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A mathematical model for
data-driven synthesis of neuron
morphologies based on random
walks

Francesco Cavarretta1,2*
1Department of Computer Science, University of Arkansas at Little Rock, Little Rock, AR, United States,
2Emerging Analytics Center, University of Arkansas at Little Rock, Little Rock, AR, United States

Recent advances in computational resources have enabled the development
of large-scale, biophysically detailed brain models, which require numerous
three-dimensional neuron morphologies exhibiting realistic cell-to-cell
variability. However, the limited availability of experimental reconstructions
restricts parameter estimation for many morphology synthesis algorithms,
which typically rely on extensive datasets. Here, we propose enhancing our
branching-and-annihilating random walk method by incorporating a set of
mathematical equations that estimate branching and annihilation probabilities
directly from Sholl plots and branch point counts. Because these morphological
metrics are commonly reported in the literature, our approach facilitates the
generation of realistic three-dimensional morphologies even in the absence of
experimental reconstructions.
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1 Introduction

Recent advances in computational resources have promoted the development of large-
scale biophysically-detailed models of the brain [1–4], which require numerous three-
dimensional neuron morphologies with realistic levels of cell-to-cell variability. Theoretical
and experimental studies demonstrated that the geometric characteristics of neuronal
morphologies influence their electrotonic and integrative properties [5–9], with direct
functional implications for the dynamics of brain regions [1, 3, 10–13]. Furthermore,
experimental evidence confirmed that cell-to-cell variability is not merely the result
of biological randomness but contributes to the robustness and adaptability of neural
circuits [14, 15]. Taken together, these findings underscore the importance of reproducing
these aspects in biophysically-detailed reconstructions to simulate neural dynamics with
high realism.

Due to the limited availability of experimental reconstructions, various algorithms have
been developed to synthesize neuronal morphologies that capture the characteristics of
their biological counterparts [1, 16–18]. For example, we designed a method based on
branching-and-annihilating random walks to generate three-dimensional morphologies
of olfactory mitral and tufted cells that were indistinguishable from their biological
counterparts and exhibited experimentally observed levels of cell-to-cell variability [1, 3].
However, these methods still require many experimental reconstructions to determine the
parameter values, which poses a major challenge when such data are scarce. Furthermore,
these methods still retain a high degree of empiricism and rely on extensive parameter
tuning, while rigorous mathematical characterization remains lacking.
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Alternatively, we propose a mathematical characterization of
our previous method [1, 3], describing the influence of branching
and annihilation probabilities on Sholl plots and branch point
counts. We have shown how these equations can be linked to
experimental estimates of such metrics, allowing for the direct
calculation of both probabilities. Therefore, this preliminary
result provides a rigorous mathematical foundation that will
strengthen our earlier method, reducing its reliance on empirical
parameter tuning.

2 Materials and methods

2.1 Software details

The model was validated through simulations implemented in
Python 3. Parameters were estimated by fitting using quadratic
programming with the Pyomo package. NumPy and Pandas were
employed for data handling, while SciPy was used for statistical
tests. Data visualization was performed with Matplotlib.

2.2 Code availability

The source code is publicly available on GitHub, in the
repository NeuronSynthesis.

2.3 Morphological inspection

The model was tested on Sholl plots and branch point counts
obtained from experimentally reconstructed three-dimensional
neuron morphologies, using a custom Python script. For each
neuron type, the method was applied to the subtree (apical or basal)
representing the most morphologically complex component. All
morphologies are publicly available at NeuroMorpho.Org [19].

2.3.1 Semilunar and pyramidal neurons from the
piriform cortex

We considered three-dimensional reconstructions of semilunar
(SL) (n = 3) and pyramidal (PYR) (n = 16) neurons from the
piriform cortex of rats [6], focusing on their apical dendritic trees.
Following visual inspection, we discarded four PYR morphologies
due to apparent damage or deformation in their dendritic arbors,
to avoid biasing the experimental measurements considered in
this study.

2.3.2 Tufted and mitral cells from the olfactory
bulb

We considered three-dimensional reconstructions of tufted
(TF) (n = 5) and mitral (MC) (n = 9) cells from the main
olfactory bulb of mice [20], focusing on their basal dendritic trees.
During visual inspection, we identified apical dendrites that had
been erroneously labeled as basal in several morphologies, which
were discarded from our analysis (TF: n = 5; MC: n = 1). The tests
conducted on these cells are shown in Supplementary Figure S1.

2.3.3 Neocortical pyramidal neurons
We considered three-dimensional reconstructions from

Markrams dataset [2], which includes neocortical pyramidal
neurons from different cortical layers (n = 84). Following
the classification described in the original study, we selected
only “late-bifurcating pyramidal neurons” with somata located
in layer VI, and retained only those reconstructions that did
not show truncated or deformed apical trees (n = 9). For
subsequent analyses, we focused on their apical dendritic
trees. The tests conducted on these cells are shown in
Supplementary Figure S2.

