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Genetic correlated responses
to selection for resilience
in key inflammatory and
stress biomarkers under
heat stress of rabbits
Daniel Serrano-Jara1*, Iván Agea1, Gema Romero1,
Marı́a José Argente1, Marı́a Antonia Santacreu2

and Marı́a de la Luz Garcı́a1

1Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, CIAGRO-UMH,
Orihuela, Spain, 2Instituto de Ciencia y Tecnologı́a Animal, Universidad Politécnica de Valencia,
Valencia, Spain
Heat stress is a major challenge for rabbit production, due to the species’ limited

thermoregulatory capacity. Two rabbit lines were divergently selected over 17

generations for environmental variance in litter size: the Low line, with greater

resilience, and the High line, with less resilience. This study aimed to compare

acute stress and inflammatory responses in males from both lines under heat

stress (temperature–humidity index, THI ≥ 27.8) and thermoneutral (THI< 27.8)

conditions. Forty males (20 per line) were evaluated for eyeball temperature via

infra-red thermography before and after a semen collection stressor, and for

plasma cortisol, C-reactive protein (CRP), and tumor necrosis factor-a (TNF-a)
by ELISA. Bayesian methodology was used for statistical analysis. The Low line

maintained lower eyeball temperatures than the High line under both thermal

conditions (P > 90%), while retaining normal acute stress responses. Under heat

stress, the Low line also showed lower TNF-a levels, and under both conditions,

lower cortisol levels (P > 90%). CRP did not differ between lines or thermal

conditions (P< 90%). These results indicate that selection for reduced litter size

variability improves thermal regulation and attenuates stress-associated

physiological responses, supporting its use to enhance resilience, welfare, and

sustainability in rabbit production.
KEYWORDS

resilience, heat stress, infra-red thermography, litter size variability, stress biomarkers,
CRP, TNF-a, cortisol
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1 Introduction

The global rise in temperatures due to climate change is a

challenge for livestock production. The Mediterranean region

constitutes a hottest and large area of highly specialized and

technically skilled rabbit production (Giorgi and Lionello, 2008;

Cullere and Dalle-Zotte, 2018). Heat stress is one of the main factors

directly and indirectly linked to environmental stress in rabbits

(Oladimeji et al., 2022; Ebeid et al., 2023).

Rabbits are homeothermic animals that are very sensitive to

high temperatures (Marai et al., 2002). Due to their thick fur and the

absence of sweat glands, this species has a low thermoregulatory

capacity (Marai et al., 2001; Yağci et al., 2006). The zone of

thermoneutrality in rabbits is between 15 to 25 °C and 55-65% of

humidity, the critical temperature from 27 to 30 °C, and 35 °C is the

maximum temperature above which rabbits cannot regulate their

body temperature (Marai et al., 2001; Cervera and Carmona, 2010;

Nielsen et al., 2022; Oladimeji et al., 2022). Heat stress occurs when

rabbits are unable to maintain equilibrium between the heat they

produce and the heat they lose.

Heat stress negatively impacts average daily gain and feed

conversion ratio (Jaén-Téllez et al., 2021; Liang et al., 2022), while

also impairing reproductive performance. This includes reduced

sperm quality in males (Pei et al., 2012; Huang et al., 2023) and

decreased fertility, embryo implantation rates, embryo quality and

birth weights in females (Garcıá and Argente, 2017; Liang et al.,

2022; Ebeid et al., 2023). It also reduces the quality of the processed

product (Zeferino et al., 2013) and increases the mortality rate (Yan

and Li, 2008).

High ambient temperatures activate the hypothalamic-pituitary-

adrenocortical (HPA) axis and the sympathetic adrenomedullary

system, leading to increased plasma levels of cortisol and

catecholamines, and body temperature (Hennessy, 1997; Möstl and

Palme 2002). Infrared thermography (IRT) enables the detection of

variations in body temperature (Agea et al., 2021; Jaén-Téllez et al.,

2021), which serves as an indicator of heat stress and is less invasive

than measuring plasma cortisol levels. In particular, the rabbit’s

eyeball provides an optimal anatomical site for rapidly assessing the

response to acute stress stimuli (Serrano-Jara et al., 2025).

