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Background: Over the past decades, extensive research has examined the

interactions between space weather, solar activity, and the biosphere,

particularly their implications for agricultural productivity. However, the

specific mechanisms linking solar activity to agricultural performance remain

underexplored, particularly in the context of bioeconomic efficiency.

Understanding these connections is crucial for mitigating adverse

environmental impacts and optimizing agricultural productivity. Research has

highlighted the synchronization between multi-year solar activity cycles,

particularly the 11-year solar cycles, and agricultural performance. Forecasting

these cycles holds the potential to anticipate fluctuations in agricultural

productivity, thus enabling more effective resource planning and enhancing

profitability within the agri-food industry.

Methodology: This study employs Fast Fourier Transform (FFT) and advanced

statistical tools from Microcal Origin 6.0 to analyze time-series data for 10 key

agricultural products in Germany over a 61-year period. The study integrates

solar radiation data, meteorological variables, and regional agricultural

production data to investigate the relationship between solar activity and

crop yields.

Results: The analysis reveals significant temporal associations between solar

activity cycles and agricultural yields, identified through both cross-correlation

and spectral analysis. These findings indicate that solar activity, particularly during

the 11-year solar cycle, plays a notable role in shaping agricultural productivity.

Conclusion: The results confirm the synchronization between solar activity and

agricultural performance. These insights have significant implications for the

agri-food sector, suggesting that incorporating solar activity forecasts into

agricultural management strategies could enhance resource allocation,

improve crop yield predictions, and promote sustainable agricultural practices.
KEYWORDS

solar activity, space weather, agricultural performance, time series analysis, FFT (fast
Fourier transformation)
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1 Introduction

Agricultural productivity, typically measured as yield per unit

area (e.g., tons per hectare), is influenced by a multitude of factors,

including genetics, weather, soil conditions, and biological agents.

While many of these influences operate at local or regional levels,

larger-scale environmental cycles, such as solar activity, have been

increasingly recognized as potential drivers of long-term

agricultural trends. Previous studies [e.g (Muthanna et al., 2016;

Lin et al., 2021)] have identified long-term trends in agricultural

yields linked to solar activity cycles.

This study explores the temporal relationship between solar

activities, particularly the 11-year cycles of sunspot activity, and

agricultural yields in Germany (Mawad et al., 2022a). Utilizing an

extensive dataset spanning 61 years, we aim to determine the extent

to which solar fluctuations influence long-term agricultural

performance and whether these interactions could inform future

agricultural forecasting models and policy decisions.

This investigation bridges two critical disciplines: Space Weather

and agricultural productivity. Unlike previous studies, which often rely

on short-term datasets or focus on local weather variations, our research

leverages a multi-decade dataset to examine long-term trends, providing

a broader perspective on how solar cycles may influence agricultural

outputs. The significance of this work lies in its ability to reveal whether

solar activity serves as a key environmental factor in shaping agricultural

productivity, with potential implications for long-term food security

planning. What sets this study apart is not only the novel analysis of the

effects of cosmic physical agents on crop yields but also its broader

implications for global food security strategies. By uncovering the

temporal synchronization between solar activity and agricultural

performance, this research aims to deepen our understanding of this

relationship and offer insights that could inform future agricultural

policies. These findings are crucial for optimizing resource allocation

and fostering sustainable agricultural practices, thereby contributing to

the timely and pressing issue of global food security.
1.1 Theoretical framework

The relationship between solar activity and agricultural

productivity has been a subject of increasing scientific inquiry

over the past decades. The most widely accepted theory posits

that solar activity influences key climatic factors—such as

temperature, precipitation, and cloud cover— through

mechanisms like solar-driven changes in atmospheric circulation

and cosmic ray modulation (Mawad et al., 2022a; Sierra-Figueredo

et al., 2022; Zuniga-Gonzalez et al., 2024). These climatic variations

directly affect photosynthesis, transpiration, and other vital

biological processes in crops, thus influencing agricultural

productivity across different regions.
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The periodic nature of solar activity, notably the 11-year

sunspot cycles, has been associated with fluctuations in crop

yields, with previous studies identifying correlations linked to

fluctuations in crops yields in multiple studies. Research has

identified correlations between solar cycles and the production of

mayor crops (Sierra-Figueredo et al., 2021; Pellegrini et al., 2022).

