavoidable deviations such as 
observation noise and discretization error; 2∈  is the L2 norm of the 
error vector, used to quantify the overall error magnitude; max 2∈ σ=  
is the upper limit constraint of the error term, which is determined 
based on the 3σ principle in statistics, ensuring to a certain extent 
that the error term does not exceed the input noise level.

2.2 Linear system model for polynomial 
coefficient solving

To avoid information loss caused by directly ignoring the error 
term ϵi, it is necessary to construct a complete equation set 
including the error term. Substituting the polynomial expression 

( )
n

k
n k

k
p x c x

0=
= ∑  into the modified equioscillation condition, 

we can obtain:

	 ( )nn
n ny c c x c x A1

1 0 1 1 1 11 ∈+
+= + + + + − −

Rewriting it in matrix form:

	 S SV c A Y∈+Φ + =

In the formula, Vs is an ( ) ( )+ × +2 1n n  Vandermonde matrix, with 
elements = = … + = …  , ( 0,1, , 1; 0,1, ,

i

k
S aV i k x i n k n ); 

{ = …  0 1, , , }T
nc c c c  is the polynomial coefficient vector; 
( ) + Φ = − − … −  

11,1, 1, , 1
Tn  is the sign vector; A is the estimated 

maximum error; 
T

n0 1 1, , ,∈ ∈ ∈ ∈ += …    is the error vector; 

+
 = … 0 1 1

, , ,
n

T
S a a aY y y y  is the sample value vector.

Due to the existence of the error term ϵ, the solution of the 
equation set needs to consider robustness. Using the minimax 
criterion, the prediction deviation is minimized within the allowable 
range of the error term, that is:

	
S S

c A
V c A Y

2 max

2
, ||
min max || ||

∈ ∈
∈

|| ≤
+Φ + −

According to robust optimization theory, this problem can 
be  transformed into a regularized least squares problem, and its 
closed-form solution is:

	

( )λ
−

 
  = + 
  

1T T
S

c
A M M I M Y

In the formula, ( ) ( )= Φ + × +  , 2 2SM V isan n n  augmented 
matrix; λ is the Tikhonov regularization parameter, determined by the 
L-curve method, with a value range of ( ) ( )− −∼ + × +5 310 10 ; is 2 2I n n
identity matrix; the superscript T represents matrix transposition, and 
−1 represents matrix inversion.

2.3 Algorithm design

2.3.1 Iterative positioning mechanism of equal 
amplitude oscillation points

The discrete equal-amplitude oscillation condition is defined as:

	
( ) ( )i

j

x
i i j

x D
S D S n x S e A e,| | 2, , 1 max | |π

∈
∈ ∈∃ ⊆ = + ∀ − − ≤ ⋅

Where ( )0,1∈∈  is the relaxation threshold and A is the estimated 
maximum error. The theoretical optimal solution is gradually 
approached by iteratively replacing the sample points with the largest 
error deviation in the point set.

2.3.1.1 Initial point set selection strategy
To improve convergence efficiency, stratified sampling 

initialization is adopted (6). Endpoints are often error extreme points, 
and prioritizing their selection can quickly control boundary errors. 
Therefore, in the endpoint priority process, the interval endpoints xa 
and xb are selected as the first two points in the initial point set to 
ensure boundary error control; in the middle point filling process, n 
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points are uniformly selected from the remaining samples by abscissa 
to form the initial point set { }= …

1 20 , , , , ,
na m m m bS x x x x x , which can 

reduce the initial iteration error by about 30% and significantly 
improve the convergence speed compared with random initialization.

2.3.1.2 Point set update rule
The point set replacement priority function is defined as:

	

( ) ( ) ( )

( ) ( )

π

π
ω

∈

− −
=

− −

1

max 1

i

j

j

x
i

i x
j

x S

e A
x

e A

∣ ∣

∣ ∣

where ( )π ix  is the index of the point xi in the sorted point set. The 
point with the largest ( )iù x  is selected for replacement in each 
iteration to ensure that each update moves in the direction of reducing 
the maximum error deviation.

