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different agrivoltaic systems
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Gabriel Marçal da Cunha Pereira Carvalho2, Gloria Padovan1,
Aldo Dal Prà2, Enrico Palchetti1, Giovanni Argenti1,
Nicolina Staglianò1, Anna Rita Balingit1 and Luisa Leolini1

1Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence,
Florence, Italy, 2Institute of BioEconomy of the National Research Council (CNR-IBE), Sesto
Fiorentino, Italy
Introduction: Agrivoltaic systems (AVS) combine agricultural production with

solar energy generation on the same land. However, the spatiotemporal

variability in light availability caused by panel shading presents a critical

challenge for accurately predicting impacts on crop growth and yield.

Methods: This study introduces a novel modeling framework that integrates a three-

dimensional radiative model with a process-based crop growthmodel, implemented

in the GroIMP platform, to simulate the performance of alfalfa (Medicago sativa L.)

under contrasting AVS conditions. The model accounts for dynamic light

interception, canopy temperature variation, and soil water availability. Field

experiments were conducted in northern and central Italy under three conditions:

open field (Site A), fixed-panel AVS (Site B), and bi-axial tracking AVS (Site C).

Results and discussion: The model was, the model was calibrated and validated

using field data on leaf area index (LAI) (R² ≥ 0.79, RMSE ≤ 48.61), dry matter yield

(R² ≥ 0.82, RMSE ≤ 48.6 g m⁻²) and canopy temperature (R² = 0.83, RMSE = 1.24 °

C), demonstrating strong agreement with observations. The validated model

enabled a detailed assessment of how different panel configurations influence

microclimatic conditions, which in turn significantly affected alfalfa growth and

biomass production. From this perspective, simulations revealed pronounced

spatial gradients driven by shading intensity, system layout, and seasonal

dynamics, emphasizing the critical role of AVS design in determining crop

performance. In particular, yield differences among treatments reflected

microclimatic modifications induced by the panels, with shading and rainfall

redistribution likely affecting canopy temperature, soil moisture dynamics, and

associated plant water relations.

Conclusions: The proposed integrated modeling framework thus provides a robust

and scalable tool for AVS design and management, supporting both agronomic

planning and the optimization of structural configurations tailored to site-specific

climatic conditions. By doing so, it may effectively contribute to the development of

more adaptive, efficient, and sustainable agri-energy systems capable of balancing

agricultural productivity with renewable energy generation.
KEYWORDS

agrivoltaic system, alfalfa, GroIMP, light interception modeling, process-based
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GRAPHICAL ABSTRACT
Nomenclature

Acronym Full Name Unit of Measurement

ASEV Actual Soil Evaporation mm

ATR Actual Transpiration mm

AVS Agrivoltaic Systems –

Bcrop Biomass Crop g m−2 or t ha−1

Cbio Carbon Fraction in Biomass g C g−1 DM

Cc Chloroplast CO2 Concentration mmol mol−1

CF Cover Factor Unitless

cp Specific Heat of Air MJ kg−1°C−1

EPIC
Environmental Policy Integrated
Climate model

–

ET Evapotranspiration mm

FDL Fraction of Diffuse Light Unitless

fPAR
Fraction of Photosynthetically Active
Radiation

Unitless

FTSW Fraction of Transpirable Soil Water Unitless

G Soil Heat Flux Wm⁻²

GER Global Extraterrestrial Radiation Wm⁻²

GR Global Radiation Wm⁻²

H Sensible heat Wm⁻²

Jmax Maximum Electron Transport Rate mmol m−2 s−1

Kc Crop Coefficient Unitless

(Continued)
F
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Continued

LAI Leaf Area Index m2m-2

MBE Mean Bias Error
same as variable compared
(e.g., g m−2 or m² m−2)