However, despite these correlations, methodological inconsistencies

and regional differences in agricultural practices have led to

discrepancies in findings (Hathaway David, 2010). The need for

refined models integrating econometric and bioeconomic

approaches remains critical to accurately assessing the long-term

effects of solar variability on agriculture (Zuniga-Gonzalez

et al., 2024).

Beyond its climatic effects, solar activity has been suggested to

impact plant metabolic cycles through alterations in radiation

intensity. Studies indicate that variations in solar radiation can

modify key hormonal and physiological processes, including

flowering, fruit, and growth cycles. Experimental research has

demonstrated that changes in UV and cosmic ray exposure

influence gene expression related to stress resistance and

photosynthetic efficiency, thereby affecting overall crop

performance (Hathaway David, 2010). Understanding these

mechanisms is essential for improving agricultural forecasting

models and adaptive farming strategies in response to

solar variability.

Although theoretical foundations for the solar-agriculture

relationship exist, most previous research has been constrained

by short-term or region-specific datasets, limiting the ability to

draw generalized conclusions. Furthermore, few studies have

integrated long-term, multi-decade datasets with econometric

modeling to assess how solar cycles influence agricultural

output. This research aims to bridge this gap by these gaps by

analyzing 61 years of data from Germany, a country with a climate

representative of Central Europe. By incorporating a bioeconomic

perspective, this study provides a comprehensive framework to

evaluate the sustainability and economic implications of solar-

driven agricultural variability, offering insights relevant for

climate-adaptive agricultural policies and food security strategies

(Zuniga-Gonzalez et al., 2024).
2 Materials and method

To represent solar activity, we used the Wolf Number (also

known as the International Sunspot Number or Zurich Number),

which characterizes the annual average of sunspot counts and

their grouped structures observed on the solar disk (Rybanský

et al., 2001; Usoskin, 2017). This index was selected due to its

extensive historical record and its recognized reliability in

capturing long-term solar cycle variations (Clette et al., 2007;

Clette et al., 2014).
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Solar activity was represented by the Wolf Number, derived

from daily sunspot observations from standardized global

observatories (e.g., Solar Influences Data Analysis Center). The

Wolf Number reflects the annual average of sunspot counts and

groupings, calculated using the Equation 1:

R  = k (10g   +   s) (1)

where R is the relative sunspot number, s is the number of

individual sunspots, g is the number of sunspot groups, and k is the

observatory-specific correction factor.

Agricultural yield data for 10 key products, including cereals,

potatoes, and livestock-, were obtained from German agricultural

databases. These crops were selected based on their economic

significance and their long-term availability in historical records.

The dataset span 61 years, except for bean production, which covers

31 years. Yields are expressed in hectare (hg/ha), except for cattle

counts (heads/year) and beef yield (hg/animal).

Data organization and preliminary statistical analysis were

performed using Excel (Table 1). For advanced analysis, we

applied cross-correlation and spectral analysis using Microcal

Origin 6.0, which provides robust tools for detecting periodicities

in time-series data. These methods were selected to identify

potential synchronization patterns between solar activity (Wolf

Number) and agricultural yields over multiple decades.