2.3.1.3 Adaptive selection method of threshold ϵ
The threshold ϵ in the discrete equioscillation condition directly 

affects the accuracy of point set positioning, and its value needs to 
match the noise level of the input data. Therefore, an adaptive 
threshold based on noise estimation is designed:

	 α σ= ·ò

In the formula, σ is the estimated value of the standard deviation 
of the input data noise, calculated by the median absolute deviation 
method: ( )( )σ = × −{ 1.4826 || ||imedian y med y , where ( )med y  is the 
median of the sample values iy , and 1.4826 is the correction coefficient 
under the normal distribution; α is the adaptive adjustment coefficient, 
dynamically selected according to the noise level:

Noiseless data σ α< =0.001: 0.01 , at this time the threshold 
mainly constrains the discretization deviation; Low-noise data 0.001 
≤ σ ≤ 0.01: α = 0.05, balancing noise tolerance and approximation 
accuracy; High-noise data σ > 0.01: α = 0.1, relaxing constraints to 
avoid noise interfering with point set selection.

Compared with ridge regression, Tikhonov regularization is more 
suitable for dealing with matrix problems. By introducing L2 norm 
constraints, it can reduce both coefficient errors and matrix condition 
numbers. Therefore, Tikhonov regularization is introduced.

2.3.2 Numerical solution optimization of linear 
systems

The core of polynomial coefficient solving is to solve the system of 
equations Mθ = YS, where TTc A,θ  =  

 and the augmented matrix 
SM V ,= Φ   . Aiming at the ill-posedness of the Vandermonde matrix, 

the condition number is first reduced by column-pivoted QR 
decomposition, and then regularization is used to handle noise 
interference (7, 8).

2.3.2.1 Column-pivoted QR decomposition
The column-pivoted QR decomposition of matrix M is performed:

	 =MP QR

Where P is the permutation matrix to ensure that the column with 
the largest norm is selected as the pivot at each step, effectively 
reducing the condition number. After decomposition, the solution is:

	 θ θ θ′ ′= =,T
SR Q Y P

This method improves numerical stability by 2–3 orders of 
magnitude, especially suitable for high-degree polynomial scenarios 
with n ≥ 7.

2.3.2.2 Tikhonov regularization
Tikhonov regularization is introduced:

	 θ
θ λθ− +2 2

2 2min SM Y

The regularization parameter λ is automatically selected by the 
L-curve method to balance the fitting accuracy and the smoothness of 
the solution.

2.3.3 Asymptotic analysis of algorithm complexity
In a single iteration, the complexity of QR decomposition is 
( )( )+ 3O n 2 , and the sample error calculation is O (N). The total 

single-iteration complexity is O ( )( )+ +3n 2 N ; in the setting of the 
number of iterations, in the optimal case (the initial point set contains 
all extreme points), the number of iterations K = 1; in the worst case, 
K=O (N), but in practical engineering, K ≤ 5 can achieve convergence. 
Therefore, the overall time complexity of the algorithm is:

	
( )( ) + + 

 
3· 2O K n N

For typical engineering scenarios with n ≤ 10 and N ≤ 100, the 
calculation time can be controlled within milliseconds (9).

2.4 Error boundary analysis

To verify the error controllability of the modified model, the 
upper bound of the maximum absolute error is derived based on 
functional analysis theory, proving the feasibility of the research. 
Assume that the input samples satisfy ( ) δ= +i i iy f x , where 

( )δ σ∼ 20,i N  is Gaussian noise, and the discrete equioscillation point 
set S satisfies σ≤ =2 max 2ò ò . Then the maximum absolute error of the 
approximation polynomial ( )np x  satisfies:

	 ( )σ≤ + max·MaxAE C ò

where C is a constant related to the polynomial degree n and the 
number of sample points N. When n ≤ 10 and N ≥ 3n + 2, C ≤ 2.5.

From the robust optimization objective S S
c A

V c A Y
2 max

2
,

min max
∈ ∈

∈
≤

+Φ + −
, it can be  seen that the polynomial 

prediction error is constrained within the range of ϵmax; the influence 
of input noise δi is weakened by the average effect of N samples, and 
its contribution is σ / N ; combining the triangle inequality, the total 
error S SMaxAE V c A Y 2 max∈≤ +Φ − + ; from the condition number 
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analysis of matrix M ( ) ≤ ≤3cond 10 forn 10M , we  can get 
σ+Φ − ≤2 1.5S SV c A Y , so σ σ σ≤ + =MaxAE 1.5 2 3.5 .

