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Although studies have investigated Solanum nigrum L. (SNL) in mice, its effects on
broilers remain unclear. This study examined how dietary SNL influences growth
performance, antioxidant capacity, ileal transcriptome, and gut microbiota in
broilers. A total of 200 one-day-old healthy Wuhua yellow-feathered chickens
were randomly divided into four groups of five replicates (10 birds each). The
groups received: a basal diet (CON), a basal diet with 500 mg/kg amoxicillin
(AMO), a basal diet with 1000 mg/kg SNL grass meal (0.1% SNL), and a basal diet
with 2000 mg/kg SNL grass meal (0.2% SNL). The experiment lasted 35 days. SNL
supplementation modestly improved feed efficiency and jejunal villus height (p =
0.019). It also altered cecal microbiota by increasing Bacteroidetes, Bacteroides,
and Faecalibacterium, while decreasing Firmicutes and Oscillibacter. lleal
transcriptomics identified multiple differentially expressed genes (DEGs) across
comparisons, which were enriched in intestinal immune network pathways for
IgA production. Correlation analysis linked cecal microbiota changes to ileal
gene expression. In conclusion, SNL exhibits the potential as an alternative to
antibiotics in chickens, and this study provides empirical support for its broader
adoption in poultry industry.
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1 Introduction

Antibiotics play a pivotal role in safeguarding animal health and
improving feed conversion efficiency owing to their antimicrobial
activity, which inhibits or eliminates pathogenic microorganisms
(Fernandez Miyakawa et al, 2024). However, the overuse and
misuse of antibiotics have contributed to a marked rise in
antibiotic-resistant bacterial strains, posing a substantial public
health threat (Abd El-Ghany, 2020; Obianwuna et al., 2024;
Oladeji et al., 2025). In light of growing concerns over
environmental sustainability and food safety, the development of
antibiotic alternatives has become a major focus of scientific
research. Among these alternatives, Chinese herbal medicines
have garnered significant interest as cost-effective feed additives,
particularly due to their demonstrated benefits in enhancing
intestinal health in broiler chickens (Xu et al., 2022; Wang et al,
2024a), along with their antioxidative, immunomodulatory, and
growth-promoting properties (Wang et al., 2021; Xu et al,, 2022; Li
et al., 2023).

Solanum nigrum L. (SNL), a dicotyledonous weed belonging to
the Solanaceae family, is a spontaneous plant commonly found in
wastelands, along fences and roadsides, and as an agricultural weed
throughout China. SNL exhibits a range of pharmacological
effects, including antimicrobial, anticancer, antioxidant, anti-
inflammatory, antimetastatic, antiproliferative, and antitumor
activities (Sivaraj et al., 2020; Bhuvaneshwari et al., 2022),
attributable to its rich and diverse phytochemical composition. Its
primary bioactive constituents include alkaloids, flavonoids,
steroids, glycoproteins, tannins, polysaccharides, and polyphenols,
with notable compounds such as caffeic acid, catechin, esculin,
protocatechuic acid, rutin, and epicatechin (Zeeshan et al., 2023).
To date, numerous studies have explored the effects of SNL in
murine models. For instance, one study indicated that extracts from
SNL berries can modulate the gut microbiota by reducing the
Firmicutes-to-Bacteroidetes ratio and restoring beneficial
microbial populations, while concurrently mitigating oxidative
stress in mice (Wang et al., 2024b). Another study demonstrated
that SNL exerts anti-inflammatory effects by inhibiting NF-xB
nuclear translocation and downregulating the expression of iNOS,
COX-2, IL-1f3, and IL-6 in a concentration-dependent manner
(Deng et al., 2023). Given these pharmacological characteristics
and the presence of medicinally active secondary metabolites, SNL
holds promising potential as an antibiotic alternative in
poultry production.

However, to the best of our knowledge, no studies have
specifically examined the effects of SNL supplementation in

Abbreviations: BW, body weight; ADG, average daily gain; ADFI, average daily
feed intake; F/G, feed-to-gain ratio; DEG, differentially expressed gene; SNL,
Solanum nigrum L; T-AOC, total antioxidant capacity; SOD, superoxide
dismutase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde; H&E,
hematoxylin and eosin; VH, villus height; CD, crypt depth; ASV, amplicon
sequence variant; PCA, principal component analysis; NMDS, non-metric

multidimensional scaling.
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broiler chickens. To bridge this gap, the current study employed
integrated microbiome and transcriptome analyses to evaluate how
SNL influences intestinal health and production performance in
broilers. By uncovering the mechanistic basis of its probiotic
activity, this research seeks to establish a scientific foundation for
the resource-efficient use of SNL and its application as an eco-
friendly feed additive that supports animal health in antibiotic-free
poultry production systems.

2 Materials and methods

2.1 Ethics statement

The animal study protocol was approved by the Ethics
Committee of Guangdong Meizhou Vocational and Technical
College (protocol code: GDMZVTC-2023-003 and date of
approval: 2023.02.17).

