

OPEN ACCESS

EDITED BY

Indrashis Podder,

College of Medicine & Sagore Dutta Hospital,

REVIEWED BY

Smitha Jasper,

Christian Medical College and Hospital, India Qingwu Wu,

Third Affiliated Hospital of Sun Yat-sen University, China

*CORRESPONDENCE

Chen Li

⊠ casio1981@163.com

Zuotao Zhao

☑ zhaozuotaotao@163.com

RECEIVED 25 July 2025
ACCEPTED 15 October 2025
PUBLISHED 11 November 2025

CITATION

Zhang T, Meng F, He J, Li C and Zhao Z (2025) Temporarily induced facial eczema by IL-17 inhibitors: a case report and literature review. Front. Allergy 6:1672897.

doi: 10.3389/falgy.2025.1672897

COPYRIGHT

© 2025 Zhang, Meng, He, Li and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Temporarily induced facial eczema by IL-17 inhibitors: a case report and literature review

Ting Zhang¹, Fanzhang Meng², Junchen He¹, Chen Li^{1*} and Zuotao Zhao^{1*}

¹Department of Dermatology, Tianjin Institute of Integrative Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China, ²School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China

Biologics targeting interleukin-17 (IL-17) are widely used for moderate to severe psoriasis with great efficiency. Nonetheless, their usage has sporadically resulted in paradoxical reactions, such as eczema, sarcoidosis-like eruptions, alopecia areata, and pyoderma gangrenosum. Here, we report a case of temporary facial eczema to secukinumab with a score of 5 on the Naranjo scale, which suggests a probable drug side effect. The patient was a 32-yearold Chinese male with a history of chronic plaque psoriasis for 5 years. He was previously treated with topical steroids, calcipotriol, narrowband ultraviolet B phototherapy, and oral traditional Chinese medicine intermittently since 2020. In January of 2025, his psoriasis exacerbated and was not well controlled. The patient underwent an initial regimen of 300 mg secukinumab once weekly for 4 weeks, with significant psoriasis area and severity index (PASI) improvement, and was scheduled to continue maintenance therapy on a regimen of every 4 weeks. However, in the seventh week of the secukinumab treatment course, the patient's face developed diffuse, swollen, erythematous patches that had almost coalesced into sheets. The surface is smooth, without scales, blisters, or exudation, and accompanied by mild itching. Lab tests show elevated aminotransferase (ALT) at 83.2 U/L (normal range: 9-50 U/L), slightly increased direct bilirubin at $8.48 \ \mu mol/L$ (normal range: $0-8.0 \ \mu mol/L$). Other lab tests showed no significant abnormalities. After oral compound glycyrrhizin, olopatadine hydrochloride, triprolidine hydrochloride, and topical pimecrolimus for a week, his facial lesions were completely cleared. Liver function tests normalized following a 2-week course of polyenphosphatidylcholine. The patient delayed secukinumab administration by 2 weeks and continued 300 mg secukinumab administration on a regimen of every 4 weeks. No recurrence of similar rash or other adverse effects was observed during the subsequent follow-up period over 5 months. It is concluded that eczema could be induced temporarily by secukinumab, and maybe continued application.

KEYWORDS

IL-17 inhibitors, case report, psoriasis, eczema, paradoxical reactions

Introduction

Interleukin-17 (IL-17), first identified in 1993, represents a critical proinflammatory cytokine primarily secreted by Th17 cells, CD8+ T cells, $\gamma\delta$ T cells, and natural killer T cells (NK cells). Non-IL-17 cells, such as mast cells and neutrophils, are also a source of IL-17. Mast cells are identified as major IL-17 producers in early acne lesions, particularly in CD4+ T-cell-rich areas, highlighting a critical IL-17/mast cell/T-helper cell axis in inflammatory skin conditions (1). In Alzheimer's disease, a specific subset of neutrophils producing IL-17 was identified (2). Mucosalassociated invariant (MAIT) cells produce IL-17A and IL-17F independently of IL-23, contributing to tissue inflammation in certain diseases (3). In psoriasis, γδ T cells and NK cells exhibit distinct but interconnected contributions to disease pathogenesis. $\gamma\delta$ T cells (particularly V $\gamma4/V\delta1$ subsets) are major contributors to psoriatic inflammation. They are among the highest producers of IL-17A and exhibit memory-like characteristics that mediate repeated inflammatory episodes (4). γδ T cells can suppress NKcell responses through downregulation of NKG2D/NKp44 receptors (5) and show stronger immunological correlations with psoriasis progression than NK cells (6). NK cells may play more regulatory roles through interactions with γδ T cells rather than direct pathogenic effects (5).