In-depth analysis shows that EMAT can balance accuracy and 
efficiency. Its maximum absolute error is only 7.5% higher than that 
of DP, but the calculation time is shortened to 6.7% of that of 
DP. When real-time performance is a priority, EMAT has more 
advantages; if the accuracy requirement is extremely high and longer 
calculation time is allowed, DP is still the first choice.

3 Experimental analysis

3.1 Experimental environment and 
benchmark settings

3.1.1 Test function set
To analyze the feasibility of the discrete polynomial approximation 

method based on the equal amplitude oscillation theorem (EMAT), 
three types of typical functions are selected as test objects (10–12), 
including the high-frequency oscillating function 
( ) ( ) ( )π π= +1f x sin 5 0.2cos 8x x , which has the characteristic of fast-

changing signals and can test the approximation ability of EMAT for 
high-frequency complex signals and analyze the fluctuation of signals; 
the non-smooth function ( ) = 0.5

2f x x , which has singular points and 
can test the performance of the algorithm in handling special 
situations such as discontinuous functions and non-existent 
derivatives and analyze its adaptability to complex function shapes; 
and the strongly nonlinear function ( )3 2

1f x
1 100x

=
+

 (improved 
Runge function), which has obvious nonlinear changes in the edge 
area. Through this function, the ability of EMAT to suppress errors in 
the edge area can be  evaluated, and its effectiveness in handling 
complex boundary conditions of functions can be analyzed, and the 
overall performance of the algorithm can be evaluated by combining 
data distribution.

3.1.2 Data generation scheme
In the data analysis process, the design of distribution types and noise 

models needs to be  comprehensively considered (13–15). In terms of 
distribution types, three types are set: uniform distribution (U), Gaussian 
aggregation (G), and edge aggregation (E). The uniform distribution 

( )
i

2 i 1
x 1

N 1
−

= − +
−

 makes the sample points evenly distributed in the interval, 
simulating conventional data collection scenarios; the Gaussian aggregation 

( )∼ 2
ix N 0,0.3  is generated by the Box-Muller transform, simulating the 

actual situation where data is densely distributed in the central area; the edge 
aggregation ( )( )i/ N 1

ix 1 0.8 −= ± −  focuses on simulating the scenario where 

sensors sample densely at the boundary, investigating the performance of 
the algorithm under different data distribution characteristics. The noise 
model introduces Gaussian noise ∼ 2

iä N(0,ó ) ( ∈ó {0.01,0.05,0.1}) and 
salt-and-pepper noise (injecting pulse interference of = ±iä 0.5 with a 
probability of 5%), simulating the situation where data is polluted by noise 
in practical applications, and evaluating the robustness of EMAT in a 
noisy environment.

3.1.3 Comparison methods and evaluation 
indicators

In evaluating the performance of EMAT, the Least Squares 
Method (LSM), Remez algorithm, and Dynamic Programming 
Method (DP) are selected as comparison methods (16, 17). LSM 
is the most commonly used polynomial approximation method at 
present and can be used as a basic reference; the Remez algorithm 
is the theoretically optimal solution in continuous scenarios and 
is used to measure the gap between EMAT and the theoretical 
limit; the DP algorithm is a cutting-edge algorithm in discrete 
scenarios and forms a direct comparison with EMAT to highlight 
the advantages of the algorithm. The evaluation process uses the 
Maximum Absolute Error (MaxAE), Mean Absolute Error (MAE), 
Relative Error (RelErr), and CPU time. Among them, MaxAE can 
reflect the error performance of the algorithm in the worst case, 
MAE can reflect the overall error level, RelErr is used to quantify 
the error ratio between EMAT and the theoretical solution, and 
CPU time evaluates the computational efficiency of the algorithm, 
so as to comprehensively evaluate the algorithm performance 
from multiple dimen sions such as accuracy, error ratio, 
and efficiency.

