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The fitness-dependent optimizer (FDO) has recently gained attention as an
effective metaheuristic for solving different optimization problems. However,
it faces limitations in exploitation and convergence speed. To overcome
these challenges, this study introduces two enhanced variants: enhancing
exploitation through stochastic boundary for FDO (EESB-FDO) and enhancing
exploitation through boundary carving for FDO (EEBC-FDO). In addition, the
ELFS strategy is proposed to constrain Levy flight steps, ensuring more stable
exploration. Experimental results show that these modifications significantly
improve the performance of FDO compared to the original version. To evaluate
the performance of the EESB-FDO and EEBC-FDO, three primary categories of
benchmark test functions were utilized: classical, CEC 2019, and CEC 2022.
The assessment was further supported by the application of statistical analysis
methods to ensure a comprehensive and rigorous performance evaluation.
The performance of the proposed EESB-FDO and EEBC-FDO algorithms was
evaluated through comparative analysis with several existing FDO modifications,
as well as with other well-established metaheuristic algorithms, including
the Arithmetic Optimization Algorithm (AOA), the Learner Performance-Based
Behavior Algorithm (LPB), the Whale Optimization Algorithm (WOA), and the
Fox-inspired Optimization Algorithm (FOX). The statistical analysis indicated
that both EESB-FDO and EEBC-FDO exhibit better performance compared
to the aforementioned algorithms. Furthermore, a final evaluation involved
applying EESB-FDO and EEBC-FDO to four real-world optimization problems:
the gear train design problem, the three-bar truss problem, the pathological
igg fraction in the nervous system, and the integrated cyber-physical attack on
a manufacturing system. The results demonstrate that both proposed variants
significantly outperform both the FDO and the modified fitness-dependent
optimizer (MFDO) in solving these complex problems.

KEYWORDS

stochastic boundary, optimization, fitness dependent optimizer, metaheuristic
algorithm, Levy flight

1 Introduction

In real-world scenarios, optimization plays a vital role in solving complex
problems across diverse fields such as engineering design, healthcare,
transportation, energy systems, and machine learning. Many of these problems
are difficult to solve using traditional mathematical approaches, particularly
when the search space is large, non-linear, or contains multiple local optima.
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Metaheuristic algorithms have therefore emerged as powerful
tools, providing efficient and flexible methods to approximate
optimal solutions in practical applications [1–4]. Over the past two
decades, metaheuristic algorithms have gained prominence due to
their ability to handle complex, high-dimensional problems. They
generally operate by applying strategic rules to candidate solutions,
starting from randomly generated points and iteratively improving
them through evaluation and comparison [5]. One of the earliest
milestones in this field was John Holland’s genetic algorithm (GA),
developed in the 1960s and later published in the 1970s and
1980s [6–8]. This was followed by simulated annealing (SA) [9],
inspired by the annealing process in metallurgy, and particle swarm
optimization (PSO) [5, 10], inspired by the collective behavior of
birds. These pioneering algorithms demonstrated strong potential
for addressing real-world optimization challenges by finding high-
quality solutions, reducing computational time, and overcoming
local optima.

Since then, numerous algorithms have been introduced, such
as the pathfinder algorithm (PFA) [11], the mayfly algorithm (MA)
[12], the bear smell search algorithm (BSSA) [13], the gradient-
based optimizer (GBO) [14], the group teaching optimization
algorithm (GTOA) [15], the heap-based optimizer (HBO) [16],
the Henry gas solubility optimization (HGSO) [17], the marine
predators algorithm (MPA) [18], the political optimizer (PO) [19]
the atom search optimization (ASO) [20], the Aquila optimizer
(AO) [21], the herd optimization algorithm (HOA) [22], the
Ebola optimization search algorithm (EOSA) [23] and the single
candidate optimizer (SCO) [24]. The large number of algorithms
can be attributed to the fact that no specific algorithm can
be applied to all optimization problems, as pointed out in the
no free lunch (NFL) theorem [25]. This theorem has logically
demonstrated that no single algorithm is universally optimal for
solving all types of optimization problems. The outcomes of these
algorithms show that some achieve better results than others for
certain specific problems [26].

A recurring theme in the design of these algorithms
is the balance between exploration and exploitation [27–
29]. Achieving a balance between these concepts is critical
for improving algorithmic performance, as it enhances the
ability of algorithms to converge efficiently while avoiding
local optima. One of the primary limitations of the fitness-
dependent optimizer (FDO) algorithm, as identified in previous
studies, is its underdeveloped exploration capability, which
has prompted significant research efforts aimed at addressing
this issue. This paper emphasizes improving exploitation while
maintaining a strong focus on exploration. To confine the
algorithm within a specified search space defined by lower
and upper bounds after updating the bees’ positions, the FDO
algorithm utilizes a specialized function called the “getBoundary”
function [30, 31]. This function effectively transforms outlier
values of bee positions into feasible values within the defined
boundaries. By introducing modifications to the equations within
the “getBoundary” function, this study aims to enhance the
FDO algorithm’s performance, contributing to more efficient
optimization outcomes.

The main contributions of this study can be summarized
as follows:

1. Proposed two novel boundary handling strategies for the
Fitness fitness-dependent optimizer (FDO):

• EESB-FDO: Enhancing exploitation through stochastic
repositioning, which introduces random values within
bounds when scout bees exceed search space limits.

• EEBC-FDO: Enhancing exploitation through boundary
carving, which redirects bees toward feasible regions using
boundary carving equations.

2. Introduced the ELFS strategy, which modifies the Levy flight
mechanism to restrict step sizes within a bounded range,
preventing instability due to excessive jumps.

3. Conducted extensive benchmarking using classical,
CEC 2019, and CEC 2022 test functions, demonstrating
significant improvements in exploitation capability and
convergence behavior.

4. Applied the proposed variants to four real-world engineering
problems, proving their practical its effectiveness in solving
complex, constrained optimization scenarios.

5. Performed comparative statistical analysis with state-of-
the-art algorithms, confirming the competitiveness and
reliability of EESB-FDO and EEBC-FDO under various
optimization challenges.

The remaining sections of this paper are organized as follows:
Section 2 presents a review of related work on the FDO. Section
3 provides a detailed description of the FDO algorithm. In
Section 4, the proposed methodology is explained, followed by
the introduction of the FDO modifications in Section 5. Section
6 presents the experimental results and comparisons with other
algorithms using a set of benchmark test functions. Finally,
Section 7 summarizes the main findings and offers directions for
future research.

2 Related work

Advancing the FDO recently and effectiveness in solving real-
world problems demonstrate that it is one of the most powerful
metaheuristic algorithms in recent years [32–35]. Additionally, it
uses random walk techniques, such as Levy flight [3], which have
been employed in prior studies to improve the performance of the
optimization of other algorithms. Selecting an appropriate equation
or method is crucial for efficiently reaching the global optimum
while avoiding local optima. Following the development of any
new algorithm, the modification and enhancement of existing

TABLE 1 FDO parameter settings.

Parameters Parameter value

Search agent 30

Weight factor Either 0 or 1, FDO use “0” in all testing

Fitness weight Range between (0,1)

Levy flight Range between (1,−1)
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algorithms using various methods and techniques are critical steps
commonly undertaken by researchers to improve performance and
adaptability. For example, the GA [36] has been extended to the

FIGURE 1

Pseudo code of FDO described in Abdullah and Ahmed [31].

adaptive genetic algorithm (AGA) [37], and PSO [10] has evolved
into the comprehensive learning PSO (CLPSO) [38]. Similarly, the
ant colony optimization (ACO) [39] method was improved to the
max–min ant system (MMAS) [40], while the FA [2] was adapted
into the adaptive firefly algorithm (AFA) [41], and AOA [42] was
refined into the enhanced AOA (EAOA) [43].

The enhancement and generation of algorithms are increasing
rapidly; this rapid expansion has necessitated the need to manage
and categorize them. There are various ways to classify these
algorithms, and one common approach is based on their source
of inspiration, which can be either natural or non-natural. Nature-
inspired metaheuristic algorithms can be broadly categorized
into four main classes: physics-based algorithms, evolutionary
algorithms, human-based algorithms, and swarm-based algorithms
[44]. The FDO is a metaheuristic algorithm that belongs to the
swarm-based algorithms group, inspired by the bee swarming
reproductive process. More specifically, it can be seen as an
extension of PSO [31]. Various methods and techniques have
been employed to enhance and improve the performance of the
FDO algorithm, and these improvements must be acknowledged.
Adding two parameters (alignment and cohesion) to update the
position of search agents in addition to the existing pace factor
[32]. Ten chaotic maps have been used for the initialization
population, which is another improvement implemented in FDO
[45]. After that, updating pace (velocity) by utilizing the sine–
cosine scheme, modified pace-updating equations in the search
phase, random weight factor, global fitness weight strategy,
conversion parameter strategy, and the best solution-updating
strategy[33]. Then, modifying the fitness-dependent optimizer by
changing waited factor range from [0,1] to [0,0.2] is another
mechanism [34].

With these developments and improvements, the FDO
algorithm has been effectively applied to solve and address a variety
of problems, demonstrating significant success in finding optimal
solutions. For instance, the adaptive fitness-dependent optimizer
has been applied to the one-dimensional bin packing problem, an
NP-hard problem, producing more promising results compared
to other approaches [46]. Subsequently, the automatic generation
control (AGC) of a multi-source interconnected power system
(IPS) was more effectively managed using FDO, reducing frequency

FIGURE 2

Explain methodology steps.
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FIGURE 3

Pseudo code of FDO with (EESB) and (EEBC). (A) EESB-FDO. (B) EEBC-FDO.

overshoot/undershoot and settling time [47]. Then Improved-
FDO was applied to control the same problem and provide better
results than FDO [48]. Building on the advantages of FDO in
controlling Automatic Generation Control (AGC), a new controller
called the “modified PID controller” is introduced, which achieves
more effective control than before, again utilizing FDO [49]. The
performance of this algorithm was further leveraged to enhance
another area, specifically in multilayer perceptron (MLP) neural
networks, resulting in an increase in the average accuracy of the
model [50]. FDO has demonstrated superior efficiency in solving
non-linear optimal control problems (NOCPs) compared to the
GA algorithm, effectively minimizing absolute error and providing
better solutions [51].

A new technique called generalized regression neural network
combined with fitness-dependent optimization (GRNNFDO) has
been used to control the behavior of the thermoelectric generator

(TEG) system, and this technique produces more power compared
to other algorithms [52]. The economic load dispatch (ELD)
problem is another area where the improved FDO has been
used to effectively reduce emission allocation and fuel costs
[53]. Another effective method for classifying COVID-19 cases as
positive or negative, where FDO combined with neural networks
was tested on three different datasets, enhanced accuracy rates and
minimized error rates [54]. A hybrid approach combining genetic
algorithm and FDO (GA-MFDO) has been used to solve the NP-
hard problem of workflow scheduling, achieving a significant p-
value compared to other methods [55]. Similarly, the edge server
allocation problem, an NP-hard challenge, was effectively addressed
using the effective fitness-dependent optimizer (EFDO). When
tested on Shanghai Telecom’s dataset, which includes factors such
as access delay, energy consumption, and workload balance, EFDO
outperformed competing algorithms [56]. Finally, FDO integrated
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with neural networks has also been employed for detecting steel
plate faults, achieving higher classification accuracy than other
methods [57].

