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Heat stress is a major challenge for rabbit production, due to the species’ limited
thermoregulatory capacity. Two rabbit lines were divergently selected over 17
generations for environmental variance in litter size: the Low line, with greater
resilience, and the High line, with less resilience. This study aimed to compare
acute stress and inflammatory responses in males from both lines under heat
stress (temperature—humidity index, THI > 27.8) and thermoneutral (THI< 27.8)
conditions. Forty males (20 per line) were evaluated for eyeball temperature via
infra-red thermography before and after a semen collection stressor, and for
plasma cortisol, C-reactive protein (CRP), and tumor necrosis factor-o (TNF-o)
by ELISA. Bayesian methodology was used for statistical analysis. The Low line
maintained lower eyeball temperatures than the High line under both thermal
conditions (P > 90%), while retaining normal acute stress responses. Under heat
stress, the Low line also showed lower TNF-a levels, and under both conditions,
lower cortisol levels (P > 90%). CRP did not differ between lines or thermal
conditions (P< 90%). These results indicate that selection for reduced litter size
variability improves thermal regulation and attenuates stress-associated
physiological responses, supporting its use to enhance resilience, welfare, and
sustainability in rabbit production.
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1 Introduction

The global rise in temperatures due to climate change is a
challenge for livestock production. The Mediterranean region
constitutes a hottest and large area of highly specialized and
technically skilled rabbit production (Giorgi and Lionello, 2008;
Cullere and Dalle-Zotte, 2018). Heat stress is one of the main factors
directly and indirectly linked to environmental stress in rabbits
(Oladimeji et al., 2022; Ebeid et al., 2023).

Rabbits are homeothermic animals that are very sensitive to
high temperatures (Marai et al., 2002). Due to their thick fur and the
absence of sweat glands, this species has a low thermoregulatory
capacity (Marai et al., 2001; Yagci et al, 2006). The zone of
thermoneutrality in rabbits is between 15 to 25 °C and 55-65% of
humidity, the critical temperature from 27 to 30 °C, and 35 °C is the
maximum temperature above which rabbits cannot regulate their
body temperature (Marai et al., 2001; Cervera and Carmona, 2010;
Nielsen et al., 2022; Oladimeji et al., 2022). Heat stress occurs when
rabbits are unable to maintain equilibrium between the heat they
produce and the heat they lose.

Heat stress negatively impacts average daily gain and feed
conversion ratio (Jaen-Tellez et al., 2021; Liang et al., 2022), while
also impairing reproductive performance. This includes reduced
sperm quality in males (Pei et al., 2012; Huang et al,, 2023) and
decreased fertility, embryo implantation rates, embryo quality and
birth weights in females (Garcia and Argente, 2017; Liang et al.,
2022; Ebeid et al., 2023). It also reduces the quality of the processed
product (Zeferino et al., 2013) and increases the mortality rate (Yan
and Li, 2008).

High ambient temperatures activate the hypothalamic-pituitary-
adrenocortical (HPA) axis and the sympathetic adrenomedullary
system, leading to increased plasma levels of cortisol and
catecholamines, and body temperature (Hennessy, 1997; Mostl and
Palme 2002). Infrared thermography (IRT) enables the detection of
variations in body temperature (Agea et al., 2021; Jaen-Tellez et al,
2021), which serves as an indicator of heat stress and is less invasive
than measuring plasma cortisol levels. In particular, the rabbit’s
eyeball provides an optimal anatomical site for rapidly assessing the
response to acute stress stimuli (Serrano-Jara et al., 2025).

Acute stress dysregulates the immune system, increasing
susceptibility to diseases (Mormede et al., 2018). This homeostatic
disruption, caused by factors like infections, tissue damage, or stress
itself, triggers an acute phase response (Kushner, 1988). In turn, the
acute phase response induces the release of cytokines, which alter
the plasma concentration of acute phase proteins (Eckersall and
Bell, 2010). Among these, TNF-0, a pro-inflammatory cytokine,
and C-reactive protein (CRP), a positive acute phase protein, are
widely used as biomarkers for assessing stress and animal welfare
(Gutiérrez et al., 2009; Argente et al., 2019; Beloumi et al., 2020).