2.2 Experimental design and diets

A total of 200 one-day-old healthy Wuhua yellow-feathered
chickens with similar initial body weight (BW; 31.5+£0.09g) were
obtained from a commercial hatchery and randomly divided into 4
groups, with 5 replicate floor pens per group and 10 birds per pen.
The four groups were: group A (CON group, fed the basal diet as
control), group B (AMO group, fed the basal diet+500mg/kg
amoxicillin), group C (SNL group, fed the basal diet+1000mg/kg
Solanum nigrum L. grass meal), group D (SNL group, fed the basal
diet+2000mg/kg Solanum nigrum L. grass meal), respectively. The
basal diets were formulated referring to Chinese Nutrient
Requirements of Yellow broilers (Ministry of Agriculture and
Rural Affairs of the People’s Republic of China, 2020).

The experiment lasted for 35 days, consisted of a 7 days pre-trial
period and a 28 days experimental period. Birds were housed and
fed in disease-free pens (200 cm x 200 cm x 60 cm) and had free
access to feed and water. During the first week, the indoor
temperature was maintained at approximately 33°C under
continuous artificial lighting. From day 8 to day 35, the
temperature was gradually reduced by 2°C per week until it
stabilized within the range of 26-27°C. Body weight was
measured on a weekly basis, and feed intake was recorded daily.

2.3 Growth performance and sample
collection

On the 36th day, after an eight-hour fasting period,
measurements were made of the body weight (BW) and the
amount of feed remaining in each replicate. Afterwards, the
growth performance parameters for each group were computed,
which included the mean average daily feed intake (ADFI), mean
average daily gain (ADG), and the feed conversion ratio (F/G).
F/G = feed intake (F)/weight gain (G).
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Then, five birds per group (1 bird per pen, 20 birds in total)
were randomly selected for sample collection, including blood
samples, jejunum tissue, ileum tissue and cecal digesta. The
samples were cryopreserved at -80°C after undergoing the
necessary processing for subsequent analysis.

2.4 Determination of serum oxidative
stress related indices

The serum total antioxidant capacity (T-AOC), superoxide
dismutase (SOD), and glutathione peroxidase (GSH-Px) activities
and the level of malondialdehyde (MDA) were performed by
appropriate assay kits (Nanjing Jiancheng Biotechnology Institute,
Nanjing, China) using the builder’s standard method (Bai
et al., 2021).

2.5 Intestinal morphology

The jejunum tissue samples (1-2cm) were fixed with 4%
paraformaldehyde and prepared on tissue slides (Tang et al,
2022). The tissues were embedded in paraffin blocks, cut into
4-um slices, and stained with hematoxylin and eosin (H&E).
Then, the slices were dried and sealed for follow-up observation
and analysis (the villus height (VH) and crypt depth (CD)) through
optical microscopy.

2.6 16s rRNA gene sequencing analysis

2.6.1 DNA extraction and amplification

Total genomic DNA of cecal contents was extracted using
MagPure Soil DNA KF Kit (Magan) following the manufacture’ s
instructions. DNA concentration and integrity were measured with
NanoDrop 2000 (Thermo Fisher Scientific, USA) and agarose gel
electrophoresis. Extracted DNA was stored at -20°C until further
processing. The extracted DNA was used as template for PCR
amplification of bacterial 16S rRNA genes with the barcoded
primers and Takara Ex Taq (Takara). For bacterial diversity
analysis, V3-V4 variable regions of 16S rRNA genes was amplified
with universal primers 343F (5 - TACGGRAGGCAGCAG-3’) and
798R (5-AGGGTATCTAATCCT-3") (Nossa et al,, 2010).

2.6.2 Library construction and sequencing

The Amplicon quality was visualized using agarose gel
electrophoresis. The PCR products were purified with AMPure
XP beads (Agencourt) and amplified for another round of PCR.
After purified with the AMPure XP beads again, the final amplicon
was quantified using Qubit dsDNA Assay Kit (Thermo Fisher
Scientific,USA). The concentrations were then adjusted for
sequencing. Sequencing was performed on an Illumina NovaSeq
6000 with 250 bp paired-end reads. (Illumina Inc., San Diego, CA;
OE Biotech Company; Shanghai, China).
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2.6.3 Bioinformatic analysis

Raw sequencing data, in FASTQ format, were preprocessed
using Cutadapt software to detect and cut off the adapter. After
trimming, quality control of the adapter-removed paired-end reads,
including low quality sequences removal, denoised, merged and
chimera reads removal, was conducted by using DADA2 plugin
(Callahan et al., 2016) with the default parameters of QIIME2
(Bolyen et al., 2019) (2020.11). At last, the software output the
representative reads and the amplicon sequence variant (ASV)
abundance table. The representative read of each ASV was
selected using QIIME2 package. All representative reads were
annotated and blasted against Silva database (Version 138) using
q2-feature-classifier with the default parameters.

QIIME2 software was used for alpha and beta diversity analysis.
Then the R package was used to analyze the significant differences
between different groups using ANOVA/Kruskal Wallis statistical
test. The linear discriminant analysis effect size (LEfSe) method was
used to compare the taxonomy abundance spectrum.

2.7 Transcriptome sequencing analysis

2.7.1 RNA isolation and library preparation

Total RNA was extracted from ileum tissue using the TRIzol
reagent (Invitrogen, CA, USA) according to the manufacture’s
protocol. RNA purity and quantification were evaluated using the
NanoDrop 2000 spectrophotometer (Thermo Scientific, USA).
RNA integrity was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Then the libraries
were constructed using VAHTS Universal V6 RNA-seq Library
Prep Kit according to manufacture’s instructions.