Levy flight is a type of random walk where step lengths follow
a Levy distribution, characterized by its heavy-tailed probability
distribution. It is one of the most effective approaches for
generating a diverse and well-distributed random initialization set,
thereby enhancing the exploration capabilities of the algorithm
when metaheuristic algorithms begin with a randomly initialized
set of values, structured according to the algorithm’s design and
procedural steps [2]. Levy flight is a fundamental component of
the cuckoo search (CS) algorithm, which mimics the foraging
behavior of certain animals and insects [58]. In this work, Levy
flight is utilized to simulate insect movement, significantly boosting
the global search capability of the flower pollination algorithm
(FPA) [59]. For algorithms like the dragonfly algorithm (DA), Levy
flight guides stochastic behavior, allowing for better traversal of
the search space [60]. Additionally, the combination of differential
evolution (DE) and Levy flight (LF) techniques has been shown to
improve the performance of the harmony search algorithm (HSA)
[61]. The slap swarm algorithm (SSA) also benefits from Levy
flight mutation, which enhances its randomness and exploration
capabilities during the search process [62]. Similarly, Levy flight-
based mutation has been introduced to improve the exploration
ability and overall efficiency of the slime mould algorithm (SMA)
[63]. Furthermore, the use of Levy flight in the bat algorithm (BA)
has been shown to improve its ability to escape local optima and
achieve faster convergence [64] Similarly, the incorporation of Levy
flight in the gray wolf optimizer (GWO) enhances its global search
ability, making it more effective for solving complex optimization
problems [65].

FIGURE 4

Pseudo code of Levy flight.

3 FDO algorithm

The FDO is inspired by the swarming behavior of bees during
colony reproduction. When bees seek to establish a new hive,
they follow a systematic set of rules to identify a suitable location.
These decision-making processes within the bee community can be
categorized into two fundamental components: searching for an
appropriate site and moving toward it. Further details regarding
FDO are provided through its parameter settings, as summarized
in Table 1. These parameters significantly influence the algorithm’s
performance, and deviations beyond their predefined values may
adversely affect the quality of the results.

In optimization algorithms, the search process is typically
conducted within a predefined search space to identify optimal
solutions. To ensure that the search remains within these
boundaries, some algorithms implement a boundary handling
mechanism. This mechanism involves iterating through potential
solutions and adjusting any values that exceed the predefined limits
by reassigning them to a random boundary value. This section
provides a detailed exploration of these three key aspects: searching,
movement, and boundary handling. Showed Pseudo code of FDO
in Figure 1.

3.1 Bee searching

Scout bees initiate the search for an optimal hive by exploring
various potential locations. This process represents a fundamental
stage in the algorithm, which begins with the random generation
of the scout bee population within a predefined search space,
denoted as Xi

(
where i = 1, 2, 3, . . . , n

)
. Each scout bee’s position

corresponds to a newly discovered solution within the search space.
To identify a more suitable hive, scout bees perform a stochastic
search for alternative locations. If a newly identified position offers
a more favorable solution, the previous locations are disregarded.
Conversely, if the new position does not yield an improvement,
the scout bees continue moving in their prior direction while
disregarding the less optimal locations.

3.2 Bee movement

In the natural world, scout bees search for a hive randomly
to identify a more suitable location for reproduction. Similarly,
artificial scout bees adopt this principle by moving and updating
their current position to a potentially improved one through the
addition of a pace value. If the newly discovered solution proves
to be superior to the previous one, the scouts proceed in the

FIGURE 5

Result of calling Levy flight 30 times.
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TABLE 2 Unimodal benchmark functions [80].

Function Range fmin

TF1 (x) = ∑n
i=1 x2

i . [−100,100] 0

TF2 (x) = ∑n
i=1 |xi| +

∏n
i=1 |xi| . [−10,10] 0

TF3 (x) = ∑n
i=1

(∑i
j−1 xj

)2
. [−100,100] 0

TF4 (x) = max {|x|, 1 ≤ i ≤ n} [−100,100] 0

TF5 (x) = ∑n−1
i=1

[
100

(
xi+1 − x2

1
)2 + (xi−1)

2
]

. [−30,30] 0

TF6 (x) = ∑n
i=1 ([xi + 0.5])2. [−100,100] 0

TF7(x)
∑n

i=1 ix2
i + random [0, 1]. [−1.28,1.28] 0

TABLE 3 Multi-modal benchmark functions [80].

Function Range Shift position fmin

TF8 (x) = ∑n
i=1 −xi sin

(√|xi|
)
. [−500, 500] [−300, . . . -300] −418.9829

TF9 (x) = ∑n
i=1

[
x2

i − 10 cos (2πxi) + 10
]
. [−5.12, 5.12] [−2, −2, . . . -2] 0

TF10 (x) = −20 exp
(
−0.2

√∑n
i=1 x2

i

)
− ( 1

n
∑n

i=1 cos (2πxi)
) + 20 + e [−32, 32] 0

TF11 (x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
j

)
+ 1. [−600, 600] [−400, . . .−400] 0

TF12 (x) =
π
n

{
10 sin

(
πy1

) + ∑n−1
i=1

(
yi − 1

)2 [
1 + 10sin2 (

πyi+1
)] + (

yn−1
)2

}
+ ∑n

i=1 u (xi , 10, 100, 4) .

yi = 1 + x+1
4 . u

(
xi , a, k, m

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k (xi − a)m xi > a

0 − a < xi < a

k (−xi − a)m xi < −a

[−50, 50] [−30, 30, . . . 30] 0

TF13 (x) =
0.1

{
sin2(3πx1) + ∑n

i=1 (xi − 1)2 [
1 + sin2 (3πxi + 1)

] + (xn − 1)2 [
1 + sin2 (2πxn)

]} +∑n
i=1 u (xi , 5, 100, 4) ..

[−50, 50] [−100, . . .−100] 0

TABLE 4 Fixed-dimension multimodal benchmark functions [80].

Function Dim Range fmin

TF14 (x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)1

. 2 [−65,65] 1

TF15 (x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bix3+x4

]2
. 4 [−5,5] 0.00030

TF16 (x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2. 2 [−5,5] −1.0316

TF17 (x) =
(

x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6
)2

+ 10
(
1 − 1

8π

)
cos x1 + 10. 2 [−5,5] 0.398

TF18 (x) = [
1 + (x1 + x2 + 1)2 (

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)] ×[

30 + (2x1 − 3x2)
2 × (

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2
)]

.
2 [−2,2] 3

TF19 (x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(
xj − pij

)2
)

. 3 [1, 3] −3.86

TF20 (x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(
xj − pij

)2
)

. 6 [0,1] −3.32

TF21 (x) = −∑5
i=1

[
(x − ai) (x − ai)

T + ci
]−1. 4 [0,10] −10.1532

TF22 (x) = −∑7
i=1

[
(x − ai) (x − ai)

T + ci
]−1. 4 [0,10] −10.4028

TF23 (x) = −∑10
i=1

[
(x − ai) (x − ai)

T + ci
]−1. 4 [0,10] −10.5363

current direction; otherwise, they continue following their prior
trajectory. The movement of artificial scout bees is determined
using Equation 1.

Xi,t+1= Xi,t + Pace (1)

where i represents the current search agent, t represents the
current iteration, x represents an artificial scout bee (search agent),

and pace is the movement rate and direction of the artificial scout
bee. The fitness weight (fw) as expressed in Equation 2 is used
to calculate and manage the pace when the direction of pace is
completely dependent on a random mechanism.

fw = |X∗
i,t fitness

Xi,t fitness
| − wf (2)
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TABLE 5 Results of comparing EESB-FDO with FDO and other chosen algorithms using classical benchmark functions.

TF Metrics EESB-FDO FDO LPB WOA GSA GWO

F1 Mean 1.53E-22 1.74E-18 6.27E-02 9.53E-76 1.83E-02 1.34E-27

SD 7.14E-22 9.39E-18 5.06E-02 5.11E-75 9.86E-02 1.71E-27

F2 Mean 2.68E+00 2.34E+00 3.58E-02 1.02E-52 5.97E-02 9.16E-17

SD 7.49E-01 6.92E-01 1.44E-02 5.15E-52 1.40E-01 6.35E-17

F3 Mean 2.23E-08 7.27E-08 2.06E+02 1.38E+02 9.95E+02 1.25E-05

SD 4.13E-08 2.61E-07 1.43E+02 2.92E+02 4.74E+02 2.83E-05

F4 Mean 6.43E-08 6.90E-08 7.17E-01 4.05E+00 6.96E+00 1.01E-06

SD 1.96E-07 5.88E-07 2.37E-01 6.31E+00 2.12E+00 1.09E-06

F5 Mean 1.46E+01 2.62E+01 5.43E+01 6.95E+00 9.31E+01 2.70E+01

SD 2.96E+01 3.88E+01 3.78E+01 6.51E-01 1.22E+02 8.67E-01

F6 Mean 9.49E-19 1.30E-17 4.83E-02 9.19E-03 8.10E+00 7.64E-01

SD 5.19E-18 7.13E-17 4.44E-02 4.13E-02 1.17E+01 3.50E-01

F7 Mean 6.29E-01 6.33E-01 1.57E-02 2.69E-03 8.01E-02 1.86E-03

SD 3.12E-01 3.36E-01 9.18E-03 3.24E-03 4.31E-02 9.14E-04

F8 Mean −4.23E+03 −8.30E+03 −3.71E+03 −3.17E+03 −2.55E+03 −5.80E+03

SD 3.96E+03 1.14E+04 2.43E+02 1.28E+03 3.79E+02 9.72E+02

F9 Mean 7.34E+00 7.05E+00 3.51E-02 2.69E+00 2.80E+01 2.32E+00

SD 4.00E+00 3.11E+00 2.73E-02 8.84E+00 8.81E+00 3.70E+00

F10 Mean 7.07E-15 6.95E-15 1.19E-01 9.35E-15 1.29E-08 1.05E-13

SD 1.21E-15 2.61E-15 6.49E-02 1.92E-14 3.83E-09 1.82E-14

F11 Mean 1.31E-01 1.56E-01 1.96E-01 6.21E-02 2.80E+01 2.84E- 03

SD 9.74E-02 9.93E-02 1.75E-01 1.05E-01 6.13E+00 7.18E- 03

F12 Mean 8.66E+00 8.02E+00 3.01E-03 4.64E-03 1.62E+00 4.44E-02

SD 4.29E+00 5.60E+00 6.13E-03 7.75E-03 1.01E+00 2.29E-02

F13 Mean 3.37E+00 3.70E+00 7.09E-03 1.27E-01 8.03E+00 6.46E-01

SD 5.45E+00 4.10E+00 6.12E-03 1.82E-01 4.63E+00 2.01E-01

F14 Mean 2.52E+00 2.72E+00 9.98E-01 4.75E+00 5.09E+00 4.65E+00

SD 1.32E+00 1.46E+00 4.44E-16 4.07E+00 4.24E+00 4.37E+00

F15 Mean 8.24E-04 1.35E-03 8.63E-03 1.04E-03 4.49E-03 3.80E-03

SD 5.86E-04 2.06E-03 9.32E-03 1.63E-03 2.24E-03 7.41E-03

F16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −9.97E-01 −1.03E+00 −1.03E+00

SD 6.66E-16 6.66E-16 6.66E-16 1.85E-01 6.66E-16 6.66E-16

F17 Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

SD 1.67E-16 1.67E-16 3.16E-06 1.91E-05 1.67E-16 2.49E-06

F18 Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

SD 0.00E+00 0.00E+00 1.23E-04 5.12E-05 0.00E+00 4.00E-05

F19 Mean −3.86E+00 −3.86E+00 −3.20E+00 −3.85E+00 −3.86E+00 −3.86E+00

SD 3.11E-15 3.11E-15 1.33E-15 1.89E-02 3.11E-15 2.32E-03

F20 Mean −3.25E+00 −2.86E+00 −3.25E+00 −3.22E+00 −3.32E+00 −3.27E+00

SD 8.41E-02 1.14E+00 5.89E-02 8.60E-02 1.78E-15 6.69E-02

F21 Mean −5.05E+00 −5.05E+00 −5.39E+00 −8.94E+00 −5.94E+00 −8.55E+00

SD 5.33E-04 3.61E-04 3.25E+00 2.23E+00 3.69E+00 2.48E+00

F22 Mean −5.24E+00 −4.70E+00 −5.56E+00 −8.86E+00 −1.04E+01 −1.02E+01

SD 3.09E+00 3.38E+00 3.23E+00 2.78E+00 0.00E+00 9.54E-01

(Continued)
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TABLE 5 (Continued)

TF Metrics EESB-FDO FDO LPB WOA GSA GWO

F23 Mean −4.66E+00 −4.32E+00 −6.56E+00 −6.75E+00 −9.93E+00 −1.02E+01

SD 3.30E+00 2.91E+00 3.76E+00 4.60E+00 2.49E+00 1.35E+00

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

where X∗
i,t fitness denotes the best global solution’s fitness

function value that has been revealed so far; X∗
i,t fitness denotes the

current solution’s value of the fitness function; and wf denotes a
weight factor, randomly set between 0 and 1, which is used for
controlling the fw.

