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Introduction: Agrivoltaic systems (AVS) combine agricultural production with
solar energy generation on the same land. However, the spatiotemporal
variability in light availability caused by panel shading presents a critical
challenge for accurately predicting impacts on crop growth and yield.
Methods: This study introduces a novel modeling framework that integrates a three-
dimensional radiative model with a process-based crop growth model, implemented
in the GrolMP platform, to simulate the performance of alfalfa (Medicago sativa L)
under contrasting AVS conditions. The model accounts for dynamic light
interception, canopy temperature variation, and soil water availability. Field
experiments were conducted in northern and central Italy under three conditions:
open field (Site A), fixed-panel AVS (Site B), and bi-axial tracking AVS (Site C).
Results and discussion: The model was, the model was calibrated and validated
using field data on leaf area index (LAI) (R? > 0.79, RMSE < 48.61), dry matter yield
(R? > 0.82, RMSE < 48.6 g m~?) and canopy temperature (R?> = 0.83, RMSE = 1.24 °
C), demonstrating strong agreement with observations. The validated model
enabled a detailed assessment of how different panel configurations influence
microclimatic conditions, which in turn significantly affected alfalfa growth and
biomass production. From this perspective, simulations revealed pronounced
spatial gradients driven by shading intensity, system layout, and seasonal
dynamics, emphasizing the critical role of AVS design in determining crop
performance. In particular, yield differences among treatments reflected
microclimatic modifications induced by the panels, with shading and rainfall
redistribution likely affecting canopy temperature, soil moisture dynamics, and
associated plant water relations.

Conclusions: The proposed integrated modeling framework thus provides a robust
and scalable tool for AVS design and management, supporting both agronomic
planning and the optimization of structural configurations tailored to site-specific
climatic conditions. By doing so, it may effectively contribute to the development of
more adaptive, efficient, and sustainable agri-energy systems capable of balancing
agricultural productivity with renewable energy generation.
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agrivoltaic system, alfalfa, GrolMP, light interception modeling, process-based
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GRAPHICAL ABSTRACT

Nomenclature
Acronym  Full Name
ASEV Actual Soil Evaporation
ATR Actual Transpiration
AVS Agrivoltaic Systems
Berop Biomass Crop
Chio Carbon Fraction in Biomass
C. Chloroplast CO, Concentration
CF Cover Factor
[N Specific Heat of Air
EPIC Erl?r/ri:;:nl;ale:dt:ll Policy Integrated
ET Evapotranspiration
FDL Fraction of Diffuse Light
PAR }l::adci:zinof Photosynthetically Active
FTSW Fraction of Transpirable Soil Water
G Soil Heat Flux
GER Global Extraterrestrial Radiation
GR Global Radiation
H Sensible heat
Jmax Maximum Electron Transport Rate
K. Crop Coefficient

IN
» AVS design
» Weather

» Crop model

i =FTSW
v

Unit of Measurement

gm ™ ortha
gCg ' DM
umol mol ™
Unitless

MJ kg '°C™!

mm

Unitless
Unitless

Unitless
Wm™
Wm™?
Wm™?
Wm™?

umol m—2 s~

Unitless

‘y}’ = Yield, LAT
& = Canopy temperature

Continued

LAI

MBE

PAR
PC
PET
PP
PV
RH
RMSE
Rn
r/r,
RSR
RUE
SENrate
SF
ShF

SLA

STICS

Tc

Leaf Area Index

Mean Bias Error

Photosynthetically Active Radiation
Partitioning Coefficient
Potential Evapotranspiration
Photoperiod

Photovoltaic

Relative Humidity

Root Mean Square Error

Net Radiation
Surface/Aerodynamic Resistance
Reduced Solar Radiation
Radiation Use Efficiency
Senescence Rate

Stage Factor

Shadow Factor

Specific Leaf Area

Simulateur mulTIdisciplinaire pour
les Cultures Standard

Air Temperature

Canopy temperature

m’m™>

same as variable compared
-2 -2
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mm
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Continued
TF Temperature Factor Unitless
Tr Transmissivity Unitless
VPD Vapor Pressure Deficit kPa
WEF Water-Energy-Food nexus -
WS Wind Speed ms*
WSF Water Stress Factor Unitless
AET Latent heat flux Wm™?
Y Psychrometric Constant kPa°C™!
I CO, Compensation Point umol mol ™
AT g:rr:lopi);a'f::perature minus Air oC
Pa Air Density kgm™
®,IL Electron Transport Efficiency of mol mol!

Photosystem II under Limiting Light

1 Introduction

Agrivoltaic systems (AVS) are increasingly recognized as a
promising solution to address the interlinked challenges of the
Water-Energy-Food (WEF) nexus by integrating agricultural
production with renewable energy generation on the same land
area (Barron-Gafford et al., 2019). However, this dual-use approach
inherently entails trade-offs between crop performance and solar
energy capture, making it essential to optimize system design for
both efficiency and long-term sustainability. At the same time, the
electricity generated by AVS can directly power on-farm operations
such as irrigation, cooling, or processing, or be exported to the grid,
thereby reducing greenhouse gas emissions and creating an
additional source of income that reinforces the overall
sustainability of the system (Agostini et al., 2021). A key aspect of
this optimization lies in understanding how the partial or complete
shading induced by photovoltaic (PV) panels alters
microenvironmental conditions, particularly light availability,
temperature regimes, and soil moisture dynamics, which in turn
can significantly affect crop growth and development (Marrou et al.,
2013; Ma et al., 2022).

Assessing the complex interactions between AVS components
and the physiological drivers of plant response under variable
shading is therefore critical to evaluating overall system
performance (Choi et al., 2023). Reduced solar radiation has been
identified as the primary constraint to crop productivity in AVS
(Marrou et al., 2013), leading countries to establish regulatory limits
on Ground Coverage Ratios (e.g., Italy, with a 40% GCR limit;
Dupraz, 2024). Consequently, ongoing research is increasingly
focused on quantifying the heterogeneous impacts of AVS, which
depend on the interaction between species-specific sensitivity to
shading and the growing season. As outlined by the meta-analysis in
Laub et al. (2022), the response of different cultivated species to
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increasing shading is non-linear. While most crops analyzed
(berries, fruits, fruiting vegetables, and forages) tolerate moderate
shading, maize and grain legumes exhibit a strong yield reduction
even under low shading conditions. In any case, for shading greater
than 50%, all the crops proved to be susceptible. However, seasonal
variability and management practices also strongly interact with a
crop’s response to shading. As an example, a two-year field trial on
alfalfa recorded a season-by-season effect of moderate shading (25-
30%) from PV panels on biomass production where shading proved
particularly beneficial during drought periods resulting in increased
biomass accumulation (+10%) with respect to full sunlight
(Edouard et al., 2023). Wheat, considered a species sensitive to
decreased radiation, exhibits different responses not only between
varieties but also in response to the prevailing climatic conditions.
Laub et al. (2022) observed that in subtropical environments,
wheat-maintained yields comparable to open field conditions
under low shading, 30% reduced solar radiation (RSR level), while
higher levels of shading resulted in an average yield reduction of
36.2%. Conversely, in temperate regions experiencing low shading
levels, a decline in yield of 17.4% and 45.2% was observed under
shading conditions exceeding 30% RSR level. These findings
emphasize the climate-dependent plasticity of crop responses
to shading.

Although existing studies highlight both the opportunities and
challenges of AVS deployment, they also expose a major knowledge
gap: current evidence remains largely crop- and context-specific,
which limits the transferability of results across environmental and
agronomic conditions (Laub et al, 2022; Marrou et al, 2013;
Amaducci et al,, 2018). The strong species-specific responses to
shading, combined with the spatio-temporal variability of
microclimates induced by photovoltaic structures, underscore the
need for systematic data collection across diverse climates and AVS
configurations. Yet, the labor and time-intensive nature of field
campaigns constrain large-scale evaluations, positioning modelling
frameworks as a powerful alternative for assessing AVS impacts on
crop performance and resource-use efficiency (Zainali et al., 2025).

Two- (2D) and three-dimensional (3D) simulation platforms
coupled with crop growth models, such as EPIC (Campana et al.,
2024), GECROS (Amaducci et al., 2018; Bellone et al., 2024), and
STICS (Dupraz et al., 2011; Dinesh and Pearce, 2016; Crepeau et al.,
2025), have become increasingly common for simulating radiation
dynamics, light interception, and biomass production under
heterogeneous conditions, including AVS (Grubbs et al., 2024).
These tools have significantly accelerated the evaluation of crop-
specific shading responses and the identification of optimal AVS
designs balancing energy and agricultural outputs (Bellone et al,
2024). Despite advances in modeling crop-radiation interactions,
key methodological gaps remain. Daily-step models (e.g., STICS,
EPIC) cannot resolve intra-day radiation dynamics, and even
hourly models like GECROS lack full 3D integration to represent
canopy light distribution. Moreover, most approaches treat
photovoltaic and crop growth modules separately, limiting the
understanding of soil-water redistribution and its impact on
productivity and system efficiency. Nonetheless, a major
limitation persists due to the lack of robust, multi-seasonal
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experimental datasets for model calibration and validation (Zainali
et al,, 2025). Where data are available, they are often restricted to a
single growing season, limiting the ability to capture interannual
variability. This constraint is highlighted by recent studies
emphasizing the scarcity of long-term data in European contexts,
which undermines the reliability and transferability of the existing
models (Zidane et al, 2025; Berrian et al., 2025). For such an
example, Mazzeo et al. (2025) proposed a sophisticated simulation
approach, yet acknowledged that many yield estimates are still
derived from artificially shaded experiments rather than real
AVS conditions.