The IL-17 family comprises six members (IL-17A-F) (7, 8). Under physiological conditions, IL-17A and related isoforms maintain immune homeostasis by combating pathogen invasion and mitigating bacterial infections. However, excessive IL-17 production has been implicated in chronic inflammatory processes, contributing to tissue damage and various autoimmune disorders, including psoriasis, spondyloarthropathies, rheumatoid arthritis, and multiple sclerosis (8). The therapeutic potential of pathway inhibition (via cytokine/receptor-targeted biologics) has been well established in managing immunemediated diseases. Several IL-17 inhibitors, such as secukinumab, ixekizumab, brodalumab, and bimekizumab, have received FDA approval. The main mechanism of action of secukinumab and ixekizumab is to inhibit IL-17A directly, whereas brodalumab inhibits the IL-17A receptor and bimekizumab inhibits IL-17A and IL-17F (9, 10). They are approved for the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.

While clinical trials demonstrate therapeutic efficacy, besides conventional adverse effects including allergy, infections, and hepatic dysfunction, other side effects such as paradoxical inflammatory responses also need to be considered. Several cutaneous paradoxical reactions have been reported in association with IL-17 inhibitors, such as eczema, sarcoidosis-like eruptions, alopecia areata (AA), pyoderma gangrenosum

Abbreviations

(PG), vitiligo, bullous pemphigoid, and pemphigus vulgaris. In this report, we present a case of temporary facial eczema probably induced by secukinumab for the treatment of plaque psoriasis. The patient's facial eczema was successfully treated, and secukinumab administration was delayed by 2 weeks before being resumed at regular application. No recurrence of similar rash with 5 months of follow-up.

Case report

The patient was a 32-year-old Chinese male with a history of chronic plaque psoriasis for 5 years. He had no history of pustular psoriasis, erythrodermic psoriasis, or psoriatic arthritis during 5 years and no significant past medical history. The initial physical examination demonstrated hyperkeratotic red scaly plaques on the scalp, trunk, and limbs. He was previously treated with topical steroids, calcipotriol, narrowband ultraviolet B phototherapy, and oral traditional Chinese medicine intermittently since 2020. His rash has improved but still recurs. In January of 2025, his psoriasis exacerbated and was no longer well controlled, with approximately 25% body surface area affected. He started secukinumab 300 mg subcutaneous injection once weekly for 4 weeks, with significant psoriasis area and severity index (PASI) improvement, and was scheduled to continue maintenance therapy on a regimen of every 4 weeks. However, in the seventh week of the secukinumab treatment course, the patient's face developed diffuse, swollen, erythematous patches that had almost coalesced into sheets. The surface was smooth, without scales, blisters, or exudation, and was accompanied by mild itching (Figure 1A). The patient had no prior history of eczema and no exposure to topical products, including sunscreens, cosmetics, or new detergents, nor did he ingest any photosensitizing foods or medications before and during the 7-week secukinumab treatment.

Physical examination: temperature 36.9°C, heart rate (HR) 72 bpm, respiratory rate (RR) 18, blood pressure (BP) 122/ 72 mmHg. Liver function tests revealed elevated alanine aminotransferase (ALT) at 83.2 U/L (normal range: 9-50 U/L) and slightly increased direct bilirubin at 8.48 µmol/L (normal range: 0-8.0 µmol/L). Other laboratory tests, such as complete blood count (CBC), erythrocyte sedimentation rate (ESR), renal function, electrolytes, rheumatoid factor, total IgE, hepatitis B, hepatitis C, syphilis, HIV, urinalysis, and stool routine, showed no significant abnormalities. Electrocardiogram and chest x-ray showed normal findings. The patient reported normal liver function test results prior to initiating secukinumab therapy. He was diagnosed with facial eczema due to secukinumab with a score of 5 on the Naranjo scale suggesting a probable drug side effect, and hepatic abnormality was recognized as being induced by secukinumab. He received a prescription including oral compound glycyrrhizin, olopatadine hydrochloride, triprolidine hydrochloride, topical pimecrolimus for eczema treatment, and polyene phosphatidylcholine for liver protection therapy. The skin lesions resolved completely 1 week after treatment (Figure 1B). Transaminases and bilirubin normalized after 2 weeks of therapy. The patient delayed secukinumab

IL-17, interleukin-17; PASI, psoriasis area and severity index; ALT: alanine amino transferase; NKT cells: natural killer T cells; MAIT, mucosal-associated invariant; HR, heart rate; RR, respiratory rate; BP, blood pressure; AE, adverse event; TME, tumor micro environment; HS, hidradenitis suppurativa; IBD, inflammatory bowel disease; AD, atopic dermatitis; AS, ankylosing spondylitis; PsA, psoriatic arthritis; PG, pyodermagangrenosum; AA, alopecia areata; HS, hidradenitis suppurativa.

