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Research on error control
method for polynomial
approximation based on equal
amplitude oscillation theorem

Letong Zhou!* and Liguo Zhao?

!Warwick Mathematics Institute, The University of Warwick, Coventry, United Kingdom, 2School of
Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang,
China

To address the issue that polynomial approximation methods strongly depend on
the analytical form of the objective function, this study proposes a new minimax
polynomial approximation method based on the Chebyshev equioscillation theorem.
It constructs near-optimal solutions through discrete sample points, introduces
a threshold relaxation strategy to locate equioscillation points, and establishes a
coefficient solution framework based on linear equations. Experiments cover both
noiseless and noisy data scenarios. Compared with methods such as the Least
Squares Method (LSM), the results show that the maximum absolute error of the
proposed method is effectively reduced, and it performs excellently under different
data densities and distributions. This can provide theoretical support for extreme
deviation suppression in engineering fields, especially in safety-critical systems.

KEYWORDS
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Highlights

« Develop a minimax polynomial approximation method based on Chebyshev's theorem
for discrete data.

« Introduce a threshold relaxation strategy and linear equation - based coeflicient solving
for discrete approximation.

« Significantly reduce the maximum absolute error compared to traditional methods,
suitable for engineering error control.

1 Introduction

In existing research in the field of polynomial approximation, a research team from Stanford
University, USA (1), based on the reproducing kernel Hilbert space theory in functional analysis,
proposed a discrete data polynomial approximation framework. By constructing specific
reproducing kernel functions, discrete sample points are mapped to a high-dimensional feature
space, enabling optimal approximation of functions in the high-dimensional space. This breaks
through the limitations of traditional polynomial approximation in terms of discrete data
dimension and complexity, providing new ideas for solving approximation problems of high-
dimensional discrete data, but the actual application and deployment cost is high. Meanwhile,
scholars from the Technical University of Munich, Germany (2), aiming at the discrete minimax
approximation problem, proposed an algorithm based on dynamic programming. By orderly
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partitioning discrete point sets and solving them step by step, the time and
space complexity of the algorithm are effectively reduced, enabling rapid
processing of large-scale discrete data. A research team from Peking
University (3) conducted in-depth research on the equioscillation
characteristics of discrete point sets. By introducing the concept of
discrete norm, they discretized and transformed the traditional
equioscillation theorem, making it suitable for discrete data scenarios.
They proposed a judgment criterion for discrete equioscillation points,
which comprehensively considers the distribution characteristics of
sample points and the change trend of function values, and can effectively
construct minimax approximation polynomials based on discrete data. A
research group from Tsinghua University (4), aiming at the problem that
the traditional Remez algorithm is prone to fall into local optimal
solutions in discrete scenarios, introduced a random perturbation
mechanism and an adaptive step size adjustment strategy, which
effectively avoided the premature convergence of the algorithm.
Combining the ideas of intelligent optimization algorithms, they designed
a hybrid iterative algorithm, improving the efficiency and accuracy of the
algorithm in searching for optimal polynomials in discrete data.

It can be concluded that there are still urgent problems to
be solved in the research on discrete data in the field of polynomial
approximation. A unified and perfect system for the optimality theory
of polynomial approximation under discrete data has not yet been
formed. Research on the compatibility and complementarity between
different theoretical methods needs to be strengthened. Traditional
minimax methods are difficult to apply directly because they require
complete function information. The lack of a theoretical system leads
to a lack of unified guidance for method design in discrete scenarios.
Therefore, constructing a minimax approximation method based on
discrete sample points, which has both theoretical rigor and
engineering practicability, can provide theoretical support for error
control strategies in engineering fields.