Another critical source of uncertainty concerns the type of crop
growth model used to estimate biomass responses under AVS
conditions. Broadly, these models can be classified into two
categories. The first refers to semi-mechanistic models, which
simulate crop development on a daily time step using simplified
assumptions, most notably, Radiation Use Efficiency to convert
intercepted light into biomass (Monteith, 1977; Brisson et al., 2002).
The second includes process-based models, which rely on a detailed,
physiological representation of photosynthesis, operating typically
on an hourly scale and incorporating key limiting factors such as
water and nitrogen availability (Kirschbaum et al., 1997; Morales
et al,, 2018; Bellasio, 2019). Semi-mechanistic models are generally
easier to parameterize and calibrate due to their lower data
requirements, making them suitable for broad-scale applications.
However, they may lack the resolution needed to capture intra-daily
shading fluctuations typical of AVS, thus limiting their accuracy in
highly dynamic light environments (He et al., 2024; Zainali et al,,

10.3389/fagro.2025.1699126

2025). In contrast, process-based models are better equipped to
simulate the fine-scale effects of fluctuating radiation, but they
require extensive input data, including crop-specific biochemical
and structural parameters, which are often unavailable or difficult to
measure (Prusinkiewicz and Runions, 2012).

Building upon these premises, this study presents the
development and validation of a novel modelling framework that
integrates a simplified process-based crop growth model with a
high-resolution, three-dimensional radiative environment. The
framework is specifically designed to resolve the spatial and
temporal heterogeneity of intra-daily shading patterns generated
by diverse AVS configurations, while capturing feedback processes
that are fundamental for a realistic representation of crop
productivity under fluctuating light regimes. Its performance was
rigorously evaluated using an extensive multi-year dataset collected
across contrasting environmental contexts, including open-field
conditions, fixed-panel installations, and dual-axis tracking AVS,
with alfalfa (Medicago sativa 1.) employed as a representative
model species.

2 Materials and methods
2.1 Study area and experimental design
Field trials were conducted across three locations in northern

and central Italy (Figure 1), each representing a distinct agronomic
and environmental context: (i) an open-field reference site in

0 150 300 km
—+—

Bi-axial AVS

Bologna
g “ Ravenna

Open field

FIGURE 1

Location of the open field (Site A), fixed (Site B) and bi-axial (Site C) agrivoltaic system experimental sites.
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Montese (Modena; Figure 1-Site A), (ii) a fixed-panel AVS in
Sant’alberto (Ravenna; Figure 1-Site B), and (iii) a bi-axial
tracking AVS in Borgo Virgilio (Mantova; Figure 1-Site C). These
sites were selected to capture a range of radiation regimes and to
assess crop performance under different spatial and temporal
shading conditions.

2.1.1 Open-field setup

The open-field study area is located within the ‘Terre di
Montagna’ Consortium, which includes approximately 100 farms
dedicated to Parmigiano Reggiano production in the mountainous
Apennine regions of Bologna and Modena (Emilia-Romagna,
central Italy), at altitudes exceeding 600 meters above sea level.
The local soils are mainly composed of sandstone, limestone, and
marl, exhibiting variable pH conditions. Climatic data were
obtained from the Montese meteorological station (44.4579° N,
10.5899° E), positioned at the center of the study area
(Supplementary Figure S1). The climate is characterized by an
average annual temperature of 10.1°C and mean annual
precipitation of 930 mm, with limited drought occurrence during
the summer months (Argenti et al.,, 2021).

10.3389/fagro.2025.1699126

2.1.2 Fixed agrivoltaic system

The fixed AVS study site is located in Sant’Alberto (Ravenna,
Italy; 44.51019° N, 12.1552° E), a northeastern area of Italy well-
suited for AVS implementation due to its high solar radiation and
fertile agricultural soils. The site has been operational since 2012
and hosts a 70-hectare alfalfa (Medicago sativa L.) meadow,
contributing to approximately 45 GWh of electricity per year.
The terrain is predominantly flat, with elevations ranging from 4
to 8 m above sea level. The climate is temperate, with hot summers
and cold winters, and an average annual temperature of 15°C
(ranging from 5°C in January to 25.6°C in July). Annual
precipitation averages 767 mm, with November being the wettest
month (87 mm) and January the driest (49 mm). Meteorological
data were recorded at the local weather station throughout the
experimental period (Figure 1). Soils at the site are classified as silty
sand in the 0-60 cm layer, composed of 50% sand, 40% silt, and 10%
clay. Photovoltaic panels at the site are mounted on south-facing
ground structures tilted at a 35° angle. The tables are 3.5 m wide
with 8 m spacing between rows, resulting in a Ground Cover Ratio
(GCR) of 38%. Panel height varies from 1.3 m at the lower edge to
3.3 m at the upper edge (Figure 2a). Prior to sowing in 2020, the soil

SouTtH

4.50 m

ol
¥ | Jradeds
T&"a N2

TRI1

TR4

PITCH 12M

FIGURE 2

Representation of the fixed (a, Site B) and bi-axial AVS (b, Site C), highlighting the spacing between rows, height of the panel in relation to the

ground and arrangement of treatments (TR1-TR4).
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was plowed to a depth of 30 cm, then tilled and rolled to ensure
good seed-to-soil contact, facilitating successful crop establishment
under the AVS configuration.

2.1.3 Bi-axial agrivoltaic system

The bi-axial AVS experimental site is located in Borgo Virgilio,
northern Italy (Mantova; 45.0944° N, 10.7916° E), and has been
operational since April 2011. The site spans 11.42 hectares, with
approximately 13% of the surface occupied by photovoltaic panels
(GCR), each measuring 1 m x 2 m. The total installed capacity is
2,150.4 kWp, distributed across 768 biaxial solar trackers that
support 7,680 polycrystalline PV modules (Poly 280 Wp, Bisol
Group, Slovenia). The panels are mounted 4.5 m above ground and
are capable of dual-axis tracking, with tilt ranges of +50° along the
primary axis and +40° along the secondary. Soils at the site are
classified as silty sand in the 0-60 cm layer, composed of 50% sand,
40% silt, and 10% clay. The pH is slightly alkaline (8.5), with an
organic carbon content of 1.1% and total nitrogen of 0.18%.
Available phosphorus and exchangeable potassium levels are 76.4
mg kg™ and 810 mg kg ™', respectively.

2.2 Data collection

Field data were collected at the three experimental sites - Site A,
B and C - throughout the entire seasonal growth cycle of alfalfa.
Measurements focused on above-ground dry biomass (AGB, g) and
Leaf Area Index (LAI m? m’z), both used for model calibration
and validation.

At the open-field site (Figure 1-Site A), surveys were conducted
during the 2019 season on four-year-old pure stands of alfalfa.
Sampling occurred on three dates (day of year (DOY) 150, 197, and
241), corresponding to spring, summer, and late summer,
respectively. For each date, three replicate plots per field were
randomly selected. On each sampling date, canopy LAI was first
measured using a LI-COR ceptometer (LI-190; LI-COR, USA), with
one reading per plot. Subsequently, AGB was harvested within 0.5 x
0.5 m quadrats using battery-powered clippers, following the
protocol of Mikhailova et al. (2000). Samples were sealed in
plastic bags, transported to the laboratory, and oven-dried at
80°C for 48 hours until constant weight (Wang et al., 2019).

At the fixed AVS site (Figure 1-Site B), sampling was performed
throughout the 2023 and 2024 growing seasons on the following
dates: DOY 7, 68, 144, 188, 212, and 314 (2023) and DOY 80, 100,
191, and 268 (2024). A total of 36 sample plots (0.5 x 0.5 m each)
were established according to a randomized complete block design,
consisting of four treatments (TR1: 6% shading, TR2: 7% shading,
TR3: 67% shading, TR4: 82% shading) replicated three times within
each of the three blocks distributed across the field (Figure 2a). This
layout allowed for the capture of both spatial heterogeneity and
treatment effects across the AVS. Plots were systematically
positioned along the shading gradient imposed by the PV panels.
On each sampling date, canopy LAI was first measured using an
AccuPAR LP-80% ceptometer (Decagon Devices, Pullman, WA,
USA). Subsequently, regrowth biomass was harvested to a height of
3 cm within the 0.5 x 0.5 m frame at the plot center. Samples were
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dried at 60°C for 48 hours to determine dry matter yield (g m™). For
a detailed description of the site and the relevant sampling protocol,
please refer to Moretta et al. (2025).

At bi-axial AVS site (Figure 1-Site C), alfalfa was sown on 20
October 2022 at a density of 300 seeds m ™. Biomass sampling was
conducted along 12 m transects arranged within a 12 x 36 m study
area. The experimental layout consisted of four treatments (TR1: 27%
shading, TR2: 12% shading, TR3: 21% shading, TR4: 34% shading),
spaced 3 m apart, each containing three replicate plots within the
transect. This arrangement was repeated three times across the study
area, resulting in a total of 36 treatment plots. A 1.5 m buffer was
maintained at both ends of each transect to minimize edge effects and
avoid interference from PV panel supports. Data were collected on
DOY 183, 207, 241, and 296 during the 2024 season. On each date,
biomass was cut to 3 cm within 0.5 x 0.5 m quadrats at plot centers,
then oven-dried at 60°C for 48 hours for dry matter quantification.
Additionally, canopy temperature was measured using a FLIR Ex-
Series thermal camera (FLIR Systems, Inc., Wilsonville, OR, USA),
positioned approximately 1 cm from the leaf surface, to monitor
thermal responses to shading conditions. Meteorological data were
recorded at the local weather station throughout the experimental
period (Supplementary Figure S1). Temperature measurements were
taken on the same days as biomass sampling, consistently between
10:30 a.m. and 11:30 a.m., always selecting leaves exposed to direct
sunlight and avoiding shaded ones.