Acute stress dysregulates the immune system, increasing

susceptibility to diseases (Mormede et al., 2018). This homeostatic

disruption, caused by factors like infections, tissue damage, or stress

itself, triggers an acute phase response (Kushner, 1988). In turn, the

acute phase response induces the release of cytokines, which alter

the plasma concentration of acute phase proteins (Eckersall and

Bell, 2010). Among these, TNF-a, a pro-inflammatory cytokine,

and C-reactive protein (CRP), a positive acute phase protein, are

widely used as biomarkers for assessing stress and animal welfare

(Gutiérrez et al., 2009; Argente et al., 2019; Beloumi et al., 2020).

TNF-a is a central mediator in multiple physiological and

disease-related processes. In humans, it contributes to

inflammation by activating neutrophils and disrupting intestinal

absorption (Deem et al., 1991; Suter et al., 1992). Studies in rodents
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have linked TNF-a to oxidative stress-induced cell damage in mice

and regulation of the HPA axis in rats (Bohlinger et al., 1996; Takao

et al., 1997). In rabbits, evidence suggests it impairs jejunal absorption

of nutrients such as L-leucine and D-fructose (Abad et al., 2002;

Garcıá-Herrera et al., 2004). CRP is synthesized in the liver and its

serum concentrations increase in response to an inflammatory

process. In rabbits, plasma CRP levels have been associated with

reproductive, dental, and musculoskeletal diseases (Oohashi et al.,

2019). In goats, it has been linked tometritis andmastitis, and in sows

to infectious processes and stress situations (Saco and Bassols, 2022).

Resilience is the capacity of the animal to be minimally affected

by a disturbance or to rapidly return to the physiological,

behavioral, cognitive, health, affective and production states that

pertained before exposure to a disturbance (Colditz and Hine,

2016). A divergent selection program was developed in rabbits

with the aim of improving resilience. However, resilience is a trait

that is difficult to measure directly. For this reason, the team

proposed assessing it through the environmental variance in litter

size within females. The Low line, which developed greater

resilience as a result of the selection process, was selected for

reduced litter size variability, whereas the High line, with

comparatively less resilience, was selected for increased variability

(Blasco et al., 2017).

The genetic program proved successful: after 12 generations of

selection, litter size variability was 2.5 kits² in the Low line and 5.5

kits² in the High line. Females from the Low line showed a lower

inflammatory response to infectious challenges and greater disease

resistance compared to those from the High line. This was reflected

in lower female mortality at parturition, reduced litter mortality at

birth and weaning, and greater uniformity in litter weight at

weaning (Argente et al., 2017). Moreover, females from the High

line exhibited higher stress responses, lower disease resistance, and

smaller litter sizes than those from the Low line (Argente et al.,

2017, 2019; Beloumi et al., 2020), confirming that the Low line is the

more resilient than the High line.

The study aims to assess the acute stress and inflammatory

correlated response in two divergent selected rabbit lines for litter

size variability, under both with and without environmental heat

stress, by monitoring body temperature and plasma levels of CRP,

TNF-a, and cortisol.
2 Material and methods

The experimental procedures with animals were approved by

the General Directorate of Agriculture, Livestock and Fisheries of

the Generalitat Valenciana with code 2022/VSC/PEA/0226.
2.1 Animals and experimental design

The research was carried out on the farm at Miguel Hernandez

University in Orihuela (38.06747347849708, -0.9821394614708082),
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Alicante (Spain). The facilities included equipped with forced

ventilation and cooling, and a photoperiod of 16 hours of light and

8 hours of darkness. Animals were housed in individual cages, fed

with a commercial diet (16.1% of crude protein; 3.522 kcal/kg of

digestible energy) and provided water ad libitum.

In the selection process for environmental variability of litter

size, each line includes approximately 125 ± 5 females and 25 males

per generation. Selection is based on the phenotypic variance of

litter size within each female, after correcting litter size for year-

season effects and parity-lactation status. Once systematic effects are

corrected, the intra-doe phenotypic variance reflects environmental

variability. The selection intensity for each generation is 30%. To

reduce inbreeding, each male is mated with five females, and one

male offspring from the best female is selected to breed the next

generation (see more details in Blasco et al., 2017). Each generation

lasts 12 months.