2 Discrete approximation method
based on equal amplitude oscillation
theorem

continuous function f (x) € C [a, b], where x; € [a, B], yi=f(x)+ 6,6
is observation noise, this study can construct an nth-degree polynomial

N
Given a discrete sample point set D = {(x,- Vi )} o of an unknown

Dn (x) €P,, P, represents the space of polynomials of degree <n,
minimize the maximum absolute error on the discrete point set:

min max

[y; — i)
preb, (x €D Vi~ Pn (xz)

Aiming at the problem of traditional minimax approximation
(continuous optimization on C [a, b]), constructing an algorithm needs
to break through the contradiction between the finiteness of sample
points and the continuity assumption of the equal-amplitude oscillation
theorem, including not only the relaxed positioning of discrete equal-
amplitude oscillation points: identifying point sets that meet
approximate equal-amplitude oscillation conditions in finite samples;
but also the construction of error-controllable polynomials: establishing
a coefficient solving method based on systems of linear equations and
introducing threshold parameters to balance the theory; and multi-
dimensional error characteristic analysis: revealing the trade-off between
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the method’s extreme error suppression and overall error distribution
through comparative experiments with the least squares method.

As shown in Figure 1, the polynomial approximation algorithm
based on the equioscillation theorem proceeds as follows: First, an
initial point set including interval endpoints and uniformly
distributed intermediate points is selected via stratified sampling.
The point set is iteratively updated using the alternating
equiamplitude error property. This involves calculating current
errors, estimating the maximum error, and replacing the point with
the largest error deviation according to the priority function, while
adaptively adjusting the threshold € based on noise level. A linear
system with Vandermonde matrix and sign vector is constructed.
Column pivoting QR decomposition reduces matrix ill-conditioning,
and Tikhonov regularization helps solve polynomial coeflicients and
maximum error. Finally, the optimal approximation polynomial and
maximum absolute error are output, realizing minimax error control
for discrete data.

2.1 Discretized reconstruction of the equal
amplitude oscillation theorem

Chebyshev’s equal-amplitude oscillation theorem states (5) that
the necessary and sufficient condition for pj; (x) to be the minimax
approximation polynomial of f(x) on [a, b] is that there exist n + 2
points xo <x7 <...<Xp41 e[a,b: such that:

F(x)=pn(x)=(“1) | f = Phoor i=0,L,...in+2

Selection of initial point set

Calculate errors

Adaptive adjustment of &

Output

FIGURE 1
Algorithm flowchart.

frontiersin.org


https://doi.org/10.3389/fams.2025.1641597
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Zhou and Zhao

Where || f = [l = max | f(x)=pn(x)| is the uniform norm. In

<lad]
discrete scenarios, since not all points on [a, b] can be obtained, it is
assumed that there is a subset S={(x, , y,, )},@02 c D in the sample
points such that the error function approximately satisfies the
alternating equal-amplitude condition on S, i.e.:

Ya, _Pn(xa,):(_l)i(A"’ Ei)> leil<e

Where A is the estimated maximum error and €=0.01 is the
allowable deviation threshold. This fact is a disadvantage of the
proposed method, since it does not allow us to guarantee an accuracy
higher than 0(107%).

In discrete scenarios, directly ignoring the error term ¢; will
lead to an underestimation of the deviation between the model and
actual data, especially in noisy environments. This simplification
may introduce uncontrollable input errors. It is necessary to
incorporate the error term into the model and clarify its boundary
constraints. Based on the discretization extension of the Chebyshev
equioscillation theorem, the existence of the error term is an
inevitable result of the deviation between discrete samples and
continuous functions, and its magnitude should match the noise
level of the input data. Therefore, the modified discrete
equioscillation condition is:

Ya, = pn(%a )= (1) (A+ & ) llell 2= Emax

In the formula, y, represents the function observation value
corresponding to the sample point x, ; p, (xu’ ) is the calculated value
of the n-th degree approximation polynomial at x, ;(—1)1 is the
alternating sign term satisfying the equioscillation characteristic,
ensuring that the error presents an alternating positive and negative
distribution at the sample points; A is the maximum error amplitude
to be estimated, reflecting the overall deviation level between the
approximation polynomial and the objective function; ¢; is the
comprehensive error term, including unavoidable deviations such as
observation noise and discretization error; &, is the L, norm of the
error vector, used to quantify the overall error magnitude; €,,x=20
is the upper limit constraint of the error term, which is determined
based on the 36 principle in statistics, ensuring to a certain extent
that the error term does not exceed the input noise level.