2.3 Integrated modeling of AVS

2.3.1 Framework setup and scene design

To spatially assess the impact of AVS on crop growth, a process-
based crop simulation model was embedded within the Growth
Grammar-related Interactive Modelling Platform (GroIMP),
leveraging its capabilities for three-dimensional modeling, light
simulation, and interactive visualization (Kniemeyer et al., 2007).
GroIMP is an open-source 3D environment originally developed
for functional-structural plant modelling; it supports rule-based
scene construction and physically based light simulation through an
inverse Monte Carlo ray-tracing algorithm (Kniemeyer et al., 2007;
Hemmerling et al., 2008). GroIMP was used to construct virtual 3D
scenes representing different AVS layouts, with photovoltaic (PV)
panel geometry and spatial distribution explicitly defined. The
associated ray-tracing radiation model (Hemmerling et al., 2008;
Boland et al., 2008) enabled the simulation of global solar radiation
distribution and shadow patterns across the cropping surface. These
outputs were used to dynamically drive the crop model and evaluate
the spatial effects of shading.

At Site A (Montese, open-field reference), the terrain
configuration was simulated in GroIMP using a tile-based
approach, with the soil surface partitioned into 1 x 1 m grid
elements spanning a 20 x 20 m area.

The same scheme was used to spatially represent the terrain in
the AVS layout at the Ravenna (Site B) and Mantova (Site C)
experimental sites. In Site B (fixed AVS), PV panels were
represented as 3.2 x 3 m rectangular surfaces, mounted at a
height of 2 m and tilted at 35° relative to the vertical. Panels were
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arranged in continuous rows, spaced 8 m apart, and oriented along
a north-south axis (Figure 2a).

In the Site C system (bi-axial AVS), panels were modeled as 1 x 2
m surfaces positioned at 4.5 m above ground (Figure 2b). Each panel
was assigned two degrees of freedom for solar tracking, with tilt ranges
of +50° and +40° along the primary and secondary axes, respectively.

2.3.2 Radiative environment

Each scene is coupled with a physically based simulation of
direct and diffuse solar radiation, aimed at quantifying the total
radiation intercepted by each object in the scene (e.g., photovoltaic
panels and underlying surfaces) throughout the diurnal cycle. The
radiative model is based on the approach originally described by
Zhu et al. (2018) and subsequently modified in Moretta et al. (2025).

To this end, the scene incorporates two distinct types of
radiative sources: i) a dynamic point light source that emulates
the solar trajectory across the sky, representing direct beam
radiation; and ii) an array of 72 static point light sources, spatially
distributed across six concentric circles (12 sources per circle) to
uniformly sample the upper hemisphere and reproduce the angular
distribution of diffuse radiation, following the discretization scheme
of Zhu et al. (2018).

The model includes a preprocessing step to compute the solar
elevation angle on an hourly basis as a function of site latitude and
DOY, following the astronomical formulation of Goudriaan and
Van Laar (1994). This enables the derivation of instantaneous
global extraterrestrial radiation (GER, W m™?) (Equation 1).

27(ty — 10) )

10.3389/fagro.2025.1699126

where GER is the global extraterrestrial radiation (Wm?™), € is the
solar constant (1370 Wm™), ty is the days from 1*' January, and f3 is
the elevation of the sun above the horizon.

The ratio between the hourly ground-measured global radiation
(GR, W m_z), provided by external meteorological data, and the
corresponding GER yields the transmissivity coefficient (17,
dimensionless), which is then used as an input to estimate the
diffuse radiation fraction according to the empirical model by
Boland et al. (2008) (Equation 2).

FDL = (1+e®¢79)7! )

where FDL is the fraction of diffuse radiation (unitless) and Tr is the
transmissivity (unitless).

Once the partitioning between direct and diffuse components is
obtained, the corresponding radiative fluxes (W m ) are assigned
to their respective light sources for each hourly timestep. The
distribution of radiative energy within the scene is then computed
using the GroIMP radiation model, which employs an inverse
Monte Carlo path-tracing algorithm to simulate light transport
and integrate intercepted radiation across object surfaces.

2.3.3 Crop modelling approach and calibration
strategy

The global radiation intercepted at the ground on an hourly
time step for each tile simulated in GroIMP, was used as a direct
input to drive an Alfalfa growth model embedded in the same
platform, which also requires, at the same time resolution, air
temperature (Ta,°C), accumulated rainfall (Rain, mm), relative
humidity (RH, %), and wind speed (WS, ms™) to estimate plant

GER =€ -sinf3(1 +0.33 - cos( (1) ] ’
365 morpho-physiological processes (Figure 3).
SHADOW ]
¢ GR | LT f——— T\ o)\ CRID), WS
Photosynthetic efficiency | AET v
O]
3
g Legend:
§ V= input parameter directly modified
V= input parameter indirectly modified
/= input parameter not modified
o [O= trait indirectly modified
S O= simulated parameter B‘Eéé
2 ~proce
ﬁ + = process
| Soil moisture | «I ASEV
L,

FIGURE 3

Simplified diagram of the crop modelling framework developed for assessing Alfalfa growth under different AVS. Grey, pink and white triangles
indicate model input parameters directly, indirectly and not modified by shading effects, respectively. The remaining pink elements refer to
morpho-physiological traits indirectly modified, while the white ones represent the parameters simulated by the model.
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The basic structure of the model uses a process-based approach
for hourly estimation of biomass accumulation (B, g m™?), which
is dynamically partitioned to leaves, stems, and roots during the
season. Accordingly, in non-limiting conditions (Equation 3):

B, = fPAR -I -RUE 3)

where I is the incident hourly global solar radiation (M] m?)
derived from the GroIMP radiation model, fPAR is the fraction of
incident radiation intercepted by the canopy (unitless), and RUE is
radiation use efficiency (g MJ"). fPAR is calculated on an hourly
time step according to Sinclair et al. (1992) (Equation 4):

fPAR = 1- s (4)
where k is the extinction coefficient of light in the canopy, and
alpha (°) is the angle of sun elevation provided to the growth model
by the GroIMP simulation of the daily course of solar track (section
2.3.2). RUE is calculated according to Yin et al. (2021), who
modelled the canopy light use efficiency of C3 crops (Pcozcanopy»
mol CO, mol™ photon) as (Equation 5):

(C. = 1) - du
4-(Co + 200 (1 + gy + By te)

Jinas

©)

®COannopy =

where Cc is the chloroplast CO, level (umol mol™), I'v is the CO,
compensation point (mol mol ™), @,;; is the electron transport
efficiency of Photosystem II under limiting light (mol mol™), I,,.. is
incident light photosynthetically active radiation (PAR, umol m~>
s7"), and ],y is canopy-top leaf maximum electron transport rate
under light-saturating conditions (umol e~ m™> s™'). Further
description of the functional formulations related to temperature
sensitivity of I« and ], as well as the nitrogen-dependent scaling
of Jax for photosynthetic response, is provided in SI
(Supplementary Figure S2). The parametrization of the alfalfa
growth model is provided in Table SI.

Canopy light use efficiency (CO2, ,py), calculated in not limiting
water conditions, is then converted into RUE according to van
Oijen et al. (2004) and Yin et al. (2021) (Equation 6):

0.5

Chinm

RUE = @copeanegy -MM- (1 —g) 4.56 - (6)
where R/P (crop respiration-to-photosynthesis ratio) was set to 0.4
(Yin et al., 2021); MM (the molar mass of carbon) was fixed at 12 g
mol™' and a conversion factor of 4.56 was used to translate
photosynthetically active radiation (PAR) from MJ to moles of
photons, assuming that PAR represents 50% of incoming global
solar radiation. The carbon fraction in crop biomass (Cp;orm) Was set
to 0.48.

Assimilated biomass at the hourly scale is accumulated daily
and partitioned to the different organs according to dynamic
partitioning coefficients (PCs, ratio), which are dependent on
photoperiod (PP, hours) as provided by the radiative model of
GroIMP. Specifically, for PP before the spring equinox, PC to above
ground biomass (AGB, g m™>) (i.e., leaves and shoots) is set to 0.9
while it decreases to 0.67 between the equinox and summer solstice
(Brown et al., 2006). After that, as PP starts decreasing, PC to AGB
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drops to 0.35, considering that at the end of the season, the plant
improves the accumulation of reserve substances in the roots to
ensure vegetative recovery after the winter (Teixeira et al., 2007).
According to Brown et al. (2006), this stage was assumed to start
when PP decreases to 1h less than the daylength at solstice.

Biomass partitioned to AGB is further partitioned to leaves
(PCleqp) (Equation 7) and shoots (PCiass) (Equation 8) according to
an allometric equation that assumes an exponential decrease in
PCleayes as increased dry matter to AGB (Brown et al., 2006; Teixeira
et al,, 2009). Accordingly:

d
PChy = ¢ - exp|——0 7
leaf = € EXP (AGB 102 + e) @

PC:hoots =1- PCleuves (8)

where ¢, d and e are empirical coefficients shaping the response of
PC to leaves to AGB (Supplementary Table S1).

The biomass partitioned to leaves (g m™) is converted into new
leaf area (LAI,,, m*> m™>) considering biomass investment per unit
leaf area (Specific Leaf Area, SLA, m* g'l) (Equation 9).

LAlratey) = AGB - PCpy -SLA 9)

On the evidence that plants show an increase in SLA as an
adaptation to shading conditions, as observed in the literature
(Scarano et al., 2024; Potenza et al., 2022; Evans, 2001) and the
experiment in Site B (Moretta et al., 2025), SLA was dynamically
modified over each tile by quantifying the relevant degree of
shading. Accordingly, a shadow factor (ShF, unitless) is calculated
as the ratio between incoming global radiation (GR) and that
intercepted by each tile (I), which ranges between 1, when the
radiation intercepted by the tile corresponds to the external global
radiation (no shadow), up to 0, corresponding to a complete
shadowing (Equation 10):

I
ShF = —

CR (10)

The shadow effect on SLA is assumed for ShF lower than 0.9, where
the increase in SLA was calculated as (Equation 11):

incSLA = SLAmax-(1 —ShF) (11)

where SLAmax represents the maximum increment of SLA in
response to a complete shadowing according to the results
obtained in Site B (0.25; Moretta et al., 2025). incgp,, calculated
on an hourly basis for each tile, is daily averaged and finally used to
update the original SLA and the relevant LAIrate.