A total of 40 males, 20 each from the 17th generation of the

High (heterogeneous) and Low (homogeneous) lines, were used in

this study. The age range was between 5 and 10 months on both

lines. The average weight was 3.53 kg.

From ambient temperature and relative humidity, the

temperature/humidity index (THI) was calculated: THI = t -

[(0.31 - 0.31 × rh) × (t - 14.4)] where t = average temperature of

the farm from the time of infra-red imaging until 24 hours before

and rh = relative humidity/100, collected in the same way as

temperature (Marai et al., 2001). The weeks in which data were

collected were classified according to the THI into heat stressed

(THI ≥ 27.8) and non-heat stressed (THI< 27.8) (Marai et al., 2001).

According to the THI, the groups were classified into High Stressed

Line (HS), High Non-Stressed Line (HNS), Low Stressed Line (LS)

and Low Non-Stressed Line (LNS).
2.2 Temperature records

A total of 120 body temperature records were taken from the

High and Low lines (60 per line; 30 per group). Body temperature

emissivity was measured using IRT on the eyeball. The images were

obtained using a ®FLIR SC660 thermal imaging camera and were

processed with the ®ThermaCAM Researcher Pro 2.10 software to

obtain the temperature record. The camera was calibrated

according to temperature, relative humidity, emissivity (98%), and

distance from the subject (0.7 m).

Data collection was carried out for 12 weeks, between June 2023

and February 2024. Body temperature measurements at the eyeball

were taken at three moments: minute 0 (corresponding to basal

temperature), minute 1 (one minute after the application of the

acute stressor), and minute 5 (five minutes after the application of

the acute stressor). Between 0 and 1 minute the rabbit was subjected

to an acute stress stimulus based on semen collection (Serrano-Jara

et al., 2025).

For semen collection, males started the training period at 150

days of age. The training sessions were conducted once per week

over a period of 2–3 weeks (Lavara et al., 2011). After training, the

males entered the production period.
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2.3 Blood parameters

Eighty blood samples were collected from the central auricular

artery in two conditions: under heat stress (THI ≥ 27.8) and non-

heat stress (THI< 27.8). The samples were collected in 13 x 75 mm

tubes with a 3 mL capacity containing potassium salt K3EDTA

(ethylenediaminetetraacetic acid) as anticoagulant. Blood samples

were collected using a needle with a diameter of 0.6 mm (23G).

Blood was centrifuged at 4000 rpm for 15 minutes to obtain plasma

and proceed with the determination of CRP, TNF-a, and cortisol.

The samples were frozen at -80°C until analysis.

TNF-a. TNF-a was measured by commercial ELISA test

(Elabscience Bionovation Inc, Catalog Number: E-EL-RB0011,

Houston, TX, USA). The distribution of the samples was as

follows: 20 (LS), 20 (HS), 20 (LNS) and (20 HNS).

CRP. CRP was measured by commercial ELISA test (Life

Diagnostics Inc, Catalog Number: CRP-10-N, West Chester, PA,

USA). A total of 61 samples were recorded: 17 (LS), 16 (HS), 16

(LNS) and 12 (HNS). The rest of the samples were not recorded in

the ELISA test.

Cortisol. Cortisol was measured by commercial ELISA test

(Cusabio Technology LLC, Catalog Number: CSB-E06956Rb,

Houston, TX, USA). A total of 38 samples were recorded: 18

(LS), 12 (HS), 5 (LNS) and 5 (HNS). The rest of the samples were

not recorded in the ELISA test.
2.4 Statistical analysis

The correlated response was estimated as the difference between

the High and Low lines. Temperature (yijk) was analyzed with the

model:

yijk =  m   +  TLSi +   bWij +  mij +   eijk  

where m is the overall mean, TLSi is the time-line-stress effect

with twelve levels (time: minute 0, 1 or 5; line: High or Low; stress:

THI < 27.8 or THI ≥ 27.8), b is the regression coefficient, Wij is the

covariate weight, mij is the random effect of male and eijk is the

residual term.