2.7.2 RNA sequencing and differentially expressed
genes analysis

RNA Sequencing was facilitated in collaboration with OE
Biotech Co., Ltd. (Shanghai, China). The libraries were sequenced
on an [lumina Novaseq 6000 platform and 150 bp paired-end reads
were generated (the sequencing depth/volume is 6 G). Raw reads of
fastq format were firstly processed using fastp (Chen et al.,, 2018)
and the low quality reads were removed to obtain the clean reads.
Then the clean reads were mapped to the chicken reference genome
using HISAT2 (Kim et al., 2015). FPKM (Roberts et al., 2011) of
each gene was calculated and the read counts of each gene were
obtained by HTSeq-count4. PCA analysis were performed using R
(v 3.2.0) to evaluate the biological duplication of samples.

Differential expression analysis was performed using the
DESeq2 (Love et al, 2014). Q value < 0.05 and foldchange > 2
was set as the threshold for significantly DEGs. Based on the
hypergeometric distribution, Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes(KEGG) pathway
enrichment analysis of DEGs were performed to screen the
significant enriched term using R (v 3.2.0), respectively.
R (v 3.2.0) was used to draw the column diagram and bubble
diagram of the significant enrichment term.
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2.8 Comprehensive analysis of the cecal
microbiome and ileal transcriptome

To explore the potential relationship between the cecal
microbiome and its hosts, the Spearman correlation coefficient was
employed to assess the correlation between differentially abundant
microbiota and DEGs. P-value < 0.05 is considered indicative of
significant relationships. The correlation heatmap of cecal microbiota
and DEGs was constructed using the R package. To decrease the risk
of false positives, correction for multiple testing is also applied.

2.9 Statistical analysis

Quantitative data were analyzed using IBM SPSS 22.0 software
(SPSS Inc., USA) and shown as the mean+SEM. Shapiro - Wilk test
was used to test the normality of data. For the analysis of growth
performance data, in addition to considering the grouping factors,
initial body weight was incorporated into the analysis model as a
covariate. For intestinal morphology data and the serum induces,
only the grouping information was taken into account. Among
different treatments, comparisons of means were performed using
ANOVA followed by the least significant difference (LSD) post hoc
test. Significance was established at p < 0.05, and 0.05 < P < 0.10 was
considered a trend.

3 Results
3.1 Growth performance

Group C was excluded from further analysis due to its growth
performance showing no substantial deviation from that of the
control group (Group A, CON). Consequently, only Group A
(CON), Group B (AMO), and Group D (SNL) were included in
the subsequent statistical analyses.

Table 1 presents the effects of dietary AMO and SNL
supplementation on the growth performance of Wuhua yellow-
feathered broilers. No statistically significant differences in growth
performance were observed among the three groups during the
overall experimental period (P > 0.05). Although the differences did
not reach statistical significance, certain numerical trends were
noted in BW, ADFI, ADG and F/G across the groups. Both the
AMO and SNL groups exhibited numerically higher BW and ADG,
as well as lower ADFI and F/G, compared to the CON group.
Notably, the SNL group demonstrated a lower F/G (1.86+0.04) than
the CON group (1.97£0.01), while its F/G was comparable to that of
the AMO group (1.81+0.12).

3.2 MDA and antioxidant enzyme activity
changes

The effects of AMO and SNL supplementation on serum
antioxidant parameters in Wuhua yellow-feathered broilers are
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TABLE 1 Effects of different treatments on broiler growth performance.

823.90 884.10 818.82 847.77
BW/g 0515
+40.39 +29.28 +100.08 +18.81
ADFl/g 49.97+1.64 48294298 @ 48.39+4.34 48.41+1.42  0.867
ADG/g 25.3740.80 = 26.64+0.92 = 25.22+2.08 26.00+0.19 | 0.499
a b a | 1.86
F/G 1.97+0.01 1.81+0.12 1.9240.02 ab 0.065
+0.04

*® Means within same row carrying different superscript letters indicate significant differences
(p<0.05).

shown in Table 2. No statistically significant differences (p > 0.05)
were observed in the levels of SOD, GPX, T-AOC, GSH, or MDA
among the treatment groups. However, compared with other
dietary treatments, the SNL-supplemented group exhibited a
notable increasing trend in both GPX activity and T-AOC.

3.3 Jejunum morphological change

The jejunal tissues were subjected to H&E staining to evaluate
the effects of different experimental treatments on intestinal
morphology (Figure 1 and Table 3). Significantly longer VH
(about 9.5%, p = 0.019) was observed in the SNL-supplemented
group compared to the AMO-treated group, with a notable
increasing trend relative to the control group. Consequently, the
V/C ratio was significantly improved in the SNL treatment group
compared to the AMO-supplemented group, while no significant
differences were detected between the CON and SNL
treatment groups.

3.4 Caecal microbiota analysis

3.4.1 Analysis of the caecal microbiota diversity
The Illumina MiSeq high-throughput sequencing platform was
employed to characterize the cecal microbial communities across

TABLE 2 Effects of different treatments on antioxidant enzyme activity
and MDA.