3.2 Accuracy comparison under noise-free 
data

As shown in Table 1, the data presents the approximation effects 
of the discrete polynomial approximation method based on the equal 
amplitude oscillation theorem (EMAT), the Least Squares Method 
(LSM), and the Dynamic Programming Method (DP) on the high-
frequency oscillating function ( ) ( ) ( )π π= +1f x sin 5 0.2cos 8x x  
and the strongly nonlinear function ( )3 2

1f x
1 100x

=
+

 in the ideal 
scenario of uniformly distributed data and no noise interference. 
From the perspective of the maximum absolute error (MaxAE), the 
MaxAE of EMAT on ( )1f x  and ( )3f x  are 0.042 and 0.068, respectively, 
which are significantly lower than 0.125 and 0.187 of LSM, with a 
decrease of 63.2%, indicating that it can effectively control extreme 

TABLE 1  Experimental effects of uniformly distributed data.

Function Method MaxAE MAE RelErr CPU time 
(ms)

f1 EMAT 0.042 0.018 8.9% 12.7

LSM 0.125 0.056 – 4.3

DP 0.039 0.016 1.2% 189.5

f3 EMAT 0.068 0.031 12.3% 15.2

LSM 0.187 0.082 – 5.1

DP 0.061 0.028 −0.3% 212.3
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errors; the mean absolute error (MAE) also confirms the overall fitting 
advantage of EMAT. In the scenario of ( )3f x , its MAE is only 37.8% of 
LSM, reflecting better global approximation accuracy. In terms of relative 
error ( ( )RelErr methoderror Remezerror / Remezerror 100%= − × , 
reflecting the gap with the theoretical solution), the error between 
EMAT and the theoretically optimal solution (Remez algorithm) in 
the continuous scenario is on the order of 10%, verifying the 
theoretical effectiveness of the discrete relaxation strategy; while the 
Dynamic Programming Method (DP) has better accuracy, its 
calculation time is more than 10 times that of EMAT, highlighting the 
significant advantage of EMAT in balancing accuracy and efficiency 
and providing a better solution for engineering practical applications.

3.3 Noise robustness analysis

The determination of the threshold relaxation strategy ε directly 
affects the analysis of noise robustness. To avoid misjudgment of the 

point set caused by noise, when ε increases from 0.01 to 0.1, the 
convergence speed is shown in Table 2, indicating that the parameter 
is robust in the range of 0.03–0.07.

To deeply analyze the performance of the algorithm under 
Gaussian noise interference, tests were carried out on EMAT, LSM, 
and DP algorithms under different noise levels ( { }∈ó 0.01,0.05,0.1 ), 
and the results are shown in Table 3.

As shown in Figure 2, according to the results, when =ó 0.01, the 
MaxAE of EMAT is 0.023, and that of LSM is 0.031; when =ó 0.1, the 
MaxAE increase rate of EMAT is 89%, and that of LSM reaches 142%, 
indicating that EMAT is less sensitive to noise. The threshold 
relaxation strategy ( = 0.05 ) can suppress the interference of noise on 
point set positioning. The threshold relaxation strategy (ε = 0.05) 
allows errors to fluctuate within a small range, avoiding misjudgment 
of point sets caused by noise.

In the study, 5% salt-and-pepper noise was injected to deeply 
compare the anti-interference capabilities of the algorithms. As shown 
in Table 4, the point set replacement rule of EMAT preferentially 

TABLE 2  Robustness verification of threshold relaxation strategy ε.

ε MaxAE (f₁) MAE (f₃) Number of convergences K

0.01 0.039 0.028 6

0.05 0.042 0.031 4

0.1 0.051 0.036 3

TABLE 3  Robustness analysis of Gaussian noise data.

Noise level σ Algorithm MaxAE MAE

0.01 EMAT 0.023 0.011

0.01 LSM 0.031 0.016

0.01 DP 0.021 0.010

0.05 EMAT 0.065 0.032

0.05 LSM 0.098 0.049

0.05 DP 0.062 0.030

0.1 EMAT 0.118 0.064

0.1 LSM 0.178 0.092

0.1 DP 0.135 0.070

FIGURE 2

Gaussian noise data heatmap analysis.
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retains stable error points, which can effectively filter out the pulse 
interference of salt-and-pepper noise.

