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dorsi muscle: multi-omics
identification of breed-specific
regulatory networks and
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Intramuscular fat (IMF) deposition is a key determinant of meat quality, and
microRNAs (miRNAs) have emerged as important regulators of this process.
However, studies investigating how miRNAs influence IMF deposition and muscle
growth in the longissimus dorsi (LD) tissues of Chinese and Western pig breeds
remain limited. In this study, we analyzed the LD tissues of Huoshou black (HS)
pigs and Yorkshire (YY) pigs using transcriptome sequencing, identifying 2,833
differentially expressed genes (DEGs) and 51 differentially expressed miRNAs
(DEMs). Functional enrichment analysis demonstrated that the DEGs were
significantly associated with metabolic pathways related to IMF deposition and
fatty acid synthesis, including the MAPK and AMPK signaling pathways and the
fatty acid biosynthesis pathway. Target genes of the DEMs were enriched in
metabolic pathways such as PI3K—-Akt signaling, apelin signaling, and the
biosynthesis of unsaturated fatty acids. Four randomly selected DEGs and four
DEMs were validated using quantitative real-time PCR (qRT-PCR), confirming the
reliability of the sequencing data. Furthermore, candidate miRNAs associated
with muscle growth and IMF deposition (miR-10a-5p, miR-29b, miR-29a-3p,
miR-122-5p, miR-194a-5p, miR-221-3p, miR-31, miR-127, and miR-205) were
identified through the construction of an mMiRNA-mRNA interaction network.
The interaction between MYH7B and miR-205 was further validated using a dual-
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luciferase reporter assay. Overall, this study provides novel insights into miRNA-
mediated regulation of IMF in LD muscle between Chinese and Western pig
breeds, offering a theoretical foundation for future strategies to improve

pork quality.
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1 Introduction

Pork plays a pivotal role in China’s meat consumption, serving
as the primary source of animal protein. Consequently, pork quality
is an important economic trait that strongly influences consumer
preferences (Khan et al,, 2015). Intramuscular fat (IMF) content is a
critical biomarker of pork quality and is widely used as a key
indicator for meat quality evaluation (Dodson et al., 2015).

The Huoshou black (HS) pig, a local breed from Anhui
Province, is a fat-type pig known for its tolerance to roughage
and strong disease resistance. It is characterized by high IMF
content and good meat quality but has a relatively slow growth
rate and low slaughter yield (Zhang et al, 2022). In contrast, the
Yorkshire (YY) pig, an introduced lean-type breed, exhibits high
production efficiency, rapid growth, and a high proportion of lean
meat but generally has low IMF content (Liu et al., 2018). These
contrasting characteristics make HS and YY pigs ideal comparative
models for studying IMF deposition and provide a solid basis for
elucidating the molecular regulatory mechanisms of lipid
metabolism in porcine adipose tissue.

With continuous advancements in high-throughput
transcriptome sequencing (RNA-seq) technology, increasing
evidence indicates that microRNAs (miRNAs) play crucial roles
in regulating IMF deposition, as well as muscle growth and
development. MiRNAs are endogenous, small noncoding RNAs
that act as post-transcriptional regulators by binding to the 3’
untranslated region (3" UTR) of target mRNAs, leading to mRNA
degradation or translational repression (Lu and Rothenberg, 2018;
Mohr and Mott, 2015). For example, Shen et al (2016) reported that
miR-23a regulates meat quality by targeting and downregulating
MEF2C. Similarly, Li et al. (2016) found that miR-29a modulates
type III collagen biosynthesis in Laiwu pork by inhibiting COL3A1
expression, thereby affecting meat quality. Moreover, Sun et al.
(2017) demonstrated that miR-34a significantly modulates IMF
deposition during porcine intramuscular preadipocyte
differentiation by targeting forkhead box protein Ol (FoxO1)
expression and regulating the Erk signaling pathway. Collectively,
these studies highlight the essential roles of miRNAs in porcine IMF
deposition and fatty acid biosynthesis.