P-values

331.52
D, 1 328.22+33.48 318.89+35.72  0.515
SOD/(U/ml) 122,47 9
MDA/(nmol/
ml) 2.29+0.39 1.96+0.24 2.35+0.26 0.086
GPX/(U/ml) 16.01+2.25 12.97+2.45 17.33+7.58 0.154
905.14 864.00 838.29
GSH/(umol/L) 0.448
+188.29 +82.61 +131.04
T-AOC/(mmol/
L 0.70+0.05 0.70£0.13 0.71£0.13 0.829
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CON

FIGURE 1

Photomicrograph of the jejunum: hematoxylin and eosin stained. Pictures were observed at 100X magnification. The green arrow indicates intestinal

villi and the red arrow indicates crypts.

different experimental groups. The raw data ranges from 78,484 to
81,729 reads across the samples, as detailed in Supplementary Table
S1. Following stringent quality filtering and the removal of chimeric
sequences, the number of processed reads per sample averaged at
52,990 (Supplementary Table S1). A total of 1,084 ASVs were
yielded with confirmed domain-level taxonomic assignments,
ranging from 281 to 338, from 98 to 381, from 214 to 284 in
CON, AMO, SNL group, respectively. Based on a 99% species
similarity threshold, the o-diversity indices at the ASV level for each
group are presented in Figure 2A. No statistically significant
differences were observed in either the Chaol (richness) or
Simpson (evenness) indices among the three treatments,
suggesting comparable community diversities. However, the
AMO group exhibited a significantly higher Shannon index
compared to the SNL-supplemented group, indicating greater
microbial richness in the AMO-treated caecal microbiota.

For B-diversity analysis, multivariate statistical approaches—
including PCA and non-metric multidimensional scaling (NMDS)
—were applied to assess compositional similarities among the
treatment groups. The PCA and NMDS plots revealed distinct
clustering patterns (at the ASV level) of caecal microbial
communities across treatments. While the CON and AMO
groups displayed partial overlap, the SNL group formed a
separate cluster, distinctly differentiated from the other
groups (Figure 2B).

TABLE 3 Effects of different treatments on jejunum villus height and
crypt depth.

Villus height/ | 1257.25 1055.57 1376.09 0019
um +174.09%° +65.31° +237.79° :
Crypt depth/ 141.76 169.78

TYptdep 141.51+14.94° . . 0.021
um +20.87 +16.66
VIC 8.90+0.93 7.58+1.16 8.12+1.41 0.183

*Means within same row carrying different superscript letters indicate significant differences
(p<0.05).
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A Venn diagram illustrated the distribution of unique and
shared intestinal ASVs among the cecal microbiota of different
groups. Among the identified ASVs, 337 were common to all groups
(core microbiota), with 201 ASVs unique to the control group, 196
ASVs exclusive to the AMO group, and 140 ASVs specific to the
SNL group (Figure 2C).

3.4.2 Composition and structure analysis of the
cecal microbiota

Figures 3A, B illustrate the relative abundance of gut microbiota in
each group at the phylum and genus levels, respectively. At the
phylum level, the cecal microbiota of all groups were predominantly
composed of 10 major bacterial phyla, with Bacteroidetes and
Firmicutes being the two most abundant (Supplementary Table S2).
Compared with the CON and AMO groups, the SNL group exhibited
a significant increase in the relative abundance of Bacteroidetes,
whereas the relative abundances of Proteobacteria and Firmicutes
decreased. Notably, the SNL group displayed the highest relative
abundance of Bacteroidetes and the lowest abundances of Firmicutes
and Deferribacterota. At the genus level, Bacteroides, Clostridia_UCG-
014, Faecalibacterium, [Eubacterium]_coprostanoligenes_group, and
[Ruminococcus]_torques_group were the predominant taxa in the
ceca of broilers across all groups (Supplementary Table S3). The
SNL treatment significantly promoted the growth of Bacteroides,
Faecalibacterium, and [Ruminococcus]_torques_group, while
markedly suppressing the abundance of Oscillibacter relative to
other groups.

3.4.3 Analysis of cecal microbiota composition
and metabolic function changes

The LEfSe revealed the dominant microbial taxa among different
experimental groups. As illustrated in Figures 3C, D, the SNL, AMO,
and CON groups exhibited 3, 4, and 7 significantly different taxonomic
units at various classification levels (LDA score >3), respectively.
Specifically, the predominant bacterial phylotypes in the SNL group
comprised Erysipelotrichaceae, Bacillales, and Bacillaceae. In the AMO
group, the dominant taxa included CHKCIO0I, Lachnoclostridium,
Shuttleworthia, and Eubacterium:hallii_group. Meanwhile, the CON
group was characterized by the predominance of Lactobacillales,
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FIGURE 2

Caecal microbiota diversity analysis. CON (Group A), AMO (Group B), SNL(Group D). (A) The a-diversity of the microbial communities (Chaol,
Shannon and Simpson) a, bar with the asterisk (*) level suggests the degree of significant difference, (*p < 0.05); (B) b-diversity metrics: Principal
component analysis (PCA) and non-metric multidimensional scaling (NMDS); (C) Venn diagram.

Lactobacillaceae, Lactobacillus, Butyricimonas, Actinobacteriota,
Lachnospiraceae_NK4A136_group, and Peptostreptococcaceae.