Later, the algorithm considers some settings for fw, for instance,
if fw = 1 or 0, and X∗

i,t fitness = 0, the algorithm sets the pace
randomly according to Equation 3. On the other hand, if fw > 0
and fw < 1, then the algorithm generates a random number in the
(−1, 1) range to make the scout search in every direction; when r
<0, pace is calculated according to Equation 4, and when r >= 1,
pace is calculated according to Equation 5.

⎧⎪⎨
⎪⎩

fw = 1 or fw = 0 or Xi, t fitness = 0, pace = Xi, t∗r (3)

fw > 0 and fw < 1

{
r < 0, pace = (Xi, t − Xi∗, t) fw − 1 (4)

r ≥ 0, pace = (Xi, t − Xi∗, t)∗ fw (5)

where r denotes a random number in the range of [−1, 1],
Xi,t denotes the current solution, and X∗

i,tdenotes the global best
solution achieved thus far. Among various applications for random
numbers, the FDO selects Levy flight because it considers further
stable movement via its fair distribution curve [10].

3.3 Bee boundary

In optimization algorithms, the search space refers to the
set of all possible solutions within which the algorithm seeks to
identify the optimal solution. The algorithm explores this space
to determine the most suitable outcome. Each algorithm operates
within a defined search space, constrained by specific boundaries
and limitations to ensure both efficiency and feasibility. The
performance of an algorithm is significantly influenced by the
structure of the search space, and maintaining the algorithm’s
operations within the prescribed boundaries is crucial for its
success. For instance, the FDO utilizes mechanisms, such as
Equations 6 and 7 to adjust values that exceed the defined range,
ensuring that all solutions remain within the limited search space.
This approach enhances the algorithm’s ability to converge toward
optimal solutions effectively.

Xi,t+1 = upper bound∗Levy (6)

Xi,t+1 = lower bound∗Levy (7)

where Xi,t+1 represent the new bee value after the update in each
iteration, the upper bound represents the upper boundary value of
search space, the lower bound represent the lower boundary value

of search space, and Levy shows Levy flight to generate a random
value between (−1,1).

4 Methodology

This section of the research outlines the study aimed
at enhancing the FDO algorithm. It encompasses addressing
exploitation limitations, improving FDO through adaptive bee
update strategies, experimental setup, performance evaluation, and
effectiveness assessment. The primary objective of this study is to
improve the algorithm’s exploitation capability, which has been
identified as one of its main weaknesses, illustrated in Figure 2.

4.1 Addressing exploitation limitations

Optimization problems are prevalent across various specialized
domains, where the primary objective is to identify the optimal
solution among numerous possible alternatives. In the field
of metaheuristic algorithms, enhancing both exploration and
exploitation is essential for improving performance. Exploitation
focuses on refining solutions within promising regions. The
FDO has been observed to exhibit weaknesses in exploitation;
theoretically, exploitation can be improved by concentrating the
search around high-quality solutions. In the context of swarm-
based algorithms, this involves reinforcing local search behavior
while maintaining feasibility. The proposed modifications aim
to increase solution density within promising regions, thereby
enhancing the probability of convergence toward global optima.
According to convergence theory in metaheuristics, increasing
selective pressure around fitter solutions helps refine accuracy in
late-stage optimization, limiting the algorithm’s ability to converge
efficiently toward optimal solutions. Therefore, this research aims
to address and enhance the exploitation capability of the FDO
algorithm to improve its overall effectiveness in solving complex
optimization problems.

4.2 Improving FDO through adaptive bee
update strategies

As discussed in the preceding sections, various methods and
solutions have been employed to address this issue, contributing
to a relative improvement in the exploitation capability of the
FDO. This enhancement of the algorithm adds new progression
to previous improvements by introducing some novel equations
to update bees: that exceed the boundary of the search space. In
this research, two new modifications are proposed for updating
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TABLE 6 Results of comparing EESB-FDO with modifications Of FDO using classical benchmark functions.

TF Metrics EESB-FDO M_IFDO IFDO SC-FDO CFDO

F1 Mean 1.53E-22 3.44E-24 5.38E-24 0.00E+00 6.44E-51

SD 7.14E-22 1.12E-23 2.74E-23 0.00E+00 3.46E-50

F2 Mean 5.95E-02 5.17E-01 7.34E-01 0.00E+00 4.02E-34

SD 1.22E-01 2.71E-01 1.62E+00 0.00E+00 2.02E-33

F3 Mean 2.23E-08 1.06E-13 2.88E-07 0.00E+00 1.81E-06

SD 4.20E-08 3.93E-13 6.90E-07 0.00E+00 5.60-06

F4 Mean 6.43E-08 5.00E-05 3.60E-04 0.00E+00 7.95E-06

SD 1.96E-07 4.27E-03 8.11E-04 0.00E+00 4.27E-05

F5 Mean 1.46E+01 3.10E+01 1.84E+02 2.69E-01 1.68E+01

SD 2.96E+01 4.00E+01 3.45E+02 2.69E-01 3.14E+01

F6 Mean 9.49E-19 4.15E+06 4.22E+06 2.02E-02 2.01E-01

SD 5.19E-18 1.10E+03 8.15E-09 5.53E+02 5.02E-01

F7 Mean 6.29E-01 7.20E-01 5.68E-01 4.49-02 5.75E-01

SD 3.12E-01 3.17E-01 3.14E-01 5.53E+02 3.54E-01

F8 Mean −4.23E+03 −3.00E+06 −2.92E+06 −1.02E+04 −1.04E+04

SD 3.96E+03 1.48E+05 2.34E+05 2.90E+04 1.29E+04

F9 Mean 7.34E+00 8.98E+00 1.35E+01 0.00E+00 5.64E-01

SD 4.00E+00 9.85E+00 6.66E+00 0.00E+00 3.04E+00

F10 Mean 7.07E-15 3.89E-15 5.18E-15 3.26E-15 1.48E-15

SD 1.21E-15 5.88E-16 1.67E-15 3.66E-15 1.32E-15

F11 Mean 1.31E-01 7.35E-02 5.26E-01 0.00E+00 9.26E-02

SD 9.74E-02 3.91E-02 8.90E-02 0.00E+00 1.25E-01

F12 Mean 8.66E+00 1.75E+01 1.81E+01 4.54E-02 1.19E+00

SD 4.29E+00 1.86E+01 2.57E+01 5.61E-02 7.97E-01

F13 Mean 3.37E+00 4.18E+09 4.10E+09 1.73E-01 6.79E-01

SD 5.45E+00 3.13E+07 1.50E-05 1.90E-02 2.87E-01

F14 Mean 2.52E+00 8.50E-07 2.68E-07 6.36E+01 5.50E+00

SD 1.32E+00 3.45E-05 4.68E-07 9.01E+01 3.92E+00

F15 Mean 8.24E-04 2.00E-19 4.03E-16 2.28E+02 3.10E-03

SD 5.86E-04 6.73E-04 9.25E-16 2.37E+02 1.12E-02

F16 Mean −1.03E+00 1.94E-16 9.14E-16 3.55E+02 −1.03E+00

SD 6.66E-16 3.34E-02 3.61E-16 3.61E+02 2.80E-03

F17 Mean 3.98E-01 2.20E+01 2.38E+01 5.17E+02 −1.03E+00

SD 1.67E-16 3.21E-01 1.24E-01 5.25E+02 3.01E+01

F18 Mean 3.00E+00 2.23E+ 02 2.24E+02 1.56E+02 1.93E+01

SD 0.00E+00 1.34E-02 2.68E-05 1.68E+02 3.51E-03

F19 Mean −3.86E+00 3.15E+01 3.15E+01 7.09E+02 −2.64E+00

SD 3.11E-15 7.90E-02 1.32E-03 7.31E+02 5.17E-01

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

these exceeding bees, the first one, EESB-FDO, is designed to
update bees, and the second, EEBC-FDO, also aims to update bees,
both contributing to improving the exploitation capability of the

FDO algorithm. From a theoretical standpoint, boundary handling
mechanisms play a critical role in shaping the topology of the
solution space. The proposed modifications replace rigid boundary
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TABLE 7 Results of comparing EESB-FDO with FDO for (20 and 30) dimensions.

TF Metrics 20-Dimensional 30-Dimensional

EESB-FDO FDO EESB-FDO FDO

F1 Mean 5.51E-21 1.22E-19 7.13E-05 8.70E-05

SD 1.5E-20 4.16E-19 1.08E-04 1.43E-04

F2 Mean 5.24E+00 5.71E+00 1.45E+01 1.65E+01

SD 2.91E+00 3.00E+00 3.43E+00 3.49E+00

F3 Mean 7.40E-01 1.01E+00 4.40E+02 4.30E+02

SD 4.75E-01 1.02E+00 2.93E+02 2.54E+02

F4 Mean 1.86E+00 1.45E+00 1.40E+01 1.47E+01

SD 1.08E+00 7.90E-01 3.84E+00 3.08E+00

F5 Mean 3.43E+01 3.66E+01 7.33E+01 7.94E+01

SD 2.89E+01 2.94E+01 4.66E+01 6.51E+01

F6 Mean 1.71E-20 2.01E-20 6.31E-04 7.95E-04

SD 5.56E-20 8.10E-20 5.44E-04 6.60E-04

F7 Mean 6.07E-01 7.68E-01 8.97E-01 8.47E-01

SD 2.92E-01 2.82E-01 3.32E-01 2.49E-01

F8 Mean −5.19E+03 −8.87E+03 −8.20E+03 −9.50E+03

SD 4.46E+03 2.66E+04 9.83E+03 1.11E+04

F9 Mean 2.15E+01 2.27E+01 3.45E+01 3.70E+01

SD 1.14E+01 8.05E+00 1.16E+01 1.18E+01

F10 Mean 1.78E+00 1.84E+00 2.18E+00 1.98E+00

SD 9.21E-01 1.21E+00 1.18E+00 9.69E-01

F11 Mean 2.20E-02 3.65E-02 1.76E-02 1.53E-02

SD 2.02E-02 2.80E-02 1.74E-02 1.73E-02

F12 Mean 6.55E+00 5.12E+00 3.13E+00 4.79E+00

SD 4.60E+00 3.87E+00 2.79E+00 2.81E+00

F13 Mean 1.89E+00 2.53E+00 1.61E+00 3.98E+00

SD 4.61E+00 5.68E+00 4.94E+00 6.29E+00

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

clipping with stochastic repositioning or controlled correction
strategies. These approaches improve the algorithm’s capacity to
recover from constraint violations while maintaining stable and
coherent search dynamics. Such strategies are consistent with the
principles of constrained optimization and contribute to preserving
the continuity and efficiency of the search trajectory.

4.3 Experimental setup and performance
evaluation

The algorithm was implemented in the MATLAB 2022
environment on a laptop equipped with a 10th-generation Intel
Core i5 processor and 8 GB of RAM. After incorporating
modifications, the algorithm was executed more than 30 times,
each for 500 iterations. The performance was evaluated using a

set of benchmark functions and statistical methods. The results
demonstrate the improved efficiency of the algorithm with the
proposed updates compared to its previous version.