The simulation of LAI is completed by the simulation of leaf
area senescent rate (SENrate, m* m™) (Equation 12) that is
modelled by assuming a fixed senescence rate (FixSENrate, m* m”
2) multiplied by a Stage Factor (SF, unitless), a Cover Factor (CF,
unitless), a Temperature Factor (TF, unitless), and a Water Stress
Factor (WSF, unitless) (Yang et al., 2022).

SF starts linearly increasing from active vegetative growth
(SF = 0) to floral buds’ visible stage (BV) (SF = 0.3). This stage is
dependent on daily mean temperature (Tmean,’C) and PP, where
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the attainment of the phase, in the original configuration of Teixeira
et al. (2011), is determined by an accumulation of 700 degree days
(DDA,°C) (base temperature Tb=0°C) at PP = 10h, linearly
decreasing up to 270 DDA at PP>14h condition. After BV,
temperature becomes the primary driver of anthesis, defined as
the stage when 50% of stems have open flowers. This is initially set
to occur at 274 DDA after BV, corresponding to SF = 0.6, which
increases to 1 in the following stage (grain filling).

CF increases linearly from 0 to 0.5 as LAI increases from 2 to 4,
and then continues to increase, reaching a maximum value of 1.5 at
LAI 7.

TF is set to 0.1 for mean daily temperatures between 0 and 5°C,
then increases progressively, reaching 1 at 20°C, and peaking at a
maximum of 1.5 at 40°C.

WSE is assigned a value of 1 when the Fraction of Transpirable
Soil Water (FTSW) is greater than 0.5. Below this threshold, WSF
increases linearly up to 2 as FTSW decreases down to the wilting
point (FTSW = 0.1).

Accordingly:
SENrate() = FixSENrate - SF - CF - TF - WSF (12)
LAI at time ¢ is then updated (Equation 13):
LAl = LAIy_yy + LAIrate, — SENrate (13)

A soil water balance module is integrated to simulate water
limitation experienced by the canopy during the growing season
and the relevant impact on plant transpiration and photosynthesis.
The soil water balance is calculated for a single layer where the total
transpirable soil water (TTSW, cm) is estimated considering the
water content availability (WCA, cm cm™) between field capacity
and wilting point and the root depth (cm). Assuming no surface
runoff, available soil water for the layer (ATSWy, cm) depends on
the ATSW of the previous day (ATSW,;, cm), and the positive
(rainfall and/or irrigation, mm) and negative contribution (actual
evapotranspiration, ET, mm) to the water budget (Equation 14).

ATSWd = ATSW(d_l) + (Rainfall(d> + Irrigation(d)) - ET(d) (14)

where rainfall, irrigation and ET are converted from mm to cm.

The calculation of actual evapotranspiration ET is preceded by
the estimation of potential evapotranspiration (PET, mm), that
representing the atmospheric evaporative demand under non-
limiting water conditions, serves as a reference for deriving ET by
incorporating constraints related to soil water availability and crop-
specific stress factors. PET is calculated according to Penman-
Monteith approach at hourly timestep (Equation 15):

(4R, -G+ pugy522)

PR <A+y(l+:—;)>

(15)

where A is the latent heat of vaporization (J Kg’l), Rn is the net
radiation (Wm™), G is the soil heat flux (Wm™), (es-e,) represents
the vapour pressure deficit of the air (VPD, KPa), p, is the mean air
density at constant pressure (Kg m™), ¢, is the specific heat of the
air (J K'm™), A is the slope of the saturation vapour pressure
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temperature relationship (KPa°C™), y is the psychrometric constant
(KPa°C), and r, and r, are the surface and aerodynamic resistances
(s m™M).

Considering that Rn, G, and VPD data were not available at the
experiment sites, they were calculated according to Allen et al.
(1998). Hourly net radiation Rn was calculated as the difference
between net shortwave radiation (Rns) and net longwave radiation
(Rnl). Rns were obtained by correcting incoming solar radiation for
surface albedo (assumed 0.23), while Rnl was estimated using the
Stefan-Boltzmann law based on hourly air temperature, vapor
pressure, and the ratio of measured to clear-sky solar radiation. G
was calculated as 10% Rn during the day, to 50% at night. Hourly
vapor pressure deficit (VPD) was calculated as the difference
between saturated vapor pressure, derived from air temperature,
and actual vapor pressure, estimated from observed relative
humidity. For more comprehensive information, we recommend
consulting the original publication.

Surface resistance (rs) was assumed to be 70 s m™ during the
day (Allen et al,, 1998) and 700 s m™* during the night (e.g. Meyers
and Hollinger, 2004) to account for stomatal closure when radiation
is missing.

Aerodynamic resistances ra is calculated according to Thom
and Olivier (1977) as (Equation 16):

[4.72 - [In((z = d + 2,)/z,)*]

fa = (1+0.54-u) (16)

where u is wind speed (ms™) at reference height z (2 m), d is the

zero-displacement height equal to 1.04 h*®®

and z, the roughness
length for momentum and heat transfer equal to 0.062 h'%%, where
h is the crop height, assumed as a function of accumulated AGB
according to a logistic function (SI).

PET is partitioned between plant transpiration and soil
evaporation that are then rescaled to the relevant actual values
considering the limitations imposed by current water conditions.
fPAR is used as a scalar to partition ET between soil and crop, where
the proportion of PET allocated to potential transpiration is fPAR
and that to potential soil evaporation is 1- fPAR (Marsal et al,
2014). Potential transpiration is rescaled to actual transpiration
considering that plant’s gas exchange is regulated by the extractable
soil water content, expressed by the ratio between ATSW and
TTSW (ie., fraction of transpirable soil water, FTSW, unitless;
Sinclair and Muchow, 1999) (Equation 17).

RelTr= (1+a-exp(b-FTSW))™ 17)

where RelTr is the fraction of actual to potential transpiration
(ranging from 1, when FTSW is not yet limiting potential
transpiration, to 0, where FTSW completely inhibits transpiration),
and a and b are empirical parameters shaping the response of RelTr
to FTSW. The RelTr is also used to rescale the potential RUE
(Equation 6) to its actual value by considering that the reduction in
RUE is directly proportional to the reduction in transpiration
(Sinclair and Muchow, 1999; Supplementary Figure S4).

Similarly, a rescaling factor for soil evaporation (RedEvap) is
calculated when soil moisture diverges from a condition equivalent to
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that of a wet surface, assumed when FTSW>0.5 (Soltani and Sinclair,
2012). RedEvap is thus calculated as a function of the square root of
time (DYSE, days) since FTSW is lower than 0.5 (Equation 18):

RedEvap = [(DYSE + 1)°° — (DYSE)"’| (18)

Finally, actual transpiration (ATR, mm) (Equation 19) and soil
evaporation (ASEV; mm) (Equation 20) are calculated as:

ATR = fPAR - PET-Kc - RelTr (19)

ASEV = (1-fPAR)- PET-Kc - RelEvap (20)

where Kc is the crop coefficient, assumed constant (1.05) during the
growing season (Allen, 1996).

Considering that the hourly energy balance is calculated as
(Equation 21):

R,=G+H+ AET (21)

where Rn and G are known terms and actual AET may be calculated
as the sum of ATR and ASEV and then converted via A, the sensible
heat H (Wm™) may be derived as difference and used to calculate
the hourly temperature of the canopy (T¢,°C), accounting for the
effect of a reduced transpiration on plant temperature (Webber
et al., 2018). The Tc (Equation 22) is then introduced as a factor
affecting photosynthetic efficiency (I'- and J a0 SI).

T.=T, + H-ra
pu'cp

By embedding the crop growth model within the same platform

(22)

as the radiative model in GroIMP, the framework dynamically
accounts not only for the effect of absorbed global radiation and PP
on plant growth and development but also for the impact of
photovoltaic panels water harvesting its subsequent redistribution
to the ground area immediately below their slopes. Accordingly,
rainfall intercepted by the photovoltaic panels is redistributed onto
the ground within the first meter linearly extending from the lower
edge of the panels (Moretta et al., 2025) (Equation 23):

R, =R, +R (23)

where R,is the total daily cumulated total rainfall (mm), including
daily measured rainfall (R,,) and that intercepted by the panel (R;)
that is calculated according to (Equation 24):

Ri=R,, - Apunel “Re (24)

where Ay, is the effective collecting area calculated per linear
meter of panel and Rc is the precipitation runoff conversion
coefficient. In this study, Rc was set to 0.9 (90%). Apguer is

calculated as (Equation 25):
Apanet = Length - Width - cos () (25)

where Length is the length of the panel (m), Width is the width of
the panel (m) and ¢ is the tilt angle of the panel relative to the
ground norm.
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Conversely, the water input below the area under the panels’
projection was considered negligible in all cases. In this context, a
1.5 m strip on both sides of each supporting pole, representing the
area most influenced by potential rainfall shielding and runoff from
the panels, was excluded from the computation domain.

Considering the simplified structure of the model, model
calibration was limited to the tuning of a limited subset of
parameters, while core physiological and structural parameters
remained fixed, as they were derived from experimentally
validated sources. Specifically, the calibration considered
coefficients and timing of PC to above/below ground biomass as
these parameters determine the accumulation and subsequent
distribution of biomass in the leaves and stem. In addition, the
flowering period was considered, as it plays a key role in driving leaf
surface senescence.

As such, the model was initially applied over the calibration
sites for testing LAI and biomass accumulation (Site A) and
phenology (Site B) considering the initial parameterization for
phenology and biomass partitioning in accordance with the
literature data (Supplementary Table S1). As a second step, based
on the model’s performance, the relevant parameters were modified
to adjust the model’s performance to the observed results.