Significant intergroup differences in KEGG functional
pathways, as predicted by PICRUSt-based metagenomic analysis,
are presented in Figure 3E. Comparative analysis demonstrated that
the SNL dietary intervention elicited elevated heatmap scores for
functional gene clusters associated with the MAPK signaling
pathway - yeast, steroid biosynthesis, and sesquiterpenoid/
triterpenoid biosynthesis, relative to both the AMO and CON
groups. Furthermore, microbial gene functions linked to
metabolic pathways—including pancreatic secretion and salivary
secretion—were significantly upregulated in the SNL group
compared to the AMO group, whereas pathways related to
Staphylococcus aureus infection, shigellosis, and nitrotoluene
degradation exhibited downregulation.

3.5 Transcriptome analysis of intestinal
tissue

To elucidate the probiotic mechanisms of SNL, we conducted
ileal transcriptomic profiling using RNA sequencing (RNA-seq). As
depicted in Figure 4A, differential expression analysis (FDR < 0.05
and |log2FC| > 1) identified 174 DEGs (100 upregulated and 74
downregulated) in the CON vs. AMO comparison, 135 DEGs (76
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upregulated and 59 downregulated) in the CON vs. SNL
comparison, and 219 DEGs (88 upregulated and 131
downregulated) in the AMO vs. SNL comparison.

To further investigate the functional implications of these
DEGs, we performed GO and KEGG pathway enrichment
analyses. The GO analysis of upregulated DEGs in CON vs. SNL
chickens suggested potential involvement in glucose homeostasis,
insulin receptor signaling, oxaloacetate decarboxylase activity, and
various enzymatic processes. KEGG enrichment highlighted
pathways including the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, FoxO signaling pathway,
butanoate metabolism, sphingolipid metabolism, and other
amino acid metabolic processes. Conversely, downregulated
DEGs in CON vs SNL chickens were predominantly enriched in
hormone-mediated signaling, lipid metabolic regulation,
complement activation (lectin pathway), and carboxypeptidase
activity, with KEGG analysis emphasizing the PPAR signaling
pathway, Toll-like receptor signaling, RIG-I-like receptor
signaling, peroxisome-related functions, and additional amino
acid metabolism.

In the AMO vs SNL comparison, GO analysis indicated that
upregulated DEGs may participate in TGF-f} sequestration within
the extracellular matrix and cellular calcium ion homeostasis.
KEGG enrichment identified pathways related to Salmonella
infection, neuroactive ligand-receptor interactions, adrenergic
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FIGURE 3

Microbiota analysis in cecum chyme. CON (Group A), AMO (Group B), SNL (Group D). (A) Community column diagram at the phylum level.
(B) Community column diagram at the genus level. (C, D) Multilevel species differences from the phylum to genus level in different groups
determined using the linear discriminant analysis (LDA) effect size (LEfSe) algorithm. (E) Difference in the metabolic functions of the cecal microbiota.

signaling in cardiomyocytes, and cardiac muscle contraction.
Meanwhile, downregulated DEGs were primarily associated with
immune and inflammatory responses (including positive regulation
of inflammation, cellular responses to IL-1, and adaptive
immunity), oxidoreductase activity, and various enzymatic
processes. KEGG analysis further revealed enrichment in
Salmonella infection, neuroactive ligand-receptor interactions, the
intestinal immune network for IgA production, RIG-I-like receptor
signaling, adipocytokine signaling, NOD-like receptor signaling,
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Toll-like receptor signaling, insulin signaling, and additional
amino acid metabolism (Figures 4B, C).

3.6 Correlation analysis of host
transcriptome and cecal microbiome

Subsequently, we investigated the potential correlations
between the microbiome and transcriptome by calculating
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Transcriptome sequencing analysis of chicken ileum tissues in three treatments, CON (Group A), AMO (Group B), SNL (Group D). (A) Volcano plot of
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Spearman correlation coefficients in CON, AMO, and SNL
chickens, respectively. Based on the results of 16S rRNA amplicon

sequencing, the top 30 most abundant bacterial genera were selected

for analysis. The relationships between differentially abundant
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bacterial genera and key DEGs were visualized as heatmaps
(Figures 5A-C, Supplementary Table S4-56). Based on P-value,
our analysis revealed that Oscillibacter exhibited a significant
positive correlation with MAP3K7CL and PONI. In contrast,
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MAP3K7CL displayed a significant negative correlation with
Bacteroides, which in turn showed a significant negative
correlation with PRLHRL.

4 Discussion

Historically, the use of antibiotics in the management of
microbial infections and intestinal regulation has been a standard
practice. However, due to the adverse environmental and food
chain impacts of antibiotics, there is an urgent need for antibiotic
alternatives in poultry production. Accumulating evidence suggests
that phytogenic feed additives can modulate gut microbiota
composition and activity, thereby conferring beneficial
physiological effects on the host (Abdelli et al, 2021). While
numerous studies have investigated the probiotic properties of
Chinese herbal medicines in broilers, knowledge regarding the
effects of SNL in avian species remains limited.

The present study aimed to evaluate the effects of SNL
supplementation on broiler growth performance, intestinal barrier
function, antioxidant status, cecal microbiota, and ileal gene
expression. Compared to the CON group, SNL supplementation
at 0.2% improved, although not significantly, body weight gain
(BW, ADG) while reducing the F/G and ADF]I, indicating enhanced
nutrient utilization. No significant differences in growth
performance or feed efficiency were observed between the AMO
and SNL groups, suggesting that SNL is comparably effective to
AMO in supporting broiler development. We hypothesize that SNL
contains bioactive compounds, including polysaccharides and
saponins, which may enhance digestive and absorptive efficiency,
improve nutrient utilization, reduce feed wastage, and optimize
dietary efficiency (Yao et al., 2020; Anzoom et al., 2023).