According to the results, the point set replacement rule of 
EMAT preferentially retains stable error points. Compared with 
LSM and DP algorithms, EMAT has a smaller error increase rate 
and significantly stronger anti-interference ability in salt-and-
pepper noise environments.

3.4 Interactive influence of polynomial 
degree and data density

In the influence of fixed data density on degree, high-degree 
polynomials require more extreme points to meet the equal-
amplitude oscillation conditions, and the theoretical error of the 
discrete relaxation strategy will increase when the sample points are 
insufficient. For ( )3f x , when n ≥ 6, the MaxAE of EMAT tends to 
be  stable (0.05–0.06); the error between the theoretical solution 
(Remez) and EMAT is <5% when n ≤ 8, and the RelErr rises to 12% 
when n > 8 due to insufficient sample points. At the same time, as 
shown in Table 5, in terms of the number of convergence iterations, 
EMAT decreases from 5 times to 2 times with the increase in the 
number of data points, indicating that when the data is denser, its 
convergence speed accelerates and the algorithm efficiency improves. 
In general, under fixed degrees, EMAT has obvious advantages over 
LSM in using data density to improve approximation accuracy and 
convergence efficiency.

3.5 Influence of distribution types on error 
control

As shown in Table  6, the study compared the approximation 
effects of the discrete polynomial approximation method based on the 
equal amplitude oscillation theorem (EMAT) and the Least Squares 
Method (LSM) on the function ( )3f x  under different distribution 
types (uniform distribution, Gaussian aggregation, edge aggregation).

As shown in Figure 3, from the perspective of error indicators, under 
uniform distribution, the MaxAE and MAE of EMAT are 0.051 and 0.024, 
respectively, and those of LSM are 0.098 and 0.041, respectively. EMAT is 
significantly lower than LSM in both error indicators, indicating that it 
has a better fitting effect on uniformly distributed data. In the Gaussian 
aggregation distribution, the MaxAE and MAE of EMAT are 0.073 and 
0.038, respectively, and those of LSM are 0.142 and 0.065, respectively, 
reflecting that EMAT has a better effect on error control. In the edge 
aggregation scenario, the MaxAE of EMAT is as low as 0.048, and the 
MAE is 0.021, while the MaxAE of LSM is as high as 0.189, and the MAE 
is 0.083, verifying that EMAT has a better effect in handling the dense 
distribution of boundary data, and its ability to control endpoint errors is 
far better than that of LSM. Combined with the analysis of the distribution 
characteristics of equal-amplitude oscillation points, under uniform 
distribution, the equal-amplitude oscillation points of EMAT show the 
ideal state of uniform spacing and including endpoints, which is 
consistent with the theoretical expectation of Chebyshev and ensures the 
balanced distribution of errors; under Gaussian aggregation distribution, 
EMAT automatically selects one point at each edge and matches the dense 

TABLE 4  Robustness analysis of salt-and-pepper noise.

Algorithm MaxAE of clean data MaxAE of noisy data Error increase rate

EMAT 0.038 0.091 139%

LSM 0.112 0.278 148%

DP 0.035 0.105 200%

TABLE 5  Influence of data density under fixed degree.

Number of data 
points N

Method f1 MaxAE f3 MaxAE Number of convergence 
iterations

5 EMAT 0.102 0.125 5

LSM 0.187 0.213 –

7 EMAT 0.065 0.089 3

LSM 0.132 0.158 –

11 EMAT 0.028 0.051 2

LSM 0.079 0.098 –

TABLE 6  Influence analysis of distribution types on error control.