However, the molecular mechanisms by which miRNAs
regulate IMF deposition and muscle development in the
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longissimus dorsi (LD) muscle of Chinese and Western pig
breeds remain poorly understood. To address this gap, the
present study investigated the role of miRNAs in IMF deposition
in the LD muscle of HS and YY pigs. Using transcriptome
sequencing, we profiled miRNA and mRNA expression, identified
differentially expressed genes (DEGs) and differentially expressed
miRNAs (DEMs), and constructed an miRNA-mRNA interaction
network to elucidate regulatory mechanisms underlying IMF
differences between Chinese and Western pig breeds. The
identified DEGs and DEMs provide valuable molecular markers
and theoretical insights for future improvements in pork quality.

2 Materials and methods

2.1 Collection of experimental animals and
test samples

Three castrated adult male HS pigs and three castrated adults
male YY pigs were randomly selected as experimental subjects. All
pigs were maintained under identical housing and feeding
conditions, with ad libitum access to feed and water, and
remained healthy throughout the trial. After fasting for
approximately 12 h, pigs were humanely euthanized by electrical
stunning (1.5A, 5s) followed by exsanguination. Exsanguination
was performed by severing the carotid arteries and jugular veins,
and death was confirmed by the absence of heartbeat and
respiration. LD tissues from the third to the fourth intercostal
spaces were collected immediately after euthanasia. Portions of
tissue were snap-frozen in liquid nitrogen for transcriptome
sequencing, while others were rinsed with phosphate-buffered
saline (PBS) and fixed in 4% paraformaldehyde (PFA) for
histological analysis. Samples from HS pigs were labeled HSI1-
HS3, and those from YY pigs were labeled YY1-YY3.

2.2 Histological analysis of LD muscle

The morphology of LD muscle in HS and YY pigs was
compared and analyzed using hematoxylin-eosin (H&E) staining.
After fixation in 4% PFA, approximately 1 cm® of muscle tissue was
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processed for dehydration, clearing, embedding, sectioning, and
staining with hematoxylin and eosin. Tissue sections were observed
under a light microscope equipped with a digital imaging system.

2.3 Total RNA Extraction and transcriptome
sequencing

Total RNA was extracted from LD muscle tissue using TRIzol
reagent (Thermo Fisher Scientific, Carlsbad, CA, USA). RNA purity
and concentration were determined with a NanoDrop ND-2000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,
USA), and RNA integrity was assessed by 1% agarose gel
electrophoresis. High-quality RNA samples were submitted to
Shanghai Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China) for library construction and sequencing.

Raw sequencing data were initially assessed with FastQC
(version: 0.20.1) (Chen et al, 2018). Low-quality reads and
adapter sequences were removed using Seqtk trimfq. Clean reads
were then aligned to the pig reference genome (Sscrofa 11.1) using
Hisat2 (version: 2.0.4) software (Kim et al, 2015). Transcripts
assembly was performed with StringTie (v1.3.5) (Kovaka et al,
2019). DEGs were identified using DESeq2 (Love et al., 2014) with
thresholds of |Log,FC| > 0.58 and a Benjamini-Hochberg false
discovery rate (FDR)-adjusted P < 0.05.

2.4 miRNA sequencing and analysis

miRNA analysis was performed using miRDeep2 (Friedlander
et al., 2012), including identification of known miRNAs, prediction
of novel miRNAs, and quantification of expression levels.
Expression abundance was normalized to transcripts per million
(TPM), and fold change (FC) values were derived from the
expression matrix (Zhao et al., 2020). Differentially expressed
miRNAs (DEMs) were identified using DESeq2 with thresholds of
|Log2FC| > 0.58 and FDR-adjusted P < 0.05 (Love et al., 2014).
Target genes of DEMs were predicted using miRanda (v3.3a) with
default parameters (John et al., 2004).

2.5 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analysis

Gene Ontology (GO) provides a framework for annotating
genes and classifying biological functions in transcriptome and
other high-throughput data. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) database is widely used to investigate
biological pathways, genomes, chemical substances, diseases, and
drugs. Functional enrichment analyses of DEGs and predicted
target genes of DEMs were conducted using ClusterProfiler (v4.0)
(Wu et al,, 2021a). GO terms and metabolic pathway enrichment
were considered significant at P < 0.05 and highly significant at P <
0.01. For DEG analysis, the background gene set included all
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expressed genes (TPM > 1 in at least one sample). For DEM
target analysis, all detected miRNAs (read count > 10 in > 2
samples) were used as the background.