T = =

Gn06E Yy oeecRdsOUE)

FIGURE 5

Integrated analysis of the microbiome and transcriptome in the CON vs AMO (A), CON vs SNL (B) and AMO vs SNL (C). CON (Group A), AMO (Group B),
SNL(Group D). Heatmap of Spearman’s correlation coefficients between differential microbiota and dif-ferential expressed mRNAs. Each row represents
a differentially expressed mRNAs and each column represents a differentially microbiota. Orange-red and blue represent the positive and negative
correlations, respectively. The darker the color, the higher the corre-lation was. Correlation significance, *:P < 0.05, **:P < 0.01, ***:P < 0.001.
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Although the growth performance is not significantly improved,
the numeral trends demonstrate potential economic benefits from a
production standpoint. In poultry industry, the cost of feed
accounts for about 70% of the total costs, which means even a
small improvement in feeding efficiency can significantly reduce
production costs. Given that SNL is typically a byproduct, its
utilization as a feed additive presents a cost-eftective strategy for
poultry farming without compromising growth performance, while
also yielding high-quality broilers.

The antioxidant capacity of the organism plays a crucial role in
suppressing free radical generation, preventing free radical chain
reactions, and mitigating oxidative damage to the host. Enhanced
antioxidant capacity is positively correlated with optimal health
status and improved poultry production performance (Yang et al.,
2016). Key antioxidant enzymes, including SOD for scavenging
superoxide radicals (O®7), GPX and CAT for decomposing
hydrogen peroxide (H,O,), are recognized as essential defense
mechanisms against free radical-induced damage (Shang et al,
2023). The overall antioxidant status is comprehensively assessed
through T-AOC, while MDA, a terminal product of lipid
peroxidation induced by free radicals, serves as a reliable
biomarker for oxidative stress intensity (Liu et al., 2021).

Our experimental results demonstrated no statistically
significant differences in the levels of SOD, GPX, T-AOC, GSH,
or MDA among the treatment groups. This is likely associated with
the added concentration. Here, we added 0.2% SNL grass meal to
the basal diet, the concentration of the bioactive constituents is
relatively lower compared to other studies. A recent research
indicated that dietary supplementation with SNL berries extract
(200 mg/kg BW/d) can potentiate the body’s antioxidant defense
system via modulation of NRF2-related protein expression (Wang
et al., 2024b). Such effects are likely attributable to the bioactive
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constituents in SNL—namely polysaccharides, saponins, and
flavonoids—which have been demonstrated to exert potent
antioxidant properties (Guediri, 2021; Anzoom et al.,, 2023).

The intestine serves as the primary site for animals to absorb
exogenous nutrients, with its fundamental structural components
comprising crypts and villi. Intestinal villi extend the mucosal surface
area, thereby enhancing nutrient absorption (Kai, 2021).
Consequently, VH, CD, and their V/C have long been recognized
as critical indicators for assessing intestinal physiological function
and tissue integrity (Zhao et al, 2023). Generally, a longer villus
height, higher V/C ratio, and shallower crypt depth reflect a superior
structural and functional state of the intestinal epithelium, correlating
with enhanced digestive and absorptive capacity as well as improved
disease resistance (Banday et al., 2024). In the present study, dietary
supplementation with 0.2% SNL elicited a marked trend toward
increased jejunal VH in chickens compared to the CON group,
although no statistically significant difference was observed in the V/
C ratio. Notably, when compared to the AMO group, the 0.2% SNL
treatment significantly elevated jejunal VH and improved the V/C
ratio. These results indicate that incorporating an optimal dosage of
SNL into the diet can enhance intestinal morphology and preserve
structural integrity in chickens, thereby promoting intestinal health in
yellow-feathered broilers. The mechanism underlying this difference
is needed further investigation, and one possible reason for this may
be the consequence of the alternation of the cecal microbiota. The
observed improvements in VH and the consequent expansion of the
small intestinal absorptive surface area likely underlie the enhanced
growth performance observed following SNL supplementation.