4.4 Effectiveness assessment

The testing stage is crucial for evaluating the effectiveness
and capability of the algorithm. This process consists of several
key steps, including benchmark test functions, comparative
analysis, statistical test methods, and real-world problem testing.
Benchmark testing functions, such as classical, CEC2019, and
CEC2022, are used to assess the performance and capability
of the new improvements. Comparative analysis measures the
enhanced algorithm’s results against the original version and other
existing algorithms. Additionally, statistical methods, including
the Wilcoxon rank-sum test, standard deviation, and mean,
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TABLE 8 Results of comparing EEBC-FDO with FDO and other chosen algorithms Using classical benchmark functions.

TF Metrics EEBC-FDO FDO LPB WOA GSA GWO

F1 Mean 2.78E-21 1.74E-18 6.27E-02 9.53E-76 1.83E-02 1.34E-27

SD 1.50E-20 9.39E-18 5.06E-02 5.11E-75 9.86E-02 1.71E-27

F2 Mean 1.87E-03 2.34E+00 3.58E-02 1.02E-52 5.97E-02 9.16E-17

SD 5.98E-03 6.92E-01 1.44E-02 5.15E-52 1.40E-01 6.35E-17

F3 Mean 5.67E-07 7.27E-08 2.06E+02 1.38E+02 9.95E+02 1.25E-05

SD 2.83E-06 2.61E-07 1.43E+02 2.92E+02 4.74E+02 2.83E-05

F4 Mean 3.12E-08 5.09E-08 7.17E-01 4.05E+00 6.96E+00 1.01E-06

SD 4.04E-08 5.88E-08 2.37E-01 6.31E+00 2.12E+00 1.09E-06

F5 Mean 1.96E+01 2.62E+01 5.43E+01 6.95E+01 9.31E+01 2.70E+01

SD 3.15E+01 3.88E+01 3.78E+01 6.51E+ 01 1.22E+02 8.67E-01

F6 Mean 2.61E-20 1.30E-17 4.83E-02 9.19E-03 8.10E+00 7.64E-01

SD 1.43E-19 7.13E-17 4.44E-02 4.13E-02 1.17E+01 3.50E-01

F7 Mean 5.53E-01 6.33E-01 1.57E-02 2.69E-03 8.01E-02 1.86E-03

SD 3.35E-01 3.36E-01 9.18E-03 3.24E-03 4.31E-02 9.14E-04

F8 Mean −4.20E+03 −8.30E+03 −3.71E+03 −3.17E+03 −2.55E+03 −5.80E+03

SD 3.86E+03 1.14E+04 2.43E+02 1.28E+03 3.79E+02 9.72E+02

F9 Mean 7.50E+00 7.05E+00 3.51E-02 2.69E+00 2.80E+01 2.32E+00

SD 3.77E+00 3.11E+00 2.73E-02 8.84E+00 8.81E+00 3.70E+00

F10 Mean 6.73E-15 6.95E-15 1.19E-01 9.35E-15 1.29E-08 1.05E-13

SD 3.03E-15 2.61E-15 6.49E-02 1.92E-14 3.83E-09 1.82E-14

F11 Mean 1.92E-01 1.56E-01 1.96E-01 6.21E-02 2.80E+01 2.84E- 03

SD 1.42E-01 9.93E-02 1.75E-01 1.05E-01 6.13E+00 7.18E- 03

F12 Mean 7.72E+00 8.02E+00 3.01E-03 4.64E-03 1.62E+00 4.44E-02

SD 5.53E+00 5.60E+00 6.13E-03 7.75E-03 1.01E+00 2.29E-02

F13 Mean 5.14E+00 3.70E+00 7.09E-03 1.27E-01 8.03E+00 6.46E-01

SD 4.95E+00 4.10E+00 6.12E-03 1.82E-01 4.63E+00 2.01E-01

F14 Mean 2.47E+00 2.72E+00 9.98E-01 4.75E+00 5.09E+00 4.65E+00

SD 2.90E+00 1.46E+00 4.44E-16 4.07E+00 4.24E+00 4.37E+00

F15 Mean 1.72E-03 1.35E-03 8.63E-03 1.04E-03 4.49E-03 3.80E-03

SD 3.91E-03 2.06E-03 9.32E-03 1.63E-03 2.24E-03 7.41E-03

F16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −9.97E-01 −1.03E+00 −1.03E+00

SD 6.78E-16 6.66E-16 6.66E-16 1.85E-01 6.66E-16 6.66E-16

F17 Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

SD 1.69E-16 1.67E-16 3.16E-06 1.91E-05 1.67E-16 2.49E-06

F18 Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

SD 0.00E+00 0.00E+00 1.23E-04 5.12E-05 0.00E+00 4.00E-05

F19 Mean −3.86E+00 −3.86E+00 −3.20E+00 −3.85E+00 −3.86E+00 −3.86E+00

SD 3.16E-15 3.11E-15 1.33E-15 1.89E-02 3.11E-15 2.32E-03

F20 Mean −2.89E+00 −2.86E+00 −3.25E+00 −3.22E+00 −3.32E+00 −3.27E+00

SD 1.16E+00 1.14E+00 5.89E-02 8.60E-02 1.78E-15 6.69E-02

F21 Mean −5.92E+00 −5.05E+00 −5.39E+00 −8.94E+00 −5.94E+00 −8.55E+00

SD 2.50E+00 3.61E-04 3.25E+00 2.23E+00 3.69E+00 2.48E+00

F22 Mean −5.39E+00 −4.70E+00 −5.56E+00 −8.86E+00 −1.04E+01 −1.02E+01

SD 2.73E+00 3.38E+00 3.23E+00 2.78E+00 0.00E+00 9.54E-01

(Continued)

Frontiers in Applied Mathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2025.1640044
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Faraj et al. 10.3389/fams.2025.1640044

TABLE 8 (Continued)

TF Metrics EEBC-FDO FDO LPB WOA GSA GWO

F23 Mean −5.69E+00 −4.32E+00 −6.56E+00 −6.75E+00 −9.93E+00 −1.02E+01

SD 3.12E+00 2.91E+00 3.76E+00 4.60E+00 2.49E+00 1.35E+00

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

are used to verify the significance, performance, consistency,
and reliability of the algorithm. Real-world testing is conducted
by applying the algorithm to practical problems. The testing
phase ultimately confirms that the modifications have led to
meaningful enhancements.

5 FDO modifications

In this section, this study focuses on three modifications: EESB-
FDO, EEBC-FDO, and ELFS, which are proposed as extensions
of the FDO. These modifications and FDO are substantive to
parameter setting and change results by changing one of them [19].
The fundamental concept of FDO is inspired by the reproductive
process and collective decision-making behavior exhibited by bees.
Specifically, it mimics the way bees search for multiple available
hives and collaboratively select the most optimal ones.

5.1 Enhancing FDO performance through
scout bee boundary repositioning

The artificial scout bee operates on the same principle,
searching for the optimal solution among multiple available options
within the defined boundary search space. Maintaining the search
within a restricted area is a crucial factor influencing the algorithm’s
performance and effectiveness. To enforce this condition, the FDO
employs Equations 6 and 7. When the position of an artificial
scout bee exceeds the predefined boundaries, the FDO updates
its value according to these equations, ensuring that the search
remains within the permitted limits. In this enhancement, two
new modifications are proposed to update scout bees that exceed
the upper or lower boundary, ensuring they remain within the
predefined search space as described below.

5.1.1 Enhancing exploitation through stochastic
boundary for FDO

The first modification employs Equation 8 to regulate values
that surpass either the upper or lower boundary, meaning using
just one Equation 8 instead of Equations 6, 7. By using this
equation, EESB-FDO updates the bee value that exceeds the
boundaries (upper and lower); the proposed approach utilizes a
randomized value within a predefined fixed range. This involves
generating random values within the defined search space limits,
thereby introducing greater diversity and adaptability into the
search process, as shown in Figure 3A. This approach leverages
uniform random sampling within the valid bounds, which
ensures all feasible regions are equally likely to be explored

upon violation. This strategy preserves population diversity and
prevents premature convergence caused by agents clustering near
hard boundary limits. It also avoids stagnation by introducing
controlled randomness, a key requirement for ergodicity in
metaheuristic convergence.

update Xi,t+1= Random
(
boundary

)∗ Levy (1) (8)

Here, update Xi,t+1 represents the new bee value after update
in each iteration, random (boundary) mean generate any random
value in the predefined search space between the upper boundary
and lower boundary, Levy flight to generate a random value
between (−1,1).

5.1.2 Enhancing exploitation through boundary
carving for FDO

The second modification utilizes Equation 9 to adjust values
that exceed the upper boundary and Equation 10 to regulate
values that fall below the lower boundary. By formulating
two equations for updating scout bees, notable progress has
been achieved in enhancing the algorithm’s performance. These
equations contribute to more effective handling of boundary
violations and improve the overall exploitation capability of the
algorithm, as explained in Figure 3B.

update Xi,t+1 = (
Xi,t+1 − upperbound

)∗ Levy (1) (9)

update Xi,t+1 = (
Xi,t+1 − lowerbound

)∗ Levy (1) (10)

where updateXi,t+1 represents the new bee value after the update
in each iteration, Xi,t+1 represents the old bee value that exceed
boundaries, the upper bound represents the upper boundary value
of the search space, the lower bound represents the lower boundary
value of the search space, and Levy shows Levy flight to generate
random values between (−1,1).

5.2 Eliminating levy flight shortcomings

Levy flight is a type of random walk where step lengths
follow a Levy distribution, known for its heavy-tailed probability
distribution, as shown in the pseudo code in Figure 4. This property
makes Levy flight highly effective for exploring large and unknown
search spaces [2].

Levy flight represents a type of random walk and plays a
crucial role in metaheuristic algorithms by generating random
values within the range of (−1,1). However, these values
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TABLE 9 Comparing EEBC-FDO with modifications Of FDO using classical benchmark functions.