2.4 Statistical analysis

For all tests, statistical significance was defined as p <

0.01 (without Bonferroni adjustment). To compare simulation
and experimental data, we used two-sample, two-sided bootstrap
methods for mean and variance comparison, respectively, based
on the description provided by Davison and Hinkley [21] (see
Figure 3). A Bonferroni correction was applied when comparing
simulated and experimental Sholl plots (see Figures 3A, B). To
compare simulation and theoretical values, we used a one-sample,
two-sided bootstrap methods for mean and variance comparisons,
respectively. To compare the number of branch points obtained
with different configurations of parameters, we used a one-sample,
two-sided t-test and a χ2 test for mean and variance comparisons,
respectively (see Figure 1C).

3 Random walk-based model for
dendritic synthesis

We consider a random walk model describing the motion of
dendritic tips, whose trajectories determine dendritic morphology.
The walk begins at the origin (x = 0), representing the position
of the soma. At each time step, a tip undergoes elongation,
branching, or annihilation, with probabilities pe = 1−pb −pa, pb,
and pa, respectively. During elongation or branching, a tip moves
a distance �x forward or backward during a time interval �t, with
probabilities r and l, respectively, such that r + l = 1. We assume
that the branching and annihilation probabilities scale with time as
pb = b · �t and pa = a · �t, where b and a are branching and
annihilation rates.

Let T(x, t) denote the expected number of dendritic tips
at position x and time t. A tip appearing at x at time t +
�t could have originated from (i) a forward elongation from
x − �x; (ii) a backward elongation from x + �x; (iii) a
bifurcation at x − �x followed by a forward movement; or (iv)
a bifurcation at x + �x followed by a backward movement.
These processes are described by the following Markovian
stochastic equation:

T (x, t + �t) = perT (x − �x, t)
case i

+ pelT (x + �x, t)
case ii

+

2pb(r2 + rl)T (x − �x, t)
case iii

+ 2pb(l2 + rl)T (x + �x, t)
case iv

(1)

Frontiers in Applied Mathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1632271
https://www.neuromorpho.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cavarretta 10.3389/fams.2025.1632271

FIGURE 1

Random walks under varying levels of somatofugal bias and branching–annihilating dynamics. (A) Distance from the origin over time for four random
walk conditions: unbiased (gray; r = 0.5, β = 0.005, α = 0.001); somatofugal bias (black; r = 0.75, β = 0.005, α = 0.001), which increased net distance
from the origin; increased branching and annihilation rates (red; r = 0.75, β = 0.015, α = 0.011); and increased branching rate only (blue; r = 0.75,
β = 0.035, α = 0.001). The spatial step size was held the same for all configurations (�x = 0.5). For each parameter combination, the estimate is
based on multiple independent trials (n = 200). (B) Distribution of visit counts as a function of distance from the origin for the same configurations
shown in (A), averaged across trials. Combined increase in branching and annihilation rates increased variance without affecting the mean number of
visits (black vs. red), while increasing branching rate alone raised both mean and variance (black vs. blue). (C) Total number of branch points under
each condition shown in (B). An increase in branching and/or annihilation rates led to higher mean and variance of branch point counts (mean ± SD):
RW (gray): 162.2 ± 44.7 (±SD); BRW (black): 155.7 ± 40.1; BRW with increased β and α (red): 443.1 ± 205.8; BRW with increased β only (blue):
699.8 ± 168.8. Compared to BRW (black), both tests (red and blue) showed significantly higher mean and variance (p < 0.0001).

where the probabilities of forward and backward motion for
bifurcating tips follow a binomial distribution. It is not surprising
that the term pa does not appear in Equation 1. Indeed, tips that

are annihilated at time t cannot persist to time t + �t at any
spatial position x. Therefore, their contribution to the dynamics is
excluded from the equation.
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Assuming that �t and �x are small, we apply a Taylor
series expansion around (x, t), yielding a first-order linear partial
differential equation

∂T
∂t

= pb − pa

�t
T+(1+pb−pa)

�x
�t

(2r−1)
∂T
∂x

+O
(
�x2)+O

(
�t2)

(2)
where O

(
�x2) and O

(
�t2) denote higher-order terms. Taking

the limit �x, �t → 0, such that the following limit exists and is
finite and positive:

v = (2r − 1) lim
�x,�t→0

�x
�t

where v represents the mean drift velocity of the tips.
Subsequently, the higher-order terms vanish, and Equation 2
simplifies to

∂T
∂t

= (b − a)T + v
∂T
∂x

(3)

The equation above indicates that tip motion follows convection-
like dynamics. We then impose the following initial condition

T (x, 0) =
{

z0 x = 0

0 x �= 0

where z0 ≥ 1 denotes the initial number of dendritic tips. The
solution to Equation 3 under this condition is

T (t) = z0e(b−a)tδ (x − vt) (4)

where δ denotes the Dirac delta function. This solution implies
that tip locations lay along the line x = vt (for details, see
Supplementary material).