The intestinal microbiota plays a pivotal role in enhancing
nutrient assimilation, conferring disease resistance, and maintaining
intestinal homeostasis (Sli'zewska et al,, 2020; Martin-Gallausiaux
et al,, 2021). In the present investigation, cecal microbiota analysis
in broilers demonstrated that multiple o-diversity metrics, as well as
the observed number of ASVs, were significantly reduced in the SNL
group relative to both the CON and AMO groups. These findings
indicate that dietary supplementation with SNL reduces both
microbial species richness and diversity, implying a disruption in
microbial evenness and potential dysbiosis (Zhang et al., 2025). The
decrease in microbial species richness and diversity may be attributed
to the antimicrobial characteristics mentioned before. This outcome
contrasts with previous studies on other Chinese herbal preparations
containing similar bioactive compounds (Che et al, 2024; Huang
et al, 2024). Although the addition of SNL reduced intestinal
microbial diversity, when combined with other results of this study,
no significant impairment of intestinal health was observed. This
observation was further supported by the metabolic function analysis
of the cecal microbiota, which revealed that, compared to both the
CON and AMO groups, the SNL group exhibited enrichment in
metabolic pathways associated with reduced Staphylococcus aureus
infection and shigellosis (Figure 3E). Besides, we observed SNL
supplementation may potentiate the chicken’s innate resistance to
Salmonella infections from the transcriptome data in the present
study. However, further investigation is still needed to clarify the
reasons behind the decrease in o-diversity observed in the SNL group
and to evaluate the impact on gut health.
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Furthermore, PCA and NMDS revealed distinct compositional
variations among the microbial communities of the three
experimental groups. At the phylum level, consistent with
extensive research on the gut microbiota of healthy broilers,
Bacteroidetes and Firmicutes emerged as the predominant
microbial phyla in our study (Bai et al., 2023). Notably, we
observed a significant elevation in the relative abundance of both
the phylum Bacteroidetes and its constituent genus Bacteroides in
the SNL group, concomitant with significant reductions in the phyla
Firmicutes, Proteobacteria, and Deferribacterota. Additionally, a
marked decrease in the Firmicutes-to-Bacteroidetes (F/B) ratio
was evident.

Bacteroidetes plays an indispensable role in complex
carbohydrate degradation and propionate production, while the
genus Bacteroides not only furnishes essential nutrients to other
microbial populations but also contributes to host protection
against intestinal pathogens through polysaccharide degradation
and butyrate salt formation (Chen et al, 2019; Zafar and Saier,
2021). As the dominant gut microbiota in healthy individuals, an
elevated F/B ratio is widely recognized as an indicator of intestinal
microbiome dysbiosis (Xia et al., 2022). Proteobacteria has been
identified as a potential diagnostic biomarker for malnutrition and
disease susceptibility (Chen et al, 2021), while Deferribacterota
exhibits an association with obesity (Walker et al., 2014). At the
genus level, the cecal microbiota of broilers across all three
experimental groups was predominantly composed of Bacteroides,
Clostridia_UCG-014, Faecalibacterium, [Eubacterium]
_coprostanoligenes_group, and [Ruminococcus]_torques_group.
Among these, Bacteroides—a genus well-established for its role in
complex carbohydrate degradation and short-chain fatty acid
(SCFA) production (Yan et al., 2023a)—was the most abundant
taxon in the SNL group. This genus has been positively correlated
with weight gain and improved growth performance in poultry
(Chang et al,, 2016), suggesting that its elevated abundance in the
SNL group may contribute to the observed higher ADG and lower
F/G.

As a key butyrate-producing bacterium, Faecalibacterium plays
a pivotal role in gut health evaluation (Li et al., 2019). Notably,
Faecalibacterium prausnitzii, a prominent butyrate-producing
species, exhibits a positive association with feed conversion
efficiency (Kameyama and Itoh, 2014; Ye et al., 2019). The SNL-
supplemented diet not only significantly enhanced the abundance
of Faecalibacterium but also increased its proportional
representation within the microbial community, which may
explain the improved F/G ratio in the SNL group.

Furthermore, the cecal abundance of [Ruminococcus]
_torques_group was higher in the SNL group compared to the
COM group. Given that reduced abundance of Ruminococcaceae
has been linked to inflammatory bowel disease (IBD) in humans
(Joossens et al., 2011), this elevation may confer a protective effect.
Conversely, the decreased abundance of Oscillibacter in the SNL
group is likely beneficial, as this genus has been associated with
impaired gut barrier function and intestinal inflammation (Li et al.,
2021). Collectively, the dietary inclusion of SNL exerted favorable
modulatory effects on the cecal microbiota of broilers, characterized
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by an enrichment of beneficial bacterial taxa and a reduction in
potentially detrimental ones. These microbial shifts likely underpin
the observed enhancements in growth performance and feed
efficiency. The SNL-supplemented diet was demonstrated to
suppress the proliferation of Gram-negative and potentially
pathogenic bacterial populations while concurrently enhancing
the growth of Gram-positive bacteria. These observations are
congruent with the documented structural remodeling of the
cecal microbial community induced by dietary SNL intervention
in the present investigation. Furthermore, metabolic pathway
analysis revealed that SNL supplementation significantly
attenuated the pathogenic potential associated with
Staphylococcus aureus infections, shigellosis, and nitrotoluene
biodegradation processes. This protective effect is partially
attributable to the inherent anti-inflammatory bioactivity of SNL
(Xiang et al., 2018; Deng et al., 2023).