2.2 Linear system model for polynomial
coefficient solving

To avoid information loss caused by directly ignoring the error
term €, it is necessary to construct a complete equation set
including the error term. Substituting the polynomial expression

n
p,,(x):chxk into the modified equioscillation condition,
k=0

we can obtain:

n+l
Y1=¢o +L‘1X1+"-+Cnx{,+(—1) A-e€,4
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Rewriting it in matrix form:

Vsc+ DA+ e=Y

In the formula, Vis an (n + 2) X (n + 1) Vandermonde matrix, with
elements Vs[i,k]:xl}; (i=0,1,...,n+Lk=0,1,...,n );
{c=lcg-ct>-- .,c,,:lT} is Tthe poly'nomial coefficient  vector;
O = f—l,l, -1,.. .,(—l)nﬂ} is the sign vector; A is the estimated
maximum error; € =[Eo > ELsevns En+1JT is the error vector;
Y5 = [ Ya,Va,o+Va,, ] is the sample value vector.

Due to the existence of the error term ¢, the solution of the
equation set needs to consider robustness. Using the minimax
criterion, the prediction deviation is minimized within the allowable
range of the error term, that is:

min max||Vsc+®A+e -Ys ||,
cAllel,<e

max

According to robust optimization theory, this problem can
be transformed into a regularized least squares problem, and its
closed-form solution is:

C
-1
A =(MTM+,11) MTyq

In the formula, M :[Vs ,@]isan (n + 2) X (n + 2) augmented
matrix; A is the Tikhonov regularization parameter, determined by the
L-curve method, with a value range of 107 ~ 10_3;1 is (n + 2) X (n + 2)
identity matrix; the superscript T represents matrix transposition, and
—1 represents matrix inversion.

2.3 Algorithm design

2.3.1 Iterative positioning mechanism of equal
amplitude oscillation points
The discrete equal-amplitude oscillation condition is defined as:

3Sc D,|S|=n+2,Yx; €S,le; —(—1)”("’)A

<e-max|e;|
x;€D

Where ee (O,l) is the relaxation threshold and A is the estimated
maximum error. The theoretical optimal solution is gradually
approached by iteratively replacing the sample points with the largest
error deviation in the point set.

2.3.1.1 Initial point set selection strategy
To improve convergence efficiency, stratified

initialization is adopted (6). Endpoints are often error extreme points,

sampling

and prioritizing their selection can quickly control boundary errors.
Therefore, in the endpoint priority process, the interval endpoints x,
and x; are selected as the first two points in the initial point set to
ensure boundary error control; in the middle point filling process, n
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points are uniformly selected from the remaining samples by abscissa
to form the initial point set Sy = {xa S S . ,xb} , which can
reduce the initial iteration error by about 30% and significantly
improve the convergence speed compared with random initialization.

2.3.1.2 Point set update rule
The point set replacement priority function is defined as:

le; —(~1 (%) 4
o(x;)= si=(-1) )
r;l:)sclej—(—l) Al

where ﬁ(xi) is the index of the point x; in the sorted point set. The
point with the largest ut (xl) is selected for replacement in each
iteration to ensure that each update moves in the direction of reducing
the maximum error deviation.

2.3.1.3 Adaptive selection method of threshold ¢

The threshold € in the discrete equioscillation condition directly
affects the accuracy of point set positioning, and its value needs to
match the noise level of the input data. Therefore, an adaptive
threshold based on noise estimation is designed:

0=ao0

In the formula, o is the estimated value of the standard deviation
of the input data noise, calculated by the median absolute deviation
method: {o =1.4826x median(| lyi — med(y)“), where med(y) is the
median of the sample values y;, and 1.4826 is the correction coefficient
under the normal distribution; & is the adaptive adjustment coefficient,
dynamically selected according to the noise level:

Noiseless data o <0.001: ¢ =0.01, at this time the threshold
mainly constrains the discretization deviation; Low-noise data 0.001
<6 £0.01: a = 0.05, balancing noise tolerance and approximation
accuracy; High-noise data o > 0.01: a = 0.1, relaxing constraints to
avoid noise interfering with point set selection.