A representative sample of 10 productive categories was chosen

from the available 19, portraying the German agro-industry over

the past 61 years, except for bean production, where data is available

only for the last 31 years (Table 1). All yields are expressed in hg/ha,

except for Cattle Heads, which is expressed as the number of heads

per year, and beef yield, expressed in hg/Animal (Zúniga-Gonzalez

et al., 2023).
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2.1 Justification for including livestock
performance

While core crops (cereals, fruits, etc.) are directly linked to

climate variability modulated by the solar cycle, we have

included livestock performance metrics (meat, milk, and

population) as an indirect, but essential, proxy for the final

l ink in the agricultural bioeconomic chain. Livestock

productivity is heavily dependent on the quantity and quality

of the underlying plant biomass, such as grazing pastures, green

grass, and forage crops. These feed sources are directly

influenced by solar-driven variations in climate factors like

precipitation and temperature. Therefore, analyzing livestock

performance provides a holistic indicator that reflects the

aggregate response of the entire agricultural ecosystem—from

plant production to animal output—to solar activity. The

accurate assessment of crop yield potential requires careful

consideration of environmental factors and physiological limits

(Reddy, 1998). This approach ensures a comprehensive view of

the synchronization effect across the German agricultural sector.

Excel was utilized for data organization and basic statistical

computations. Subsequently, the data was exported to the statistical

package Microcal Origin 6.0 (Deschenes and David, 2000; Mitchell,

2000; Li et al., 2011) for cross-correlation and spectral analysis of the

constructed time series. To assess the robustness of our findings,

confidence intervals were computed for the spectral peaks detected in

the Fourier Transform analysis. Statistical significance of the

correlations was evaluated using Monte Carlo simulations with

1,000 iterations. The 95% confidence intervals for the cross-

correlation function were obtained using the Fisher transformation,

ensuring that the detected periodicities are not due to random
TABLE 1 Encompasses general statistical data from the original dataset utilized (annual yield).

Crops (X) Mean (Y)
SD
(yEr±)

SE (yEr±)
Min
(Y)

Max
(Y)

Range
(Y)

Sum
(Y)

N
(Y)

Region(s) in
Germany

Solar radiation
data (kWh/m²)

Barley (hg/ha) 5.05E+10 1.24E+10 1.59E+09 2.36E+10 7.35E+10 4.99E+10 3.08E+12 61
North & East
Germany

1100

Oats (hg/ha) 4.13E+10 7.12E+09 9.12E+08 2.58E+10 5.32E+10 2.74E+10 2.52E+12 61
South & West
Germany

1150

Rye (hg/ha) 4.14E+10 1.15E+10 1.47E+09 2.00E+10 6.13E+10 4.13E+10 2.53E+12 61 North Germany 1200

Primary cereals
(hg/h

5.33E+10 1.52E+10 1.95E+09 2.42E+10 8.05E+10 5.63E+10 3.25E+12 61
Central & East

Germany
1250

Beans (hg/ha) 2.70E+10 4.71E+09 8.47E+08 1.87E+10 3.59E+10 1.72E+10 8.38E+11 31 Central Germany 1050

Corn (hg/ha) 7.13E+10 2.15E+10 2.76E+09 2.90E+10 1.07E+11 7.80E+10 4.35E+12 61
South & West
Germany

1300

Potato (hg/ha) 3.18E+11 9.43E+10 1.21E+10 1.64E+11 4.74E+11 3.10E+11 1.94E+13 61
North & West

Germany
1200

Wheat (hg/ha) 5.97E+10 1.60E+10 2.05E+09 2.86E+10 8.63E+10 5.77E+10 3.64E+12 61 East Germany 1100

Cattle Heads (N) 1.67E+13 3.38E+12 4.33E+11 1.10E+13 2.15E+13 1.05E+13 1.02E+15 61
Nationwide

(Germany-wide)
1200

Yield. meat/head
(hg/A)

2.73E+09 4.44E+08 5.69E+07 1.76E+09 3.33E+09 1.57E+09 1.67E+11 61
Nationwide

(Germany-wide)
1200
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fluctuations (Shumway et al., 2017). This package facilitated the

visualization of synchrony between the Wolf Number time series,

representing Solar Activity, and the Yield time series (Ormes, 2018).