FIGURE 1
Two side-by-side images, labeled (A) and (B), show a person with black bars covering their eyes. In image (A), the person's face appears red and swollen. In image (B), the redness and swelling have significantly reduced, and the skin appears clearer.

administration by 2 weeks and continued 300 mg secukinumab subcutaneous injection on a regimen of every 4 weeks. No recurrence of similar rash or other adverse effects was observed during the subsequent follow-up period over 5 months.

Discussion

IL-17 exhibits a wide range of biological functions, demonstrating both protective and detrimental roles in various physiological and pathological processes (11). It has complex roles in cancer and inflammation, acting as both a promoter and suppressor depending on the tumor microenvironment (TME) (12). It also plays a crucial role in protective immunity against extracellular pathogens (13). All biologics carry infection risks, although comparative studies show IL-17 inhibitors may have higher infection rates than IL-23 inhibitors (14). Malignancy risk is a concern for long-term treatment with both IL-17 and IL-23 inhibitors (15). Similar to other biologics, IL-17 inhibitors show increased short-term risks of nasopharyngitis and upper respiratory tract infections. Secondary treatment failure occurs with both tumor necrosis factor (TNF) inhibitors and IL-17 inhibitors, necessitating alternative therapies (16). IL-17 inhibitors are specifically associated with higher candidiasis risk compared with other biologics, particularly vs. IL-23 inhibitors (17), and demonstrated superior efficacy in hidradenitis suppurativa (HS) compared with IL-23 inhibitors which showed inconsistent results (18). First-generation anti-IL17 drugs showed an unexpected lack of efficacy in inflammatory bowel disease (IBD), unlike other biologics (19). The literature suggests that while IL-17 inhibitors share many class-wide biologic risks, their specific mechanism leads to distinct efficacy patterns (strong in HS/psoriasis but not IBD) and unique safety considerations (candidiasis risk) (18).

Here, we focus on discussing cutaneous paradoxical reactions of IL-17 inhibitors. We have summarized the clinical information regarding paradoxical skin reactions possibly induced by IL-17 inhibitors before August 2025 in PubMed and selected some cases in each paradoxical reaction shown in Table 1. Cutaneous paradoxical manifestations are diverse, with atopic dermatitis (AD) as the most common. Initial reports by Hattori et al. (20) documented AD exacerbation in a psoriasis patient receiving secukinumab. The paradoxical eczematous response triggered by IL-17 inhibitor biologics has been well documented with various cases published (21-23). Subsequent studies revealed de novo AD development in ankylosing spondylitis (AS) (24) and psoriasis populations. In a meta-analysis, PubMed, Embase, Cochrane Library, and Web of Science databases were searched for studies published before 1 March 2022 that reported at least one adverse event (AE). Dichotomous variables and 95% confidence intervals (CI) were analyzed using R software (version 4.1.3). Eczema was reported in 67 out of 1,230 patients who received IL-17 inhibitor biologics (25). Upon discontinuing biologics and switching to oral

TABLE 1 Reported patients' characteristics probably induced by IL-17 inhibitor-associated cutaneous paradoxical manifestations.

Cutaneous paradoxical manifestations	Age (years)	Sex	Previous history	Biologics	Interval time	Clinical outcome	Reference
AD/eczema	14	Male	Psoriasis	Secukinumab	8-12 weeks	Discontinue IL-17 inhibitors, low-dose	Brazen et al. (21)
	20	Male	Psoriasis			prednisone, upadacitinib, cyclosporine	Xiao et al. (23)
Alopecia areata	64	Female	Psoriasis	Secukinumab	6-8 weeks	Discontinue IL-17 inhibitors, JAK	Choi et al. (34)
	70	Male	Psoriasis	Ixekizumab	13 months	inhibitors	Eldirany et al. (35)
	40	female	Psoriasis	Brodalumab	8 weeks		Yajima et al. (36)
Pyoderma	68	Male	Psoriasis	Secukinumab	3 years	Discontinue IL-17 inhibitors,	Orita et al. (40)
gangrenosum	61	Female	Psoriasis	Ixekizumab	3 months	corticosteroids, cyclosporine, or JAK	Pollack et al. (41)
	43	Female	Psoriasis/HS	Brodalumab	4 months	inhibitors	Salvia et al.
Vitiligo	30	Male	Psoriasis	Secukinumab	9 months	Discontinue IL-17 inhibitors or JAK	Bouzid et al. (43)
_	71	Male	Psoriasis	Ixekizumab	8 weeks	inhibitors	Eker et al. (44)
Bullous pemphigoid	66	Male	Psoriasis	Secukinumab	5 weeks	Discontinue IL-17 inhibitors, systemic	Wang et al. (46)
	77	Male	Pityriasis rubra	Ixekizumab	38 weeks	corticosteroids, doxycycline	Sugihara et al. (47)
			pilaris				
Pemphigus vulgaris	72	Female	Psoriasis	Secukinumab	4 weeks	Discontinue IL-17 inhibitors,	Minai et al. (48)
						corticosteroids, rituximab (anti-CD20)	
						immunosuppressants	
Granuloma annulare	60	Female	Psoriasis/	Secukinumab	2 weeks	Discontinue IL-17 inhibitors,	Bonomo et al. (49)
			psoriatic arthritis			corticosteroids, antibiotics, etanercept	
Hidradenitis	58	Male	Psoriasis/	Secukinumab	4 weeks	Discontinue IL-17 inhibitors,	Navarro-Triviño et al. (50)
suppurativa			psoriatic arthritis			ustekinumab, adalimumab	
Acquired ichthyosis	72	Male	Psoriasis	Brodalumab	3 months	Discontinue IL-17 inhibitors	Mantovani et al. (52)