Compared with ridge regression, Tikhonov regularization is more
suitable for dealing with matrix problems. By introducing L2 norm
constraints, it can reduce both coefficient errors and matrix condition
numbers. Therefore, Tikhonov regularization is introduced.

2.3.2 Numerical solution optimization of linear
systems

The core of polynomial coefficient solving is to solve the system of
equations M6 = Y;, where g=|T A " and the augmented matrix
M= [VS ,(I)]. Aiming at the ill-posedness of the Vandermonde matrix,
the condition number is first reduced by column-pivoted QR
decomposition, and then regularization is used to handle noise
interference (7, 8).

2.3.2.1 Column-pivoted QR decomposition
The column-pivoted QR decomposition of matrix M is performed:

MP=QR
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Where P is the permutation matrix to ensure that the column with
the largest norm is selected as the pivot at each step, effectively
reducing the condition number. After decomposition, the solution is:

RO =Q"Y5,0=P8

This method improves numerical stability by 2-3 orders of
magnitude, especially suitable for high-degree polynomial scenarios
withn > 7.

2.3.2.2 Tikhonov regularization
Tikhonov regularization is introduced:

min M6 —Yg3 + 163
%

The regularization parameter A is automatically selected by the
L-curve method to balance the fitting accuracy and the smoothness of
the solution.

2.3.3 Asymptotic analysis of algorithm complexity

In a single iteration, the complexity of QR decomposition is
(0] (n-&—Z)3 , and the sample error calculation is O (N). The total
single-iteration complexity is O (n + 2)3 +N|; in the setting of the
number of iterations, in the optimal case (the initial point set contains
all extreme points), the number of iterations K = 1; in the worst case,
K=0 (N), but in practical engineering, K < 5 can achieve convergence.
Therefore, the overall time complexity of the algorithm is:

O(K-((n+2)3 +N))

For typical engineering scenarios with #n < 10 and N < 100, the
calculation time can be controlled within milliseconds (9).

2.4 Error boundary analysis

To verify the error controllability of the modified model, the
upper bound of the maximum absolute error is derived based on
functional analysis theory, proving the feasibility of the research.
Assume that the input samples satisfy y;=f (x,-)+é',-, where
6 ~N (0,0‘2) is Gaussian noise, and the discrete equioscillation point
set S satisfies 0y <0p.¢ =20. Then the maximum absolute error of the
approximation polynomial p,, (x) satisfies:

MaxAE < C(0 +0pmax )

where C is a constant related to the polynomial degree n and the
number of sample points N. When n <10 and N > 3n + 2, C < 2.5.

mirFrenx Ve theA+ e —fiahust
OA ESE , it can be seen that the polynomial

optimization objective
prediction error is constrained within the range of €,,,; the influence
of input noise &; is weakened by the average effect of N samples, and
its contribution is o /v N ; combining the triangle inequality, the total
error MaxAE <Vsc+®A—Yg+ Emax ; from the condition number
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analysis of matrix M cond(M)<10’forn<10, we can get
Vsc+ DAY, £1.50, 5o MaxAE<1.50 +20 =3.50.

In-depth analysis shows that EMAT can balance accuracy and
efficiency. Its maximum absolute error is only 7.5% higher than that
of DP, but the calculation time is shortened to 6.7% of that of
DP. When real-time performance is a priority, EMAT has more
advantages; if the accuracy requirement is extremely high and longer
calculation time is allowed, DP is still the first choice.