While Equation 4 captures the instantaneous spatial
distribution of tips, our goal is to determine the cumulative
number of dendritic segments synthesized at a given position x,
resulting from the accumulation of tip visits over time. Therefore,
we compute the time integral of Equation 4, applying the sifting
property of the Dirac delta function:

Z(t) =
∫

T(x, t) dt

= z0

∫
e(b−a)tδ (x − vt) dt

= z0e(b−a)t

Moreover, since the tips lie along the line x = vt, the function Z can
be expressed in terms of either t or x using the following relations:

x = vt

β = b
v

α = a
v

(5)

where β and α are the branching and annihilation rates per unit
distance. Therefore, we have the solution

Z(x) = z0eγ x (6)

where γ = β − α is the net extension rate for unit distance.

3.1 Mean and variance of the number of
dendritic segments

The stochastic process described above can be interpreted as
a continuous-time Galton–Watson process, initiated with z0 ≥ 1
dendritic tips.

Since Equation 6 providesE[Z(x) | z0], applying the law of total
expectation yields:

E[Z(x)] = E[z0]eγ x (7)

We now derive the variance of Z(x) under the
same assumptions.

Proposition 1. The variance of Z(x) is given by

V[Z(x)] =
⎧⎨
⎩V[z0]e2γ x + E[z0](2β − γ )eγ x eγ x − 1

γ
γ �= 0

V[z0] + 2E[z0]βx γ = 0
(8)

Proof. To compute V[Z(x)], we use the known expression for the
variance of a continuous-time birth–death process [22], given as a
function of time:

V[Z(t) | z0] = z0
b + a
b − a

e(b−a)t
(

e(b−a)t − 1
)

Substituting t = x/v (cf. Equation 5) and applying the law of total
variance, we obtain:

V[Z(x)] = V[E[Z(x) | z0]] + E[V[Z(x) | z0]]

= V
[
z0eγ x] + E

[
z0(β + α)eγ x eγ x − 1

γ

]

= V[z0]e2γ x + E[z0](β + α)eγ x eγ x − 1
γ

Using the identity α = −γ + β , we obtain the expression shown
in Equation 8, which holds for γ �= 0. For γ = 0, the expression
follows from taking the limit as γ → 0 using de L’Hôpital’s rule.
Therefore, we obtain the stated expression for both cases, γ �= 0
and γ = 0, completing the proof.

3.2 Mean and variance of the number of
branch points

Let B(t) denote a Markovian process representing the
cumulative number of branch points over time. We have

B(t + �t) = B(t) + pbZ(t)

under the initial condition B(0) = 0. Using a Taylor series
expansion around (x, t) and taking the limit �x, �t → 0, we obtain
the rate of change of B(t) as follows:

dB
dt

= bZ(t)

with solution

B(t) = b
∫ t

0
Z(s) ds = bz0

e(b−a)x − 1
b − a
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Using Equation 5, we reparameterize the equation in terms of
the spatial variable x

B(x) = β

∫ x

0
Z(s) ds = βz0

eγ x − 1
γ

This expression gives the conditional expectation of B(x)
given z0. Applying the law of total expectation and treating
the case γ = 0 separately (by deriving the limit γ → 0),
we obtain

E
[
B(x)

] =
{

βE [z0] eγ x−1
γ

γ �= 0

βE [z0] x γ = 0
(9)

We now derive the variance of B(x) under the same
assumptions.

Proposition 2. The variance of B(x) is given by

V[B(x)] =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β2
[
E [z0] (2β − γ ) e2γ x−2γ xeγ x−1

γ 3 + V[z0]
(

eγ x−1
γ

)2
]

+βE [z0] eγ x−1
γ

γ �= 0

β2 ( 2
3 βE [z0] x3 + Var[z0]x2) + βE [z0] x γ = 0

(10)

Proof. To derive the variance of B(t), we apply the law of
total variance:

V[B(t)] = V
[
E[B(t) | F(t)]

] + E
[
V[B(t) | F(t)]

]

where

F(t) =
∫ t

0
Z(s) ds

We now construct the moment generating function (MGF) of
B(t) conditional on F(t). Considering Z(t) over an infinitesimal
time step �t such that Zi = Z(i�t), we discretize the Galton–
Watson process as

Zi+1 =
Zi∑

j=0

χj

where χj is a random variable representing the number of
offspring. Then, the cumulative number of branch points is
given by

B =
n∑

i=0

Zi∑
j=0

Iij with n = t/�t

and Iij ∼ Bernoulli(pb = b · �t). This formulation allows us to
express F(t) as a Riemann sum:

F(t) = �t
n∑

i=1

Zi

The conditional MGF is:

M(s) = E

[
esB(t) | F(t)

]

= E

[
es

∑n
i=0

∑Zi
j=0 Iij

∣∣∣∣�t
n∑

i=1

Zi

]

=
n∏

i=0

Zi∏
j=0

E
[
esIij

]

= [
pb

(
es − 1

) + 1
]∑n

i=0 Zi

= [
b · �t

(
es − 1

) + 1
] b·�t(es−1)

∑n
i=0 Zi

b·�t(es−1)

Taking the limit as �t → 0, we have

lim
�t→0

M(s) = exp
[
b(es − 1)F(t)

]
implying that

E[B(t) | F(t)] = bF(t)

V[B(t) | F(t)] = bF(t)

Substituting these terms into the total variance formula gives

V[B(t)] = b2
V

[∫ t

0
Z(s) ds

]
+ bE

[∫ t

0
Z(s) ds

]

We compute the first term using the variance formula for the
integral of a continuous Markovian process:

V

[∫ t

0
Z(s) ds

]
= 2

∫ t

0

∫ t

s
Cov[Z(s), Z(u)] du ds

where Cov[Z(s), Z(u)] = V[Z(s)]e(b−a)(u−s) for u ≥ s (see
Supplementary material). After integration, we obtain

V

[∫ t

0
Z(s) ds

]
= 1

2

[
E [z0]

b + a
b − a

e2(b−a)t − 2(b − a)te(b−a)t − 1
(b − a)2

+Var[z0]

(
e(b−a)t − 1

b − a

)2
⎤
⎦

Also, the second term is

E

[∫ t

0
Z(s) ds

]
= E [z0]

e(b−a)t − 1
b − a

Substituting these terms into the total variance expression,
and changing variables from t to x using Equation 5, we obtain
Equation 10 for the case γ �= 0. The case γ = 0 follows by
taking the limit γ → 0 via de L’Hôpital’s rule. This completes the
derivation of the variance of B(x).

3.3 Estimating branching and annihilation
rates from experimental data

In this section, we describe how to estimate branching
and annihilation rates using experimental data, such as the
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Sholl plot and branch point counts. A Sholl plot quantifies
the number of intersections between dendrites and a series of
concentric circles centered at the soma, drawn at increasing radial
distances. Therefore, it can be interpreted as an experimental
estimate of Z(x). Mathematically, it is represented as an array
of triplets (xi, m̂Z,i, ŝZ,i)i=1,...,N , where m̂Z,i and ŝZ,i denote the
experimentally observed mean and standard deviation of the
number of intersections at distance xi from the soma, with uniform
spacing ĥ = xi − xi−1 for i = 1, . . . , N. Similarly, m̂B,i and ŝB,i
denote the mean and standard deviation of branch point counts.

As discussed above, branching and annihilation rates influence
both the mean and variance of dendritic segments and branch
points. To constrain their values using experimental data, we
begin by performing a semiparametric reduction of the governing
equations, prioritizing the accuracy of the mean values. We restrict
Equations 7–10 to a generic interval [xi, xi+1], each associated with
a net extension rate γ̂i and branching and annihilation rates βi and
αi, respectively. From Equation 7, we obtain:

m̂Z,i+1 = m̂Z,ieγ̂i ĥ (11)

which allows us to estimate the net extension rate as:

γ̂i = 1

ĥ
log

(
m̂Z,i+1

m̂Z,i

)
(12)

This constrains the model to reproduce the experimentally
observed mean number of dendrites.

To derive semiparametric reductions of Equations 8–10, we
substitute Equation 12 to obtain:

• Variance of the number of dendrites:

s2
Z,i+1 =

⎧⎨
⎩(2βi − γ̂i)

m̂Z,i+1(m̂Z,i+1−m̂Z,i)
m̂Z,iγ̂i

+ s2
Z,i

(
m̂Z,i+1

m̂Z,i

)2
γ̂i �= 0

2m̂Z,iβiĥ + s2
Z,i γ̂i = 0

(13)
• Mean number of branch points:

mB,i+1 =
{

βi
m̂Z,i+1−m̂Z,i

γ̂i
γ̂i �= 0

βim̂Z,iĥ γ̂i = 0
(14)

• Variance of the number of branch points:

s2
B,i+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β2
i

[(
2βi − γ̂i

) m̂2
Z,i+1−2γ̂i ĥm̂Z,i+1m̂Z,i−m̂2

Z,i
m̂Z,iγ̂

3
i

+s2
Z,i

m̂2
Z,i+1−2m̂Z,i+m̂2

Z,i
m̂2

Z,iγ̂
2
i

]
+ βi

m̂Z,i+1−m̂Z,i
γ̂i

γ̂i �= 0

β2
i

(
2
3 βim̂Z,iĥ3 + s2

Z,iĥ
2
)
+ βim̂Z,iĥ2 γ̂i = 0

(15)