For blood parameters (CRP, TNF-a, and cortisol; yijk) the

following model was used:

yijk =  m   +   LSi +   bWij +  mij +   eijk  

where m is the overall mean, LSi is the line-stress effect with four

levels (High or Low; stress: THI< 27.8 or THI ≥ 27.8), b is the

regression coefficient, Wij is the covariate weight, mij is the random

effect of male and eijk is the residual term.

All analyses were performed using Bayesian methodology.

Bounded uniform priors were used for all effects except for the

male effect, considered normally distributed with mean 0 and

variance Is2p. Residuals were a priori normally distributed with

mean 0 and variance Is2e. The priors for the variance were also

bounded uniform. Features of the marginal posterior distributions

for all unknowns were estimated using Gibbs sampling. Inferences
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were derived from the marginal posterior distributions. Means,

standard errors and actual probability (P) were provided. P refers to

the probability that the absolute value of the difference between two

levels of a fixed effect will be greater than zero (Blasco et al., 2017). P

indicates the probability that the differences are above zero when

H–L > 0, or below zero when H–L< 0. Within a Bayesian

framework, the notion of “statistical significance” in the classical

sense does not apply; instead, the model directly estimates the

probability of the differences being positive or negative. Notably,

these probabilities may reach or even surpass 0.90, even in cases

where the 95% credible interval still encompasses zero. We consider

that there are relevant differences when the P is greater than or

equal to 90%. The Rabbit software program developed by the

Institute for Animal Science and Technology (Valencia, Spain)

was used for all procedures. We used a chain of 60,000 samples,

with a burn-in period of 10,000. Only one out of every 10 samples

was saved for inferences. Convergence was tested using the Z

criterion of Geweke (Sorensen and Gianola, 2002) and Monte

Carlo sampling errors were computed using time-series

procedures (Geyer, 1992).
3 Results

3.1 Temperature

Figure 1 shows the progression (at minutes 0, 1, and 5) of

eyeball temperature both conditions (heat stress and non-heat

stress). For all the moments, the Low line showed lower

temperatures than the High line, both in the absence and
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presence environmental heat stress (P = 100%; P: probability that

the difference between the temperatures of both lines at each

moment is different from 0).

In the absence of environmental heat stress, at minute 0, the

Low line showed a lower eyeball temperature than the High line

(36.45 °C vs 36.77°C; P = 92%). At minute 1, temperature tended to

be lower in the Low line than in the High line (90% > P > 80%). No

differences were found between the lines at minute 5 (P = 71%).

After seminal collection, between minute 0 and 1, both lines

increased in temperature (Low line: 36.71°C and P = 99%; High line:

36.91°C and P = 90%). Between minute 1 and 5, both lines increased

their temperatures (Low line: 36.77°C and P = 71%; High line:

36.91°C and P = 51%).

In the presence of environmental heat stress the Low line

presented a lower temperature than the High line at minute 0

(37.12°C vs 37.78°C; P = 100%). After seminal collection, between

minute 0 and 1, none of the lines increased their temperature during

the first minute (Low line: 37.21°C and P = 72%; High line: 37.84°C

and P = 65%). The difference between the lines was maintained at

minute 1 (P = 99%). Between minute 1 and 5, only the Low line

increased its temperature (37.41°C; P = 92%) in comparison to the

High line (37.92°C; P = 72.2%). The difference between the

temperature of the two lines remained present (P = 97%).
3.2 Blood parameters (CRP, TNF-a,
cortisol)

Table 1 shows the differences of correlated response between the

lines in CRP, TNF-a, and cortisol levels under conditions with and
FIGURE 1

Means and standard errors (bars) of the marginal posterior distributions for eyeball temperature, recorded with infra-red thermography, in two rabbit
lines with and without heat stress. HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line. The
vertical bars represent the standard error.
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without heat stress. CRP levels showed no differences between the

lines (P< 80%). The Low line showed lower TNF-a levels in the

presence of environmental heat stress (P > 90%), but only a trend

(90% > P > 80%) in the absence of environmental heat stress.