TNF-o is a central mediator in multiple physiological and
disease-related processes. In humans, it contributes to
inflammation by activating neutrophils and disrupting intestinal
absorption (Deem et al., 1991; Suter et al., 1992). Studies in rodents
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have linked TNF-a. to oxidative stress-induced cell damage in mice
and regulation of the HPA axis in rats (Bohlinger et al.,, 1996; Takao
etal,, 1997). In rabbits, evidence suggests it impairs jejunal absorption
of nutrients such as L-leucine and D-fructose (Abad et al., 2002;
Garcia-Herrera et al,, 2004). CRP is synthesized in the liver and its
serum concentrations increase in response to an inflammatory
process. In rabbits, plasma CRP levels have been associated with
reproductive, dental, and musculoskeletal diseases (Oohashi et al,
2019). In goats, it has been linked to metritis and mastitis, and in sows
to infectious processes and stress situations (Saco and Bassols, 2022).

Resilience is the capacity of the animal to be minimally affected
by a disturbance or to rapidly return to the physiological,
behavioral, cognitive, health, affective and production states that
pertained before exposure to a disturbance (Colditz and Hine,
2016). A divergent selection program was developed in rabbits
with the aim of improving resilience. However, resilience is a trait
that is difficult to measure directly. For this reason, the team
proposed assessing it through the environmental variance in litter
size within females. The Low line, which developed greater
resilience as a result of the selection process, was selected for
reduced litter size variability, whereas the High line, with
comparatively less resilience, was selected for increased variability
(Blasco et al., 2017).

The genetic program proved successful: after 12 generations of
selection, litter size variability was 2.5 kits® in the Low line and 5.5
kits* in the High line. Females from the Low line showed a lower
inflammatory response to infectious challenges and greater disease
resistance compared to those from the High line. This was reflected
in lower female mortality at parturition, reduced litter mortality at
birth and weaning, and greater uniformity in litter weight at
weaning (Argente et al., 2017). Moreover, females from the High
line exhibited higher stress responses, lower disease resistance, and
smaller litter sizes than those from the Low line (Argente et al,
2017,2019; Beloumi et al., 2020), confirming that the Low line is the
more resilient than the High line.

The study aims to assess the acute stress and inflammatory
correlated response in two divergent selected rabbit lines for litter
size variability, under both with and without environmental heat
stress, by monitoring body temperature and plasma levels of CRP,
TNEF-0, and cortisol.

2 Material and methods

The experimental procedures with animals were approved by
the General Directorate of Agriculture, Livestock and Fisheries of
the Generalitat Valenciana with code 2022/VSC/PEA/0226.

2.1 Animals and experimental design

The research was carried out on the farm at Miguel Hernandez
University in Orihuela (38.06747347849708, -0.9821394614708082),
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Alicante (Spain). The facilities included equipped with forced
ventilation and cooling, and a photoperiod of 16 hours of light and
8 hours of darkness. Animals were housed in individual cages, fed
with a commercial diet (16.1% of crude protein; 3.522 kcal/kg of
digestible energy) and provided water ad libitum.

In the selection process for environmental variability of litter
size, each line includes approximately 125 + 5 females and 25 males
per generation. Selection is based on the phenotypic variance of
litter size within each female, after correcting litter size for year-
season effects and parity-lactation status. Once systematic effects are
corrected, the intra-doe phenotypic variance reflects environmental
variability. The selection intensity for each generation is 30%. To
reduce inbreeding, each male is mated with five females, and one
male offspring from the best female is selected to breed the next
generation (see more details in Blasco et al., 2017). Each generation
lasts 12 months.