3 Experimental analysis

3.1 Experimental environment and
benchmark settings

3.1.1 Test function set

To analyze the feasibility of the discrete polynomial approximation
method based on the equal amplitude oscillation theorem (EMAT),
three types of typical functions are selected as test objects (10-12),
including the high-frequency oscillating function
f; (x) = sin(Sﬂ'x) +0.2 cos(87z'x), which has the characteristic of fast-
changing signals and can test the approximation ability of EMAT for
high-frequency complex signals and analyze the fluctuation of signals;
the non-smooth function f, (x) = |x|0‘5, which has singular points and
can test the performance of the algorithm in handling special
situations such as discontinuous functions and non-existent
derivatives and analyze its adaptability to complex function shapes;
and the strongly nonlinear function f;(x)=——— (improved
Runge function), which has obvious nonlinear changes in the edge
area. Through this function, the ability of EMAT to suppress errors in
the edge area can be evaluated, and its effectiveness in handling
complex boundary conditions of functions can be analyzed, and the
overall performance of the algorithm can be evaluated by combining
data distribution.

3.1.2 Data generation scheme

In the data analysis process, the design of distribution types and noise
models needs to be comprehensively considered (13-15). In terms of
distribution types, three types are set: uniform distribution (U), Gaussian
aggregation (G), and edge aggregation (E). The uniform distribution
xj=—1+ 2i-) makes the sample points evenly distributed in the interval,
simulating conventional data collection scenarios; the Gaussian aggregation
xi~N (0,0.32 ) is generated by the Box-Muller transform, simulating the
actual situation where data is densely distributed in the central area; the edge

aggregation x; =+ (1 ~0.8/(N ) focuses on simulating the scenario where

TABLE 1 Experimental effects of uniformly distributed data.

10.3389/fams.2025.1641597

sensors sample densely at the boundary, investigating the performance of
the algorithm under different data distribution characteristics. The noise
model introduces Gaussian noise 4; ~ N(O,(’)2 ) (6 €{0.01,0.05,0.1}) and
salt-and-pepper noise (injecting pulse interference of 4; = +0.5 with a
probability of 5%), simulating the situation where data is polluted by noise
in practical applications, and evaluating the robustness of EMAT in a
noisy environment.

3.1.3 Comparison methods and evaluation
indicators

In evaluating the performance of EMAT, the Least Squares
Method (LSM), Remez algorithm, and Dynamic Programming
Method (DP) are selected as comparison methods (16, 17). LSM
is the most commonly used polynomial approximation method at
present and can be used as a basic reference; the Remez algorithm
is the theoretically optimal solution in continuous scenarios and
is used to measure the gap between EMAT and the theoretical
limit; the DP algorithm is a cutting-edge algorithm in discrete
scenarios and forms a direct comparison with EMAT to highlight
the advantages of the algorithm. The evaluation process uses the
Maximum Absolute Error (MaxAE), Mean Absolute Error (MAE),
Relative Error (RelErr), and CPU time. Among them, MaxAE can
reflect the error performance of the algorithm in the worst case,
MAE can reflect the overall error level, RelErr is used to quantify
the error ratio between EMAT and the theoretical solution, and
CPU time evaluates the computational efficiency of the algorithm,
so as to comprehensively evaluate the algorithm performance
from multiple dimen sions such as accuracy, error ratio,
and efficiency.

3.2 Accuracy comparison under noise-free
data

As shown in Table 1, the data presents the approximation effects
of the discrete polynomial approximation method based on the equal
amplitude oscillation theorem (EMAT), the Least Squares Method
(LSM), and the Dynamic Programming Method (DP) on the high-
frequency oscillating function f; (x) =sin (57rx) +0.2cos (Sﬂ'x)
> in the ideal
scenario of uniformly distributed data and 16 Roise interference.

and the strongly nonlinear function f3(x)=

From the perspective of the maximum absolute error (MaxAE), the
MaxAE of EMAT on f; (x) and f3 (x) are 0.042 and 0.068, respectively,
which are significantly lower than 0.125 and 0.187 of LSM, with a
decrease of 63.2%, indicating that it can effectively control extreme