Regarding plasma cortisol levels, the Low line showed lower levels

than the High line (P > 90%) both in the presence and absence of

environmental heat stress.

Table 2 shows a comparison of the results obtained under heat

stress and thermal comfort conditions within the same lines. TNF-a
showed an upward trend in the presence of environmental heat

stress in the High line (90% > P > 80%). As for CRP, only in the

absence of environmental heat stress in the Low line was there a

tendency for its concentration to increase (90% > P > 80%). Cortisol

levels did not vary between the presence and absence of

environmental heat stress in any of the lines (P< 80%).
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4 Discussion

Selecting animals primarily for productivity has been associated

with negative side effects in their health, fertility, and immune

responses (Rauw et al., 1998). Nowadays, the fight against climate

change and the improvement of animal welfare are related

challenges that affect l ivestock farming both social ly

and scientifically.

Over the course of 17 generations, two rabbit lines have been

divergently selected based on the environmental variability of litter

size (i.e. phenotypic variance of litter size within each female, after

correcting litter size for year-season effects and parity-lactation

status). This selection strategy has been proposed as a direct

approach to improving resilience traits (Blasco et al., 2017).

Several studies have demonstrated that females from the Low line
TABLE 1 Correlated response to selection for resilience in plasma TNF-a, CRP, and cortisol levels in two rabbit lines.

Group H (ng/ml) L (ng/ml) DH-L HPD95% P

TNF-a

HS - LS 69.092 56.438 12.654 -23.817, -0.217 0.98

HNS - LNS 65.655 59.994 5.711 -17.311, 5.604 0.84

CRP

HS - LS 3.721 3.505 0.216 -0.958, 0.558 0.71

HNS - LNS 3.735 3.914 -0.179 -0.603, 0.997 0.68

Cortisol

HS - LS 9.771 7.693 1.978 -4626.39, 647.65 0.93

HNS - LNS 11.024 6.985 4.039 -8268.8, 338.22 0.97
f

HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line; DH-L, difference between lines; HPD95%, Highest Posterior Density 95% interval, the
shortest interval containing 95% of the posterior probability, representing the most credible values of the parameter given the data and model; P, probability of DH-L being >0 when DH-L was
positive, or<0 when DH-L was negative.
TABLE 2 Comparison of plasma TNF-a, CRP, and cortisol levels between stressed and non-stressed groups in two rabbit lines.

Group S (ng/ml) NS (ng/ml) DS-NS HPD95% P

TNF-a

HS - HNS 69.092 65.655 3.447 -6.615, 14.687 0.84

LS - LNS 56.438 59.944 3.506 -13.429, 5.833 0.79

CRP

HS - HNS 3.721 3.735 0.014 -0.822, 0.829 0.51

LS - LNS 3.505 3.914 0.409 -1.188, 0.321 0.85

Cortisol

HS - HNS 9.771 11.024 -1.253 -5.016, 2488 0.74

LS - LNS 7.693 6.985 0.708 -2.443, 4.182 0.67
HS, High stressed line; LS, Low stressed line; HNS, High non-stressed line; LHS, Low non-stressed line; DS-NS, difference between stress and no; HPD95%, Highest Posterior Density 95%
interval, the shortest interval containing 95% of the posterior probability, representing the most credible values of the parameter given the data and model; P, probability of DH-L being >0 when
DH-L was positive, or<0 when DH-L was negative.
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exhibit superior adaptive capacity under adverse environmental

conditions (Garcıá et al., 2016; García et al., 2019; Argente

et al., 2019).

Our results indicate that, the Low line maintains a lower eyeball

temperature compared to the High line, while retaining a normal

physiological response to the sperm collection stimulus.

Furthermore, the findings show that, in non-heat-stress condition

the response to the acute stressor is rapid in both lines, consistent

with observations reported in the cited literature (Jaén-Téllez et al.,

2021; Serrano-Jara et al., 2025).

Under heat stress, as also reported by De Lima et al. (2013) and

Jaén-Téllez et al. (2020), the body temperature of both lines increased.