Note that the quantities s2
Z,i, mB,i, and s2

B,i are model-derived
values, distinct from their experimentally observed counterparts
ŝ2
Z,i, m̂B,i, and ŝ2

B,i.
While Equations 14, 15 yield interval-level estimates for

the mean and variance of branch points, the experimental

measurements reflect totals over the entire dendritic field. Thus,
total mean and variance of branch point counts are:

mB =
N∑

i=1

mB,i

s2
B =

N∑
i=1

s2
B,i + 2

∑
0≤i<j≤N

c(B)
i,j

where c(B)
i,j is the covariance between branch point counts in

intervals [x̂i, x̂i+1] and [x̂j, x̂j+1] (for its derivation, see the
Supplementary material).

As a result, the branching rates βi cannot be directly inferred
but must be estimated via numerical optimization. Once the βi
values are determined, annihilation rates are calculated as αi =
−γ̂i + βi. We thus estimate βi for all intervals by solving the
following quadratic programming problem:

min
{βi}N

i=1

N∑
i=1

(
s2
Z,i − ŝZ,i

)2 + w · ε2

subject to

⎧⎪⎪⎨
⎪⎪⎩

βi ≥ max
{

0, γ̂i
}

mB = m̂B

s2
B + ε = ŝ2

B

∀i = 1, . . . , N

(16)

where ε is a slack variable, and w is a weighting factor. Notably,
the optimization still works in the absence of constraints on the
mean and variance of branch point count, allowing the estimation
of branching and annihilation rates that enable the random walk
to reproduce the Sholl plot. Therefore, these constraints should be
considered optional.

4 Results

As demonstrated above, the motion of dendritic tips is
governed by a convection equation that describes the dependence
of dendrite number on the distance from the soma (Equation 3).
Consequently, the validity of the model is independent of the spatial
dimension of the random walk. Therefore, for computational
convenience, it was sufficient to use one-dimensional random walk
simulations to test the validity of the model.

We began the evaluation of our random walk model by
simulating four distinct configurations (Figure 1): one unbiased
case (r = 0.5; Figure 1, gray) and three biased cases (r = 0.75;
Figure 1, black, red, and blue). The initial number of walkers (n =
20) as well as branching (β = 0.005) and annihilation (α = 0.001)
rates were maintained constant.

In the absence of bias, the walks remain confined to the origin.
In contrast, introducing somatofugal bias results in accumulating
the visits at greater distances (Figure 1A, black, red, and blue),
indicating that directional bias is critical to achieve spatial coverage
efficiency in dendritic extension while minimizing overall material
cost [13, 23, 24].

We then assessed the impact of modifying both branching
and annihilation rates, while maintaining a constant difference
(γ = β − α). A uniform increase in both +0.01 rates increases
the variance of the visit distributions without altering the mean
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(Figure 1B). However, this adjustment increases the mean and
variance of the number of branch points (Figure 1C, compare red
and black).

In contrast, altering branching and annihilation rates
individually affected the mean and variance of visits. For instance,
increasing only the branching rate by +0.03 elevated both the
mean and variance of visits (Figure 1B). Taken together, these
simulation outcomes align qualitatively and quantitatively with
the theoretical predictions outlined above, thus validating our
mathematical model. The dependence of the number of visits
and branch points on β and γ is further illustrated in Figure 2,
providing additional confirmation of these trends (compare A
and B).

4.1 Validation against experimental data

We tested our method using Sholl plots and branch point
count of SL and PYR neurons from the piriform cortex of
rats, obtained experimentally (SL: n = 3; PYR: n = 12)
[6]. The choice of these cells is appropriate because their
morphologies exhibit distinct and well-characterized branching
patterns. These characteristics are captured by morphological
metrics such as Sholl plots and branch point counts, which provide
informative benchmarks for evaluating the performance of the
model presented in this work. The comparison between simulation
and experimental measures are shown in Figures 3A, B. Because
these morphologies exhibited a very low percentage of segments
oriented backwards (< 0.1%), we excluded backward movements
in random walk simulations, setting r = 1. Comparison of
the means and variances of Sholl plots between simulations
and experiments confirmed statistical indistinguishability for both
cell types.