cyclosporine, antihistamines, Janus kinase 1 inhibitor, and topical glucocorticoids, patients experienced significant improvement in their skin lesions.

In this case, the patient started subcutaneous injection of 300 mg secukinumab once weekly for 4 weeks and was scheduled to continue maintenance therapy on a regimen of every 4 weeks. Unfortunately, his facial eczema developed in the seventh week of the secukinumab treatment course. The patient's intensive initial treatment over the first 4 weeks likely resulted in relatively high drug concentrations, which may have triggered an immune response in the body. After the eczema resolved with treatment, the maintenance therapy was deliberately delayed by 2 weeks but still administered every 4 weeks as a standard dosing regimen. In the reported literature, paradoxical reactions following secukinumab administration typically can lead to discontinuation of the drug. However, in this case, after careful consideration, we just delayed the first maintenance dose by 2 weeks but continued the treatment according to the original schedule. This decision was based on the mild and reversible nature of the adverse reaction, which could be managed with symptomatic treatment. We also took into account the established long-term safety profile of secukinumab (26, 27). During the subsequent 5 months of follow-up, no recurrence of a similar rash was observed. This absence of recurrence is possibly related to the comparatively lower drug concentrations during this phase. The patient's rash was localized to the facial area. We have ruled out potential local contact triggers or photosensitivity. The patient did not use sunscreen, cosmetics, or any other topical products before or during secukinumab treatment, nor did he ingest any photosensitizing foods or medications. A review of the literature found no direct evidence indicating that secukinumab increases photosensitivity. Studies suggest that biological agents, including IL-17 inhibitors, may induce eczematous rashes through abnormal immunomodulation in the skin, presenting as skin dehydration or delayed hypersensitivity reactions (28). Additionally, inhibition of IL-17A—which plays a role in mucosal defense—may compromise skin barrier function and increase the risk of eczema (29), particularly in sensitive areas such as the face. We hypothesize that this mechanism may be relevant in the present case.

Psoriasis and eczema are characterized by an imbalance in the T-helper (Th)1/Th2 immune response, Th1/Th2 immune pathways are closely related, such that when the Th1 response is blocked or decreased, Th2 increases to maintain balance. It is plausible that, as IL-17 inhibitor therapy decreases Th1, there is subsequent shunting to a Th2-dominant immune response, thereby resulting in an eczematous reaction (30). In contrast, Al-Janabi et al. (31) found increased expression of TNF, interferon (IFN)-γ, and IFN-α and their signaling pathways in paradoxical eczema case cell clusters compared with those in matched psoriasis controls. This suggests that paradoxical eczema has a predominantly type 1 systemic inflammatory signature and that genetic susceptibility to aberrant chemokine and TNF pathway signaling could contribute to the development of this phenotype during biologic treatment. Serum proteomic analysis revealed that patients with paradoxical eczema already exhibit AD-like inflammatory signatures even before the clinical phenotype manifests, evidenced by enrichment of gene sets related to Th2 cytokines such as IL-4 and IL-13 (32). However, the local skin microenvironment demonstrates upregulation of Th1/Th17 pathways (e.g., elevated IL-17A mRNA), consistent with psoriasiform or lichenoid dermatitis (33).

Alopecia areata is probably induced following secukinumab (34), ixekizumab (35), and brodalumab (36) administration in psoriasis, palmar and plantar pustula psoriasis, or psoriatic arthritis (PsA) patients. Interleukin 17 inhibitors were hoped to be a potential option for