The lower temperature observed in the Low line reflects its superior

ability to adapt to adverse environments compared to the High line. In

contrast, the lack of a thermal response to semen collection in the High

line may be due to the presence of a chronic stress state, which could

diminish, delay, or impair its adaptive capacity (Moberg, 2000;

McEwen and Wingfield, 2003; Koolhaas et al., 2011).

The improved regulation of body temperature observed in the

Low line, selected for resilience, may reflect an enhanced capacity to

maintain homeostasis under challenging conditions. This

thermoregulatory advantage could be mediated by more efficient

neuroendocrine responses to stress, in line with observations in

other robustness-selected lines (Biada et al., 2024).

The analysis of stress-associated biomarkers complements the

study of temperature by providing insight into the animals’ chronic

stress status. The consistently lower cortisol levels in the Low line,

regardless of environmental conditions, suggest a more adaptive

HPA axis response, which may prevent the detrimental effects of

prolonged glucocorticoid release. In contrast, the High line appears

to exhibit higher baseline activation of the HPA axis, consistent

with Argente et al. (2019), which could indicate a reduced threshold

for stress activation and a chronic stress profile.

Differences in TNF-a concentrations reinforce this interpretation.

Under heat stress, the Low line displayed lower TNF-a levels,

suggesting a more controlled inflammatory response. Elevated

cortisol levels in the High line may compromise immune

competence by suppressing lymphoid activity and impairing the

balance between pro- and anti-inflammatory cytokines (Ayyat and

Marai, 1997; Liang et al., 2022). This imbalance has been described in

other livestock species, where heat stress enhances systemic

inflammation and increases susceptibility to infections (Lara and

Rostagno, 2013; Lemal et al., 2023). Thus, the interaction between

glucocorticoids and cytokines could explain the parallel differences

observed in both stress physiology and thermoregulation.

Regarding CRP, no differences were found between lines in our

study. The discrepancies with Argente et al. (2019) and Beloumi

et al. (2020), where the Low line exhibited lower CRP levels, might

be related to differences in sex, physiological stage, or timing of

sampling, as has been observed in rats (Nunomura, 1992; Balog

et al., 2015). It is also possible that CRP, unlike other acute-phase

proteins such as haptoglobin, is less sensitive to heat stress in

rabbits, as also reported by Argente et al. (2014).

Altogether, these results suggest that resilience-selected animals

(Low line) may mitigate the negative effects of heat stress by combining
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better thermoregulatory efficiency with a more adaptive HPA axis and

a moderated inflammatory response. This integrative response could

represent a physiological mechanism underpinning resilience, similar

to findings reported in other species exposed to heat stress

(Laghouaouta et al., 2024; Sejian et al., 2018).

In this research, the assessment of stress relied on three biomarkers

(CRP, TNF-a, and cortisol). These markers provide valuable insights

into immune and endocrine responses, but the inclusion of additional

indicators such as haptoglobin, oxidative stress parameters, or

corticosterone, the primary glucocorticoid in rabbits (Bush, 1953),

would allow for a more comprehensive understanding of the

physiological mechanisms underlying resilience to heat stress.

Although cortisol remains a relevant and widely used hormone for

evaluating stress in rabbits (Szeto et al., 2004; Verga et al., 2007),

complementing its measurement with corticosterone could further

refine the interpretation of the stress response.
5 Conclusions

The biomarkers evaluated in this study, together with infrared

thermography, represent useful tools for assessing acute stress

responses both under heat stress and comfort conditions.

These results highlight the value of selecting for functional traits

such as resilience in improving animals’ adaptive responses to heat

stress. Thus, incorporating these criteria, specifically selection for

litter size homogeneity, into breeding programs contribute to both

enhanced animal welfare and sustainable livestock production.
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(2020). Inflammatory correlated response in two lines of rabbit selected divergently for
litter size environmental variability. Animals 10, 1540. doi: 10.3390/ani10091540

Biada, I., Serrano-Jara, D., Argente,M. J., Ibañez-Escriche, N., Garcıá, M. L., and Santacreu,
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