TF Metrics EEBC-FDO M_IFDO IFDO SC-FDO CFDO

F1 Mean 2.78E-21 3.44E-24 5.38E-24 0.00E+00 6.44E-51

SD 1.50E-20 1.12E-23 2.74E-23 0.00E+00 3.46E-50

F2 Mean 1.87E-03 5.17E-01 7.34E-01 0.00E+00 4.02E+34

SD 5.98E-03 2.71E-01 1.62E+00 0.00E+00 2.02E-33

F3 Mean 5.67E-07 1.06E-13 2.88E-07 0.00E+00 1.81E-06

SD 2.83E-06 3.93E-13 6.90E-07 0.00E+00 5.60-06

F4 Mean 3.12E-08 5.00E-05 3.60E-04 0.00E+00 7.95E-06

SD 4.04E-08 4.27E-03 8.11E-04 0.00E+00 4.27E-05

F5 Mean 1.96E+01 3.10E+01 1.84E+02 2.69E-01 1.68E+01

SD 3.15E+01 4.00E+01 3.45E+02 2.69E-01 3.14E+01

F6 Mean 2.61E-20 4.15E+06 4.22E+06 2.02E-02 2.01E-01

SD 1.43E-19 1.10E+03 8.15E-09 5.53E+02 5.02E-01

F7 Mean 5.53E-01 7.20E-01 5.68E-01 4.49-02 5.75E-01

SD 3.35E-01 3.17E-01 3.14E-01 5.53E+02 3.54E-01

F8 Mean −4.20E+03 −3.00E+06 −2.92E+06 −1.02E+04 −1.04E+04

SD 3.86E+03 1.48E+05 2.34E+05 2.90E+04 1.29E+04

F9 Mean 7.50E+00 8.98E+00 1.35E+01 0.00E+00 5.64E-01

SD 3.77E+00 9.85E+00 6.66E+00 0.00E+00 3.04E+00

F10 Mean 6.73E-15 3.89E-15 5.18E-15 3.26E-15 1.48E-15

SD 3.03E-15 5.88E-16 1.67E-15 3.66E-15 1.32E-15

F11 Mean 1.92E-01 7.35E-02 5.26E-01 0.00E+00 9.26E-02

SD 1.42E-01 3.91E-02 8.90E-02 0.00E+00 1.25E-01

F12 Mean 7.72E+00 1.75E+01 1.81E+01 4.54E-02 1.19E+00

SD 5.53E+00 1.86E+01 2.57E+01 5.61E-02 7.97E-01

F13 Mean 5.14E+00 4.18E+09 4.10E+09 1.73E-01 6.79E-01

SD 4.95E+00 3.13E+07 1.50E-05 1.90E-02 2.87E-01

F14 Mean 2.47E+00 8.50E-07 2.68E-07 6.36E+01 5.50E+00

SD 2.90E+00 3.45E-05 4.68E-07 9.01E+01 3.92E+00

F15 Mean 1.72E-03 2.00E-19 4.03E-16 2.28E+02 3.10E-03

SD 3.91E-03 6.73E-04 9.25E-16 2.37E+02 1.12E-02

F16 Mean −1.03E+00 1.94E-16 9.14E-16 3.55E+02 −1.03E+00

SD 6.78E-16 3.34E-02 3.61E-16 3.61E+02 2.80E-03

F17 Mean 3.98E-01 2.20E+01 2.38E+01 5.17E+02 −1.03E+00

SD 1.69E-16 3.21E-01 1.24E-01 5.25E+02 3.01E+01

F18 Mean 3.00E+00 2.23E+ 02 2.24E+02 1.56E+02 1.93E+01

SD 0.00E+00 1.34E-02 2.68E-05 1.68E+02 3.51E-03

F19 Mean −3.86E+00 3.15E+01 3.15E+01 7.09E+02 −2.64E+00

SD 3.16E-15 7.90E-02 1.32E-03 7.31E+02 5.17E-01

should not exceed the defined limits. To assess the behavior
of Levy flight, it was executed 30 times, each with 10,000
iterations. The results, as presented in Figure 5, indicate that in
each execution, some randomly generated values exceeded the
specified range of (−1,1). To address this issue, Equation 11

was incorporated into the Levy flight mechanism. This equation
ensures that any generated value exceeding the upper limit of
1 is adjusted to 1, while any value falling below the lower
limit of −1 is set to −1. In Figure 4, explaining Levy flight
before enhancement, it was shown that O was represented
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TABLE 10 Results of comparing EEBC-FDO with FDO for 20- and 30-dimensional algorithms using classical benchmark functions.

TF Metrics 20-Dimensional 30-Dimensional

EEBC-FDO FDO EEBC-FDO FDO

F1 Mean 3.33E-21 1.22E-19 8.71E-05 8.70E-05

SD 1.15E-20 4.16E-19 1.05E-04 1.43E-04

F2 Mean 5.08E+00 5.71E+00 1.41E+01 1.65E+01

SD 3.25E+00 3.00E+00 5.06E+00 3.49E+00

F3 Mean 9.65E-01 1.01E+00 4.94E+02 4.30E+02

SD 1.15E+00 1.02E+00 3.37E+02 2.54E+02

F4 Mean 9.92E-01 1.45E+00 1.28E+01 1.47E+01

SD 5.19E-01 7.90E-01 4.04E+00 3.08E+00

F5 Mean 3.32E+01 3.66E+01 7.29E+01 7.94E+01

SD 3.83E+01 2.94E+01 6.16E+01 6.51E+01

F6 Mean 1.60E-20 2.01E-20 6.30E-04 7.95E-04

SD 2.55E-20 8.10E-20 5.81E-04 6.60E-04

F7 Mean 7.39E-01 7.68E-01 7.75E-01 8.47E-01

SD 2.87E-01 2.82E-01 3.12E-01 2.49E-01

F8 Mean −1.37E+07 −8.87E+03 −1.98E+09 −9.50E+03

SD 6.19E+07 2.66E+04 5.17E+09 1.11E+04

F9 Mean 2.25E+01 2.27E+01 3.56E+01 3.70E+01

SD 9.44E+00 8.05E+00 1.42E+01 1.18E+01

F10 Mean 1.55E+00 1.84E+00 1.92E+00 1.98E+00

SD 1.26E+00 1.21E+00 1.21E+00 9.69E-01

F11 Mean 2.25E-02 3.65E-02 2.09E-02 1.53E-02

SD 2.30E-02 2.80E-02 2.05E-02 1.73E-02

F12 Mean 4.13E+00 5.12E+00 4.88E+00 4.79E+00

SD 5.09E+00 3.87E+00 3.23E+00 2.81E+00

F13 Mean 2.04E+00 2.53E+00 1.53E+00 3.98E+00

SD 6.86E+00 5.68E+00 5.14E+00 6.29E+00

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

TABLE 11 CEC-C06 2019 benchmark functions [80].

No. Functions Dim Range fmin

CEC01 Storn’s Chebyshev polynomial fitting problem 9 [−8,192, 8,192] 1

CEC02 Inverse Hilbert matrix problem 16 [−16,384, 16,384] 1

CEC03 Lennard–Jones minimum energy cluster 18 [−4, 4] 1

CEC04 Rastrigin’s function 10 [−100, 100] 1

CEC05 Griewangk’s function 10 [−100, 100] 1

CEC06 Weierstrass function 10 [−100, 100] 1

CEC07 Modified Schwefel’s function 10 [−100,100] 1

CEC08 expanded Schaffer’s F6 function 10 [−100,100] 1

CEC09 Happy cat function 10 [−100, 100] 1

CEC10 Ackley function 10 [−100, 100] 1

Frontiers in Applied Mathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2025.1640044
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Faraj et al. 10.3389/fams.2025.1640044

TABLE 12 Results of comparing EESB-FDO with FDO and other chosen algorithms Using CEC 2019 benchmark functions.

CEC Metrics EESB-FDO FDO AOA LPB WOA FOX

CEC01 Mean 1.91E+09 1.74E+09 7.67E+09 7.03E+10 3.81E+10 1.83E+04

SD 2.49E+09 1.77E+09 2.68E+10 7.40E+10 5.07E+10 2.25E+04

CEC02 Mean 1.73E+01 1.73E+01 1.93E+01 3.76E+01 1.74E+01 1.83E+01

SD 1.08E-14 1.08E-14 3.76E-01 2.00E+01 9.95E-03 3.95E-04

CEC03 Mean 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.37E+01

SD 5.42E-15 5.42E-15 9.08E-04 5.33E-15 5.33E-15 7.11E-15

CEC04 Mean 3.73E+01 4.21E+01 1.09E+04 7.14E+01 3.62E+02 1.70E+03

SD 1.26E+01 2.15E+01 3.35E+03 3.00E+01 1.28E+02 9.84E+02

CEC05 Mean 1.17E+00 1.20E+00 3.84E+00 1.27E+00 1.78E+00 6.48E+00

SD 1.07E-01 1.35E-01 9.36E-01 1.29E-01 3.64E-01 1.32E+00

CEC06 Mean 1.08E+00 1.09E+01 9.02E+00 6.34E+00 9.43E+00 4.45E+00

SD 8.50E-01 9.21E-01 1.22E+00 7.50E-01 1.20E+00 1.04E+00

CEC07 Mean 3.30E+02 3.47E+02 2.52E+02 2.68E+02 6.15E+02 3.86E+02

SD 1.93E+02 2.12E+02 1.63E+02 1.66E+02 2.62E+02 2.48E+02

CEC08 Mean 5.40E+00 5.23E+00 5.57E+00 5.57E+00 5.91E+00 5.63E+00

SD 6.67E-01 6.41E-01 5.31E-01 5.60E-01 6.13E-01 5.88E-01

CEC09 Mean 2.58E+00 2.62E+00 9.36E+02 3.09E+00 4.82E+00 3.77E+00

SD 1.65E-01 2.98E-01 4.66E+02 2.97E-01 9.07E-01 3.55E-01

CEC10 Mean 1.93E+01 2.00E+01 2.01E+01 2.01E+01 2.01E+01 2.10E+01

SD 3.59E+00 1.21E-02 6.09E-02 2.79E-02 1.10E+00 5.06E-03

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

by (0.01 × step) and then changed to Equation 11 after
the update.

O = max
(
min

(
0.01∗step, 1

)
, −1

)
(11)

where O represents the output of the Levy flight function,
Equation 11 ensures that the generated values remain
within the defined range of (−1,1) without exceeding
these limits.

6 Result and discussion

The key point of algorithm evaluation is the comparison
with other established optimization methods. To ensure a
comprehensive assessment, various evaluation metrics are
employed, including benchmark functions, statistical methods, and
real-world problem scenarios. In this study, the proposed EESB-
FDO and EEBC-FDO were compared with seven metaheuristic
algorithms: FDO [31], arithmetic optimization algorithm (AOA)
[42], gravitational search algorithm (GSA) [66], GWO [65],
learner performance-based behavior algorithm (LPB) [67],
whale optimization algorithm (WOA) [68], and fox-inspired
optimization algorithm (FOX) [69] using classical benchmark
functions, CEC-2019, and CEC-2022. The performance evaluation
is conducted based on statistical measures such as mean,
standard deviation, and the Wilcoxon rank-sum test to

ensure the performance and capability. To ensure fair and
unbiased comparisons, all algorithms were evaluated under
identical experimental conditions. Each algorithm was executed
independently for 30 runs to account for the stochastic nature of
metaheuristic methods. In every run, a population of 30 search
agents was employed, and the optimization process was conducted
for a maximum of 500 iterations. This consistent configuration
across all algorithms ensures that observed performance differences
are attributable to algorithmic effectiveness rather than variations
in experimental settings. Following the execution, the average and
standard deviation were calculated, and the results are presented in
this section.

6.1 Classical benchmark test functions

The performance of EESB-FDO and EEBC-FDO was evaluated
using three categories of test function groups, as outlined in
Zervoudakis and Tsafarakis [12]. These test function groups
possess distinct characteristics that assess different aspects of
the algorithms’ performance. Unimodal test functions (f1–f7)
are employed to evaluate the algorithms’ exploitation capability
and convergence efficiency, as they contain only a single global
minimum (or maximum) without any local optima, as shown in
Table 2. In contrast, multimodal test functions (f8–f13) are utilized
to assess the algorithms’ exploration ability, ensuring they can
escape local optima and effectively search for the global solution
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TABLE 13 Results of comparing EEBC-FDO with FDO and other chosen algorithms using CEC 2019 benchmark functions.

CEC Metrics EEBC-FDO FDO AOA LPB WOA FOX

CEC01 Mean 1.80E+09 1.74E+09 7.67E+09 7.03E+10 3.81E+10 1.83E+04

SD 2.21E+09 1.77E+09 2.68E+10 7.40E+10 5.07E+10 2.25E+04

CEC02 Mean 1.73E+01 1.73E+01 1.93E+01 3.76E+01 1.74E+01 1.83E+01

SD 1.08E-14 1.08E-14 3.76E-01 2.00E+01 9.95E-03 3.95E-04

CEC03 Mean 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.37E+01

SD 5.42E-15 5.42E-15 9.08E-04 5.33E-15 5.33E-15 7.11E-15

CEC04 Mean 4.51E+01 4.21E+01 1.09E+04 7.14E+01 3.62E+02 1.70E+03

SD 2.76E+01 2.15E+01 3.35E+03 3.00E+01 1.28E+02 9.84E+02

CEC05 Mean 1.21E+00 1.20E+00 3.84E+00 1.27E+00 1.78E+00 6.48E+00

SD 1.26E-01 1.35E-01 9.36E-01 1.29E-01 3.64E-01 1.32E+00

CEC06 Mean 1.10E+00 1.09E+01 9.02E+00 6.34E+00 9.43E+00 4.45E+00

SD 1.10E+00 9.21E-01 1.22E+00 7.50E-01 1.20E+00 1.04E+00

CEC07 Mean 3.84E+02 3.47E+02 2.52E+02 2.68E+02 6.15E+02 3.86E+02

SD 1.80E+02 2.12E+02 1.63E+02 1.66E+02 2.62E+02 2.48E+02

CEC08 Mean 5.14E+00 5.23E+00 5.57E+00 5.57E+00 5.91E+00 5.63E+00

SD 6.20E-01 6.41E-01 5.31E-01 5.60E-01 6.13E-01 5.88E-01

CEC09 Mean 2.58E+00 2.62E+00 9.36E+02 3.09E+00 4.82E+00 3.77E+00

SD 1.30E-01 2.98E-01 4.66E+02 2.97E-01 9.07E-01 3.55E-01

CEC10 Mean 2.00E+01 2.00E+01 2.01E+01 2.01E+01 2.01E+01 2.10E+01

SD 3.15E-02 1.21E-02 6.09E-02 2.79E-02 1.10E+00 5.06E-03

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

TABLE 14 CEC-C06 2022 benchmark functions [87].