All datasets were normalized to maximum values, trend components

were removed from the time series, and a 5-year sliding mean was

obtained. This approach aimed to highlight variability, filter data by

suppressing shorter-term variations, focusing on analyzing multi-year

fluctuations spanning approximately 10 to 25 years.
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2.2 Fourier transform

To analyze periodic components in the dataset, we employed

Fourier Transform analysis. This method allows the decomposition

of time-series data into frequency components, helping to identify

dominant cycles within the observed agricultural yields. The

Fourier Transform is mathematically defined as follows (Equation

2) (Mac Manus et al., 2017):
FIGURE 1

Wolf Number Time Series (1900–2019). The blue solid line represents the observed monthly Wolf sunspot numbers, while the orange dashed line
shows the smoothed trend using an 11-year moving average to highlight the solar activity cycles (maximum and minimum).
FIGURE 2

Spectral amplitude of the solar index W for the period from 1900 to 2019 and that obtained for the interval considered in the research (1960 to
2020), obtained through FFT. The main harmonic at 10.67 years is highlighted, along with other secondary harmonics (42.7, 21.33, and 5.33 years).
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h   (∅ ) =
1ffiffiffiffiffiffi
2p

p
Z ∞

−∞
f (s)e−i∅ x   dx (2)

Where s is the independent variable of the temporal or spatial

domain and the variable ∅ independent of the frequency domain.

Now, the sequence of N real numbers S0,……………., SN−1 (the

original time-domain signal) is transformed into the sequence of N

complex numbers S0,……………. SN−1 (the frequency-domain

representation) by means of the Discrete Fourier Transform

(DFT) using the following Equation 3:

Sn =
1
No

N−1
k=0 Sk :   e

i2pnk=N (3)

where Sk denote the amplitude of the signal in the time domain

at the index k, and Sn represents the corresponding complex

amplitude in the frequency domain at the frequency index n.

To perform the FFT, we use the Microcal Origin 6.0 software.

The squared module of the FFT of the series to be analyzed stands

out, where the resulting graph is called the power spectrum or

power spectral density (SP). The distribution of power values is

measured as a function of SP frequency (Equation 4).
Frontiers in Agronomy 05
SP(s ) ∝ ½A(s )�2 (4)
2.2.1 Correlation function
In this study, we applied cross-covariance analysis to measure

the similarity between two time-series signals: solar activity (Wolf

Number) and agricultural yields. This method helps identify

whether variations in agricultural productivity exhibit a lagged

or synchronized response to changes in solar activity, allowing for

the detection of underlying periodic relationships. Equation 4 is

the function of the relative time between the signals

(Muñoz, 2009).

Given two discrete functions or signals fi and gi with i=1……N,

the cross-correlation is Equation 5:

Cfg = (f *g) = o
j=+L

j=−L
f *j gij (5)

With L≤N where the summation is performed over integer

values of J; and the asterisk indicates the complex conjugate. L is the

so-called lag or lag time.
FIGURE 3

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Corn.
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2.3 data sources

The agricultural yield data were obtained from the German

Federal Statistical Office (Destatis), covering the period 1960–2021.

Solar activity data (Wolf Number) were retrieved from the Solar

Influences Data Analysis Center (SIDC) of the Royal Observatory

of Belgium.
3 Results

Figure 1 illustrates the Wolf Number (W) time series of for the

analyzed period, which span 11 completed solar cycles. The figure

also highlights the average durations of maximum and minimum

phases, as well as the overall period cycle. This representation of the

evolution of solar activity provides a temporal reference for

examining its potential influence on agricultural yields over time.

Figure 2 presents the spectral analysis of the W index using the Fast

Fourier Transform (FFT). Figure 2 shows the spectral analysis of the

W index, performed using Fast Fourier Transform (FFT). The

analysis reveals a dominant spectral peak at 10.67 years (95% CI:
Frontiers in Agronomy 06
10.1–11.2 years), suggesting strong synchronization with the 11-

year solar cycle. Furthermore, secondary harmonics at 21.33 years

and 5.33 years are also statistically significant (p < 0.05), further

reinforcing the cyclical effect of solar activity on agricultural yields.