2.6 Construction of the mRNA-miRNA
network

To explore potential interactions between DEGs and DEMs,
predicted miRNA target genes were intersected with DEGs. Target
gene prediction was performed using the miRanda online database
(http://www.miranda.org) and the R package multiMiR. Perl scripts
were then used to identify overlapping genes, yielding 170
differentially expressed target genes (DETGs). Based on the
principle of miRNA-mediated negative regulation, interaction
pairs were identified and visualized using Cytoscape (v3.8.0)
(Shannon et al., 2003).

2.7 Validation of DEGs and DEMs by
quantitative real-time PCR

To validate the sequencing data, four DEGs and four DEMs
were randomly selected for qRT-PCR analysis. Primer sequences
were designed using Oligo 7 and miRNA Design software (listed in
Supplementary Table S1). GAPDH and U6 small nuclear RNA were
used as internal reference genes. Relative expression levels of DEGs
and DEMs were calculated using the 2A-AACT method (Bustin
et al., 2009).

2.8 Dual-luciferase reporter assay

The interaction between miR-205 and MYH7B, predicted in the
miRNA-mRNA network, was validated using a dual-luciferase
reporter assay. The 3’ untranslated region (3" UTR) of MYH7B
(wild type, WT; mutant, MUT) was cloned into the psiCHECK2
vector. HEK293T cells were seeded in 24-well plates and transfected
at 70%-80% confluence with 1 pg of recombinant plasmid (WT or
MUT) and 15 pmol of miR-205 mimic using Lipofectamine 3000
(Thermo Fisher Scientific). Negative controls included empty
vectors and scrambled miRNA. After 48 h, cells were lysed and
supernatants collected by centrifugation (12,000 x g, 10 min, 4 °C).
Firefly and Renilla luciferase activities were measured, and the
Renilla/Firefly ratio was used for normalization. Statistical
differences between groups were assessed using two-tailed
Student’s t-tests, with significance set at P < 0.01.

2.9 Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics
20.0. qRT-PCR data were analyzed with Student’s t-tests. Graphs
were generated with GraphPad Prism (v8.2.1). A P-value < 0.05 was
considered statistically significant.

frontiersin.org


http://www.miranda.org
https://doi.org/10.3389/fanim.2025.1630616
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org

Li et al.

3 Results

3.1 Morphological structure of LD muscle
tissue

H&E staining revealed distinct morphological differences in LD
muscle between HS and YY pigs (Figure 1). In HS pigs, muscle fibers
appeared oval shaped, relatively small, and separated by wider inter-
fiber gaps. In contrast, YY pigs exhibited irregularly square-shaped
muscle fibers that were larger and more closely packed. Quantitative
analysis showed that the mean fiber diameter in HS pigs was
significantly smaller than that in YY pigs (P < 0.05) (Figure 1E).

3.2 Quality control of raw sequencing data

From the six LD muscle samples, 338,715,774 raw reads were
obtained from the mRNA libraries and 159,376,543 reads from the
miRNA libraries (Supplementary Tables S2, S3). After alignment
with the pig reference genome, 313,740,633 mRNA reads were
successfully mapped, with alignment rates ranging from 94.5% to

10.3389/fanim.2025.1630616

97.1% (Supplementary Table S2). Pearson correlation analysis
confirmed strong biological repeatability, with R*> values
exceeding 0.99 for mRNA libraries and 0.80 for miRNA libraries
(Supplementary Figure S1). These results indicate that the libraries
were of high quality and suitable for subsequent analyses.

3.3 Identification of DEGs and DEMs

Differential expression analysis identified 2,833 DEGs (1,559
upregulated and 1,274 downregulated) and 51 DEMs (14
upregulated and 37 downregulated) between HS and YY pigs
(Figures 2A, B; Supplementary Figure S2; Supplementary Tables
s6, S7).

3.4 GO and KEGG enrichment analysis of
DEGs

GO enrichment analysis categorized DEGs into biological
processes, cellular components, and molecular functions
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(Figure 3A; Supplementary Table S8). Among biological processes,
1,066 significantly enriched terms (70.3%) were identified, mainly
related to lipid metabolism, lipid biosynthesis, and lipid
homeostasis (P < 0.05). For cellular components, 135 enriched
terms (8.9%) were detected, including the collagen-containing
extracellular matrix, Golgi apparatus, and synaptic cleft
extracellular matrix (P < 0.05). In molecular functions, 316
enriched terms (20.8%) were identified, such as ubiquitin protein
ligase binding, protein kinase regulator activity, and protein binding
(P < 0.05).