treating alopecia. However, a recent double-blinded, randomized clinical trial showed no significant benefit for treating AA with secukinumab (37). Therapeutic responses to corticosteroid regimens or drug discontinuation have been documented. The underlying mechanism of alopecia areata upon IL-17A inhibitor exposure remains to be elucidated. The correlation between PG and IL-17 inhibitors involves complex immunological mechanisms and clinical observations. PG is characterized by a profound dysregulation of both innate and adaptive immunity, with evidence pointing to the involvement of proinflammatory cytokines including IL-17, IL-23, and IL-1 family members (38). IL-17 is a key cytokine in neutrophilic inflammation, and its overproduction is implicated in PG pathogenesis. IL-17 promotes neutrophil recruitment and activation, which are central to the formation of PG's characteristic ulcers (39). Orita et al. (40) reported a case probably induced by PG by secukinumab. A 61-year-old woman with psoriasis described PG after ixekizumab administration (41). This paradoxical reaction suggests that IL-17 inhibition may disrupt immune homeostasis, potentially triggering PG in susceptible individuals. IL-17 inhibitors may paradoxically induce PG in rare cases, while targeting the IL-17/IL-23 axis or downstream pathways (e.g., JAK/STAT) can be therapeutic. The exact mechanisms remain under investigation, but dysregulated neutrophilic inflammation driven by IL-17 is a central feature (42). Combination therapy with immunosuppressants biologics demonstrates clinical efficacy.

New-onset vitiligo in PsO/PsA patients may be associated with secukinumab (43) and ixekizumab (44). Although circulating IL-17 levels and T-helper type 17(Th17) numbers have been shown to increase in vitiligo patients, the pathogenic role of IL-17 and Th17 in vitiligo is debatable. Scientists found that patients with progression of vitiligo have significantly increased Th17.1 and Th1 lymphocytes, but not Th17 lymphocytes (45). Postulate that targeting IL-17 inhibits Th17, skewing toward a predominantly Th1 response exacerbates vitiligo. On the contrary, immunosuppressive properties, such as cyclosporine, JAK inhibitors, and methotrexate, do not influence the Th1/Th17 balance and therefore control both psoriasis and vitiligo. Bullous pemphigoid induction was demonstrated by initiation of secukinumab (46) and ixekizumab (47). This might be associated with a helper T-cell Th1/Th2 imbalance. Steroidantibiotic combinations effectively resolve lesions. Another case presents a patient who suffered pemphigus vegetans and showed an exacerbation of pemphigus foliaceus after secukinumab loading for the treatment of complicated generalized pustular psoriasis and pyoderma gangrenosum (48). The emergence of granuloma annulare (GA) after beginning IL-17 inhibitors was reported (49). Additionally, a case of HS was diagnosed after secukinumab treatment; the patient was subsequently switched to ustekinumab to manage dermatological symptoms, rhematological manifestations, and HS (50). Another case transferred to adalimumab to improve HS skin lesions successfully (51). A unique case of ichthyosis possibly induced by brodalumab prescription was resolved with emollient therapy (52).

While IL-17 inhibitors demonstrate significant therapeutic value, clinicians must remain vigilant for paradoxical inflammatory responses. Mechanistic understanding of immune axis dysregulation and tailored management strategies remain crucial in optimizing treatment outcomes. Continued pharmacovigilance and translational research are warranted given the expanding clinical applications of IL-17 inhibitors. Prior case reports indicate that paradoxical eczema typically presents with non-facial involvement, and its occurrence usually necessitates discontinuation of IL-17 inhibitors and switching to alternative biologic agents. However, our case is distinctive in several aspects: the rash emerged at week 7 following the 4-week intensive induction therapy; it was transient and confined exclusively to the facial region. After a deliberate 2-week treatment delay, therapy was resumed at the standard 4-week maintenance interval. Throughout the subsequent 5-month follow-up, no recurrence of the rash or other adverse effects was observed. Of course, continuous longer-term follow-up and monitoring are required. This outcome suggests that when mild and reversible paradoxical reactions occur during biologic therapy, clinicians may consider treatment continuation with dose interval adjustment rather than immediate discontinuation, following a careful risk-benefit assessment.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author/s.

Ethics statement

Written informed consent was obtained from the patient for the publication of this case report.

Author contributions

TZ: Data curation, Writing – original draft. FM: Data curation, Methodology, Writing – original draft. JH: Formal analysis, Methodology, Writing – review & editing. CL: Data curation, Supervision, Writing – review & editing. ZZ: Project administration, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Acknowledgments

We thank the patient and investigators who participated in this case report.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