These secondary peaks point to additional periodic influences that

might affect the agricultural systems studied.

The graph shows the length of each cycle, both for the highs and

lows. On the right edge, the corresponding averages are indicated by

red numbers (10.8 and 10.9, respectively). The exact values for the

periods may vary slightly depending on the calculation method, but

they consistently remain within the range of 11 ± 1 years.

The following panel (Figure 3) presents multiple elements in a

comprehensive analysis of the 10 agricultural categories studied:

These graphs show the normalized time series for each of the 10

agricultural categories, providing a clear view of how each crop or

livestock group performed over the study period.

These graphs show the yield time series after normalization,

filtering, and detrending, allowing for a clearer view of underlying

trends without long-term bias. These are overlaid with the

Normalized Wolf Number (WN), which represents the

synchronized behavior of solar activity.
FIGURE 4

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Barley.
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This graph presents the cross-correlation analysis between the

yield variables and the Normalized Wolf Number (WN). It

identifies key synchronization peaks, highlighting the temporal

relationship between solar activity cycles and agricultural

yield fluctuations.

This graph shows the spectral amplitude of the normalized,

filtered, and detrending (NFsT) yield time series, emphasizing

significant cyclical components and their alignment with solar

activity, particularly the dominant 10-12-year cycle.

Together, Figures 3–11 provide a detailed visualization of the

synchronization dynamics between solar activity and agricultural

productivity. This is consistent with the results of a previous study

(Mawad et al., 2022b) that demonstrated a relationship between the

spread of epidemics and pandemic viruses with solar activity, which

also impacts plants production. The inclusion of these multiple

methods allows for an in-depth understanding of the temporal and

cyclical relationships observed across key study categories.

As we can see in Figures 3-11, NFD of Com yield, burley yield,

oat yield, rye yield, primary cereals yield, potato yield, wheat yield,

cattle yield and annual beef yield are sometimes congruent with
Frontiers in Agronomy 07
normalized Wolf number NFD, meaning that the peak is congruent

with both. The next one is reflective, so the peak becomes congruent

with the crest. This indicates that changes in agricultural yields are

closely linked to perturbation in the Earth’s orbit, which results in a

slight disturbance in the Earth’s gravitational pull, as found in the

previous study (Mawad, 2017). This makes altitude above sea level

an important factor influencing productivity, because each level has

a different gravitational effect. Therefore, crops differ between

tropical, subtropical, temperate and polar zones, because their

levels have a different distance from the Earth’s center, which

results in a difference in the amount of gravity, which affects the

quantity and quality of the crop.

The correlation with solar activity also confirms that the sun has

an impact on agricultural yields in the short and long term. Because

the number of sunspots, which represents solar activity is merely an

index, it does not affect weather and agriculture per se. However, it

is evidence of changes in the amount of radiation and particles

ejected from the sun, some of which reach the Earth and affect it,

and which often change depending on solar activity (Mawad et al.,

2022a; Mawad et al., 2022b).
FIGURE 5

Cross-correlation plot between the yield variable and the solar index W N. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Oats.
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Figures 3-11 provide a detailed visualization of the

synchronization between solar activity and agricultural yields for

the 10 key categories analyzed (Mawad, 2017) . Key

elements include:
Fron
-Normalized time series for each crop or livestock category.

-Filtered and detrended series compared with the normalized

Wolf Number (W N).

-Cross-correlation analysis identifying peaks that align with

solar activity cycles.

-Spectral analysis highlighting periods of 10–12 years, along

with secondary harmonics.
Tables 2, 3 summarize the periods identified through spectral

and cross-correlation analyses, emphasizing the consistent

associations observed across all the products studied.