The substantial number of DEGs suggests that dietary
supplementation with SNL exerted a measurable influence on the
ileal transcriptome of chickens. Comparative analysis of the AMO
and SNL groups revealed that the top 30 significantly enriched GO
terms and top 20 KEGG pathways in both groups prominently
featured the Salmonella infection and neuroactive ligand-receptor
interaction pathways. Notably, the Salmonella infection pathway
warrants particular attention, given that Salmonella constitutes a
primary poultry pathogen, contributing to considerable economic
losses and posing significant public health risks. The observed
upregulation of genes within this pathway implies that SNL
supplementation may potentiate the chicken’s innate resistance to
Salmonella infections, thereby potentially diminishing the reliance on
antibiotics in poultry production (Zhao et al., 2022). Similarly, the
neuroactive ligand-receptor interaction pathway—which plays an
indispensable role in cellular communication and signal
transduction—was also significantly enriched. This enrichment
suggests that SNL may modulate diverse physiological processes,
including immune regulation and stress responses, ultimately
contributing to enhanced poultry health (Han et al, 2022; Qiu
et al., 2025). Transcriptomic analyses further indicated that SNL
may confer health benefits by regulating multiple immune-associated
pathways, notably the RIG-I-like receptor signaling pathway, NOD-
like receptor signaling pathway, Toll-like receptor signaling pathway,
and adipocytokine signaling pathway, with particular emphasis on
the intestinal immune network for IgA production. As a pivotal
immunoglobulin in mucosal immunity, IgA constitutes the first line
of defense against gastrointestinal pathogens (Mantis et al., 2011).
The enrichment of DEGs within this pathway implies that SNL
supplementation may strengthen mucosal immune barriers,
consequently reducing the incidence of gastrointestinal infections
in chickens (Pabst, 2012; Jiao et al., 2023). Additionally, the RIG-I-
like receptor signaling pathway, which mediates the detection of viral
RNA and orchestrates antiviral responses, was also enriched. This
finding suggests that the SNL-enriched diet may augment the
chicken’s antiviral defenses, providing protection against viral
infections (Zhao et al, 2022). Furthermore, the identification of
DEGs linked to the insulin signaling pathway highlights the
potential role of SNL in modulating metabolic processes, including
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glucose homeostasis and energy utilization (He et al., 2024). This is
particularly pertinent in poultry production, where metabolic
efficiency critically influences growth performance and feed
conversion rates (Zhang et al., 2023; Guo et al., 2024). Comparative
analysis of the CON and SNL groups demonstrated that DEGs were
predominantly enriched in the PPAR signaling pathway, lipid
metabolic process regulation, and other immune-related pathways,
including the RIG-I-like receptor signaling pathway and Toll-like
receptor signaling pathway. The PPAR signaling pathway governs
multiple biological functions, encompassing energy metabolism,
inflammation, cellular differentiation, and lipid homeostasis
(Contreras et al., 2013; Fuior et al., 2023; Kim et al., 2023). The
observed improvement in production performance within the SNL
group is, at least in part, attributable to the functional modulation of
the PPAR signaling pathway.

To investigate the interactions between the gut microbiota and
host transcriptome following dietary supplementation with AMO
and SNL in chickens, this study employed Spearman correlation
analysis to examine the associations between transcriptomic and
metagenomic profiles. Notably, chickens fed with SNL exhibited a
significant increase in cecal Bacteroides abundance, which
demonstrated a significant negative correlation with the gene
MAP3K7CL (based on P-value).

MAP3K7CL is implicated in the activation of NF-kB and MAPK
signaling pathways, both of which are central to inflammatory and
immune responses (Ling et al., 2022). The downregulation of
MAP3K7CL in response to elevated Bacteroides levels suggests that
these bacteria may modulate host inflammatory pathways, potentially
through the production of short-chain fatty acids (SCFAs) or other
microbial metabolites (Yan et al., 2023b, 2023a). This observation
aligns with previous studies demonstrating that certain Bacteroides
species, such as B. vulgatus and B. fragilis, can attenuate inflammation
by regulating cytokine production and immune cell differentiation
(Liu et al, 2022). Additionally, MAP3K7CL exhibited a positive
correlation with the abundance of Oscillibacter (based on P-value).
In hybrid yellow catfish subjected to transport stress, MAP3K7CL was
significantly downregulated, indicating its involvement in immune
signaling pathways, particularly those mediated by Toll-like and
Nod-like receptors (Zheng et al., 2021). Furthermore, reduced
MAP3K7CL expression has been observed in Chinese patients with
non-small cell lung cancer, suggesting that leukocyte-derived
MAP3K7CL may contribute to disease pathogenesis by modulating
inflammatory processes, mitochondrial reactive oxygen species
signaling, and the Wnt pathway (Niu et al., 2021).

The decreased abundance of Oscillibacter in SNL-fed chickens
may indicate a diet-induced shift in gut microbiota composition
that could mitigate inflammation and improve metabolic outcomes.
This hypothesis is further supported by the positive correlation
between Oscillibacter and PON1, a gene encoding paraoxonase 1—
an enzyme with anti-inflammatory and antioxidant properties that
protects against oxidative stress and lipid peroxidation (Xue
et al., 2022).

PRLHRL, a gene associated with prolactin signaling, may also
influence metabolic and immune responses, although its specific
role in poultry remains incompletely understood. The enrichment
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of Bacteroides in the ceca of SNL-fed chickens suggests that
microbial metabolites may modulate host gene expression,
thereby influencing immune and metabolic pathways (Fan et al,
2023). For example, SCFAs such as butyrate have been shown to
regulate gene expression by inhibiting histone deacetylases and
activating G protein-coupled receptors, which may indirectly affect
PRLHRL expression (Cheng et al., 2022).

5 Conclusions

The results of the current study indicate that supplementation
of broiler diets with 0.2% SNL might modestly improve growth
performance. In addition, SNL increases jejunal villus height, alters
microbial diversity or richness and consequently modulates host
gene expression in broilers. Due to the relatively small sample size
and the other limitations in the present study, further investigations
are warranted to clarify the potential of SNL as an alternative to
antibiotics in chickens.
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