Metabolic pathway enrichment analysis revealed significant
enrichment of DEGs in 70 pathways, including fatty acid
biosynthesis, MAPK signaling, and AMPK signaling pathways (P
< 0.05; Figure 3B; Supplementary Table S9).

3.5 Prediction and enrichment analysis of
DEM target genes

A total of 1,205 target genes were predicted for 51 DEMs,
forming 2,045 interaction pairs. GO analysis revealed 936 enriched
terms, including 597 biological processes (63.8%), 100 cellular
components (10.7%), and 239 molecular functions (25.5%)
(Figure 4A; Supplementary Table S10). The target genes were
significantly enriched in lipid metabolism, lipid homeostasis, and
fatty acid metabolism.

Metabolic pathway enrichment analysis identified 41
significantly enriched pathways (P < 0.05), including the
biosynthesis of unsaturated fatty acids, PI3K-Akt signaling, and
Ras signaling pathways (Figure 4B, Supplementary Table S11).

10.3389/fanim.2025.1630616

3.6 Validation of sequencing data by qRT-
PCR

Four genes and four miRNAs were randomly selected for qRT-
PCR validation. Their expression patterns were consistent with the
RNA-seq and small RNA-seq results, confirming the reliability of
the sequencing data (Figure 5; Supplementary Table 54).

3.7 Construction of the mRNA—-mMiRNA
interaction network

A total of 208 predicted target genes overlapped with 2,129
DEGs, resulting in 170 DEGs for network construction. The final
interaction network contained 194 nodes and 173 edges, including
170 mRNAs and 23 miRNAs (Figure 6A).

Metabolic pathway enrichment analysis revealed that target
genes were significantly enriched in ECM-receptor interaction,
apelin signaling, and MAPK signaling pathways (P <
0.05) (Figure 6B).

3.8 Dual-luciferase reporter assay

miR-205 was significantly downregulated, while MYH7B was
upregulated in HS pigs. Bioinformatic predictions (RNAhybrid,
miRanda, and TargetScan) indicated that MYH7B is a direct target
of miR-205. To validate this, a mutant vector was constructed. As
shown in Figure 7 (Supplementary Table S4), the dual-luciferase
activity of the miR-205 + MYH7B-3'UTR-WT group was
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Enrichment analysis of DEM target genes. (A) Top 15 GO terms; (B) Top 10 enriched metabolic pathways.

significantly reduced compared with the control (P < 0.01), whereas
no significant difference was observed in the miR-205 + MYH7B-3’
UTR-MUT group. These results confirm the direct targeting
relationship between miR-205 and MYH7B.

4 Discussion

Pork quality is a key economic trait that strongly influences
consumer preferences, with IMF being a crucial characteristic and
primary indicator of meat quality. Previous research has
demonstrated a close relationship between muscle fiber diameter

and pork quality (Zhang et al., 2020). In this study, the
morphological structure of LD muscle in HS and YY pigs was
analyzed. HS pigs exhibited wider gaps and smaller muscle fiber
diameters compared with YY pigs, consistent with their higher
IMF content.

In recent years, miRNAs have garnered increasing attention for
their regulatory roles in IMF deposition and muscle development
(Ballarino et al., 2016). Although miRNAs have been shown to be
essential in these processes, the mechanisms by which they regulate
IMF deposition and muscle growth in the LD muscle of Chinese
versus Western breeds remain poorly understood. To address this,
we used HS and YY pigs as models, performing transcriptome
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FIGURE 5
Validation of DEGs and DEMs by qRT-PCR.
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sequencing to characterize the expression profiles of miRNAs and
mRNAs, identify DEGs and DEMs, and construct miRNA-mRNA
interaction networks to elucidate the molecular mechanisms
underlying IMF differences between breeds.