Tables 2, 3 present the numerical results of the spectral analysis

and cross-correlation of the data (W vs Yields). In both cases, values

corresponding to periods within the range of 10 to 12 years of Solar

Activity (as seen in Figure 2) are highlighted in yellow, while

associated harmonics are highlighted in green.
tiers in Agronomy 08
Overall, the results indicate a statistically significant

synchronization between solar activity cycles and agricultural

yields in Germany. The 10.67-year periodicity aligns closely

with the 11-year solar cycle, while secondary harmonics at 21.33

and 5.33 years suggest multi-scale interactions between solar

activity and agricultural performance. These findings reinforce

the hypothesis that solar activity can influence climate-related

agricultural variables, potentially affecting long-term crop

productivity trends.
4 Discussion

The identification of a clear 10.67-year periodicity in

agricultural yields suggests a strong connection between solar

activity cycles and crop performance. This study contributes

novel empirical evidence by demonstrat ing that this

synchronization is statistically robust and consistent across

multiple agricultural categories. These results have implications

for improving long-term agricultural planning, particularly in the
FIGURE 6

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Rye.
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FIGURE 7

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Primary cereals.
FIGURE 8

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Potato.
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context of climate variability and food security. Recent evidence has

further supported a complex linkage between solar activity and

terrestrial variables, particularly in climate-sensitive sectors like

regional agriculture (Sierra, 2022).
4.1 Possible mechanisms linking solar
activity and agricultural performance

The observed synchronization between solar activity and

agricultural yields suggests potential mechanisms involving

climatic factors. Solar cycles can influence temperature,

precipitation, and cloud cover (Harrison Virden, 1976; Tripathi

et al., 2022; Zuniga-Gonzalez, 2025), which are critical for plant

growth and agricultural productivity. Although this study did not

directly analyze climatic variables, previous research has shown that

solar activity can influence atmospheric circulation and cosmic ray

activity, which in turn may affect temperature, precipitation, and

cloud formation (Harrison Virden, 1976; Vitali et al., 2019; Zuniga-

Gonzalez, 2025). However, the precise mechanisms linking solar

cycles to agricultural performance remain uncertain. Further

studies should employ high-resolution climate models and

region-specific data to clarify these pathways and quantify their

effects on different crop types. Future research should aim to
Frontiers in Agronomy 10
investigate these mechanisms in greater detail, considering

regional variations in climate and agricultural practices (Pustilnik

and Yom Din, 2013; Muthanna et al., 2016).
4.2 Comparison with previous studies

The finding of a statistically significant 10.67-year periodicity in

agricultural yields, closely aligning with the 11-year solar cycle, is

consistent with previous research that has reported associations

between solar activity and agricultural cycles (Hathaway David,

2010; Arlt and Vaquero, 2020; Birhan and Tariku, 2021). However,

the strength and consistency of this relationship have been shown to

vary across different regions and crops (Makarov, 1994; Markov,

2016; Oshimagye and Eweh, 2021). Our results align with previous

findings (Sierra et al., 1999; Doyle, 2012; Pustilnik and Yom Din,

2013; Melnik and Drebot, 2019), which suggest that winter crop

yields exhibit fluctuations synchronized with phases of solar activity

and Space Weather influences. However, our conclusions contrast

with those of (Wilson, 1994; Randall, 2008; Evangelista et al., 2022;