We then compared mean and variance for the branch point
count between simulations (SL: 17.6 ± 14.8 (± SD); PYR: 16.9 ±
16.4) and experimental data (SL: 18.0 ± 9.9, n = 3; PYR:
18.8 ± 4.3 (± SD), n = 12) (Figures 3C, D). Significantly
higher variance in simulated vs. experimental values was detected
only in PYR neurons (p < 0.0001). (Figure 3D, compare gray
and black). To exclude the possibility that this difference arose
from the stochastic nature of the simulations, we compared
mean and variance values of both Sholl plots and branch point
counts from the simulations against their theoretical values
(i.e., calculated through Equations 11, 13–15), confirming the
absence of significant differences. To assess robustness, we varied
the weight of the slack variable w over a broad range (0–
100) and observed no effect on the fitting outcome. Instead,
significantly lower variances were observed in experimental vs.
theoretical values for Sholl plots (10/15 bins; p < 0.0001)
and branch point count (p < 0.0001). These observations
indicate that the differences between simulated and experimental
values observed for PYR neurons were due to poor fitting.
Furthermore, similar results were obtained when testing the
model across additional morphologies (Supplementary Figures S1,
S2), with a consistent tendency to exhibit higher variances
than those observed experimentally for certain morphological
types. Overall, these results support the ability of our model

to replicate experimentally derived Sholl profiles, along with
branch point counts, while highlighting the need for further
refinement to better capture sources of morphological variability
(see Discussion).

5 Discussion

In this study, we have introduced a mathematical framework
that establishes a direct mapping between experimentally
measurable quantities - Sholl plots and branch point counts
- and the parameters governing branching-and-annihilating
random walks. By turning these statistical descriptors into
explicit constraints, the problem is reformulated from
one of stochastic parameter fitting into a well-defined
inverse problem, providing a rigorous foundation for
extending morphology synthesis to diverse datasets and
brain regions.

Our previous work demonstrated that branching-and-
annihilating random walks can effectively synthesize realistic
neuron morphologies [1, 3]. In this method, branching and
annihilation rates were parameterized by branch depth; Sholl plots
and branch point counts were treated as emergent properties.
In particular, the specific random paths influenced the resulting
Sholl plots, necessitating the empirical estimation of parameters
through repeated trials. Here, we provide the mathematical bases
to treat these descriptors as constraints rather than emergent
outcomes. This eliminates path dependence and ensures their
replication, thereby making the generation process more robust
and reliable.

5.1 Comparison with existing methods

Numerous methods have been developed for neuron
morphology synthesis, while only a minority are truly data-driven.
Among these, the Topological Neuron Synthesis method
constrains branch point positions using the Topological
Morphology Descriptor (TMD) [17], while the TREES
Toolbox generates morphologies from carrier points under
the assumption that dendrites extend toward putative
synaptic targets [16]. In the latter, the number of branch
points depends directly on the number of carrier points
[24], and morphologies are shaped by a single balancing
factor that trades off material cost against conduction time
[16, 24].

In contrast, our framework introduces two independent
constraints: Sholl plots (compulsory) and branch point
counts (optional) (see Equation 16). This separation allows
branch point counts to be adjusted without altering Sholl
profiles, providing finer control over morphology generation.
Moreover, because it leverages commonly reported morphological
metrics, our method enables data-driven synthesis without
requiring detailed reconstructions. Together, these features
make our framework more flexible and broadly applicable than
existing approaches.
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FIGURE 2

Number of visits and branch points under varying branching and annihilation rates. (A) Number of visits (top) and branch points (bottom) observed at
the final iteration (t = 100, �x = 0.1), starting from an initial number of branch points of 20 ± 2 (± SD), simulated using biased random walks (r = 1)
across varying branching rates (β = 0.1 to 0.2) and net extension rates (i.e., difference between branching and annihilation rates; γ = β − α; γ = −0.1
to 0.1). For each parameter combination, the estimate is based on independent trials (n = 200). (B) Same as in panel (A), calculated by using equations.
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FIGURE 3

Sholl profiles and branch point counts for semilunar and pyramidal neurons from the piriform cortex generated by branching-and-annihilating
random walks. (A) Sholl plots of semilunar (SL) neurons obtained from simulations (Sim; black) and experimental data (Exp; gray). Both means and
variances were statistically indistinguishable between simulations and experiments across all spatial intervals. The simulation estimate is based on
multiple independent trials (n = 200), with a step size �x = 0.1. (B) Same as in (A), for pyramidal (PYR) neurons. Both means and variances were
statistically indistinguishable between simulations and experiments across all spatial intervals. (C) Distribution of branch point counts for SL neurons
obtained from simulations (black histogram and error bars) compared to experimental data (gray error bars). Both means and variances were
statistically indistinguishable between simulations and experiments. (D) Same as in (C), for PYR neurons. Only the variances of simulations and
experiments were statistically distinguishable (p < 0.001).
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5.2 Mathematical contributions

From a mathematical standpoint, we introduce a problem-
independent set of equations that link experimental summary
statistics to the parameters of branching-and-annihilating random
walks. By recasting the random walk dynamics as a Galton–
Watson process, we derive closed-form expressions for the
mean and variance of the branch-point count, supported by
rigorous proofs. To the best of our knowledge, this is the first
framework to establish such a direct and mathematically rigorous
connection between experimental measurements and generative
models of neuronal morphology. Importantly, the equations for
the branch-point count in a Galton–Watson process are themselves
new contributions.