Type No. Functions Dim Range fmin

Unimodal function 1 Shifted and full rotated Zakharov function 10 [−100,100] 300

Basic functions 2 Shifted and full rotated Rosenbrock’s function 10 [−100,100] 400

3 Shifted and full rotated expanded Schaffer’s F6 function 10 [−100,100] 600

4 Shifted and full rotated non-continuous Rastrigin’s function 10 [−100,100] 800

5 Shifted and full rotated Levy function 10 [−100,100] 900

Hybrid functions 6 Hybrid function 1 (N = 3) 10 [−100,100] 1,800

7 Hybrid function 2 (N = 6) 10 [−100,100] 2,000

8 Hybrid function 3 (N = 5) 10 [−100,100] 2,200

Composition functions 9 Composition function 1 (N = 5) 10 [−100,100] 2,300

10 Composition function 2 (N = 4) 10 [−100,100] 2,400

11 Composition function 3 (N = 5) 10 [−100,100] 2,600

12 Composition function 4 (N = 6) 10 [−100,100] 2,700

in complex landscapes with multiple optimal points, as presented
in Table 3. Additionally, composite benchmark functions (f14–
f23) are represent advanced test functions designed to simulate
real-world optimization challenges, providing a more rigorous
evaluation of the algorithms’ robustness and adaptability in highly
complex and irregular search spaces, as presented in Table 4.

All algorithms presented in Tables 5–10 were evaluated
over 30 independent runs, each consisting of 500 iterations.
The optimization process was initiated with 30 randomly
generated search agents in 10, 20, and 30-dimensional search
spaces for the first two test function groups (unimodal and
multimodal functions). For the composite test function group, the
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FIGURE 6

Using unimodal, multimodal, and composite test functions for the FDO algorithm convergence curve.

dimensionality was set according to the structural requirements
of each function. The performance of the algorithms was assessed
by computing statistical measures, including the mean and
standard deviation, to ensure a comprehensive evaluation of their
optimization capabilities.

6.1.1 Classical benchmark test for enhancing
exploitation through stochastic boundary for FDO

The results of EESB-FDO, FDO, LPB, WOA, GSA, and
GWO, as shown in Table 5 for test functions TF1 to TF7,
indicate that EESB-FDO generally outperforms FDO, with

the exception of TF2. Specifically, EESB-FDO demonstrates
superior performance over FDO, LPB, and GSA for TF1.
Additionally, for TF3, TF4, and TF6, EESB-FDO outperforms
all other algorithms. However, in TF2 and TF5, EESB-FDO
shows comparatively poor performance, with other algorithms
outperforming it. These results, by enhancing F1 to F7 static
values, mean minimizing values and prove that the new
modification in EESB-FDO significantly improves the algorithm’s
exploitation capability.

On the other hand, in TF8, TF11, TF14, and TF15, the
results indicate that EESB-FDO outperformed FDO. However,
when compared to other algorithms, the performance of these
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FIGURE 7

Using unimodal, multimodal, and composite test functions for the EESB-FDO algorithm convergence curve.

alternatives was slightly superior. Furthermore, in TF16, TF17,
TF18, and TF19, both EESB-FDO and FDO achieved the
optimal value and demonstrated comparable performance.
In general, their results were more favorable than those of
other algorithms.

In addition to the previous comparisons, Table 6 presents
the results of EESB-FDO in comparison with M-IFDO, IFDO,
SC-FDO, and CFDO. The findings indicate that EESB-FDO
performed better than M-IFDO and IFDO in TF2 and TF4.
In TF5, it outperformed all algorithms except SC-FDO, while
in TF6, it demonstrated superior performance compared to
the others. However, for TF1, TF3, and TF7, its results were

the weakest among the algorithms. Furthermore, regarding
multimodal functions, EESB-FDO achieved better performance
than M-IFDO and IFDO in TF9, TF12, and TF13. However,
in TF8, TF11, TF14, and TF15, its results fluctuated, showing
slight weaknesses. Additionally, from TF16 to TF19, EESB-
FDO successfully attained the optimal values, demonstrating its
effectiveness in these test cases.

The final evaluation of EESB-FDO, in comparison with FDO,
was conducted using both 20- and 30-dimensional settings across
unimodal and multimodal benchmark test functions, as presented
in Table 7. In the 20-dimensional case, EESB-FDO outperformed
FDO on several functions, specifically F1, F2, F3, F5, F6, F10, and
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FIGURE 8

Using unimodal, multimodal, and composite test functions for the EEBC-FDO algorithm convergence curve.

F11, indicating a clear advantage in terms of both convergence
speed and exploitation capability within this dimensional context.
In the 30-dimensional case, EESB-FDO demonstrated superior
performance compared to FDO on several benchmark functions,
namely F1, F2, F5, F6, F9, F12, and F13. These results
highlight the algorithm’s enhanced convergence speed and
exploitation capability, underscoring its effectiveness in handling
complex optimization tasks within this dimensional setting. The
results clearly indicate that several benchmark functions showed
significant improvement, approaching near-optimal solutions,
following dimension modification and the discovery of new
optimal points.

6.1.2 Classical benchmark test for enhancing
exploitation through boundary carving for FDO

For the second modification, EEBC-FDO, the results presented
in Table 8 clearly demonstrate its superiority over the FDO in
TF1 to TF7, with the exception of TF3, where it outperformed
other algorithms but performed worse than FDO. These outcomes
indicate an improvement in the algorithm’s exploration capability.
Additionally, in TF1 and TF2, EEBC-FDO performed better than
LPB and GSA but was outperformed by WOA and GWO. In
TF4, TF5, and TF6, EEBC-FDO outperformed all other algorithms,
demonstrating its competitive advantage. However, from TF9
to TF15, its performance showed slight weaknesses, except for
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FIGURE 9

The gear train design problem.

FIGURE 10

The three-bar truss problem.

FIGURE 11

Pathological IgG fraction design problem.

TF10, where it performed favorably compared to other algorithms.
Nonetheless, in TF16 to TF19, both FDO and EEBC-FDO achieved
equal performance, obtaining the optimal value. On the other
hand, Table 9 presents a comparison of EEBC-FDO with previous

modifications of FDO, including M-IFDO, IFDO, SC-FDO, and
CFDO. The results indicate that the performance of EEBC-FDO
is closely aligned with that of EESB-FDO when compared to
these modifications.

The use of higher-dimensional evaluations is a critical aspect
of validating the effectiveness of EEBC-FDO. To this end, both
20- and 30-dimensional benchmark functions were employed to
compare the performance of EEBC-FDO against FDO. In the 20-
dimensional case, as shown in Table 10, EEBC-FDO outperformed
FDO on functions F1, F4, F6, and F11, while also demonstrating
superior average performance on functions F2, F3, F5, F7, F9,
F10, and F13. These results confirm the robustness and improved
optimization capabilities of EEBC-FDO in more complex, high-
dimensional problem spaces. In the second case, using the 30-
dimensional benchmark functions, EEBC-FDO exhibited some
limitations. While it outperformed FDO on only three functions—
F5, F6, and F13—it still achieved better average performance on
functions F4, F7, F9, and F10. These results suggest that although
EEBC-FDO maintains competitive performance in certain high-
dimensional scenarios, its effectiveness may diminish as problem
dimensionality increases further.

6.2 CEC2019 benchmark test functions

Testing EESB-FDO and EEBC-FDO on a single benchmark
test function is not a sufficient measure to ensure their
effectiveness. Therefore, to thoroughly evaluate their performance
and capability, the algorithm was tested on the CEC2019
benchmark functions presented in Table 11, which are commonly
used for assessing optimization algorithms. This benchmark set
includes ten multimodal test functions, which serve as enhanced
evaluation functions for optimization purposes [70].

The results of the proposed EESB-FDO, presented in Table 12,
demonstrate its success in outperforming other algorithms,
achieving the highest ranking in CEC02, CEC04, CEC05, CEC06,
and CEC09. Additionally, in CEC03, CEC08, and CEC10, EESB-
FDO obtained the best performance based on the average
calculation. Furthermore, the LPB algorithm secured second place
and showed competitive performance, particularly in CEC03 and
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FIGURE 12

Design problem for a Cyber-physical attack mitigation system.

CEC07. Meanwhile, WOA and FOX exhibited similar performance,
ranking third overall. Finally, AOA demonstrated the weakest
performance among the compared algorithms. On the other hand,
Table 13 presents the results of EEBC-FDO, clearly indicating that
FDO and EEBC-FDO did not achieve superior performance in the
competition, as their results were nearly identical. However, overall,
the outcomes demonstrated better performance compared to the
other algorithms discussed in this section.

6.3 CEC2022 benchmark test functions

To further evaluate the feasibility of the proposed algorithm,
the CEC2022 benchmark test functions were utilized, as presented
in Table 14. This benchmark set comprises 12 functions, labeled
CEC01 to CEC12, which are organized into four groups: unimodal,
multimodal, hybrid, and composite functions. The search space
for these benchmark problems is defined within specific ranges of
decision variables, constrained within the interval [−100,100] for
all test functions. Therefore, d = 10 and 20 dimensions were used
to assess the proposed modification [71].

The results of EESB-FDO, FDO, AOA, LPB, WOA, and FOX
were evaluated by d = 10 dimension and are presented in Table 15.
The outcomes of the proposed EESB-FDO modification indicate
that it achieved the highest rank, outperforming other algorithms
in CEC01, CEC02, CEC07, CEC09, and CEC12. Additionally, it
obtained the best average performance in CEC05, CEC08, and
CEC10. Meanwhile, the LPB algorithm secured second place,
demonstrating superior performance in CEC03, CEC04, and
CEC06. The FDO ranked third, while the remaining algorithms
exhibited the lowest performance. To further evaluate the proposed
modifications, Table 16 presents comparative results for both 10-
and 20-dimensional problem instances. The outcomes demonstrate
that EESB-FDO continues to perform successfully in the 20-
dimensional setting, particularly on benchmark functions CEC01,
CEC02, CEC05, CEC07, CEC08, CEC11, and CEC12, thereby
confirming the robustness and scalability of the algorithm across
higher-dimensional search spaces.

On the other hand, as illustrated in Table 17, the results indicate
that the EEBC-FDO algorithm outperforms the other algorithms
on the CEC03, CEC05, and CEC09 benchmark functions.
Conversely, the remaining functions show superior performance
by the other algorithms compared to EEBC-FDO. Subsequently,
EEBC-FDO was evaluated using 20-dimensional benchmark
functions, with the results presented in Table 18. The outcomes
indicate that EEBC-FDO achieved superior performance,
outperforming all competing algorithms on CEC01, CEC02,
CEC06, CEC07, CEC08, and CEC11, thereby demonstrating
its effectiveness and competitiveness in high-dimensional
optimization tasks.