Function Method MaxAE MAE RelErr CPU time
(ms)
f, EMAT 0.042 0.018 8.9% 12.7
LSM 0.125 0.056 - 4.3
Dp 0.039 0.016 1.2% 189.5
fy EMAT 0.068 0.031 12.3% 15.2
LSM 0.187 0.082 - 5.1
Dp 0.061 0.028 —0.3% 2123
Frontiers in Applied Mathematics and Statistics 05 frontiersin.org
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errors; the mean absolute error (MAE) also confirms the overall fitting
advantage of EMAT. In the scenario of f3 (x), its MAE is only 37.8% of
LSM, reflecting better global approximation accuracy. In terms of relative
error (RelErr = (methoderror - Remezerror) / Remezerror x100% |
reflecting the gap with the theoretical solution), the error between
EMAT and the theoretically optimal solution (Remez algorithm) in
the continuous scenario is on the order of 10%, verifying the
theoretical effectiveness of the discrete relaxation strategy; while the
Dynamic Programming Method (DP) has better accuracy, its
calculation time is more than 10 times that of EMAT, highlighting the
significant advantage of EMAT in balancing accuracy and efficiency

and providing a better solution for engineering practical applications.

3.3 Noise robustness analysis

The determination of the threshold relaxation strategy ¢ directly
affects the analysis of noise robustness. To avoid misjudgment of the

TABLE 2 Robustness verification of threshold relaxation strategy «.

10.3389/fams.2025.1641597

point set caused by noise, when ¢ increases from 0.01 to 0.1, the
convergence speed is shown in Table 2, indicating that the parameter
is robust in the range of 0.03-0.07.

To deeply analyze the performance of the algorithm under
Gaussian noise interference, tests were carried out on EMAT, LSM,
and DP algorithms under different noise levels (6 € {0.01,0.05,0.1} ),
and the results are shown in Table 3.

As shown in Figure 2, according to the results, when 6 =0.01, the
MaxAE of EMAT is 0.023, and that of LSM is 0.031; when 6 =0.1, the
MaxAE increase rate of EMAT is 89%, and that of LSM reaches 142%,
indicating that EMAT is less sensitive to noise. The threshold
relaxation strategy (e =0.05) can suppress the interference of noise on
point set positioning. The threshold relaxation strategy (e = 0.05)
allows errors to fluctuate within a small range, avoiding misjudgment
of point sets caused by noise.

In the study, 5% salt-and-pepper noise was injected to deeply
compare the anti-interference capabilities of the algorithms. As shown
in Table 4, the point set replacement rule of EMAT preferentially

€ MaxAE (f,) MAE (f3) Number of convergences K
0.01 0.039 0.028 6
0.05 0.042 0.031 4
0.1 0.051 0.036 3
TABLE 3 Robustness analysis of Gaussian noise data.
Noise level o Algorithm MaxAE MAE
0.01 EMAT 0.023 0.011
0.01 LSM 0.031 0.016
0.01 DP 0.021 0.010
0.05 EMAT 0.065 0.032
0.05 LSM 0.098 0.049
0.05 DP 0.062 0.030
0.1 EMAT 0.118 0.064
0.1 LSM 0.178 0.092
0.1 DP 0.135 0.070
MaxAE 200
. 0021 o8 & 0.010 008
0.14 0.07
0.12 0.06
g 0023 010 % % 0011 005 §
0.08 -0.04
0.06 0.03
ﬁ 0.031 vos % 0.016 002
0.01 001 oot
FIGURE 2
Gaussian noise data heatmap analysis.
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TABLE 4 Robustness analysis of salt-and-pepper noise.

10.3389/fams.2025.1641597

Algorithm MaxAE of clean data MaxAE of noisy data Error increase rate
EMAT 0.038 0.091 139%
LSM 0.112 0.278 148%
DP 0.035 0.105 200%
TABLE 5 Influence of data density under fixed degree.
Number of data Method f, MaxAE f; MaxAE Number of convergence
points N iterations
5 EMAT 0.102 0.125 5
LSM 0.187 0.213 -
7 EMAT 0.065 0.089 3
LSM 0.132 0.158 -
11 EMAT 0.028 0.051 2
LSM 0.079 0.098 -

TABLE 6 Influence analysis of distribution types on error control.