A total of 40 males, 20 each from the 17th generation of the
High (heterogeneous) and Low (homogeneous) lines, were used in
this study. The age range was between 5 and 10 months on both
lines. The average weight was 3.53 kg.

From ambient temperature and relative humidity, the
temperature/humidity index (THI) was calculated: THI = t -
[(0.31 - 0.31 x rh) x (t - 14.4)] where t = average temperature of
the farm from the time of infra-red imaging until 24 hours before
and rh = relative humidity/100, collected in the same way as
temperature (Marai et al., 2001). The weeks in which data were
collected were classified according to the THI into heat stressed
(THI = 27.8) and non-heat stressed (THI< 27.8) (Marai et al., 2001).
According to the THI, the groups were classified into High Stressed
Line (HS), High Non-Stressed Line (HNS), Low Stressed Line (LS)
and Low Non-Stressed Line (LNS).

2.2 Temperature records

A total of 120 body temperature records were taken from the
High and Low lines (60 per line; 30 per group). Body temperature
emissivity was measured using IRT on the eyeball. The images were
obtained using a ®FLIR SC660 thermal imaging camera and were
processed with the ®ThermaCAM Researcher Pro 2.10 software to
obtain the temperature record. The camera was calibrated
according to temperature, relative humidity, emissivity (98%), and
distance from the subject (0.7 m).

Data collection was carried out for 12 weeks, between June 2023
and February 2024. Body temperature measurements at the eyeball
were taken at three moments: minute 0 (corresponding to basal
temperature), minute 1 (one minute after the application of the
acute stressor), and minute 5 (five minutes after the application of
the acute stressor). Between 0 and 1 minute the rabbit was subjected
to an acute stress stimulus based on semen collection (Serrano-Jara
et al., 2025).

For semen collection, males started the training period at 150
days of age. The training sessions were conducted once per week
over a period of 2-3 weeks (Lavara et al, 2011). After training, the
males entered the production period.
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2.3 Blood parameters

Eighty blood samples were collected from the central auricular
artery in two conditions: under heat stress (THI > 27.8) and non-
heat stress (THI< 27.8). The samples were collected in 13 x 75 mm
tubes with a 3 mL capacity containing potassium salt K;EDTA
(ethylenediaminetetraacetic acid) as anticoagulant. Blood samples
were collected using a needle with a diameter of 0.6 mm (23G).
Blood was centrifuged at 4000 rpm for 15 minutes to obtain plasma
and proceed with the determination of CRP, TNF-a, and cortisol.
The samples were frozen at -80°C until analysis.

TNF-o. TNF-0. was measured by commercial ELISA test
(Elabscience Bionovation Inc, Catalog Number: E-EL-RBO0OI11,
Houston, TX, USA). The distribution of the samples was as
follows: 20 (LS), 20 (HS), 20 (LNS) and (20 HNS).

CRP. CRP was measured by commercial ELISA test (Life
Diagnostics Inc, Catalog Number: CRP-10-N, West Chester, PA,
USA). A total of 61 samples were recorded: 17 (LS), 16 (HS), 16
(LNS) and 12 (HNS). The rest of the samples were not recorded in
the ELISA test.

Cortisol. Cortisol was measured by commercial ELISA test
(Cusabio Technology LLC, Catalog Number: CSB-E06956Rb,
Houston, TX, USA). A total of 38 samples were recorded: 18
(LS), 12 (HS), 5 (LNS) and 5 (HNS). The rest of the samples were
not recorded in the ELISA test.

2.4 Statistical analysis

The correlated response was estimated as the difference between
the High and Low lines. Temperature (yjj) was analyzed with the
model:

Yik= M + TLS;+ bWy + my+ ey

where W is the overall mean, TLS; is the time-line-stress effect
with twelve levels (time: minute 0, 1 or 5; line: High or Low; stress:
THI < 27.8 or THI = 27.8), b is the regression coefficient, Wi is the
covariate weight, my; is the random effect of male and ey, is the
residual term.