6.4 Wilcoxon rank-sum test

One of the primary statistical methods used for hypothesis
testing in this study is the Wilcoxon rank-sum test, which evaluates
whether the performance differences between two algorithms are
statistically significant. This non-parametric test is well-suited for
optimization problems, as it does not assume a normal distribution
of results and instead relies on rank comparisons. The test produces
a p-value (probability value) that quantifies the strength of evidence
against the null hypothesis. A smaller p-value (typically p < 0.05)
indicates strong evidence to reject the null hypothesis, suggesting
that one algorithm significantly outperforms the other, whereas
larger p-values imply that the performance difference is not
statistically significant [72–74].

Table 19 presents the Wilcoxon test results comparing FDO,
EESB-FDO, and EEBC-FDO against MFDO on the CEC2022
benchmark suite. The findings show that, for many functions
(e.g., CEC01, CEC03, CEC04, CEC05), the extremely small
p-values confirm that the proposed variants achieve statistically
significant improvements. In contrast, higher p-values in
functions such as CEC02 and CEC09 indicate no significant
difference, suggesting that MFDO retains competitiveness in
these landscapes, where exploration dominates over exploitation.
Notably, EESB-FDO and EEBC-FDO reduce the number of
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TABLE 15 Results of comparing EESB-FDO with FDO and Other chosen algorithms using CEC 2022 benchmark functions.

CEC Metrics EESB-FDO FDO AOA LPB WOA FOX

CEC01 Mean 3.52E+03 3.93E+03 1.45E+04 8.77E+03 2.75E+04 3.99E+03

SD 3.31E+03 3.39E+03 5.77E+03 5.59E+03 1.30E+04 3.56E+03

CEC02 Mean 4.07E+02 4.09E+02 1.33E+03 4.21E+02 4.57E+02 4.43E+02

SD 1.77E+01 2.13E+01 6.85E+02 3.05E+01 1.04E+02 3.79E+01

CEC03 Mean 6.13E+02 6.14E+02 6.42E+02 6.00E+02 6.23E+02 6.55E+02

SD 7.37E+00 8.94E+00 9.24E+00 2.25E-01 1.07E+02 9.58E+00

CEC04 Mean 8.25E+02 8.26E+02 8.37E+02 8.22E+02 8.44E+02 8.36E+02

SD 7.73E+00 7.99E+00 7.36E+00 7.35E+00 1.70E+01 1.16E+01

CEC05 Mean 9.05E+02 9.57E+02 1.39E+03 1.14E+03 1.60E+03 1.48E+03

SD 1.72E+02 1.06E+02 1.66E+02 2.63E+02 5.00E+02 5.49E+01

CEC06 Mean 4.41E+03 5.08E+03 1.57E+07 3.91E+03 6.84E+03 4.36E+03

SD 3.16E+03 2.75E+03 4.11E+07 1.96E+03 4.91E+03 2.12E+03

CEC07 Mean 2.04E+03 2.04E+03 2.11E+03 2.04E+03 2.08E+03 2.15E+03

SD 2.06E+01 2.32E+01 4.05E+01 4.60E+01 3.52E+01 8.26E+01

CEC08 Mean 2.23E+03 2.23E+03 2.28E+03 2.25E+03 2.23E+03 2.40E+03

SD 2.26E+01 3.15E+01 8.27E+01 5.03E+01 5.94E+00 1.51E+02

CEC09 Mean 2.53E+03 2.53E+03 2.76E+03 2.56E+03 2.60E+03 2.63E+03

SD 1.04E+01 2.68E+01 6.70E+01 3.43E+01 5.91E+01 4.91E+01

CEC10 Mean 2.55E+03 2.57E+03 2.78E+03 2.57E+03 2.71E+03 3.10E+03

SD 6.35E+01 6.20E+01 2.82E+02 6.37E+01 3.73E+02 6.87E+02

CEC11 Mean 2.71E+03 2.68E+03 3.49E+03 2.80E+03 2.73E+03 3.10E+03

SD 1.26E+02 1.30E+02 3.66E+02 1.44E+02 3.90E+02 6.87E+02

CEC12 Mean 2.88E+03 2.88E+03 3.03E+03 2.88E+03 2.90E+03 3.02E+03

SD 1.06E+01 1.65E+01 8.58E+01 1.61E+01 4.39E+01 1.15E+02

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

non-significant cases compared to the original FDO, confirming
the effectiveness of the proposed modifications in enhancing
exploitation and convergence speed. These variations highlight
that algorithm performance is problem-dependent: functions
requiring stronger exploitation benefit from EESB-FDO and
EEBC-FDO, while functions emphasizing broad exploration
(e.g., CEC02, CEC09) show less pronounced differences. Overall,
the Wilcoxon rank-sum test not only validates the robustness
of the proposed variants but also provides insights into the
problem characteristics where they achieve the most significant
advantages.

6.5 Quantitative measurement metrics

Quantitative analysis is a crucial metric that provides
detailed insights and in-depth observations of new
algorithms and their modifications. Figures 6–8 illustrate this
analysis, where the convergence of iterations represents the
measurement of an agent’s global best performance. Among
the unimodal test functions (TF1–TF7), TF1 was selected as

the representative function. For multimodal test functions
(TF8–TF13), TF11 was chosen, while for composite test
functions (TF14–TF19), TF15 was nominated. To further
investigate performance, a two-dimensional search space
was explored over 150 iterations using 10 search agents.
As the number of iterations increased, X∗

i (the global best
agent) demonstrated greater precision. Additionally, when
the scout bee emphasized exploitation and local search, the
proposed modifications achieved superior results within fewer
iterations, thereby demonstrating the algorithm’s adaptability
and effectiveness.

6.6 Real-world applications of EESB-FDO
and EEBC-FDO

6.6.1 Gear train design problem
The primary objective of the gear train design (GTD) problem

is to minimize the cost associated with the transmission ratio of
the gear train configuration illustrated in Figure 9 [75, 76]. This
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TABLE 16 Results of comparing EESB-FDO with FDO for 10 and 20 dimensions using CEC 2022 benchmark functions.

CEC Metrics 10-Dimensional 20-Dimensional

EESB-FDO FDO EESB-FDO FDO

CEC01 Mean 3.52E+03 3.93E+03 4.88E+04 5.11E+04

SD 3.31E+03 3.39E+03 1.55E+04 1.57E+04

CEC02 Mean 4.07E+02 4.09E+02 4.63E+02 4.67E+02

SD 1.77E+01 2.13E+01 2.12E+01 2.33E+01

CEC03 Mean 6.13E+02 6.14E+02 6.47E+02 6.40E+02

SD 7.37E+00 8.94E+00 8.71E+00 9.67E+00

CEC04 Mean 8.25E+02 8.26E+02 8.70E+02 8.85E+02

SD 7.73E+00 7.99E+00 1.28E+01 2.20E+01

CEC05 Mean 9.05E+02 9.57E+02 2.16E+03 2.29E+03

SD 1.72E+02 1.06E+02 6.04E+02 6.20E+02

CEC06 Mean 4.41E+03 5.08E+03 6.35E+03 5.45E+03

SD 3.16E+03 2.75E+03 5.88E+03 4.62E+03

CEC07 Mean 2.04E+03 2.04E+03 2.14E+03 2.20E+03

SD 2.06E+01 2.32E+01 6.33E+01 1.10E+02

CEC08 Mean 2.23E+03 2.23E+03 2.42E+03 2.48E+03

SD 2.26E+01 3.15E+01 3.24E+02 4.01E+02

CEC09 Mean 2.53E+03 2.53E+03 2.49E+03 2.42E+03

SD 1.04E+01 2.68E+01 6.20E+00 3.24E+02

CEC10 Mean 2.55E+03 2.57E+03 3.57E+03 3.37E+03

SD 6.35E+01 6.20E+01 6.96E+02 9.67E+02

CEC11 Mean 2.71E+03 2.68E+03 2.94E+03 2.97E+03

SD 1.26E+02 1.30E+02 4.78E+01 7.40E+02

CEC12 Mean 2.88E+03 2.88E+03 2.99E+03 3.09E+03

SD 1.06E+01 1.65E+01 5.57E+02 1.09E+02

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

optimization problem involves four discrete decision variables,
Ta, Tb,Td, and Tf , each corresponding to the number of teeth
on a specific gear within the train. The problem is formulated
mathematically as follows:

Suppose :x̄ = (x1, x2, x3, x4) = Ta, Tb, Td, Tf (12)

Minimize :f (x̄) =
(

1
6.931

− x3x2

x1x4

)2
(13)

Subject to :

⎧⎪⎨
⎪⎩

g1 − 4 (x̄) = 12 − xi ≤ 0 (14)
g5 − 8 (x̄ ) = (60 − x) ≤0

x1,x2,x3,x4 ∈ [12, 60] (15)

6.6.2 Three-bar truss problem
As illustrated in Figure 10, the three-bar truss structure is

considered for structural optimization. The objective is to minimize
the total volume of the truss while ensuring that the design

adheres to specified stress constraints [77, 78]. The corresponding
mathematical formulation is provided below.

Minimize : f (X) =
(

2
√

2x1 + x2
)∗

L (16)

subject to :

⎧⎪⎪⎨
⎪⎪⎩

g1 (x) =
√

2x1+x2√
2x2

1+2x1x2
P − σ ≤ 0 (17)

g2 (x) = x2√
2x12+2x1 x2

P − σ ≤ 0 (18)
g3 (x) = 1√

2x2+x1
P − σ ≤ 0 (19)

where 0 ≤ x1, x2 ≤ 1, l = 100 cm, P = 2 KN
cm2 , and σ = 2 KN

cm2 .

6.6.3 The pathological IgG fraction in the nervous
system

This real-world problem, described in Ismaeel Ghareb et al.
[79], aims to determine the optimal solution for pathological
conditions in humans or animals. It is known as the dimmer

Frontiers in Applied Mathematics and Statistics 23 frontiersin.org

https://doi.org/10.3389/fams.2025.1640044
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Faraj et al. 10.3389/fams.2025.1640044

TABLE 17 Results of comparing EEBC-FDO with FDO and Other chosen algorithms using CEC 2022 benchmark function.

CEC Metrics EEBC-FDO FDO AOA LPB WOA FOX

CEC01 Mean 3.84E+03 3.93E+03 1.45E+04 8.77E+03 2.75E+04 3.99E+03

SD 4.17E+03 3.39E+03 5.77E+03 5.59E+03 1.30E+04 3.56E+03

CEC02 Mean 4.16E+02 4.09E+02 1.33E+03 4.21E+02 4.57E+02 4.43E+02

SD 2.79E+01 2.13E+01 6.85E+02 3.05E+01 1.04E+02 3.79E+01

CEC03 Mean 6.12E+02 6.14E+02 6.42E+02 6.00E+02 6.23E+02 6.55E+02

SD 7.94E+00 8.94E+00 9.24E+00 2.25E-01 1.07E+02 9.58E+00

CEC04 Mean 8.28E+02 8.26E+02 8.37E+02 8.22E+02 8.44E+02 8.36E+02

SD 1.03E+01 7.99E+00 7.36E+00 7.35E+00 1.70E+01 1.16E+01

CEC05 Mean 9.47E+02 9.57E+02 1.39E+03 1.14E+03 1.60E+03 1.48E+03

SD 5.13E+01 1.06E+02 1.66E+02 2.63E+02 5.00E+02 5.49E+01

CEC06 Mean 5.56E+03 5.08E+03 1.57E+07 3.91E+03 6.84E+03 4.36E+03

SD 3.96E+03 2.75E+03 4.11E+07 1.96E+03 4.91E+03 2.12E+03

CEC07 Mean 2.04E+03 2.04E+03 2.11E+03 2.04E+03 2.08E+03 2.15E+03

SD 2.68E+01 2.32E+01 4.05E+01 4.60E+01 3.52E+01 8.26E+01

CEC08 Mean 2.24E+03 2.23E+03 2.28E+03 2.25E+03 2.23E+03 2.40E+03

SD 5.17E+01 3.15E+01 8.27E+01 5.03E+01 5.94E+00 1.51E+02

CEC09 Mean 2.53E+03 2.53E+03 2.76E+03 2.56E+03 2.60E+03 2.63E+03

SD 9.25E-13 1.04E+01 6.70E+01 3.43E+01 5.91E+01 4.91E+01

CEC10 Mean 2.57E+03 2.55E+03 2.78E+03 2.57E+03 2.71E+03 3.10E+03

SD 6.15E+01 6.20E+01 2.82E+02 6.37E+01 3.73E+02 6.87E+02

CEC11 Mean 2.70E+03 2.68E+03 3.49E+03 2.80E+03 2.73E+03 3.10E+03

SD 1.23E+02 1.30E+02 3.66E+02 1.44E+02 3.90E+02 6.87E+02

CEC12 Mean 2.88E+03 2.88E+03 3.03E+03 2.88E+03 2.90E+03 3.02E+03

SD 2.72E+01 1.65E+01 8.58E+01 1.61E+01 4.39E+01 1.15E+02

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

solution and is used to identify the IgG fraction in the nervous
system. The mathematical formulation is presented below.