Comparative transcriptome profiling identified 3,025 DEGs
between HS and YY pigs. GO enrichment highlighted significant
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Verification of miR-205 targeting MYH7B using the dual-luciferase
reporter assay. **P < 0.01.
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biological processes related to lipid regulation, including lipid
metabolism, biosynthesis, and homeostasis. Metabolic pathway
enrichment analysis further revealed that DEGs were enriched in
pathways relevant to IMF deposition, such as fatty acid
biosynthesis, MAPK signaling, and AMPK signaling (Figure 3B).
The MAPK signaling pathway mediates intracellular signaling and
plays key roles in adipocyte differentiation and skeletal muscle growth
(Ambele et al., 2020; Arriojas et al., 2023). In this study, 77 DEGs were
significantly enriched in the MAPK signaling pathway. For example,
MAPK14 promotes adipogenesis and myogenesis (Keren et al.,, 2006).
MAPKAPK?2, a downstream protein kinase within the p38 MAPK
signaling pathway, supports skeletal muscle development when
activated (Scharf et al., 2013). Previous studies reported higher
MAPK14 expression in Chinese Debao pigs compared with Landrace
pigs (Huang et al, 2018) and lower MAPKAPK2 expression in
Laiwu pigs compared with Yorkshire pigs (Chen et al, 2022;
Huang et al, 2018). The AMPK pathway, which restores energy
balance by regulating lipid and protein biosynthesis and fatty acid
oxidation (Xiao et al, 2007), was also enriched. Among the genes
involved, ADIPOR2 and LEP were notable. ADIPOR2,a primary
receptor for adiponectin, mediates the regulation of fatty acid
oxidation and glucose uptake through activation of the AMPK
signaling pathway (Yamauchi et al, 2002), LEP, an adipocyte-
secreted protein hormone, regulates muscle fatty acid oxidation via
the AMPK signaling pathway (Minokoshi et al., 2002). Previous studies
reported significantly higher expression of ADIPOR2 in the LD muscle
of Yorkshire pigs compared with Northeast Min pigs (Yao et al,, 2019),
and higher expression of LEP in Dahe pigs (Yi et al., 2024). Fatty acid
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biosynthesis, which synthesizes aliphatic acids from acetyl-CoA and
malonyl-CoA through fatty acid synthase, is essential for fat deposition
and muscle growth (Heil et al, 2019). In this study, 10 DEGs
were significantly enriched in this pathway, including FASN and
ACSLI. FASN promotes fat deposition and fatty acid synthesis
(Sakai et al,, 2020; Solsona et al., 2021), while ACSLI activates
fatty acids to form acyl-CoA, thereby regulating lipid synthesis
(Li et al., 2020). Previous findings showed higher expression of FASN
and ACSLI in the LD muscle of Wannanhua and Laiwu pigs compared
with Yorkshire pigs (Chen et al, 2017; Li et al, 2016). In our study,
MAPKI14, MAPKAPK2, LEP, and FASN were expressed at significantly
higher levels in HS pigs compared with YY pigs, while ADIPOR2 and
ACSLI were expressed at significantly lower levels. These findings
suggest that differences in IMF content between HS and YY pigs may
be mediated by differential regulation of the MAPK, AMPK, and fatty
acid biosynthesis pathways.