Distribution type Method Distribution characteristics of equal amplitude
oscillation points
Uniform distribution EMAT 0.051 0.024 Uniformly spaced, including endpoints
LSM 0.098 0.041 No obvious pattern
Gaussian aggregation EMAT 0.073 0.038 Dense in the central area
LSM 0.142 0.065 Concentrated in the data-dense area
Edge aggregation EMAT 0.048 0.021 Endpoints and sparse middle points
LSM 0.189 0.083 Significant endpoint error exceedance

retains stable error points, which can effectively filter out the pulse
interference of salt-and-pepper noise.

According to the results, the point set replacement rule of
EMAT preferentially retains stable error points. Compared with
LSM and DP algorithms, EMAT has a smaller error increase rate
and significantly stronger anti-interference ability in salt-and-
pepper noise environments.

3.4 Interactive influence of polynomial
degree and data density

In the influence of fixed data density on degree, high-degree
polynomials require more extreme points to meet the equal-
amplitude oscillation conditions, and the theoretical error of the
discrete relaxation strategy will increase when the sample points are
insufficient. For f3 (x), when n > 6, the MaxAE of EMAT tends to
be stable (0.05-0.06); the error between the theoretical solution
(Remez) and EMAT is <5% when n < 8, and the RelErr rises to 12%
when 7 > 8 due to insufficient sample points. At the same time, as
shown in Table 5, in terms of the number of convergence iterations,
EMAT decreases from 5 times to 2 times with the increase in the
number of data points, indicating that when the data is denser, its
convergence speed accelerates and the algorithm efficiency improves.
In general, under fixed degrees, EMAT has obvious advantages over
LSM in using data density to improve approximation accuracy and
convergence efficiency.

Frontiers in Applied Mathematics and Statistics

3.5 Influence of distribution types on error
control

As shown in Table 6, the study compared the approximation
effects of the discrete polynomial approximation method based on the
equal amplitude oscillation theorem (EMAT) and the Least Squares
Method (LSM) on the function f3 (x) under different distribution
types (uniform distribution, Gaussian aggregation, edge aggregation).

As shown in Figure 3, from the perspective of error indicators, under
uniform distribution, the MaxAE and MAE of EMAT are 0.051 and 0.024,
respectively, and those of LSM are 0.098 and 0.041, respectively. EMAT is
significantly lower than LSM in both error indicators, indicating that it
has a better fitting effect on uniformly distributed data. In the Gaussian
aggregation distribution, the MaxAE and MAE of EMAT are 0.073 and
0.038, respectively, and those of LSM are 0.142 and 0.065, respectively,
reflecting that EMAT has a better effect on error control. In the edge
aggregation scenario, the MaxAE of EMAT is as low as 0.048, and the
MAE is 0.021, while the MaxAE of LSM is as high as 0.189, and the MAE
is 0.083, verifying that EMAT has a better effect in handling the dense
distribution of boundary data, and its ability to control endpoint errors is
far better than that of LSM. Combined with the analysis of the distribution
characteristics of equal-amplitude oscillation points, under uniform
distribution, the equal-amplitude oscillation points of EMAT show the
ideal state of uniform spacing and including endpoints, which is
consistent with the theoretical expectation of Chebyshev and ensures the
balanced distribution of errors; under Gaussian aggregation distribution,
EMAT automatically selects one point at each edge and matches the dense
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MaxAE Comparison

FIGURE 3
Analysis of the impact of error control.

MAE Comparison

TABLE 7 Performance comparison of different n and N combinations.