IgGp = Xi So, IgG
(
IgGp

) = Y (XI) then :

Y (Xi) =
n∑

i=1
(0.41 + 0.0014 Xi) (20)

where Xi represents the input albumin quotient values, and
Y (Xi) denotes the corresponding optimized IgG values. These
equations, supported by Figure 11, demonstrate a real-world
application of statistical modeling and optimization in medical
diagnostics, offering an improved framework for evaluating
immune dysfunctions in the nervous system.

6.6.4 Integrated cyber-physical attack for
manufacturing system

This real-world application, supported by Figure 12, is designed
to identify potentially harmful nodes within network systems, with
a particular focus on software and hardware engineering design

phases. The primary objective is to optimize the detection and
regulation of these nodes within a normalized range of [0, 1],
as their presence can introduce critical vulnerabilities, including
system bugs and risk-prone components [80].

The fitness function is defined as

F((I(p, t)) =
∑

X3 + A
∑

X2 + B
∑

X + C (21)

where X represents the node state values, and the coefficients A, B,
and C are functions of system parameters, calculated as

A = 0.0283
(

1 + 1
d
− k2

)

B = 0.0283 − 1.0283k2

d

C = 0.0013 k1 − 0.0283k2

d

in these equations, d denotes the total number of nodes (ranging
from 15 to 36), while k1 ∈ [0, 1] and k2 ∈ [0.1, 0.5] are system-
specific constants reflecting infection rate and risk thresholds. The
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TABLE 18 Results of comparing EEBC-FDO with FDO for (10 and 20) dimensions using CEC 2022 benchmark function.

CEC Metrics 10 Dim 20 Dim

EEBC-FDO FDO EEBC-FDO FDO

CEC01 Mean 3.84E+03 3.93E+03 4.94E+04 5.11E+04

SD 4.17E+03 3.39E+03 1.56E+04 1.57E+04

CEC02 Mean 4.16E+02 4.09E+02 4.64E+02 4.67E+02

SD 2.79E+01 2.13E+01 1.72E+01 2.33E+01

CEC03 Mean 6.12E+02 6.14E+02 6.40E+02 6.40E+02

SD 7.94E+00 8.94E+00 1.13E+01 9.67E+00

CEC04 Mean 8.28E+02 8.26E+02 8.86E+02 8.85E+02

SD 1.03E+01 7.99E+00 1.98E+01 2.20E+01

CEC05 Mean 9.47E+02 9.57E+02 2.51E+03 2.29E+03

SD 5.13E+01 1.06E+02 7.02E+02 6.20E+02

CEC06 Mean 5.56E+03 5.08E+03 4.57E+03 5.45E+03

SD 3.96E+03 2.75E+03 3.65E+03 4.62E+03

CEC07 Mean 2.04E+03 2.04E+03 2.17E+03 2.20E+03

SD 2.68E+01 2.32E+01 7.81E+01 1.10E+02

CEC08 Mean 2.24E+03 2.23E+03 2.39E+03 2.48E+03

SD 5.17E+01 3.15E+01 1.36E+02 4.01E+02

CEC09 Mean 2.53E+03 2.53E+03 2.48E+03 2.42E+03

SD 9.25E-13 1.04E+01 2.81E+00 3.24E+02

CEC10 Mean 2.57E+03 2.55E+03 3.46E+03 3.37E+03

SD 6.15E+01 6.20E+01 9.32E+02 9.67E+02

CEC11 Mean 2.70E+03 2.68E+03 2.92E+03 2.97E+03

SD 1.23E+02 1.30E+02 4.05E+01 7.40E+02

CEC12 Mean 2.88E+03 2.88E+03 3.16E+03 3.09E+03

SD 2.72E+01 1.65E+01 1.93E+02 1.09E+02

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

aim of this fitness function is to identify configurations in which
F

(
I
(
p, t

)) → 0, indicating an optimal system state with minimal
harmful node influence.

6.6.5 Real-world application comparison and
discussion

The final step in evaluating any newly proposed algorithm or
enhancement involves its application to real-world problems. To
assess performance, standard evaluation metrics such as the mean,
standard deviation, and p-value are employed for comparative
analysis. In this section, four real-world applications were utilized
to fulfill this objective. The corresponding results are presented in
Tables 20–22.

The results of EESB-FDO and EEBC-FDO, presented in
Tables 20, 21, demonstrate the performance of these two modified
versions in comparison with the FDO and MFDO algorithms.
In three real-world applications, both EESB-FDO and EEBC-
FDO consistently achieved the best rankings, with lower mean
and standard deviation values, indicating improved stability and

reliability, outperforming the other algorithms. However, one of
the modified versions exhibited a slight weakness in a specific case.
On the other hand, the p-value, which quantifies the strength of
evidence against the null hypothesis, indicates that a smaller p-
value, typically p < 0.05, indicates strong evidence to reject the
null hypothesis, suggesting that the observed results are unlikely
to have occurred by chance. Table 22 shows the results of the
comparison between FDO and EESB-FDO, which has just one case
that fails to reject the null hypothesis for the gear train design, and
FDO with EEBC-FDO, which shows the same result but with a
different real-world problem’s integrated cyber-physical attack for
manufacturing system.

7 Conclusion

This study proposed two enhanced variants of the fitness-
dependent optimizer (FDO) designed to address its limitations in
exploitation and convergence speed. The first variant, EESB-FDO,
introduces a stochastic boundary repositioning mechanism that
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TABLE 19 WILCOXON rank-sum test for CEC2022 benchmark functions.

CEC FDO_vs_MFDO EESB-FDO_vs_MFDO EEBC-FDO_vs_MFDO

CEC01 0.000002 0.000002 0.000002

CEC02 0.942604 0.734325 0.110878

CEC03 0.000002 0.000002 0.000002

CEC04 0.000011 0.000006 0.000003

CEC05 0.000003 0.000037 0.000002

CEC06 0.000002 0.000031 0.000004

CEC07 0.000063 0.000028 0.000022

CEC08 0.000012 0.000031 0.000002

CEC09 0.626221 0.194059 0.367185

CEC10 0.298944 0.028486 0.068714

CEC11 0.662004 0.007816 0.007734

CEC12 0.177907 0.040702 0.393334

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

TABLE 20 The results of comparison FDO with EESB-FDO and MFDO.

Real-world problems Metrics FDO EESB-FDO MFDO

Pathological IgG fraction in the nervous
system

Mean 4.91E+00 4.90E+00 4.91E+00

SD 1.98E-02 1.50E-02 1.47E-02

Integrated cyber-physical attack for
manufacturing system

Mean 3.46E-04 −3.72E+05 4.52E-04

SD 1.44E-04 1.91E+06 1.86E-04

Three-bar truss Mean 1.62E+02 6.03E+01 −2.39E+02

SD 1.97E+02 1.48E+02 9.23E+02

Gear train design Mean 1.08E-07 4.31E-08 −2.88E+04

SD 3.02E-07 2.32E-07 3.27E+04

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

reassigns scout bees that exceed the search space to random
positions within the valid range. The second variant, EEBC-
FDO, employs a boundary carving strategy that redirects out-
of-bound solutions toward feasible regions using customized
correction equations. In addition, a third enhancement, the ELFS
strategy, constrains the Levy flight step range to (−1, 1), ensuring
more stable and bounded exploration behavior. To validate the
effectiveness of these modifications, extensive experiments were
conducted using classical benchmark functions and CEC 2019 and
CEC 2022 test suites. The results demonstrated that both EESB-
FDO and EEBC-FDO significantly improve exploitation capability
and convergence performance compared to the FDO and other
state-of-the-art algorithms.

In the future, various enhancements and extensions of
the current limited work can be developed. An important
aspect to improve is the application of multi-objective vector
optimization, utilizing functions specifically related to multi-
objective optimization techniques [81]. A major limitation of this
study lies in the inability to test certain benchmark functions

in higher dimensions, which limits the generalizability of the
findings. Future work could explore dimensionality reduction
techniques or alternative benchmark suites that support high-
dimensional testing. While classical benchmark functions can
typically be tested across various dimensions, including 50, many
CEC2019 functions are restricted and do not support high-
dimensional testing. This constraint limits the generalizability
and robustness analysis of the proposed algorithm. However,
to partially address this issue, the CEC2022 benchmark set,
which allows testing with 20 dimensions, can be used as an
alternative for future evaluations. Despite these limitations, the
enhancements should be applied to classification tasks and
parameter tuning to improve the new model. This would also
provide an opportunity to test the model on datasets related
to education, healthcare, and other fields [79, 82]. Furthermore,
the modification of this algorithm has not yet been validated on
classification tasks involving real-world healthcare datasets, such
as those related to sleep disorders or chronic disease diagnosis
[83, 84]. As a result, its adaptability and robustness in managing
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TABLE 21 The results of comparison FDO with EEBC-FDO and MFDO.

Real-world problems Metrics FDO EEBC-FDO MFDO

Pathological IgG fraction in the nervous
system

Mean 4.91E+00 4.79E+00 4.91E+00

SD 1.98E-02 1.93E-01 1.47E-02

Integrated cyber-physical attack for
manufacturing system

Mean 3.46E-04 3.30E-04 4.52E-04

SD 1.44E-04 2.96E-04 1.86E-04

Three-bar truss Mean 1.62E+02 1.61E+02 −2.39E+02

SD 1.97E+02 1.15E+02 9.23E+02

Gear train design Mean 1.08E-07 4.14E-11 −2.88E+04

SD 3.02E-07 6.57E-11 3.27E+04

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

TABLE 22 WILCOXON rank-sum test for four real-world problems.

Real-world problem FDO_vs_ EESB-FDO FDO_vs_ EEBC-FDO

Pathological IgG fraction in the nervous system 0.013194 0.000174

Integrated cyber-physical attack for manufacturing system 0.000002 0.149443

Three-bar truss 0.000979 0.005386

Gear train design 0.205888 0.049836

The bold values in each row indicate the best performance among all compared algorithms for that test function (TF). Specifically, the lowest mean value represents the best solution quality∗ ,
while for the standard deviation (SD), the lowest value reflects the highest stability/consistency of results. ∗The lowest mean value represents the best solution quality.

noisy, imbalanced, and high-dimensional medical data remain
uncertain due to the absence of dedicated benchmarking in
medical classification scenarios. Although improvements have
been demonstrated across several real-world applications, further
development is needed by verifying dataset authenticity and
incorporating security-focused algorithms to better guide the
exploitation and exploration strategies in searching for new
solutions [85, 86].
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Appendix

This appendix provides a detailed of the benchmark test
functions employed to assess the performance of the proposed

algorithms. The evaluation includes a comprehensive set of
functions categorized into three main groups: classical benchmark
functions (unimodal, multimodal, and composite types), as well as
the CEC 2019 and CEC 2022 benchmark suites.
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