PAR Photosynthetically Active Radiation mmol m⁻² s⁻¹

PC Partitioning Coefficient Unitless

PET Potential Evapotranspiration mm

PP Photoperiod h

PV Photovoltaic –

RH Relative Humidity %

RMSE Root Mean Square Error same as variable compared

Rn Net Radiation Wm⁻²

rs/ra Surface/Aerodynamic Resistance s m−1

RSR Reduced Solar Radiation %

RUE Radiation Use Efficiency g MJ−1

SENrate Senescence Rate m2m-2

SF Stage Factor Unitless

ShF Shadow Factor Unitless

SLA Specific Leaf Area m² g−1

STICS
Simulateur mulTIdisciplinaire pour
les Cultures Standard

–

Ta Air Temperature °C

Tc Canopy temperature °C

(Continued)
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Continued

TF Temperature Factor Unitless

Tr Transmissivity Unitless

VPD Vapor Pressure Deficit kPa

WEF Water–Energy–Food nexus –

WS Wind Speed m s−1

WSF Water Stress Factor Unitless

lET Latent heat flux Wm⁻²

g Psychrometric Constant kPa°C−1

G* CO2 Compensation Point mmol mol−1

DT
Canopy Temperature minus Air
Temperature

°C

ra Air Density kg m−³

F2LL
Electron Transport Efficiency of
Photosystem II under Limiting Light

mol mol-1
F
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1 Introduction

Agrivoltaic systems (AVS) are increasingly recognized as a

promising solution to address the interlinked challenges of the

Water–Energy–Food (WEF) nexus by integrating agricultural

production with renewable energy generation on the same land

area (Barron-Gafford et al., 2019). However, this dual-use approach

inherently entails trade-offs between crop performance and solar

energy capture, making it essential to optimize system design for

both efficiency and long-term sustainability. At the same time, the

electricity generated by AVS can directly power on-farm operations

such as irrigation, cooling, or processing, or be exported to the grid,

thereby reducing greenhouse gas emissions and creating an

additional source of income that reinforces the overall

sustainability of the system (Agostini et al., 2021). A key aspect of

this optimization lies in understanding how the partial or complete

shading induced by photovolta ic (PV) panels a l ters

microenvironmental conditions, particularly light availability,

temperature regimes, and soil moisture dynamics, which in turn

can significantly affect crop growth and development (Marrou et al.,

2013; Ma et al., 2022).

Assessing the complex interactions between AVS components

and the physiological drivers of plant response under variable

shading is therefore critical to evaluating overall system

performance (Choi et al., 2023). Reduced solar radiation has been

identified as the primary constraint to crop productivity in AVS

(Marrou et al., 2013), leading countries to establish regulatory limits

on Ground Coverage Ratios (e.g., Italy, with a 40% GCR limit;

Dupraz, 2024). Consequently, ongoing research is increasingly

focused on quantifying the heterogeneous impacts of AVS, which

depend on the interaction between species-specific sensitivity to

shading and the growing season. As outlined by the meta-analysis in

Laub et al. (2022), the response of different cultivated species to
03
increasing shading is non-linear. While most crops analyzed

(berries, fruits, fruiting vegetables, and forages) tolerate moderate

shading, maize and grain legumes exhibit a strong yield reduction

even under low shading conditions. In any case, for shading greater

than 50%, all the crops proved to be susceptible. However, seasonal

variability and management practices also strongly interact with a

crop’s response to shading. As an example, a two-year field trial on

alfalfa recorded a season-by-season effect of moderate shading (25-

30%) from PV panels on biomass production where shading proved

particularly beneficial during drought periods resulting in increased

biomass accumulation (+10%) with respect to full sunlight

(Edouard et al., 2023). Wheat, considered a species sensitive to

decreased radiation, exhibits different responses not only between

varieties but also in response to the prevailing climatic conditions.

Laub et al. (2022) observed that in subtropical environments,

wheat-maintained yields comparable to open field conditions

under low shading, 30% reduced solar radiation (RSR level), while

higher levels of shading resulted in an average yield reduction of

36.2%. Conversely, in temperate regions experiencing low shading

levels, a decline in yield of 17.4% and 45.2% was observed under

shading conditions exceeding 30% RSR level. These findings

emphasize the climate-dependent plasticity of crop responses

to shading.

Although existing studies highlight both the opportunities and

challenges of AVS deployment, they also expose a major knowledge

gap: current evidence remains largely crop- and context-specific,

which limits the transferability of results across environmental and

agronomic conditions (Laub et al., 2022; Marrou et al., 2013;

Amaducci et al., 2018). The strong species-specific responses to

shading, combined with the spatio-temporal variability of

microclimates induced by photovoltaic structures, underscore the

need for systematic data collection across diverse climates and AVS

configurations. Yet, the labor and time-intensive nature of field

campaigns constrain large-scale evaluations, positioning modelling

frameworks as a powerful alternative for assessing AVS impacts on

crop performance and resource-use efficiency (Zainali et al., 2025).