For blood parameters (CRP, TNF-0, and cortisol; yj;) the
following model was used:

Yijk = u + LS,*‘I' le]+ mij+ €ijk

where L is the overall mean, LS; is the line-stress effect with four
levels (High or Low; stress: THI< 27.8 or THI > 27.8), b is the
regression coefficient, Wi is the covariate weight, my; is the random
effect of male and ey is the residual term.

All analyses were performed using Bayesian methodology.
Bounded uniform priors were used for all effects except for the
male effect, considered normally distributed with mean 0 and
variance 162p. Residuals were a priori normally distributed with
mean 0 and variance I62e. The priors for the variance were also
bounded uniform. Features of the marginal posterior distributions
for all unknowns were estimated using Gibbs sampling. Inferences

frontiersin.org


https://doi.org/10.3389/fanim.2025.1694508
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org

Serrano-Jara et al.

were derived from the marginal posterior distributions. Means,
standard errors and actual probability (P) were provided. P refers to
the probability that the absolute value of the difference between two
levels of a fixed effect will be greater than zero (Blasco et al., 2017). P
indicates the probability that the differences are above zero when
H-L > 0, or below zero when H-L< 0. Within a Bayesian
framework, the notion of “statistical significance” in the classical
sense does not apply; instead, the model directly estimates the
probability of the differences being positive or negative. Notably,
these probabilities may reach or even surpass 0.90, even in cases
where the 95% credible interval still encompasses zero. We consider
that there are relevant differences when the P is greater than or
equal to 90%. The Rabbit software program developed by the
Institute for Animal Science and Technology (Valencia, Spain)
was used for all procedures. We used a chain of 60,000 samples,
with a burn-in period of 10,000. Only one out of every 10 samples
was saved for inferences. Convergence was tested using the Z
criterion of Geweke (Sorensen and Gianola, 2002) and Monte
Carlo sampling errors were computed using time-series
procedures (Geyer, 1992).

3 Results
3.1 Temperature

Figure 1 shows the progression (at minutes 0, 1, and 5) of
eyeball temperature both conditions (heat stress and non-heat
stress). For all the moments, the Low line showed lower
temperatures than the High line, both in the absence and

10.3389/fanim.2025.1694508

presence environmental heat stress (P = 100%; P: probability that
the difference between the temperatures of both lines at each
moment is different from 0).

In the absence of environmental heat stress, at minute 0, the
Low line showed a lower eyeball temperature than the High line
(36.45 °C vs 36.77°C; P = 92%). At minute 1, temperature tended to
be lower in the Low line than in the High line (90% > P > 80%). No
differences were found between the lines at minute 5 (P = 71%).

After seminal collection, between minute 0 and 1, both lines
increased in temperature (Low line: 36.71°C and P = 99%; High line:
36.91°C and P = 90%). Between minute 1 and 5, both lines increased
their temperatures (Low line: 36.77°C and P = 71%; High line:
36.91°C and P = 51%).

In the presence of environmental heat stress the Low line
presented a lower temperature than the High line at minute 0
(37.12°C vs 37.78°C; P = 100%). After seminal collection, between
minute 0 and 1, none of the lines increased their temperature during
the first minute (Low line: 37.21°C and P = 72%; High line: 37.84°C
and P = 65%). The difference between the lines was maintained at
minute 1 (P = 99%). Between minute 1 and 5, only the Low line
increased its temperature (37.41°C; P = 92%) in comparison to the
High line (37.92°C; P = 72.2%). The difference between the
temperature of the two lines remained present (P = 97%).

3.2 Blood parameters (CRP, TNF-q,
cortisol)

Table 1 shows the differences of correlated response between the
lines in CRP, TNF-a, and cortisol levels under conditions with and
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FIGURE 1

Means and standard errors (bars) of the marginal posterior distributions for eyeball temperature, recorded with infra-red thermography, in two rabbit
lines with and without heat stress. HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line. The

vertical bars represent the standard error.
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without heat stress. CRP levels showed no differences between the
lines (P< 80%). The Low line showed lower TNF-a levels in the
presence of environmental heat stress (P > 90%), but only a trend
(90% > P > 80%) in the absence of environmental heat stress.
Regarding plasma cortisol levels, the Low line showed lower levels
than the High line (P > 90%) both in the presence and absence of
environmental heat stress.