Distribution type Method MaxAE MAE Distribution characteristics of equal amplitude 
oscillation points

Uniform distribution EMAT 0.051 0.024 Uniformly spaced, including endpoints

LSM 0.098 0.041 No obvious pattern

Gaussian aggregation EMAT 0.073 0.038 Dense in the central area

LSM 0.142 0.065 Concentrated in the data-dense area

Edge aggregation EMAT 0.048 0.021 Endpoints and sparse middle points

LSM 0.189 0.083 Significant endpoint error exceedance
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point set in the central area, reflecting the adaptive characteristics of the 
algorithm; in the edge aggregation scenario, EMAT achieves precise 
control of boundary errors by forcibly retaining endpoints and combining 
the distribution of sparse middle points, while LSM has the problem of 
significant endpoint error exceedance in this scenario. Overall, the data 
fully shows that compared with LSM, EMAT can achieve better error 
control under different data distribution types, and its equal-amplitude 
oscillation point distribution strategy is closely adapted to data 
distribution characteristics, demonstrating good robustness 
and adaptability.

Similarly, for the polynomial approximation of ( )1f x  with n = 10, 
the maximum absolute error of the direct inverse coefficient is 0.327, 
and the condition number reaches 1.2e6; QR decomposition reduces 
the error to 0.089, and the condition number is 3.5e3; Tikhonov 
regularization further reduces the error to 0.041, and the condition 
number is 8.9e2, verifying the necessity of regularization technology 
for high-degree polynomial solution.

Meanwhile, to clarify the influence of polynomial degree n and 
the number of sample points N on approximation performance, a 
controlled variable experiment is designed to systematically test the 
error characteristics and calculation efficiency under different 
parameter combinations, providing a basis for parameter selection in 
engineering applications. Among the test functions, the high-
frequency oscillating function f1 (x) = sin (5πx) + 0.2 cos (8πx) and 
the strongly nonlinear function ( ) ( )= + 2

3 1/ 1 100f x x  are selected; in 
the parameter range, n ∈ {3, 5, 7, 9, 11} and N ∈ {2n + 2, 3n + 2, 5n 
+ 2}, corresponding to low, medium, and high data densities 
respectively; in terms of noise levels, noiseless σ = 0, low noise 
σ = 0.01, and high noise σ = 0.1. Each combination is tested 
independently 20 times, and the average value is taken as the result. 
Taking ( )1f x  as an example, it is shown in Table 7.

It can be seen that when ≥ +3 2N n , MaxAE tends to be stable, but 
N = 37 only reduces by 4.8% compared with N = 23, indicating that 
excessively increasing N has limited improvement in accuracy.

FIGURE 3

Analysis of the impact of error control.

TABLE 7  Performance comparison of different n and N combinations.

n N Noise level σ MaxAE MAE Number of 
convergence 
iterations K

Calculation time 
(ms)

3 8 0 0.039 0.028 6 8.2

3 11 0 0.072 0.029 3 9.5

3 17 0 0.068 0.027 2 11.3

7 16 0.01 0.051 0.023 3 14.3

7 23 0.01 0.042 0.018 2 16.8

7 37 0.01 0.040 0.017 2 19.5

9 20 0.1 0.102 0.058 5 18.7

9 29 0.1 0.085 0.046 3 21.3

9 47 0.1 0.079 0.042 2 25.6
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In the selection of polynomial degree, the high-frequency 
oscillating function ( )1f  requires a higher n. The strongly nonlinear 
function ( )3f  has the best performance when = ∼5 7n . When n > 8, 
the error increases due to overfitting. Under high noise (σ = 0.1), N 
needs to be increased, and ≤ 8n  should be limited to avoid overfitting. 
Therefore, combined with the error requirements and calculation 
resource constraints of different scenarios, specific selection 
suggestions for n, N, and threshold α are given, as shown in Table 8.

4 Conclusion

This study constructs a discrete polynomial approximation 
framework based on the equioscillation theorem. By discretizing and 
reconstructing the Chebyshev theorem, a linear equation model 
including error terms is established, and an adaptive threshold strategy 
and a fast iterative algorithm are designed. Experiments show that in 
noiseless scenarios, the maximum absolute error of this method is 
63.2% lower than that of LSM; in noisy scenarios, the error increase is 
30% smaller than that of DP. It can effectively reduce the maximum 
error under different polynomial degrees, data densities, and 
distributions, providing an error control scheme with both theoretical 
rigor and real-time performance for engineering scenarios.
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