References

- 1. Eliasse Y, Leveque E, Garidou L, Battut L, McKenzie B, Nocera T, et al. IL-17(+) mast cell/T helper cell axis in the early stages of acne. *Front Immunol.* (2021) 12:740540. doi: 10.3389/fimmu.2021.740540
- Rosenzweig N, Kleemann KL, Rust T, Carpenter M, Grucci M, Aronchik M, et al. Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease. *Nat Med.* (2024) 30(10):2990–3003. doi: 10.1038/s41591-024-03122-3
- 3. Cole S, Murray J, Simpson C, Okoye R, Tyson K, Griffiths M, et al. Interleukin (IL)-12 and IL-18 synergize to promote MAIT cell IL-17A and IL-17F production independently of IL-23 signaling. *Front Immunol.* (2020) 11:585134. doi: 10.3389/fimmu.2020.585134
- 4. Dhillon-LaBrooy A, Braband KL, Tantawy E, Rampoldi F, Kao YS, Boukhallouk F, et al. Inhibition of mitochondrial translation ameliorates imiquimod-induced psoriasis-like skin inflammation by targeting Vgamma4+ gammadelta T cells. *J Invest Dermatol.* (2024) 144(4):844–54.e2. doi: 10.1016/j.jid.2023.09.275
- 5. Walwyn-Brown K, Pugh J, Cocker ATH, Beyzaie N, Singer BB, Olive D, et al. Phosphoantigen-stimulated gammadelta T cells suppress natural killer-cell responses to missing-self. *Cancer Immunol Res.* (2022) 10(5):558–70. doi: 10.1158/2326-6066.Cir-21-0696
- 6. Li XH, Lu MY, Li YJ, Liu ZH, Yin ZN, Liu B, et al. Circulating PD1(+)Vdelta1(+) gammadelta T cell predicts fertility in endometrial polyp patients of reproductive-age. *Front Immunol.* (2021) 12:639221. doi: 10.3389/fimmu.2021.639221
- 7. Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the yin and the yang. *Trends Immunol.* (2017) 38(5):310–22. doi: 10.1016/j.it.2017.01.006
- 8. Berry SPD, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, et al. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. *Int Immunopharmacol.* (2022) 102:108402. doi: 10.1016/j.intimp.2021.108402
- 9. Țiburcă I., Bembea M, Zaha DC, Jurca AD, Vesa CM, Rațiu IA, et al. The treatment with interleukin 17 inhibitors and immune-mediated inflammatory diseases. *Curr Issues Mol Biol.* (2022) 44(5):1851–66. doi: 10.3390/cimb44050127
- 10. Wang Y, Li S, Bai J, Cai X, Tang S, Lin P, et al. Bimekizumab for the treatment of moderate-to-severe plaque psoriasis: a meta-analysis of randomized clinical trials. Ther Adv Chronic Dis. (2023) 14:20406223231163110. doi: 10.1177/20406223231163110
- 11. Majumder S, McGeachy MJ. IL-17 in the pathogenesis of disease: good intentions gone awry. *Annu Rev Immunol.* (2021) 39:537–56. doi: 10.1146/annurev-immunol-101819-092536
- 12. Li W, Huang X, Han X, Zhang J, Gao L, Chen H. IL-17A in gastric carcinogenesis: good or bad? *Front Immunol.* (2024) 15:1501293. doi: 10.3389/fimmu.2024.1501293
- 13. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. *Nat Rev Immunol.* (2023) 23(1):38–54. doi: 10.1038/s41577-022-00746-9
- 14. Strober B, Soliman AM, Li C, Patel M, Unigwe I, Gisondi P. Risk of developing inflammatory arthritis in patients with psoriasis initiating treatment with biologics: a

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence, and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

population-based analysis. J Am Acad Dermatol. (2024) 91(6):1143–9. doi: 10.1016/j. jaad. 2024.06.106