Table 2 shows a comparison of the results obtained under heat
stress and thermal comfort conditions within the same lines. TNF-o
showed an upward trend in the presence of environmental heat
stress in the High line (90% > P > 80%). As for CRP, only in the
absence of environmental heat stress in the Low line was there a
tendency for its concentration to increase (90% > P > 80%). Cortisol
levels did not vary between the presence and absence of
environmental heat stress in any of the lines (P< 80%).

10.3389/fanim.2025.1694508

4 Discussion

Selecting animals primarily for productivity has been associated
with negative side effects in their health, fertility, and immune
responses (Rauw et al., 1998). Nowadays, the fight against climate
change and the improvement of animal welfare are related
challenges that affect livestock farming both socially
and scientifically.

Over the course of 17 generations, two rabbit lines have been
divergently selected based on the environmental variability of litter
size (i.e. phenotypic variance of litter size within each female, after
correcting litter size for year-season effects and parity-lactation
status). This selection strategy has been proposed as a direct
approach to improving resilience traits (Blasco et al., 2017).
Several studies have demonstrated that females from the Low line

TABLE 1 Correlated response to selection for resilience in plasma TNF-o, CRP, and cortisol levels in two rabbit lines.

H (ng/ml) L (ng/ml) HPD95%
TNF-o
HS - LS 69.092 56.438 12.654 -23.817, -0.217 0.98
HNS - LNS 65.655 59.994 5711 -17.311, 5.604 0.84
CRP
HS - LS 3.721 3.505 0216 -0.958, 0.558 0.71
HNS - LNS 3.735 3914 -0.179 -0.603, 0.997 0.68
Cortisol
HS - LS 9.771 7.693 1.978 -4626.39, 647.65 0.93
HNS - LNS 11.024 6.985 4.039 -8268.8, 338.22 0.97

HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line; DH-L, difference between lines; HPD95%, Highest Posterior Density 95% interval, the
shortest interval containing 95% of the posterior probability, representing the most credible values of the parameter given the data and model; P, probability of DH-L being >0 when DH-L was

positive, or<0 when DH-L was negative.

TABLE 2 Comparison of plasma TNF-o, CRP, and cortisol levels between stressed and non-stressed groups in two rabbit lines.

Group S (ng/ml) NS (ng/ml) DS-NS HPD95% P
TNF-a

HS - HNS 69.092 65.655 3.447 -6.615, 14.687 0.84

LS - LNS 56.438 59.944 3.506 -13.429, 5.833 0.79

CRP

HS - HNS 3.721 3.735 0.014 -0.822, 0.829 0.51

LS - LNS 3.505 3.914 0.409 -1.188, 0.321 0.85
Cortisol

HS - HNS 9.771 11.024 -1.253 -5.016, 2488 0.74

LS - LNS 7.693 6.985 0.708 -2.443, 4.182 0.67

HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line; DS-NS, difference between stress and no; HPD95%, Highest Posterior Density 95%
interval, the shortest interval containing 95% of the posterior probability, representing the most credible values of the parameter given the data and model; P, probability of DH-L being >0 when
DH-L was positive, or<0 when DH-L was negative.
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exhibit superior adaptive capacity under adverse environmental
conditions (Garcia et al., 2016; Garcia et al, 2019; Argente
et al., 2019).

Our results indicate that, the Low line maintains a lower eyeball
temperature compared to the High line, while retaining a normal
physiological response to the sperm collection stimulus.
Furthermore, the findings show that, in non-heat-stress condition
the response to the acute stressor is rapid in both lines, consistent
with observations reported in the cited literature (Jaen-Tellez et al.,
2021; Serrano-Jara et al., 2025).