5.3 Validation against experimental data

We validated the equations against experimental data
(Figure 3; Supplementary Figures S1, S2). The resulting
fits produced random walks with higher variance in both
Sholl plots and branch point counts than those observed
experimentally, although the differences were not significant. This
outcome is consistent with expectations, as real morphologies
emerge from complex developmental processes, whereas
our approach is purely phenomenological and does not
capture all aspects of dendritic extension. We speculate
that the smaller variance observed experimentally reflects
the action of additional biological constraints that reduce
variability. Future work may address this limitation by
incorporating such constraints into the model. However,
this will require the knowledge of exact mechanisms and
biochemical reactions that regulate dendritic growth, which still
remains unknown.

6 Conclusion

In the immediate future, we plan to develop a toolbox
that allows morphological synthesis based on the equations
presented here. This toolbox will provide a practical platform
for generating synthetic neuron morphologies that adhere to
experimental constraints. It will also incorporate additional
determinants of dendritic architecture that arise in three-
dimensional space, including self-avoidance, spatial competition,
branching-angle distributions, and dendritic tortuosity.
Furthermore, the toolbox will account for geometric features
that strongly influence electrotonic properties, such as total
dendritic length and diameter tapering. Ensuring that synthetic
morphologies replicate these characteristics will be critical
for constructing realistic models of neuronal integration
and network dynamics. As an initial application, we will
focus on building biophysically detailed reconstructions of
brain regions, beginning with the anterior piriform cortex,
with the ultimate goal of enabling anatomically grounded
large-scale simulations.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
FrancescoCavarretta/NeuronSynthesis.

Author contributions

FC: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.2025.
1632271/full#supplementary-material

Frontiers in Applied Mathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1632271
https://github.com/FrancescoCavarretta/NeuronSynthesis
https://github.com/FrancescoCavarretta/NeuronSynthesis
https://www.frontiersin.org/articles/10.3389/fams.2025.1632271/full#supplementary-material
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Cavarretta 10.3389/fams.2025.1632271

References

1. Migliore M, Cavarretta F, Hines ML, Shepherd GM. Distributed organization of a
brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front
Comput Neurosci. (2014) 8:50. doi: 10.3389/fncom.2014.00050

2. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez
CA, et al. Reconstruction and simulation of neocortical microcircuitry. Cell. (2015)
163:456–92. doi: 10.1016/j.cell.2015.09.029

3. Cavarretta F, Burton SD, Igarashi KM, Shepherd GM, Hines ML, Migliore M.
Parallel odor processing by mitral and middle tufted cells in the olfactory bulb. Sci Rep.
(2018) 8:7625. doi: 10.1038/s41598-018-25740-x

4. Dura-Bernal S, Neymotin SA, Suter BA, Dacre J, Moreira JV, Urdapilleta E,
et al. Multiscale model of primary motor cortex circuits predicts in vivo cell-
type-specific, behavioral state-dependent dynamics. Cell Rep. (2023) 42:112574.
doi: 10.1016/j.celrep.2023.112574

5. Grudt TJ, Perl ER. Correlations between neuronal morphology and
electrophysiological features in the rodent superficial dorsal horn. J Physiol. (2002)
540:189–207. doi: 10.1113/jphysiol.2001.012890

6. Bathellier B, Margrie TW, Larkum ME. Properties of piriform cortex pyramidal
cell dendrites: implications for olfactory circuit design. J Neurosci. (2009) 29:12641–52.
doi: 10.1523/JNEUROSCI.1124-09.2009

7. Papoutsi A, Kastellakis G, Psarrou M, Anastasakis S, Poirazi P.
Coding and decoding with dendrites. J Physiol-Paris. (2014) 108:18–27.
doi: 10.1016/j.jphysparis.2013.05.003

8. Kastellakis G, Silva AJ, Poirazi P. Linking memories across time via neuronal
and dendritic overlaps in model neurons with active dendrites. Cell Rep. (2016)
17:1491–504. doi: 10.1016/j.celrep.2016.10.015

9. Poirazi P, Papoutsi A. Illuminating dendritic function with computational models.
Nat. Rev. Neurosci. (2020) 21:303–21. doi: 10.1038/s41583-020-0301-7

10. Suzuki N, Bekkers JM. Two layers of synaptic processing by
principal neurons in piriform cortex. J Neurosci. (2011) 31:2156–66.
doi: 10.1523/JNEUROSCI.5430-10.2011

11. Papoutsi A, Kastellakis G, Poirazi P. Basal tree complexity shapes functional
pathways in the prefrontal cortex. J Neurophysiol. (2017) 118:1970–1983.
doi: 10.1152/jn.00099.2017