- 15. Wu S, Xu Y, Yang L, Guo L, Jiang X. Short-term risk and long-term incidence rate of infection and malignancy with IL-17 and IL-23 inhibitors in adult patients with psoriasis and psoriatic arthritis: a systematic review and meta-analysis. *Front Immunol.* (2023) 14:1294416. doi: 10.3389/fimmu.2023.1294416
- 16. Atzeni F, Carriero A, Boccassini L, D'Angelo S. Anti-IL-17 agents in the treatment of axial spondyloarthritis. *Immunotargets Ther.* (2021) 10:141–53. doi: 10.2147/itt.S259126
- 17. Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, et al. Interleukin inhibitors and the associated risk of candidiasis. *Front Immunol.* (2024) 15:1372693. doi: 10.3389/fimmu.2024.1372693
- 18. Heidari N, Heidari A, Eghbali S, Pishraft-Sabet H, Hajikarim-Hamedani A, Ghane Y, et al. The role of interleukin inhibitors in the treatment of hidradenitis suppurativa; a systematic review of clinical trials. *Autoimmun Rev.* (2025) 24(7):103818. doi: 10.1016/j.autrev.2025.103818
- 19. Crispino F, Grova M, Bruno EM, Monachino N, Rizzo G, Casa A, et al. Spondyloarthropathy in inflammatory bowel disease: from pathophysiology to pharmacological targets. *Drugs.* (2022) 82(11):1151–63. doi: 10.1007/s40265-022-01750-y
- 20. Hattori N, Koike Y, Murota H. Treatment with an interleukin-17 inhibitor resulted in complete remission of psoriasis and flare-up of atopic dermatitis. *J Dermatol.* (2022) 49(5):e173–e4. doi: 10.1111/1346-8138.16308
- 21. Brazen B, Colon J, Hobbs L, Nousari C. Paradoxical eczematous reaction in a patient with IL-17 inhibitor-treated psoriasis Vulgaris. *Cureus*. (2024) 16(5):e60051. doi: 10.7759/cureus.60051
- 22. Yousif J, Al-Dehneem R, Kaskas N, Gottlieb AB. A case series of patients with eczematous eruptions following IL-17 inhibitor treatment for psoriasis vulgaris. *J Drugs Dermatol.* (2023) 22(12):1225–7. doi: 10.36849/jdd.7388
- 23. Xiao Y, Peng S, Li X, Mao T, Fang M, Hu Y, et al. Treatment of paradoxical eczematous eruption in psoriasis treated with secukinumab: a case report. *Medicine*. (2023) 102(6):e32844. doi: 10.1097/md.000000000032844
- 24. Ma X, Li T, Han G. Two cases of immune drift phenomena caused by biologic agents for treating psoriasis and atopic dermatitis. *Clin Cosmet Investig Dermatol.* (2023) 16:3521–5. doi: 10.2147/ccid.S445468
- 25. Wang J, Wang C, Liu L, Hong S, Ru Y, Sun X, et al. Adverse events associated with anti-IL-17 agents for psoriasis and psoriatic arthritis: a systematic scoping review. *Front Immunol.* (2023) 14:993057. doi: 10.3389/fimmu.2023.993057
- 26. Krasowska D, Gambichler T, Cortes C, Horev A, Compagno N, Dahale SS, et al. Long-term efficacy, safety and tolerability of secukinumab in children and adolescents with severe chronic plaque psoriasis: two-year results from a phase III double-blind, randomized controlled trial. *J Eur Acad Dermatol Venereol.* (2023). doi: 10.1111/jdv.19063
- 27. Cai L, Zhang JZ, Yao X, Gu J, Liu QZ, Zheng M, et al. Secukinumab demonstrates high efficacy and a favorable safety profile over 52 weeks in Chinese

patients with moderate to severe plaque psoriasis. Chin Med J. (2020) $133(22){:}2665{-}73.~doi:\,10.1097/cm9.00000000001163$

- 28. Blum AE, Burgin S. Eczematous drug eruptions. Am J Clin Dermatol. (2021) 22(3):349-66. doi: 10.1007/s40257-021-00586-8
- 29. Hu F, Peng H, Gong J, Tao X, Wang X, Bao J, et al. Induced pemphigus erythematosus after treatment for plaque psoriasis with secukinumab: a case report. *Front Immunol.* (2025) 16:1612422. doi: 10.3389/fimmu.2025.1612422
- 30. Peera M, Smith A. Palmoplantar pompholyx secondary to interleukin 17A inhibitor therapy for psoriasis: a case series. *JAAD Case Rep.* (2021) 13:46–8. doi: 10.1016/j.jdcr.2021.03.052
- 31. Al-Janabi A, Martin P, Simpson C, Rhys H, Khan AR, Eyre S, et al. Blood single-cell transcriptomic and proteomic signatures of paradoxical eczema in patients with psoriasis treated with biologics. *J Invest Dermatol.* (2025) 145(10):2535–48. doi: 10.1016/j.jid.2025.02.153
- 32. Al-Janabi A, Martin P, Khan AR, Foulkes AC, Smith CH, Griffiths CEM, et al. Integrated proteomics and genomics analysis of paradoxical eczema in psoriasis patients treated with biologics. *J Allergy Clin Immunol.* (2023) 152(5):1237–46. doi: 10.1016/j.jaci.2023.07.011
- 33. Lacouture ME, Goleva E, Shah N, Rotemberg V, Kraehenbuehl L, Ketosugbo KF, et al. Immunologic profiling of immune-related cutaneous adverse events with checkpoint inhibitors reveals polarized actionable pathways. *Clin Cancer Res.* (2024) 30(13):2822–34. doi: 10.1158/1078-0432.Ccr-23-3431
- 34. Choi E, Thomson O, Smith D. Alopecia areata after initiation of secukinumab therapy for plaque psoriasis. *Cureus*. (2023) 15(5):e38986. doi: 10.7759/cureus.38986
- 35. Eldirany SA, Myung P, Bunick CG. Ixekizumab-induced alopecia areata. *JAAD Case Rep.* (2020) 6(1):51–3. doi: 10.1016/j.jdcr.2019.10.012
- 36. Yajima M, Akeda T, Kondo M, Habe K, Yamanaka K. Alopecia diffusa while using interleukin-17 inhibitors against psoriasis Vulgaris. *Case Rep Dermatol.* (2019) 11(1):82–5. doi: 10.1159/000499030
- 37. Guttman-Yassky E, Nia JK, Hashim PW, Mansouri Y, Alia E, Taliercio M, et al. Efficacy and safety of secukinumab treatment in adults with extensive alopecia areata. *Arch Dermatol Res.* (2018) 310(8):607–14. doi: 10.1007/s00403-018-1853-5
- 38. Maronese CA, Pimentel MA, Li MM, Genovese G, Ortega-Loayza AG, Marzano AV. Pyoderma Gangrenosum: an updated literature review on established and emerging pharmacological treatments. *Am J Clin Dermatol.* (2022) 23(5):615–34. doi: 10.1007/s40257-022-00699-8
- 39. Moltrasio C, Moura RR, Brandao L, Tricarico PM, Suleman M, Maronese CA, et al. Keratin variants in pyoderma gangrenosum: pathogenetic insights from a whole-exome sequencing-based bioinformatic analysis. *J Invest Dermatol.* (2025) 145(9):2229–35.e1. doi: 10.1016/j.jid.2025.01.029