Under heat stress, as also reported by De Lima et al. (2013) and
Jaen-Tellez et al. (2020), the body temperature of both lines increased.
The lower temperature observed in the Low line reflects its superior
ability to adapt to adverse environments compared to the High line. In
contrast, the lack of a thermal response to semen collection in the High
line may be due to the presence of a chronic stress state, which could
diminish, delay, or impair its adaptive capacity (Moberg, 2000;
McEwen and Wingfield, 2003; Koolhaas et al., 2011).

The improved regulation of body temperature observed in the
Low line, selected for resilience, may reflect an enhanced capacity to
maintain homeostasis under challenging conditions. This
thermoregulatory advantage could be mediated by more efficient
neuroendocrine responses to stress, in line with observations in
other robustness-selected lines (Biada et al., 2024).

The analysis of stress-associated biomarkers complements the
study of temperature by providing insight into the animals’ chronic
stress status. The consistently lower cortisol levels in the Low line,
regardless of environmental conditions, suggest a more adaptive
HPA axis response, which may prevent the detrimental effects of
prolonged glucocorticoid release. In contrast, the High line appears
to exhibit higher baseline activation of the HPA axis, consistent
with Argente et al. (2019), which could indicate a reduced threshold
for stress activation and a chronic stress profile.

Differences in TNF-o concentrations reinforce this interpretation.
Under heat stress, the Low line displayed lower TNF-o levels,
suggesting a more controlled inflammatory response. Elevated
cortisol levels in the High line may compromise immune
competence by suppressing lymphoid activity and impairing the
balance between pro- and anti-inflammatory cytokines (Ayyat and
Marai, 1997; Liang et al.,, 2022). This imbalance has been described in
other livestock species, where heat stress enhances systemic
inflammation and increases susceptibility to infections (Lara and
Rostagno, 2013; Lemal et al,, 2023). Thus, the interaction between
glucocorticoids and cytokines could explain the parallel differences
observed in both stress physiology and thermoregulation.

Regarding CRP, no differences were found between lines in our
study. The discrepancies with Argente et al. (2019) and Beloumi
et al. (2020), where the Low line exhibited lower CRP levels, might
be related to differences in sex, physiological stage, or timing of
sampling, as has been observed in rats (Nunomura, 1992; Balog
et al,, 2015). It is also possible that CRP, unlike other acute-phase
proteins such as haptoglobin, is less sensitive to heat stress in
rabbits, as also reported by Argente et al. (2014).

Altogether, these results suggest that resilience-selected animals
(Low line) may mitigate the negative effects of heat stress by combining
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better thermoregulatory efficiency with a more adaptive HPA axis and
a moderated inflammatory response. This integrative response could
represent a physiological mechanism underpinning resilience, similar
to findings reported in other species exposed to heat stress
(Laghouaouta et al., 2024; Sejian et al., 2018).

In this research, the assessment of stress relied on three biomarkers
(CRP, TNF-0, and cortisol). These markers provide valuable insights
into immune and endocrine responses, but the inclusion of additional
indicators such as haptoglobin, oxidative stress parameters, or
corticosterone, the primary glucocorticoid in rabbits (Bush, 1953),
would allow for a more comprehensive understanding of the
physiological mechanisms underlying resilience to heat stress.
Although cortisol remains a relevant and widely used hormone for
evaluating stress in rabbits (Szeto et al, 2004; Verga et al, 2007),
complementing its measurement with corticosterone could further
refine the interpretation of the stress response.

5 Conclusions

The biomarkers evaluated in this study, together with infrared
thermography, represent useful tools for assessing acute stress
responses both under heat stress and comfort conditions.

These results highlight the value of selecting for functional traits
such as resilience in improving animals’ adaptive responses to heat
stress. Thus, incorporating these criteria, specifically selection for
litter size homogeneity, into breeding programs contribute to both
enhanced animal welfare and sustainable livestock production.
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