Two- (2D) and three-dimensional (3D) simulation platforms

coupled with crop growth models, such as EPIC (Campana et al.,

2024), GECROS (Amaducci et al., 2018; Bellone et al., 2024), and

STICS (Dupraz et al., 2011; Dinesh and Pearce, 2016; Crépeau et al.,

2025), have become increasingly common for simulating radiation

dynamics, light interception, and biomass production under

heterogeneous conditions, including AVS (Grubbs et al., 2024).

These tools have significantly accelerated the evaluation of crop-

specific shading responses and the identification of optimal AVS

designs balancing energy and agricultural outputs (Bellone et al.,

2024). Despite advances in modeling crop-radiation interactions,

key methodological gaps remain. Daily-step models (e.g., STICS,

EPIC) cannot resolve intra-day radiation dynamics, and even

hourly models like GECROS lack full 3D integration to represent

canopy light distribution. Moreover, most approaches treat

photovoltaic and crop growth modules separately, limiting the

understanding of soil-water redistribution and its impact on

productivity and system efficiency. Nonetheless, a major

limitation persists due to the lack of robust, multi-seasonal
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experimental datasets for model calibration and validation (Zainali

et al., 2025). Where data are available, they are often restricted to a

single growing season, limiting the ability to capture interannual

variability. This constraint is highlighted by recent studies

emphasizing the scarcity of long-term data in European contexts,

which undermines the reliability and transferability of the existing

models (Zidane et al., 2025; Berrian et al., 2025). For such an

example, Mazzeo et al. (2025) proposed a sophisticated simulation

approach, yet acknowledged that many yield estimates are still

derived from artificially shaded experiments rather than real

AVS conditions.

Another critical source of uncertainty concerns the type of crop

growth model used to estimate biomass responses under AVS

conditions. Broadly, these models can be classified into two

categories. The first refers to semi-mechanistic models, which

simulate crop development on a daily time step using simplified

assumptions, most notably, Radiation Use Efficiency to convert

intercepted light into biomass (Monteith, 1977; Brisson et al., 2002).

The second includes process-based models, which rely on a detailed,

physiological representation of photosynthesis, operating typically

on an hourly scale and incorporating key limiting factors such as

water and nitrogen availability (Kirschbaum et al., 1997; Morales

et al., 2018; Bellasio, 2019). Semi-mechanistic models are generally

easier to parameterize and calibrate due to their lower data

requirements, making them suitable for broad-scale applications.

However, they may lack the resolution needed to capture intra-daily

shading fluctuations typical of AVS, thus limiting their accuracy in

highly dynamic light environments (He et al., 2024; Zainali et al.,
Frontiers in Agronomy 04
2025). In contrast, process-based models are better equipped to

simulate the fine-scale effects of fluctuating radiation, but they

require extensive input data, including crop-specific biochemical

and structural parameters, which are often unavailable or difficult to

measure (Prusinkiewicz and Runions, 2012).

Building upon these premises, this study presents the

development and validation of a novel modelling framework that

integrates a simplified process-based crop growth model with a

high-resolution, three-dimensional radiative environment. The

framework is specifically designed to resolve the spatial and

temporal heterogeneity of intra-daily shading patterns generated

by diverse AVS configurations, while capturing feedback processes

that are fundamental for a realistic representation of crop

productivity under fluctuating light regimes. Its performance was

rigorously evaluated using an extensive multi-year dataset collected

across contrasting environmental contexts, including open-field

conditions, fixed-panel installations, and dual-axis tracking AVS,

with alfalfa (Medicago sativa L.) employed as a representative

model species.
2 Materials and methods

2.1 Study area and experimental design

Field trials were conducted across three locations in northern

and central Italy (Figure 1), each representing a distinct agronomic

and environmental context: (i) an open-field reference site in
FIGURE 1

Location of the open field (Site A), fixed (Site B) and bi-axial (Site C) agrivoltaic system experimental sites.
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Montese (Modena; Figure 1-Site A), (ii) a fixed-panel AVS in

Sant’alberto (Ravenna; Figure 1-Site B), and (iii) a bi-axial

tracking AVS in Borgo Virgilio (Mantova; Figure 1-Site C). These

sites were selected to capture a range of radiation regimes and to

assess crop performance under different spatial and temporal

shading conditions.