To further explore the interaction between crop growth, water
regime and energy production, the calibrated model was used to
perform additional simulations (Site C; 2024) varying the pitch
distance (spacing between PV panel rows) from 4 m to 16 m every
2m. For each configuration we calculated the relative alfalfa yield of
three harvests and the relative PV energy production were
calculated, both under non-limiting and water-limiting conditions
(50 % reduction in seasonal rainfall).

2.4 Statistical analysis

To assess the performance of the integrated modeling
framework in simulating alfalfa above ground biomass, LAI, and
canopy temperature under different AVS configurations, a set of
standard statistical indicators was employed. These included the
Root Mean Square Error (RMSE), the Mean Bias Error (MBE), and
the coefficient of determination (R?). In addition to these
performance metrics, the Akaike Information Criterion (AIC) was
calculated to evaluate the trade-off between model accuracy
and complexity.

Statistical comparisons between shading treatments were
performed using analysis of variance (ANOVA), followed by
Tukey’s Honest Significant Difference (HSD) post-hoc test to
identify differences in biomass accumulation and LAI across
spatial positions. For variables measured repeatedly on the same
plots across multiple sampling dates, a repeated-measures ANOVA
was applied to account for temporal autocorrelation. Normality and
homogeneity of variances were tested using the Shapiro-Wilk and
Levene’s tests, respectively. All statistical analyses were conducted
using R software (version 4.4.3; R Core Team, 2025), and
significance was accepted at p < 0.05 unless otherwise stated.
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3 Results

3.1 Model calibration

Under the initial configuration (Supplementary Table S1), the
model slightly underestimated the DOY of full anthesis recorded in
Site B in both 2023 and 2024. In 2023 the first flowering date was
recorded on DOY 135 and the second, after the first mowing, on
DOY 197, which were simulated respectively on DOY 130 and 190.
In 2024, the flowering date was recorded on DOY 186, as the earlier
cuts prevented reaching this stage previously and simulated on
DOY 180. Accordingly, the thermal time from the bud visible stage
to full anthesis was increased from its original value (270 degree-
days) to 310 degree-days, resulting in a simulated flowering date
within +1 day of the observed DOY.

10.3389/fagro.2025.1699126

Under this configuration, the model was tested in Site A (2019),
under open field conditions. In this experimental site, alfalfa
showed an observed cumulative production of approximately
1,250 g m™ (12.5 t ha™') at the end of the 2019 season. The three
growing cycles, separated by mowing at DOY 153, 211 and 240,
produced about 500, 420 and 330 g m>, respectively. The LAI
peaked at about 5.1 m?> m™ before the first mowing, followed by
decreasing values and subsequent recoveries with peaks of 3.2 and
2.8 m* m™ in subsequent cycles. The model well reproduced the
growth dynamics of both biomass and LAI for the first two
mowings (Figure 4), highlighting the overall consistency of the
proposed approach in simulating the process of biomass
accumulation and partitioning and the senescence. Conversely,
the model failed to adequately capture the regrowth dynamics
following the second harvest during the terminal phase of the

Open field (2019)
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FIGURE 4
Seasonal dynamics of yield (g m™), LAl (m?

m2), and FTSW under open-field (Site A) conditions in 2019, as a function of DOY. Post-calibration

simulations are shown as black solid lines, while pre-calibration simulations are represented by grey dashed lines. Observed data are indicated by
points with error bars. The bottom panel illustrates the seasonal course of FTSW (black solid line) together with daily precipitation (grey columns).

Vertical red lines indicate dates of full-field harvest.
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growing season (Figure 4) highlighting a potential inconsistency in
the parameterization that defines the period during which biomass
is preferentially allocated to the roots (i.e. at the end of growing
season), as well as in the associated partitioning coefficient. In terms
of predictive performance, the model yielded R? = 0.82, RMSE =
486 ¢g m~2, MBE = 12.1 g m~2, and AIC = 125.4 for biomass, and R>
= 0.74, RMSE = 0.62, MBE = 0.18, and AIC = 92.7 for LAI in this
pre-calibration phase.

Accordingly, the PP triggering this shift under shortening day
length conditions, was tuned in a range -1h (original value) to -2h with
respect to the solstice (step 0.5h), considering all possible combinations
with PC to AGB in the range between 0.35 (original value) and 0.5 (step
0.05). Finally, the best combination PP-PC providing the best
performance in simulating biomass and LAI was selected.

Quantitative assessment of model performances after this second
step improved model performances for both total biomass and LAI

10.3389/fagro.2025.1699126

predictions. After calibration, the model achieved an R*> of 0.99,
RMSE 0f20.76 g m2, MBE of -14.04 g m2, and AIC of 30.77 for total
biomass. For LAI, the model reached an R? of 0.98, RMSE of 0.78,
MBE of -0.68, and AIC of 3.68, indicating a substantial enhancement
in accuracy and precision compared to the pre-calibration phase.

3.2 Fixed agrivoltaic system

The performance of the calibrated model was evaluated at the
fixed AVS (Site B) by comparing simulated and observed dry matter
yield of alfalfa under four treatments (TR1-TR4, Supplementary
Table S2) during the 2023 and 2024 growing seasons.

In 2023 (Figure 5), observed biomass accumulation revealed a clear
gradient among treatments: TR1 achieved the highest yields, likely due
to increased soil moisture availability from panel-induced runoff,
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FIGURE 5
Seasonal dynamics of alfalfa dry matter yield (g m™2), LAl (m? m
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“2), and FTSW under fixed AVS conditions (Site B) in 2023, as a function of DOY.

Simulated values are shown as solid lines for four treatments (TR1-TR4), while observed data are represented by points with error bars (mean +
standard error). The bottom panel illustrates the seasonal course of FTSW (solid lines) together with daily precipitation (grey columns). Vertical red

lines indicate the dates of full-field harvest.
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followed by TR2, while TR3 and TR4, located in more heavily shaded
areas, showed substantially lower productivity. Before the first cut (DOY
153), TR1 reached approximately 580 g m™2 TR2-510 g m ™%, TR3-260
g m 7 and TR4 only 120 g m 2. After the second growth phase (DOY
240), cumulative yields increased to approximately 1,050 g m 2 for TRI,
900 g m > for TR2, 560 g m "> for TR3, and 290 g m "> for TR4. By the
end of the season, total annual yields were approximately 1,350 g m >
for TR1, 1,150 g m 2 for TR2, 700 g m 2 for TR3, and 400 g m? for
TR4. Using TR2 as a reference, this corresponds to a +17.4% increase in
TRI1, and reductions of -39.1% and -65.2% for TR3 and TR4,
respectively. The agreement between observed and simulated values
was good (R* = 0.83, RMSE = 56.6 g m 2, MBE = -23.1 g m ).

In 2024 (Figure 6), similar spatial patterns were observed,
though overall yields were lower due to different climatic and
management conditions, including a higher number of harvests.
Before the first cut (DOY 122), TR1 reached approximately 230 g

10.3389/fagro.2025.1699126

m 2, TR2-200 g m 2, TR3-120 g m 2, and TR4-80 g m 2. After the
second growth cycle (DOY 211), yields were around 460 g m™> for
TR1,360 g m 2 for TR2, 260 g m 2 for TR3, and 160 g m 2 for TR4.
At the end of the season (DOY 268), cumulative yields were
approximately 650 g m~> for TR1, 520 g m ™ for TR2, 390 g m >
for TR3, and 280 g m 2 for TRA. Compared to TR2, this
corresponds to a +25.0% increase in TRI, and reductions of
-25.0% and -46.2% for TR3 and TR4, respectively. The model
accurately reproduced treatment-based differences in productivity,
with overall satisfactory performance also in 2024 (R* = 0.85, RMSE
=41.4 g m % MBE = 9.6 g m2), confirming the robustness of the
approach for simulating spatially heterogeneous AVS.

The simulation of FTSW in 2023 revealed pronounced
differences among treatments, reflecting their spatial arrangement
within the fixed AVS (Figure 5). TR1 consistently maintained the
highest FTSW values, remaining above 0.6 for most of the season,
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FIGURE 6
Seasonal dynamics of alfalfa dry matter yield (g m™2), LAl (m? m
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“2), and FTSW under fixed AVS conditions (Site B) in 2024, as a function of DOY.

Simulated values are shown as solid lines for four treatments (TR1-TR4), while observed data are represented by points with error bars (mean +
standard error). The bottom panel illustrates the seasonal course of FTSW (solid lines) together with daily precipitation (grey columns). Vertical red

lines indicate the dates of full-field harvest.
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supported by localized water redistribution from the northern panel
edge. TR2 exhibited a steeper decline after the first harvest, with
values approaching 0.5 by mid-season, indicating a faster depletion
of soil water. TR3 and TR4, located beneath the panels and with
limited direct access to rainfall (particularly TR4), showed the
lowest soil moisture availability. In both treatments, FTSW
dropped below 0.4 during the central part of the growing season
(DOY 150-240), confirming greater exposure to water stress.

In 2024, FTSW dynamics followed a similar spatial gradient, but
with overall higher values across all treatments, mainly due to more
frequent rainfall events recorded during the summer period (DOY
160-240). Consequently, differences among treatments were less
pronounced than in 2023. TR1 again maintained the highest FTSW,
although the gap with TR2 and TR3 was reduced. TR4 remained the
lowest, but without the sharp decline observed in the previous year.

10.3389/fagro.2025.1699126

3.3 Bi-axial agrivoltaic system

The performance of the calibrated model was evaluated under
bi-axial AVS (Site C) conditions during the 2024 growing season.
Figure 7 compares simulated and observed dry matter yield for four
treatments (TR1 to TR4), corresponding to different shading levels
and spatial positions relative to the solar panel configuration
(Supplementary Table S2). The model demonstrated strong
predictive accuracy, with a R? of 0.94, RMSE of 39.3 g m~, and
an MBE of -3.4 g m™, indicating a slight overestimation of yield.