12. Udvary D, Harth P, Macke JH, Hege HC, de Kock CP, Sakmann B, et al. The
impact of neuron morphology on cortical network architecture. Cell Rep. (2022)
39:110677. doi: 10.1016/j.celrep.2022.110677

13. Kirchner JH, Euler L, Fritz I, Castro AF, Gjorgjieva J. Dendritic growth and
synaptic organization from activity-independent cues and local activity-dependent
plasticity. Elife. (2025) 12:RP87527. doi: 10.7554/eLife.87527.3

14. Moubarak E, Inglebert Y, Tell F, Goaillard JM. Morphological determinants of
cell-to-cell variations in action potential dynamics in substantia nigra dopaminergic
neurons. J Neurosci. (2022) 42:7530–46. doi: 10.1523/JNEUROSCI.2331-21.2022

15. Zang Y, Marder E. Neuronal morphology enhances robustness to
perturbations of channel densities. Proc Nat Acad Sci. (2023) 120:e2219049120.
doi: 10.1073/pnas.2219049120

16. Cuntz H, Forstner F, Borst A, Häusser M. One rule to grow them all: a general
theory of neuronal branching and its practical application. PLoS Comput Biol. (2010)
6:e1000877. doi: 10.1371/journal.pcbi.1000877

17. Kanari L, Dictus H, Chalimourda A, Arnaudon A, Van Geit W, Coste B,
et al. Computational synthesis of cortical dendritic morphologies. Cell Rep. (2022)
39:110586. doi: 10.1016/j.celrep.2022.110586

18. Berchet A, Petkantchin R, Markram H, Kanari L. Computational
generation of long-range axonal morphologies. Neuroinformatics. (2025) 23:3.
doi: 10.1007/s12021-024-09696-0

19. Ascoli GA, Donohue DE, Halavi M. NeuroMorpho Org: a central
resource for neuronal morphologies. J Neurosci. (2007) 27:9247–51.
doi: 10.1523/JNEUROSCI.2055-07.2007

20. Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K,
et al. Parallel mitral and tufted cell pathways route distinct odor information
to different targets in the olfactory cortex. J Neurosci. (2012) 32:7970–85.
doi: 10.1523/JNEUROSCI.0154-12.2012

21. Davison AC, Hinkley DV. Bootstrap Methods and Their Application. 1
Cambridge: Cambridge university press. (1997). doi: 10.1017/CBO9780511802843

22. Allen LJS. Continuous-time birth and death chains. In: An Introduction to
Stochastic Processes with Applications to Biology. Boca Raton: CRC Press (2010). p.
241–296.

23. Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB. Maximization
of the connectivity repertoire as a statistical principle governing the shapes of
dendritic arbors. Proc Nat Acad Sci. (2009) 106:12536–41. doi: 10.1073/pnas.
0901530106

24. Cuntz H, Mathy A, Häusser M. A scaling law derived from optimal dendritic
wiring. Proc Nat Acad Sci. (2012) 109:11014–8. doi: 10.1073/pnas.1200430109

Frontiers in Applied Mathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2025.1632271
https://doi.org/10.3389/fncom.2014.00050
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1038/s41598-018-25740-x
https://doi.org/10.1016/j.celrep.2023.112574
https://doi.org/10.1113/jphysiol.2001.012890
https://doi.org/10.1523/JNEUROSCI.1124-09.2009
https://doi.org/10.1016/j.jphysparis.2013.05.003
https://doi.org/10.1016/j.celrep.2016.10.015
https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1523/JNEUROSCI.5430-10.2011
https://doi.org/10.1152/jn.00099.2017
https://doi.org/10.1016/j.celrep.2022.110677
https://doi.org/10.7554/eLife.87527.3
https://doi.org/10.1523/JNEUROSCI.2331-21.2022
https://doi.org/10.1073/pnas.2219049120
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1016/j.celrep.2022.110586
https://doi.org/10.1007/s12021-024-09696-0
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1523/JNEUROSCI.0154-12.2012
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1073/pnas.0901530106
https://doi.org/10.1073/pnas.1200430109
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A mathematical model for data-driven synthesis of neuron morphologies based on random walks
	1 Introduction
	2 Materials and methods
	2.1 Software details
	2.2 Code availability
	2.3 Morphological inspection
	2.3.1 Semilunar and pyramidal neurons from the piriform cortex
	2.3.2 Tufted and mitral cells from the olfactory bulb
	2.3.3 Neocortical pyramidal neurons

	2.4 Statistical analysis

	3 Random walk-based model for dendritic synthesis
	3.1 Mean and variance of the number of dendritic segments
	3.2 Mean and variance of the number of branch points
	3.3 Estimating branching and annihilation rates from experimental data

	4 Results
	4.1 Validation against experimental data

	5 Discussion
	5.1 Comparison with existing methods
	5.2 Mathematical contributions
	5.3 Validation against experimental data

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