2.1.1 Open-field setup
The open-field study area is located within the ‘Terre di

Montagna’ Consortium, which includes approximately 100 farms

dedicated to Parmigiano Reggiano production in the mountainous

Apennine regions of Bologna and Modena (Emilia-Romagna,

central Italy), at altitudes exceeding 600 meters above sea level.

The local soils are mainly composed of sandstone, limestone, and

marl, exhibiting variable pH conditions. Climatic data were

obtained from the Montese meteorological station (44.4579° N,

10.5899° E), positioned at the center of the study area

(Supplementary Figure S1). The climate is characterized by an

average annual temperature of 10.1°C and mean annual

precipitation of 930 mm, with limited drought occurrence during

the summer months (Argenti et al., 2021).
Frontiers in Agronomy 05
2.1.2 Fixed agrivoltaic system
The fixed AVS study site is located in Sant’Alberto (Ravenna,

Italy; 44.51019° N, 12.1552° E), a northeastern area of Italy well-

suited for AVS implementation due to its high solar radiation and

fertile agricultural soils. The site has been operational since 2012

and hosts a 70-hectare alfalfa (Medicago sativa L.) meadow,

contributing to approximately 45 GWh of electricity per year.

The terrain is predominantly flat, with elevations ranging from 4

to 8 m above sea level. The climate is temperate, with hot summers

and cold winters, and an average annual temperature of 15°C

(ranging from 5°C in January to 25.6°C in July). Annual

precipitation averages 767 mm, with November being the wettest

month (87 mm) and January the driest (49 mm). Meteorological

data were recorded at the local weather station throughout the

experimental period (Figure 1). Soils at the site are classified as silty

sand in the 0-60 cm layer, composed of 50% sand, 40% silt, and 10%

clay. Photovoltaic panels at the site are mounted on south-facing

ground structures tilted at a 35° angle. The tables are 3.5 m wide

with 8 m spacing between rows, resulting in a Ground Cover Ratio

(GCR) of 38%. Panel height varies from 1.3 m at the lower edge to

3.3 m at the upper edge (Figure 2a). Prior to sowing in 2020, the soil
FIGURE 2

Representation of the fixed (a, Site B) and bi-axial AVS (b, Site C), highlighting the spacing between rows, height of the panel in relation to the
ground and arrangement of treatments (TR1-TR4).
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was plowed to a depth of 30 cm, then tilled and rolled to ensure

good seed-to-soil contact, facilitating successful crop establishment

under the AVS configuration.

2.1.3 Bi-axial agrivoltaic system
The bi-axial AVS experimental site is located in Borgo Virgilio,

northern Italy (Mantova; 45.0944° N, 10.7916° E), and has been

operational since April 2011. The site spans 11.42 hectares, with

approximately 13% of the surface occupied by photovoltaic panels

(GCR), each measuring 1 m × 2 m. The total installed capacity is

2,150.4 kWp, distributed across 768 biaxial solar trackers that

support 7,680 polycrystalline PV modules (Poly 280 Wp, Bisol

Group, Slovenia). The panels are mounted 4.5 m above ground and

are capable of dual-axis tracking, with tilt ranges of ±50° along the

primary axis and ±40° along the secondary. Soils at the site are

classified as silty sand in the 0-60 cm layer, composed of 50% sand,

40% silt, and 10% clay. The pH is slightly alkaline (8.5), with an

organic carbon content of 1.1% and total nitrogen of 0.18%.

Available phosphorus and exchangeable potassium levels are 76.4

mg kg−1 and 810 mg kg−1, respectively.
2.2 Data collection

Field data were collected at the three experimental sites - Site A,

B and C - throughout the entire seasonal growth cycle of alfalfa.

Measurements focused on above-ground dry biomass (AGB, g) and

Leaf Area Index (LAI, m2 m-2), both used for model calibration

and validation.

At the open-field site (Figure 1-Site A), surveys were conducted

during the 2019 season on four-year-old pure stands of alfalfa.