During the first growth phase (DOY 66-182), TR2 exhibited the
highest productivity, reaching approximately 550 g m?, followed by
TR3 and TR1, with yields around 500-520 g m™. TR4 consistently
recorded the lowest yield (~470 g m™), reflecting a reduction of
about 15% compared to TR2. These results highlight the significant
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influence of spatial positioning and light availability under biaxial
tracking systems on biomass accumulation.

In the second regrowth phase (DOY 182-240), TR2 again
showed the most vigorous recovery, followed by TR3, TRI, and
TR4. Yield differences among treatments remained consistent, with
TR4 accumulating approximately 10-15% less biomass than the
most productive treatment.

During the final growth phase (DOY 240-298), yield levels
among TR1, T2, TR3, and TR4 converged, suggesting a reduced
marginal impact of partial shading under late-season conditions.
Nonetheless, TR4 maintained a slightly lower cumulative yield,
ending the season with approximately 10% less biomass than TR2,
reinforcing the adverse effects of sustained shading on alfalfa
productivity. Considering the annual cumulative biomass
production averaged over harvests, alfalfa grown in Site A (open
field, 2019) recorded the highest mean yields. The bi-axial tracking
AVS (Site C, 2024) achieved a comparable annual output,
remaining generally within about 10 % of the open-field
reference. In the fixed-panel AVS (Site B, 2023-2024), when the
calculation is restricted to the pre-existing, less shaded corridors
(i.e., the productive inter-row areas comparable to TR1 and TR2),
the system reached roughly 70 % of open-field alfalfa productivity
on an annual basis. In contrast, the persistently shaded corridors
contributed negligibly to yearly biomass and would scarcely
justify cultivation.

The FTSW simulations show a very similar trend among the
four treatments, with no marked differences related to the position
with respect to the photovoltaic modules. During the first growth
phase, the values remain close to 1, indicating optimal water
availability. In the middle of the season (DOY 182-280), a
progressive reduction in FTSW is observed, with minimums
around 0.3-0.4, consistent with moderate but uniform water stress
conditions across the plots. Starting from DOY 280, the recovery of
rainfall causes a rapid rise in FTSW towards values close to
saturation, restoring conditions that do not limit growth.

10.3389/fagro.2025.1699126

3.3.1 Canopy temperature simulation

The simulation of canopy temperature was evaluated at Site C
(bi-axial AVS) across four spatial positions (TR1 to TR4) during the
2024 growing season (Figure 8). Observed canopy temperature
dynamics varied across treatments and dates, reflecting both
spatial heterogeneity and seasonal changes. Canopy temperatures
exhibited a clear seasonal trajectory, increasing progressively from
early measurements (DOY 183) to a peak during mid-season (DOY
241), followed by a marked decline by late season (DOY 296).
Across all sampling dates, the highest temperatures were
consistently recorded in the central treatments (TR2 and TR3),
which correspond to the areas with the lowest shading levels. The
model successfully captured observed trends, including the
progressive temperature gradient from heavily shaded (TR1 and
TR4) to less shaded areas (TR2 and TR3). On all sampling dates,
TR1 and TR4 consistently exhibited lower average canopy
temperatures than TR2 and TR3, with the differences being most
pronounced at mid-season (DOY 207 and 241). Simulated
temperatures closely matched observed data, with slight
overestimation in late-season measurements (DOY 296)
particularly under TR1. Overall model performance was strong,
with a coefficient of determination (R?) of 0.96 and a low RMSE of
0.87°C, confirming the accuracy of the simulation in reproducing
observed canopy temperature across treatments.

To assess treatment effects on crop microclimate, canopy
temperature was measured and expressed as the difference
between canopy and air temperature (AT = canopy temperature
minus air temperature) across four shading treatments (TR1 to
TR4) and four sampling dates (DOY 183, 207, 241, and 296) at the
Site C. Observed AT values showed clear differences among
treatments and dates, reflecting variations in both shading
intensity and environmental conditions. On days 207 and 241,
corresponding to mid-summer conditions with air temperatures
above 30°C, the largest temperature differences were recorded. The
most shaded treatments (TR1 and TR4) consistently exhibited
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lower canopy temperatures than the least shaded ones (TR2 and
TR3), with AT differences exceeding 3°C. On cooler days (183 and
296), when air temperatures were below 25°C, treatment differences
were smaller but still evident. The model accurately reproduced
these spatial and temporal patterns, showing good agreement with
observed data (R* = 0.83, RMSE = 0.88°C, and MBE = - 0.11°C;
Figure 9), confirming its effectiveness in simulating canopy thermal
dynamics under variable shading conditions.

3.4 Overall model performance in
simulating biomass yield and LAl across
AVS configurations

The accuracy of the integrated modeling framework was
assessed by comparing simulated and observed values of yield
(Yieldgj,, vs Yieldyps) and LAI (LALg,, vs LAI.,) across all
experimental sites and treatments, including open field, fixed-
panel AVS (Site B), and bi-axial tracking AVS (Site C).

As shown in Figure 10A, the model captured yield dynamics
with high accuracy (R? = 0.94), with a RMSE of 110,34 g m™ and a
MBE of -54.7 g m ", indicating a slight overall underestimation. The
wide distribution of treatment-specific data points (TR1 to TR4)
confirms the model’s robustness in representing productivity across
a range of shading intensities and microclimatic conditions. The
slight underestimation tendency is more evident under high-
yielding conditions (>400 g m™?), where the model showed
conservative predictions, likely due to limitations in simulating
peak growth phases or resource-unlimited scenarios.
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four shading treatments (TR1-TR4) under the bi-axial tracking
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In Figure 10B, the model also accurately reproduced the seasonal
dynamics of LAI, with a coefficient of determination of R*> = 0.96,
RMSE =-0.24. Most of the underestimation occurred at moderate to
high LAI values (>3), suggesting that the model may slightly
underestimate canopy expansion during the most favorable growth
periods. Nevertheless, the model successfully represented the full range
of LAI development across treatments, confirming its ability to capture
both regrowth phases post-harvest and senescence-driven declines.

3.5 Scenario simulations on pitch distance
and water availability

Yield and energy production were differently affected by pitch
distance depending on water availability (Figure 11). In the absence
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of water limitations, the reduction in available radiation resulting
from a smaller pitch progressively constrains production relative to
open-field conditions. Yield penalties at 4 m pitch reached about -
50 % for the first harvest, while the second and third harvests
showed progressively smaller reductions. In contrast, energy
production decreased almost linearly with pitch distance, as larger
spacing lowers the installed PV capacity per hectare.

Under water-limiting conditions, the response pattern changed.
Moderate shading (pitch 6-8 m) mitigated drought stress with
respect to open-field conditions by reducing canopy temperature
and evapotranspiration, resulting in higher second-harvest yields
than both narrower and wider layouts. The first harvest, when soil
moisture was still adequate, and the third harvest, constrained by
late-season stress, showed smaller differences among pitches.
Energy production again declined with increasing pitch, but the
agronomic advantage of intermediate spacing partly offset this loss.

10.3389/fagro.2025.1699126

4 Discussion

This study introduced a novel modeling framework based on
the GroIMP platform that integrates a simplified, process-based
crop growth model with a three-dimensional radiation
environment. The proposed approach enabled an explicit,
physics-based simulation of light transport, which successfully
quantified radiation interception by the modeled elements (i.e.,
crop and panels). As highlighted in the literature (Zainali et al,
2025; Amaducci et al,, 2018), most existing modeling platforms are
not well-suited for AVS because they overlook the critical
interaction between panel-induced shading and the morpho-
physiological responses of cultivated plants. Such omissions can
lead to significant biases in model predictions. To address this gap,
our framework was designed to balance parsimony with the ability
to capture essential plant-environment feedback. Specifically, it has

Non-limiting water

100 — E Harvest 1 IE' Harvest 2 ‘Z‘ Harvest 3 —100

90 —| —90

80 — DEnergy —80
-
70 —| —70 m
60 —| —60 3
s o €

=5 — -

< 30 —30 B
o — - o
2 20 20 g
2 10 —| —10 €
z 0 — —0 2
-10 —| —-10 S
20 — —-20 =
-30 — —-30 &

-40 — —-40

-50 — —-50

60 — —-60

I I I
Limiting water

100 — e —100

90 —| =T T~ —90

80 —| Pl e~ 80
70 — /,/ \*~~____. 70 ﬁ
— B - | >
60 e - 60 3
s 8- 5 €

3 _ -

S 30 giiiieinnnn ... 30 B
° -4 T - o
2 20 ‘e. 20 g
2 10 —| e —10 €
>|: od e B sceranenn @ e ° L 20-
-10 —| [0 -]
20 — > —-20 =
-30 — —-30 &

-40 — —-40

50 — —-50

60 — —-60

[ [ [ [ I I [
4 6 8 10 12 14 16

Pitch distance (m)

FIGURE 11

Modelled relative alfalfa yield of three harvests and PV energy production across pitch distances (4—-16 m) under non-limiting (top) and water-limiting

(bottom; 50 % rainfall) conditions.

Frontiers in Agronomy

17

frontiersin.org


https://doi.org/10.3389/fagro.2025.1699126
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

Moretta et al.

been developed to simulate the effects of hourly dynamic shading on
alfalfa, thereby providing a more accurate assessment of crop
performance under AVS conditions.

In a recent study, Moretta et al. (2025) explored the impact of
shading-induced microclimatic changes on alfalfa grown under the
fixed AVS in Ravenna (Site B) by forcing the SSM crop model
(Soltani and Sinclair, 2012) with image-derived fAPAR data,
thereby circumventing the need to explicitly represent the
morpho-physiological acclimation processes usually induced by
reduced light availability. Conversely, the new prognostic
approach presented here directly accounts for the physiological
effects of lower radiation, providing a realistic simulation of alfalfa
growth under shade that remains comparable to the forced
SSM model.