Sierra et al., 2022), which found no significant correlation. These

discrepancies may arise from differences in methodological

approaches, the selection of agricultural variables, or regional

climate conditions. Further comparative studies are needed to
FIGURE 9

Cross-correlation plot between the yield variable and the solar index W N. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Wheat.
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understand how local environmental factors may modulate the

solar-agriculture relationship. These discrepancies may be

attributed to differences in methodologies, regional climatic

variations, or the inclusion of different agricultural products in

the analysis (Sierra et al., 2019; Shmelev et al., 2021). Furthermore,

the observed time lags in the cross-correlation analysis suggest that

the relationship between solar activity and agricultural yields is

complex and may involve delayed responses or indirect effects (Li

et al., 2009; Sierra-Figueredo et al., 2015; Sierra Figueredo et al.,

2015; Sierra et al., 2017).
4.3 Limitations and future research

The findings of this study suggest that solar activity may be a

factor to consider in long-term agricultural planning and resource

management (Harrison Virden, 1976; Vitali et al., 2019; Sierra et al.,

2022). However, it is crucial to acknowledge the limitations of this

study and the need for further research before these findings can be

directly applied in agricultural decision-making (Sofia, 1985). The

periodic patterns and correlations identified in this study could

serve as a foundation for developing predictive models of

agricultural yields. However, such models must integrate regional
Frontiers in Agronomy 11
variability, account for potential confounding factors, and address

the inherent uncertainties in solar activity forecasts. Future research

should explore the robustness of these relationships using machine

learning techniques and multi-factor climate models to improve

prediction accuracy. Additionally, the potential impacts of future

climate change scenarios on the relationship between solar activity

and agricultural yields should be carefully evaluated (Ormes, 2018;

Muthanna et al., 2016; Sierra et al., 2017; Lin et al., 2021).
5 Conclusions

This study presents strong empirical evidence of a statistically

significant synchronization between agricultural yields in Germany

(1960–2021) and solar activity cycles. The observed 10.67-year

periodicity closely aligns with the well-documented 11-year solar

cycle, reinforcing the hypothesis that solar variability plays a role in

shaping agricultural productivity.

These findings contribute to a growing body of research

suggesting that external environmental drivers, beyond traditional

climatic factors, can influence long-term agricultural trends. The

identification of secondary harmonics suggests that the solar-

agriculture relationship may function across multiple timescales,
FIGURE 10

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Cattle (Head).
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possibly through indirect climate-related mechanisms such as

atmospheric circulation shifts or cosmic ray modulation.

Understanding these interactions could enhance agricultural

forecasting models and adaptive resource management strategies.

These findings highlight the potential value of incorporating

solar cycle forecasts into long-term agricultural planning and

resource management strategies. However, since this study is
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based on data from Germany, further research is needed to assess

the global applicability of these relationships. The consistency of

our results with similar analyses conducted in other regions,

particularly in the Americas, strengthens the argument for a

broader investigation into the role of solar activity in agricultural

productivity. Future studies should explore these interactions across

diverse climatic zones and agricultural systems to refine predictive
TABLE 2 Result of the spectral analysis (FFT).

Products
Period

1
Period

2
Period

3
Period

4
Period

5
Period

6
Period

7
Period

8
Period

9
Period
10

Period
11

Period
12

Period
13

CORN 12,8 10,66 9,14 6,4 3,76 3,2

BARLEY 32 16 12,8 10,66 9,14 8 7,1 5,8 3,37

OATS 21,33 12,8 10,66 9,14 8 6,4 5,8 3,76 3,04

RYE 21,31 16 12,8 10,66 9,14 5,8 4,4

CEREALS 32 16 12,8 10,66 8 5,8 3,37

BEANS 10,66 8 3,6

POTATO 21,33 12,8 10,66 7,1 6,4 5,8 3,76

WHEAT 21,33 16 12,8 10,66 9,14 7,1 5,8 3,76

CATTLE
HEADS

21,33 12,8 10,66 9,14 5,8 5,33

MEAT 21,33 16 12,8 10,66 9,14 7,1 6,4
fron
FIGURE 11

Cross-correlation plot between the yield variable and the solar index WN. Spectral amplitude plot of the normalized, filtered, and detrended yield
time series (NFsT) for Meat.
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models and inform sustainable agricultural policies. This

underscores the importance of considering solar cycles in future

agricultural research and potentially in the development of long-

term agricultural strategies and policies.
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