

OPEN ACCESS

*CORRESPONDENCE

EDITED AND REVIEWED BY Glenis Kathleen Scadding, University College, United Kingdom

Herberto J. Chong-Neto

✓ hchong@ufpr.br

RECEIVED 29 October 2025 ACCEPTED 03 November 2025 PUBLISHED 13 November 2025

CITATION

Chong-Neto HJ and Gómez RM (2025) Editorial: Rhinitis and pollution. Front. Allergy 6:1735318. doi: 10.3389/falgy.2025.1735318

COPYRIGHT

© 2025 Chong-Neto and Gómez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Rhinitis and pollution

Herberto J. Chong-Neto^{1*} and R. Maximiliano Gómez²

¹Federal University of Paraná, Curitiba, Brazil, ²Catholic University of Salta, Salta, Argentina

KEYWORDS

allergic rhinitis, asthma, exposome, pollution, sick building syndrome

Editorial on the Research Topic

Rhinitis and pollution

In this volume you will find the description of a topic that must warn the planetary population about the environment we have (a consequence of what we do), and the impact in human health. Here, we focus in the allergy field.

Revisiting the Air–Allergy Interface: From Pollutant Adjuvancy to Planetary Health, the compilation of the four recent articles published in Frontiers in Allergy—Rosario et al., González-Díaz et al., Zhong et al., and Shusterman—are collectively mapping an evolving frontier in allergy research. Together, they show how pollution acts not only as an irritant or trigger, but as a true biological amplifier of sensitization—a concept with both historical and modern mechanistic foundations.

Shusterman reconstructs the intellectual lineage of the pollutant-adjuvant concept "From Allergy versus Irritation to Adjuvancy: Lessons from History". Beginning with Japanese and Californian studies from the 1980s, he recounts how diesel exhaust particles enhanced allergen-specific IgE responses and even induced sensitization to new, otherwise innocuous antigens. Subsequent decades broadened this paradigm: second-hand smoke, wood-smoke, formaldehyde, phthalates, and ozone–limonene reaction products all demonstrated adjuvant-like effects.

In "The Modern Scene: Pollution and Rhinitis as Markers of the Anthropocene", Rosario et al. portray rhinitis as a sentinel disease of the Anthropocene, where nasal epithelium functions as a biosensor against particulate matter, ozone, and nitrogen oxides, activating alarmins (IL-25, IL-33, TSLP) and amplifying type 2 inflammation. Rising CO₂ and warming extend pollen seasons and allergenicity, creating dual chemical and biological adjuvants acting on airway barriers.

Zhong et al. demonstrate "Causality and Genetics: The Mendelian Lens", through Mendelian randomization using UK Biobank and FinnGen data, a causal relationship between PM_{10} exposure and asthma, though not with allergic rhinitis, implying distinct biological pathways despite overlapping epidemiology.

Also, González-Díaz et al. analyzed 402 urban residents and found that 91% reported at least one sick-building-syndrome symptom in "Indoor–Outdoor Continuum: Sick Building Syndrome and Hidden Pollutants". These correlated with outdoor $PM_{2.5}$, nitrogen oxides, and airborne pollen, showing that indoor air mirrors outdoor pollution and forms an indoor adjuvancy environment.

"Synthesizing Across Scales: From Molecules to Buildings" we find four studies, altogether defining an eco-immunologic continuum linking pollutant adjuvants, climate drivers, and host genetics. Airway allergy becomes a mirror of environmental change, where epidemiology, immunology, and architecture intersect.

Chong-Neto and Gómez 10.3389/falgy.2025.1735318

The "Future Horizons: Toward Adjuvant-Aware Allergy Prevention" exhorts us to recognize and act in consequence about priorities, including: (i) unifying oxidative-stress and cytokine models of pollutant adjuvancy (Shusterman); (ii) genotype-exposome mapping (Zhong et al.); (iii) building-level interventions (González-Díaz et al.); (iv) antioxidant and dietary strategies (Shusterman); and (v) integrating allergy prevention with climate mitigation (Rosario et al.).

In conclusion, from diesel exhaust to indoor formaldehyde, from genomic susceptibility to climate-driven pollen shifts, these studies argue that pollution is an active participant in allergic diseases. The airway epithelium translates chemical and biological stressors into inflammation and sensitization. Understanding and mitigating these interactions will define the next decade of respiratory-allergy prevention.

Author contributions

HC-N: Writing – review & editing, Writing – original draft, Conceptualization. RG: Writing – original draft, Conceptualization, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.