Noise level ¢ MaxAE Number of Calculation time
convergence (ms)
iterations K
3 8 0 0.039 0.028 6 82
3 11 0 0.072 0.029 3 9.5
3 17 0 0.068 0.027 2 113
7 16 0.01 0.051 0.023 3 14.3
7 23 0.01 0.042 0.018 2 16.8
7 37 0.01 0.040 0.017 2 19.5
9 20 0.1 0.102 0.058 5 18.7
9 29 0.1 0.085 0.046 3 213
9 47 0.1 0.079 0.042 2 25.6

point set in the central area, reflecting the adaptive characteristics of the
algorithm; in the edge aggregation scenario, EMAT achieves precise
control of boundary errors by forcibly retaining endpoints and combining
the distribution of sparse middle points, while LSM has the problem of
significant endpoint error exceedance in this scenario. Overall, the data
fully shows that compared with LSM, EMAT can achieve better error
control under different data distribution types, and its equal-amplitude
oscillation point distribution strategy is closely adapted to data
distribution  characteristics, robustness
and adaptability.

Similarly, for the polynomial approximation of f; (x) with n = 10,

demonstrating  good

the maximum absolute error of the direct inverse coefficient is 0.327,
and the condition number reaches 1.2e6; QR decomposition reduces
the error to 0.089, and the condition number is 3.5e3; Tikhonov
regularization further reduces the error to 0.041, and the condition
number is 8.9¢2, verifying the necessity of regularization technology
for high-degree polynomial solution.
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Meanwhile, to clarify the influence of polynomial degree n and
the number of sample points N on approximation performance, a
controlled variable experiment is designed to systematically test the
error characteristics and calculation efficiency under different
parameter combinations, providing a basis for parameter selection in
engineering applications. Among the test functions, the high-
frequency oscillating function f; (x) = sin (57x) + 0.2 cos (87x) and
the strongly nonlinear function f; (x) =1/ (1 +100x* ) are selected; in
the parameter range, n € {3,5,7,9, 11} and N€ {2n + 2, 3n + 2, 5n
+ 2}, corresponding to low, medium, and high data densities
respectively; in terms of noise levels, noiseless ¢ = 0, low noise
0=0.01, and high noise o=0.1. Each combination is tested
independently 20 times, and the average value is taken as the result.
Taking f; (x) as an example, it is shown in Table 7.

It can be seen that when N > 31+ 2, MaxAE tends to be stable, but
N =37 only reduces by 4.8% compared with N = 23, indicating that
excessively increasing N has limited improvement in accuracy.
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TABLE 8 Suggestions for values of n, N, and threshold a.

10.3389/fams.2025.1641597

Application Function Noise Recommended n Recommended N Threshold Expected
scenario characteristics level o coefficient a MaxAE
Regular Smooth function <0.01 3~5 3n+2 0.01 <0.05
measurement

High-frequency Oscillation frequency >51 0.01-0.05 7~8 4n+2 0.05 <0.08
signal processing

Edge area Strongly nonlinear 0.05-0.1 5~6 5n+2 0.1 <0.1
monitoring

Safety-critical Arbitrary characteristics Arbitrary 5~7 5n+2 0.08 <206
systems

In the selection of polynomial degree, the high-frequency
oscillating function ( fl) requires a higher n. The strongly nonlinear
function ( f3) has the best performance when n=5~7. When n > 8,
the error increases due to overfitting. Under high noise (c=0.1), N
needs to be increased, and n < 8 should be limited to avoid overfitting.
Therefore, combined with the error requirements and calculation
resource constraints of different scenarios, specific selection
suggestions for n, N, and threshold « are given, as shown in Table 8.

4 Conclusion

This study constructs a discrete polynomial approximation
framework based on the equioscillation theorem. By discretizing and
reconstructing the Chebyshev theorem, a linear equation model
including error terms is established, and an adaptive threshold strategy
and a fast iterative algorithm are designed. Experiments show that in
noiseless scenarios, the maximum absolute error of this method is
63.2% lower than that of LSM; in noisy scenarios, the error increase is
30% smaller than that of DP. It can effectively reduce the maximum
error under different polynomial degrees, data densities, and
distributions, providing an error control scheme with both theoretical
rigor and real-time performance for engineering scenarios.
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