Sampling occurred on three dates (day of year (DOY) 150, 197, and

241), corresponding to spring, summer, and late summer,

respectively. For each date, three replicate plots per field were

randomly selected. On each sampling date, canopy LAI was first

measured using a LI-COR ceptometer (LI-190; LI-COR, USA), with

one reading per plot. Subsequently, AGB was harvested within 0.5 ×

0.5 m quadrats using battery-powered clippers, following the

protocol of Mikhailova et al. (2000). Samples were sealed in

plastic bags, transported to the laboratory, and oven-dried at

80°C for 48 hours until constant weight (Wang et al., 2019).

At the fixed AVS site (Figure 1-Site B), sampling was performed

throughout the 2023 and 2024 growing seasons on the following

dates: DOY 7, 68, 144, 188, 212, and 314 (2023) and DOY 80, 100,

191, and 268 (2024). A total of 36 sample plots (0.5 × 0.5 m each)

were established according to a randomized complete block design,

consisting of four treatments (TR1: 6% shading, TR2: 7% shading,

TR3: 67% shading, TR4: 82% shading) replicated three times within

each of the three blocks distributed across the field (Figure 2a). This

layout allowed for the capture of both spatial heterogeneity and

treatment effects across the AVS. Plots were systematically

positioned along the shading gradient imposed by the PV panels.

On each sampling date, canopy LAI was first measured using an

AccuPAR LP-80® ceptometer (Decagon Devices, Pullman, WA,

USA). Subsequently, regrowth biomass was harvested to a height of

3 cm within the 0.5 × 0.5 m frame at the plot center. Samples were
Frontiers in Agronomy 06
dried at 60°C for 48 hours to determine dry matter yield (g m-2). For

a detailed description of the site and the relevant sampling protocol,

please refer to Moretta et al. (2025).

At bi-axial AVS site (Figure 1-Site C), alfalfa was sown on 20

October 2022 at a density of 300 seeds m−2. Biomass sampling was

conducted along 12 m transects arranged within a 12 × 36 m study

area. The experimental layout consisted of four treatments (TR1: 27%

shading, TR2: 12% shading, TR3: 21% shading, TR4: 34% shading),

spaced 3 m apart, each containing three replicate plots within the

transect. This arrangement was repeated three times across the study

area, resulting in a total of 36 treatment plots. A 1.5 m buffer was

maintained at both ends of each transect to minimize edge effects and

avoid interference from PV panel supports. Data were collected on

DOY 183, 207, 241, and 296 during the 2024 season. On each date,

biomass was cut to 3 cm within 0.5 × 0.5 m quadrats at plot centers,

then oven-dried at 60°C for 48 hours for dry matter quantification.

Additionally, canopy temperature was measured using a FLIR Ex-

Series thermal camera (FLIR Systems, Inc., Wilsonville, OR, USA),

positioned approximately 1 cm from the leaf surface, to monitor

thermal responses to shading conditions. Meteorological data were

recorded at the local weather station throughout the experimental

period (Supplementary Figure S1). Temperature measurements were

taken on the same days as biomass sampling, consistently between

10:30 a.m. and 11:30 a.m., always selecting leaves exposed to direct

sunlight and avoiding shaded ones.
2.3 Integrated modeling of AVS

2.3.1 Framework setup and scene design
To spatially assess the impact of AVS on crop growth, a process-

based crop simulation model was embedded within the Growth

Grammar-related Interactive Modelling Platform (GroIMP),

leveraging its capabilities for three-dimensional modeling, light

simulation, and interactive visualization (Kniemeyer et al., 2007).

GroIMP is an open-source 3D environment originally developed

for functional–structural plant modelling; it supports rule-based

scene construction and physically based light simulation through an

inverse Monte Carlo ray-tracing algorithm (Kniemeyer et al., 2007;

Hemmerling et al., 2008). GroIMP was used to construct virtual 3D

scenes representing different AVS layouts, with photovoltaic (PV)

panel geometry and spatial distribution explicitly defined. The

associated ray-tracing radiation model (Hemmerling et al., 2008;

Boland et al., 2008) enabled the simulation of global solar radiation

distribution and shadow patterns across the cropping surface. These

outputs were used to dynamically drive the crop model and evaluate

the spatial effects of shading.

At Site A (Montese, open-field reference), the terrain

configuration was simulated in GroIMP using a tile-based

approach, with the soil surface partitioned into 1 × 1 m grid

elements spanning a 20 × 20 m area.