In fact, the proposed framework incorporates key elements
required to distinguish crop growth responses in shaded versus
full-light conditions beneath PV panels. This integrated approach
enables a more realistic simulation of the combined impacts of
shading, drought and heat stress on plant morpho-physiological
performance, which are especially critical in a Mediterranean
climate where high temperature and low rainfall often limit plant
growth during the season (Holmgren et al., 2012; Xu et al,, 2020;
Acevedo et al., 2024). The use of the GroIMP platform enabled the
simulation of radiation dynamics at an hourly time step within a
complex three-dimensional environment. This temporal resolution
was crucial to capture the intra-daily variability of shading patterns
induced by AVS structures. By explicitly representing these
fluctuations, the model improved the realism of light-crop
interactions. In contrast, many crop models commonly used to
evaluate the effect of AVS on crop productivity such as STICS
(Dupraz et al, 2011), EPIC (Campana et al.,, 2021) and APSIM
(Ahmed et al, 2022), operate at a daily time step. While daily
resolution is often sufficient to capture long-term growth patterns
and seasonal dynamics, it tends to mask strong intra-day variability
characteristic of plant-environment interactions under AVS (Artru
et al., 2018), including the mitigation of midday photosynthesis
depression and the effect of diurnal evapotranspiration patterns
(Marrou et al,, 2013; Elamri et al.,, 2018). This reinforces the
importance of an hourly timestep for mechanistic modelling
approaches (Amaducci et al.,, 2018; Potenza et al., 2022; Bellone
et al., 2024).

Increasing SLA is a key trait underlying plant acclimation to
low-light environments, as it enhances light interception per unit
biomass (Valladares and Niinemets, 2008). While this plastic
adjustment does not always confer a net fitness advantage (Liu
et al,, 2016), it is consistently observed as part of shade acclimation
strategies (Poorter et al., 2009). Importantly, this behavior has also
been specifically reported in crops cultivated beneath photovoltaic
panels, such as alfalfa (Moretta et al., 2025; Zhang et al., 2017) and
corroborated by similar findings in soybean (Potenza et al., 2022),
tomato (Scarano et al., 2024), apple (Juillion et al., 2024) and lettuce
(Marrou et al,, 2013). The need to represent SLA dynamically in
response to environmental stresses has recently been emphasized by
Zhang et al. (2025) for the WOFOST model, whereas the original
version only uses fixed tabular values linked to development stages.
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Similar limitations exist in the APSIM-Nwheat model (Asseng et al.,
2003), while CropSyst (Stockle et al., 2003) uses even a fixed SLA.
APSIM Next Generation, developed for alfalfa, omits SLA
altogether and simulates LAI with a double-sigmoid function of
thermal time modulated by photoperiod, which further limits its
ability to account for stress-induced adjustments in leaf
morphology. In contrast, the GroIMP platform introduces a
dynamic correction factor for SLA under shade, consistent with
observations of Moretta et al. (2025). This adjustment accounts for
the degree of shading across canopy zones and the associated
variation in SLA, thus capturing the spatio-temporal
heterogeneity of the canopy light environment and enabling a
more accurate simulation of cumulative radiation interception
throughout the growing season.

Increases in SLA are frequently associated with a reduction in
the maximum electron transport capacity (Jiyax), reflecting
coordinated trait syndromes under shade and leading, in the
latter case, to a downregulation of photosynthetic capacity per
unit leaf area in shaded environments (Valladares and Niinemets,
2008). Functionally, this adjustment represents an optimization
strategy: shaded leaves typically exhibit lower nitrogen per unit area
and reallocate it from photosynthetic enzymes toward light-
harvesting structures and pigments, including increased SLA, to
maximize light capture (Evans, 2001). Such downregulation aligns
photosynthetic capacity with available light, while retaining the
ability to respond to intermittent high-light pulses (Eichelmann et
al., 2005). Conversely, crop models based on RUE (e.g., APSIM,
EPIC, CROPSYST, STICS) typically account for water or nutrient
stress on photosynthetic efficiency but ignore shading as a reducing
factor. This oversight may bias biomass estimates and systematically
underestimate both crop plasticity and the agronomic impacts of
shading in AVS. To address this limitation, the GroIMP platform
incorporates a response function, following Waring et al. (2023), to
account for the effect of shading on the maximum electron
transport capacity normalized at 25°C (Jyaxas). This approach
captures well-established acclimation processes of the
photosynthetic apparatus to low irradiance (Waring et al., 2023;
Dai et al., 2004) and ultimately enhances the realism of
photosynthetic simulations under AVS conditions.

The modelling framework explicitly accounts for the
interactions between transpiration, leaf temperature, and
photosynthetic efficiency through an energy balance approach. In
this formulation, reduced transpiration lowers latent heat flux,
thereby increasing the proportion of net radiation dissipated as
sensible heat. This shift leads to higher leaf temperatures, which are
directly resolved by the model’s energy balance module and
subsequently used to drive photosynthetic efficiency (Equation
22), thereby capturing the contrasting responses of plants grown
under full light versus shaded conditions.

The roof effect induced by PV panels, introduced by Wu et al.
(2022) to substantially modify rainfall distribution beneath PV
installations, is systematically overlooked in current crop
modelling studies on AVS, resulting in an incomplete
representation of water dynamics. In contrast, our framework
embeds the crop growth model within the 3D representation of
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the AVS, dynamically accounting for panel-mediated water
interception and redistribution to the soil, and explicitly
capturing the effects of canopy coverage on field water balance
over time.

The simplified structure of the crop model requires calibration
of only a few key parameters, primarily those controlling biomass
partitioning and phenology, while most values are derived from the
literature. This parsimony avoids overfitting to site-specific
conditions, a common limitation of models with large parameter
sets (Sinclair and Seligman, 2000). As a result, the model achieves
greater robustness and transferability across different environments
(i.e., open field, fixed AVS and bi-axial AVS).

In the control experiment at Site A, the late-season increase in
root allocation occurred later and to a lesser extent than initially
described by Brown et al. (2006), suggesting a delayed and reduced
investment in belowground growth under experimental
Mediterranean conditions. Specifically, the daylength threshold
(PP) for increasing root partitioning shifted from -1 hour (ie.,
when daylength decreases by 1 hour from the solstice) to -2 hours in
our study, with the end-of-season partitioning coefficient decreasing
from 0.65 to 0.5. This pattern likely reflects a local adaptation to
Mediterranean climates, where mild autumn-winter temperatures
extend the growing season and thus modify seasonal allocation
strategies of Alfalfa. The retrieved partitioning coefficient (0.5)
remains in any case within the range reported in the literature
(Teixeira et al., 2009).

The calibrated model showed overall good performance results
at simulating plant processes, including biomass accumulation, leaf
area development and crop temperature, emphasizing differences
between fixed and dynamic AVS.

In fixed-panel systems (Site B, 2023-2024), treatments showed
marked differences in biomass accumulation. TR1 consistently
outperformed the other treatments, with final yield advantages
reaching up to 400 g m™> compared to TR4. These yield gaps can
be explained by persistent shaded zones in some treatments,
especially TR3, where the fixed panel geometry restricted light
availability for long periods during the day and across the growing
season. When comparing TR1 and TR2, both received almost the
same amount of radiation (+4% in TRI relative to TR2), yet TRI
achieved substantially higher biomass production (+17.4% in 2023
and +25.0% in 2024). The simulations accurately reproduced this
trend, capturing the pronounced shading gradients generated by the
fixed AVS. This further supports the idea that static shading imposes
an asymmetrical distribution of light and accentuates productivity
gradients along transects (Tahir and Butt, 2022). In alfalfa, these
gradients were not compensated by increased leaf area resulting from
higher SLA under shading conditions, highlighting its sensitivity to
persistent shading. This classifies alfalfa among light-demanding
crops (Argenti et al, 2021), such as corn (Ramos-Fuentes et al,
2023) and kiwifruit (Jiang et al., 2022), which experience significant
yield losses under fixed-panel systems. In contrast, shade-tolerant
species, including lettuce and other leafy vegetables (Marrou et al,
2013; Elamri et al,, 2018), rice (Gonocruz et al., 2021), and winter
wheat (Weselek et al., 2019), can maintain stable or even improved
yields under similar conditions, benefitting from moderated canopy
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temperatures, reduced evapotranspiration, and enhanced water-use
efficiency. Importantly, the higher biomass production observed in
TR1 with respect to TR2 was also accurately captured by the model,
indicating that this difference is primarily attributable to water
harvesting. Indeed, the additional water input from rainfall
intercepted by the panels effectively mitigated summer water stress,
underscoring the need to account for panel-driven water
redistribution when estimating the effects of photovoltaic structures
in open-field conditions (Adeh et al., 2018; Wu et al., 2022; Moretta
et al., 2025).