Differential miRNA expression profiling identified 51 DEMs.
Subsequent target prediction analysis revealed that these DEMs
potentially regulate 1,549 target genes, forming 2,580 miRNA-
mRNA regulatory pairs. Enrichment analysis of the predicted
target genes revealed significant associations with lipid
homeostasis and fatty acid metabolism. Metabolic pathway
enrichment further indicated strong links to IMF deposition and
lipid metabolism, including biosynthesis of unsaturated fatty acids,
PI3K-Akt signaling, and Rapl signaling (Figure 6B). The
biosynthesis of unsaturated fatty acids regulates muscle cell
growth, proliferation, and differentiation, thereby promoting fat
deposition and muscle development (Lipina and Hundal, 2017).
The PI3K-Akt signaling pathway serves as a central regulator of
cellular growth, differentiation, and lipid metabolism (Savova et al.,
2023), while the Ras signaling pathway is critical for adipocyte
differentiation (Mitin et al., 2001). From these pathways, seven
DEMs associated with fat deposition and muscle growth were
identified: miR-10a-5p, miR-29b, miR-29a-3p, miR-122-5p, miR-
194a-5p, miR-221-3p, and miR-31. For example, miR-10a-5p
promotes adipogenesis by suppressing KLF11 (Zhang et al., 2024).
MiR-29b enhances intramuscular adipocyte proliferation but
inhibits differentiation by targeting CTRP6 (Wu et al., 2021b).
miR-29a-3p, a member of the miR-29 family, regulates
adipogenesis and adipocyte differentiation by inhibiting SPARC
expression (Song et al, 2018), miR-122-5p modulates lipid and
cholesterol metabolism by directly targeting FABP5 and HMGCS2
(Zhai et al, 2023), miR-194a-5p regulates lipid and cholesterol
metabolism via Apoa5 and Hmgcs2 (Nie et al., 2017; Torres et al,
2019), miR-221-3p influences adipocyte differentiation and
metabolism by directly regulating ANGPTLS8 (Mysore et al,
2017), and miR-31 regulates adipocyte differentiation and
adipogenesis via PIK3C2A and C/EBPa (Tang et al., 2009). Our
results showed that miR-10a-5p, miR-29b, and miR-29a-3p were
more highly expressed in HS pigs, while miR-122-5p, miR-194a-5p,
miR-221-3p, and miR-31 were expressed at lower levels in HS pigs
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compared with YY pigs. These differences suggest that DEMs
contribute to breed-specific variations in IMF deposition.
Furthermore, this study identified four miRNAs (miR-10a-5p,
miR-122-5p, miR-127, and miR-205) associated with IMF deposition
and muscle growth in the miRNA-mRNA network. miR-10a-5p
targets COL6AI and CROT, both negatively correlated with its
expression. COL6AI enhances adipogenic differentiation and IMF
deposition (Zhang et al, 2020), while CROT regulates fatty acid
oxidation and lipid metabolism (Wanders et al, 2010). Lower
expression of these genes in HS pigs compared with YY pigs
suggests that miR-10a-5p may promote fat deposition by
suppressing them (Figure 6A). miR-122-5p targets ELOVLG, a fatty
acid elongase involved in adipocyte proliferation and differentiation
(Duetal, 2018). Higher ELOVLG6 expression in HS pigs suggests that
miR-122-5p may enhance fat deposition by promoting its expression
(Figure 6A). miR-127, a negative regulator of fat deposition, targets
FN1, which promotes adipogenic differentiation and lipid droplet
accumulation (Gao et al., 2019; Wang et al,, 2019). HS pigs exhibited
lower expression of miR-127 but higher expression of FNI,
suggesting a regulatory role in IMF deposition (Figure 6A). Finally,
miR-205 targets MYH?7B, a myosin heavy chain protein essential for
sarcomere structure, muscle growth, and contraction (Yu et al., 2014).
In this study, miR-205 was expressed at lower levels in HS pigs,
while MYH?7B was expressed at higher levels. Dual-luciferase reporter
assays confirmed the targeting relationship, indicating that miR-205
may regulate lipid biosynthesis by modulating MYH7B expression.
In summary, these identified DEMs and their target genes play key
roles in regulating muscle fat deposition and growth, providing
promising molecular targets for future studies to improve pork quality.

5 Conclusion

This study employed transcriptome sequencing to investigate
mRNA and miRNA expression in the LD muscle of Chinese (HS)
and Western (YY) pig breeds. Numerous DEGs and DEMs
associated with IMF deposition and muscle growth were
identified. Functional enrichment analysis revealed that DEM
target genes were significantly enriched in lipid metabolism-
related pathways, including MAPK signaling, AMPK signaling,
and fatty acid biosynthesis.

Within the miRNA-mRNA interaction network, nine
candidate miRNAs (miR-10a-5p, miR-29b, miR-29a-3p, miR-122-
5p, miR-194a-5p, miR-221-3p, miR-31, miR-127, and miR-205)
were identified. Notably, the interaction between miR-205 and
MYH7B was experimentally validated using a dual-luciferase
reporter assay. These findings indicate that the identified miRNAs
regulate IMF deposition and muscle development by modulating
key target genes.

Overall, this study provides new insights into the molecular
mechanisms underlying fat deposition and myogenesis in pigs,
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offering a theoretical framework for improving pork quality
through molecular breeding strategies.
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