- 40. Orita A, Hoshina D, Hirosaki K. Pyoderma gangrenosum caused by secukinumab successfully treated with risankizumab: a case report and literature review. Clin Exp Dermatol. (2022) 47(7):1372–4. doi: 10.1111/ced.15183
- 41. Pollack IR, Wolner ZJ, Hammett J, Swerlick RA. Pyoderma gangrenosum in a patient on ixekizumab. *JAAD Case Rep.* (2021) 16:152–4. doi: 10.1016/j.jdcr.2021. 08.021
- 42. Flora A, Pham J, Woods JA, Radzeika M, Dickson H, Malone M, et al. The clinical and molecular response of pyoderma Gangrenosum to IL-23 blockade: result from a proof-of-concept open-label clinical trial. *J Invest Dermatol.* (2025) 145(6):1396–406.e6. doi: 10.1016/j.jid.2024.10.602
- 43. Bouzid S, Hammami-Ghorbel H, Chamli A, Aounti I, Daly W, Kochbati S, et al. Secukinumab-induced vitiligo: a new case report and review of the literature. *Therapie.* (2023) 78(6):754–6. doi: 10.1016/j.therap.2022.12.004
- 44. Eker H, Kaya İslamoğlu ZG, Demirbaş A. Vitiligo development in a patient with psoriasis vulgaris treated with ixekizumab. Dermatol Ther. (2022) 35(4):e15314. doi: 10.1111/dth.15314
- 45. Speeckaert R, Mylle S, van Geel N. IL-17A is not a treatment target in progressive vitiligo. *Pigment Cell Melanoma Res.* (2019) 32(6):842–7. doi: 10.1111/pcmr.12789
- 46. Wang R, Wang A, Wang M. Two cases with bullous pemphigoid relapsed after using interleukin-17A inhibitors for psoriasis: a paradoxical reaction. *J Dermatol.* (2023) 50(7):956–9. doi: 10.1111/1346-8138.16765
- 47. Sugihara N, Kamiya K, Nakano N, Suzuki M, Maekawa T, Murata S, et al. A case of bullous pemphigoid developing after ixekizumab therapy for pityriasis rubra pilaris. *J Dermatol.* (2023) 50(6):e185–e6. doi: 10.1111/1346-8138.16711
- 48. Minai L, Takeichi T, Ogawa Y, Honobe-Tabuchi A, Okamoto T, Mitsui H, et al. Development of pemphigus vegetans and exacerbation of pemphigus foliaceus after secukinumab loading in a patient with complicated generalized pustular psoriasis and pyoderma gangrenosum. *J Dermatol.* (2023) 50(2):245–9. doi: 10.1111/1346-8138.16563
- 49. Bonomo L, Ghoneim S, Levitt J. A case of granuloma annulare associated with secukinumab use. Case Rep Dermatol Med. (2017) 2017:5918708. doi: 10.1155/2017/5918708
- 50. Navarro-Triviño FJ, Sanchez-Parera R, Ruiz-Villaverde R. Secukinumabinduced paradoxical hidradenitis suppurativa. *Dermatol Ther.* (2020) 33(1):e13150. doi: 10.1111/dth.13150
- 51. Babino G, D'Ambra I, Fulgione E, Alfano R, Verolino P, Argenziano G. Secukinumab-induced paradoxical hidradenitis suppurativa successfully treated with adalimumab. *Int J Dermatol.* (2022) 61(2):e79–80. doi: 10.1111/ijd.15730
- 52. Mantovani I., Schenetti C, Montinari E, Pacetti I., Schettini N, Borghi A, et al. A possible case of brodalumab-induced ichthyosis. *J Dtsch Dermatol Ges.* (2023) 21(3):288–90. doi: 10.1111/ddg.14976