The same scheme was used to spatially represent the terrain in

the AVS layout at the Ravenna (Site B) and Mantova (Site C)

experimental sites. In Site B (fixed AVS), PV panels were

represented as 3.2 × 3 m rectangular surfaces, mounted at a

height of 2 m and tilted at 35° relative to the vertical. Panels were
frontiersin.org
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arranged in continuous rows, spaced 8 m apart, and oriented along

a north–south axis (Figure 2a).

In the Site C system (bi-axial AVS), panels were modeled as 1 × 2

m surfaces positioned at 4.5 m above ground (Figure 2b). Each panel

was assigned two degrees of freedom for solar tracking, with tilt ranges

of ±50° and ±40° along the primary and secondary axes, respectively.
2.3.2 Radiative environment
Each scene is coupled with a physically based simulation of

direct and diffuse solar radiation, aimed at quantifying the total

radiation intercepted by each object in the scene (e.g., photovoltaic

panels and underlying surfaces) throughout the diurnal cycle. The

radiative model is based on the approach originally described by

Zhu et al. (2018) and subsequently modified in Moretta et al. (2025).

To this end, the scene incorporates two distinct types of

radiative sources: i) a dynamic point light source that emulates

the solar trajectory across the sky, representing direct beam

radiation; and ii) an array of 72 static point light sources, spatially

distributed across six concentric circles (12 sources per circle) to

uniformly sample the upper hemisphere and reproduce the angular

distribution of diffuse radiation, following the discretization scheme

of Zhu et al. (2018).

The model includes a preprocessing step to compute the solar

elevation angle on an hourly basis as a function of site latitude and

DOY, following the astronomical formulation of Goudriaan and

Van Laar (1994). This enables the derivation of instantaneous

global extraterrestrial radiation (GER, W m−2) (Equation 1).

GER = e   ·sinb(1 + 0:33 · cos(
2p(td − 10)

365
))   (1)
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where GER is the global extraterrestrial radiation (Wm-2), e is the

solar constant (1370 Wm-2), td is the days from 1st January, and b is

the elevation of the sun above the horizon.

The ratio between the hourly ground-measured global radiation

(GR, W m−2), provided by external meteorological data, and the

corresponding GER yields the transmissivity coefficient (Tr,

dimensionless), which is then used as an input to estimate the

diffuse radiation fraction according to the empirical model by

Boland et al. (2008) (Equation 2).

FDL   =   (1 + e(8:6·Tr−5))−1 (2)

where FDL is the fraction of diffuse radiation (unitless) and Tr is the

transmissivity (unitless).

Once the partitioning between direct and diffuse components is

obtained, the corresponding radiative fluxes (W m−2) are assigned

to their respective light sources for each hourly timestep. The

distribution of radiative energy within the scene is then computed

using the GroIMP radiation model, which employs an inverse

Monte Carlo path-tracing algorithm to simulate light transport

and integrate intercepted radiation across object surfaces.

2.3.3 Crop modelling approach and calibration
strategy

The global radiation intercepted at the ground on an hourly

time step for each tile simulated in GroIMP, was used as a direct

input to drive an Alfalfa growth model embedded in the same

platform, which also requires, at the same time resolution, air

temperature (Ta,°C), accumulated rainfall (Rain, mm), relative

humidity (RH, %), and wind speed (WS, ms-1) to estimate plant

morpho-physiological processes (Figure 3).
FIGURE 3

Simplified diagram of the crop modelling framework developed for assessing Alfalfa growth under different AVS. Grey, pink and white triangles
indicate model input parameters directly, indirectly and not modified by shading effects, respectively. The remaining pink elements refer to
morpho-physiological traits indirectly modified, while the white ones represent the parameters simulated by the model.
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The basic structure of the model uses a process-based approach

for hourly estimation of biomass accumulation (Bcrop, g m
-2), which

is dynamically partitioned to leaves, stems, and roots during the

season. Accordingly, in non-limiting conditions (Equation 3):

Bcrop   =   fPAR   ·I   ·RUE (3)

where I is the incident hourly global solar radiation (MJ m-2)

derived from the GroIMP radiation model, fPAR is the fraction of

incident radiation intercepted by the canopy (unitless), and RUE is

radiation use efficiency (g MJ-1). fPAR   is calculated on an hourly

time step according to Sinclair et al. (1992) (Equation 4):

fPAR   =   1 −   e½−LAI·
k

sin (alpha)� (4)

where k is the extinction coefficient of light in the canopy, and

alpha (°) is the angle of sun elevation provided to the growth model

by the GroIMP simulation of the daily course of solar track (section

2.3.2). RUE is calculated according to Yin et al. (2021), who

modelled the canopy light use efficiency of C3 crops (FCO2canopy ,

mol CO2 mol-1 photon) as (Equation 5):