By contrast, in the dual axis tracking system (Site C, 2024),
differences among treatments were limited, with final biomass gaps
generally below 100 g m ™2 (=1 t ha™"). This outcome suggests that
panel movement effectively reduced the heterogeneity of light
distribution across the field, leading to more uniform yield
patterns. A similar conclusion was reached by Edouard et al.
(2023), who tested alfalfa under a bi-axial AVS with shading
levels ranging from 29% to 44%. In that study, yield differences
between shaded and full-sunlight conditions remained within +10%
of annual biomass), confirming that bi-axial tracking systems
mitigate spatial variability compared to fixed-panel
configurations. Collectively, these results demonstrate that
advanced AVS layouts not only reduce average yield penalties but
also enhance yield uniformity across space. As shown in similar
studies (e.g., Zainali et al., 2025; Asa’a et al,, 2025), the temporal
dynamics of light availability, rather than total shading percentage
alone, play a decisive role in determining crop performance under
AVS. Nonetheless, the trade-off between plant growth, biomass
production and energy output from the photovoltaic system must
be considered, since greater panel mobility or spacing, while
beneficial for yield uniformity, may reduce the overall efficiency
of electricity generation. The model proved also effective in
estimating canopy surface temperature, capturing both its spatial
variability within the field and its seasonal dynamics. This outcome
indicates a realistic representation of the canopy radiative balance,
with an appropriate partitioning of net radiation into latent and
sensible heat fluxes. The seasonal patterns of canopy-air
temperature differences (AT = Teanopy — Tair) revealed clear
treatment effects, with shaded plots (TR1 and TR4) consistently
exhibiting lower canopy temperatures compared to the more light-
exposed central treatments (TR2-TR3). The model reproduced
these dynamics with good accuracy (R* = 0.83; MBE = -0.11°C,
Figure 9), confirming its ability to capture the complex interactions
among water availability, transpiration, and canopy thermal
regulation. These mechanisms became particularly evident under
water-limiting conditions, as observed on DOY 241 (FTSW < 0.4 in
all treatments; Figure 7). On this date, canopy-air temperature
differences reached their maximum seasonal range, from values
close to zero in the shaded corridor (TR1; AT = 0°C) to markedly
positive in sun-exposed treatments (up to +4.5°C in TR2 and
+3.1°C in TR3). The model successfully reproduced this gradient
(+3.3°Cin TR3, + 1.6°C in TR4, and +0.3°C in TR1), highlighting its
capacity to simulate the coupling between transpiration and leaf
energy balance. These results align with previous studies show that
shading mitigates canopy heating and improves leaf thermal
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regulation (Alves et al., 2022; Chopard et al., 2024). Conversely, in
sun-exposed plots, water stress exacerbated canopy warming,
limiting transpiration-driven cooling and leading to positive AT
values (Disciglio et al., 2025). Overall, the ability of the model to
reproduce these contrasting responses emphasizes its suitability for
exploring the role of microclimatic heterogeneity in modulating
crop resilience to water stress and for assessing the potential benefits
of shading strategies under future climate scenarios.

The scenario analysis (section 3.5) also highlights the strategic
importance of the second harvest, which proved most responsive to
moderate shading under drought. By slightly increasing pitch
distance or temporarily adjusting panel tilt during this critical
regrowth phase, it may be possible to maximize forage yield while
limiting the impact on annual energy output. Such seasonal, model-
guided adjustments could enhance the resilience and overall
efficiency of AVS, aligning biomass production with periods of
highest crop sensitivity without substantially reducing electricity
generation. Beyond yield responses, our findings indicate that the
panel-induced microclimate may foster conditions that promote
long-term soil health and fertility. Moderate shading reduces
canopy and soil temperatures, which in turn can lower
evapotranspiration and slow the decomposition of soil organic
matter (Luo et al, 2024). Additionally, rainfall redistribution
along panel edges enhances soil moisture availability, supporting
nutrient cycling and improving water-use efficiency. Therefore,
future research should investigate these dynamics further to
develop a comprehensive understanding of the soil-vegetation
interplay under AVS, clarifying how improvements in soil
conditions affect plant growth and how vegetation feedback, in
turn, contribute to the enhancement of soil quality.

These results indicate that by resolving the contrasting
impacts of different AVS configurations, the model can provide
valuable insights for system design and management. Adaptable
tracking architectures appear to enhance crop performance by
promoting a more balanced distribution of light, while in fixed-
panel systems, targeted management, such as prioritizing
cultivation in less shaded inter-row corridors, may help mitigate
yield penalties. These findings highlight the potential of integrated
modelling approaches to translate morpho-physiological
understanding into agronomic recommendations, thereby
strengthening the role of modelling in supporting sustainable
AVS deployment. In addition, the framework provides key
inputs for future cost-benefit assessments and investment
planning by quantifying, in advance, the interactions between
shading, water dynamics and yield formation that underpin
economic performance. This information can help farmers
stabilize income, lower water and energy costs, and enhance the
long-term profitability of AVS.

At the same time, some limitations should be acknowledged.
Although the proposed framework proved robust in reproducing
key physiological and yield responses, it does not yet account for
certain crop processes (e.g nutrient uptake and limitation or biotic
interactions) and for the microclimatic disturbances induced by
photovoltaic panels, which may affect canopy-atmosphere
interactions. Addressing these aspects would further improve the
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realism and applicability of the model under diverse agrivoltaic
configurations. Another limitation lies in the relatively limited data
set available for calibration. The restricted size and diversity of the
calibration dataset may reduce the model’s capacity to fully capture
the variability observed across contrasting environmental
conditions, management practices, and crop responses. As a
result, further efforts should focus on expanding both calibration
and validation datasets to enhance model generalization
and reliability.

Photosynthesis was represented using a simplified formulation,
with water stress was introduced by scaling assimilation with FTSW
(Sinclair, 1986). This approach is parsimonious and widely applied
(e.g. Moriondo et al., 2019; Leolini et al., 2023; Cui et al., 2024), but
it does not explicitly capture stomatal regulation or the differential
effects of water stress on biochemical parameters, potentially
underestimating transient or heterogeneous stress responses.
Further, in this empirical formulation both photosynthesis and
transpiration decline when FTSW falls below 0.4 (Supplementary
Figure 53). Although this threshold was not experimentally
determined for alfalfa, it is broadly consistent with values
reported for other herbaceous legumes, including soybean,
chickpea, and field pea (Soltani et al., 2000; Lecoeur et al., 1996).

Phenological development is driven by air rather than crop
temperature, so neither potential shading effects nor the impact of
water stress on canopy temperature that may alter thermal time
accumulation are captured. Field evidence has previously shown
that shading beneath photovoltaic panels can delay the phenological
cycle of maize (Ramos-Fuentes et al., 2023) and durum wheat (Dal
Pra et al., 2024) by lowering canopy temperature and reducing the
incoming radiation. While no treatment-related differences were
observed in this study with respect to the timing of phenological
stages (e.g., anthesis), a parameterization based on crop
temperature would likely offer a more effective representation of
shading and water-stress effects, as implemented, for example, in
the CropSyst model (Stockle et al.,, 2003).

In our model, both photosynthesis and transpiration are scaled
according to the fraction of transpirable soil water (FTSW) to account
for water stress. This approach provides a simple and practical way to
include the first-order effects of soil moisture limitation at the leaf or
canopy level (Sinclair and Muchow, 2001). However, it assumes that
reductions in photosynthesis and transpiration occur proportionally,
which may not reflect plant physiology under drought. Stomatal
closure often reduces transpiration more strongly than
photosynthesis, leading to an increase in water use efficiency
(Chaves et al, 2009). Similarly, photosynthetic capacity can be
affected by biochemical limitations, especially under severe stress,
whereas transpiration is primarily governed by stomatal behavior and
atmospheric demand (Flexas et al., 2004). As a result, the responses of
carbon assimilation and water loss to soil drying are generally not
strictly proportional, and direct scaling with FTSW may oversimplify
these dynamics. Incorporating the reciprocal modulation of stomatal
conductance and photosynthetic capacity according to an iterative
approach (e.g. Leuning et al, 1995) may preserve physiological
realism, allowing carbon assimilation to be consistent to water
stress and transpiration.
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The model currently neglects the aerodynamic influence of
photovoltaic panels, their effect on outgoing longwave radiation,
and their potential cooling impact on air temperature, which is
assumed constant. Incorporating these processes would improve
the realism of simulated microclimatic conditions and canopy-
atmosphere interactions under different AVS configurations.

The simulation of water harvesting and rainfall redistribution
proved to be an important process influencing crop water balance.
However, in bi-axial AVS (Site C), the dynamic movement of the
panels makes this process particularly challenging to represent, water
fluxes as a function of panel orientation and thus a no-water
harvesting assumption was adopted for this configuration.
Although the pitch-to-panel width ratio at Site C (12 m x 1.98 m)
may have minimized the effect of water redistribution in plant
growth, it likely contributed to the similarity in simulated FTSW
values between treatments. Therefore, future investigations should
account for the perturbations induced by dynamic panel movements
on major environmental drivers and their cascading effects on the
soil-plant system, as modulated by the pitch-to-panel width ratio.

In the fixed AVS, rainfall flux was assumed to fall
perpendicularly to the ground surface, although in reality it
reaches the soil at an angle, influenced by wind speed and panel
geometry (Wu et al., 2022). This simplification may introduce bias
in simulating water harvesting, especially in areas close to the
photovoltaic panel. Once these processes are integrated, the
framework could evolve into a comprehensive tool for reliably
assessing crop performance under diverse AVS configurations
and climatic conditions.

5 Conclusions

This study presents an integrated, process-based modelling
framework designed to simulate the impacts of spatio-temporal
shading on alfalfa growth under different AVS configurations. The
results show that the system effectively captures the feedback between
photovoltaic shading and crop performance. A key strength of the
framework lies in its ability to dynamically couple simulated
irradiance with crop morpho-physiological processes, reflecting
plant adaptation to microclimatic variability. The model reliably
reproduced dry matter yield, leaf area, canopy temperature and soil
water dynamics across diverse shading scenarios, demonstrating its
capacity to represent both light distribution and its interactions with
plant physiology. The integration of morpho-physiological realism
and computational scalability makes the framework a robust
decision-support tool for optimizing AVS design and crop
management in a site-specific context, with broad applications in
agronomic research and precision agriculture. Incorporating a
radiative and crop growth model within the same platform
provides a clear advantage over alternative approaches, capturing
the bidirectional feedback between shading and crop responses. The
framework allows not only estimation of yield impacts under
different shading scenarios but also active modulation of shading
during key phenological stages. This capability enables targeted
increases in light availability when crops are most sensitive,
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improving the assessment of trade-offs between energy production
and agricultural output. Overall, the tool supports dynamic, data-
driven management of AVS, maximizing the combined benefits of
food and electricity production. Future developments should extend
this approach to additional crop species with varying shade tolerance
and incorporate other limiting factors, such as nutrient and pest
dynamics, to further enhance predictive capacity under real-world
agroecosystem conditions.
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