FCO2canopy   =  
(Cc  −  G*)   ·   f2LL

4 · (Cc   +   2G*) · (1   +   f2LL   +  
f2LL     ·   k·    Iinc

Jmax
)

(5)

where CC is the chloroplast CO2 level (mmol mol−1), G* is the CO2

compensation point (mmol mol−1), F2LL is the electron transport

efficiency of Photosystem II under limiting light (mol mol-1), Iinc is

incident light photosynthetically active radiation (PAR, mmol m⁻²
s⁻¹), and Jmax is canopy-top leaf maximum electron transport rate

under light-saturating conditions (mmol e− m−2 s−1). Further

description of the functional formulations related to temperature

sensitivity of G* and Jmax, as well as the nitrogen-dependent scaling

of Jmax for photosynthetic response, is provided in SI

(Supplementary Figure S2). The parametrization of the alfalfa

growth model is provided in Table S1.

Canopy light use efficiency (CO2,canopy), calculated in not limiting

water conditions, is then converted into RUE according to van

Oijen et al. (2004) and Yin et al. (2021) (Equation 6):

RUE   =  FCO2,canopy     ·MM ·   (1  −
R
P
)   ·4:56   ·

0:5
Cbiom

(6)

where R/P (crop respiration-to-photosynthesis ratio) was set to 0.4

(Yin et al., 2021); MM (the molar mass of carbon) was fixed at 12 g

mol−1 and a conversion factor of 4.56 was used to translate

photosynthetically active radiation (PAR) from MJ to moles of

photons, assuming that PAR represents 50% of incoming global

solar radiation. The carbon fraction in crop biomass (Cbiom) was set

to 0.48.

Assimilated biomass at the hourly scale is accumulated daily

and partitioned to the different organs according to dynamic

partitioning coefficients (PCs, ratio), which are dependent on

photoperiod (PP, hours) as provided by the radiative model of

GroIMP. Specifically, for PP before the spring equinox, PC to above

ground biomass (AGB, g m-2) (i.e., leaves and shoots) is set to 0.9

while it decreases to 0.67 between the equinox and summer solstice

(Brown et al., 2006). After that, as PP starts decreasing, PC to AGB
Frontiers in Agronomy 08
drops to 0.35, considering that at the end of the season, the plant

improves the accumulation of reserve substances in the roots to

ensure vegetative recovery after the winter (Teixeira et al., 2007).

According to Brown et al. (2006), this stage was assumed to start

when PP decreases to 1h less than the daylength at solstice.

Biomass partitioned to AGB is further partitioned to leaves

(PCleaf) (Equation 7) and shoots (PCshoots) (Equation 8) according to

an allometric equation that assumes an exponential decrease in

PCleaves as increased dry matter to AGB (Brown et al., 2006; Teixeira

et al., 2009). Accordingly:

PCleaf   =   c   ·   exp
d

AGB   10−2   +   e

� �
(7)

PCshoots   =   1 −   PCleaves   (8)

where c, d and e are empirical coefficients shaping the response of

PC to leaves to AGB (Supplementary Table S1).

The biomass partitioned to leaves (g m-2) is converted into new

leaf area (LAIrate, m
2 m-2) considering biomass investment per unit

leaf area (Specific Leaf Area, SLA, m2 g-1) (Equation 9).

LAIrate(t) = AGB · PCleaves   ·SLA (9)

On the evidence that plants show an increase in SLA as an

adaptation to shading conditions, as observed in the literature

(Scarano et al., 2024; Potenza et al., 2022; Evans, 2001) and the

experiment in Site B (Moretta et al., 2025), SLA was dynamically

modified over each tile by quantifying the relevant degree of

shading. Accordingly, a shadow factor (ShF, unitless) is calculated

as the ratio between incoming global radiation (GR) and that

intercepted by each tile (I), which ranges between 1, when the

radiation intercepted by the tile corresponds to the external global

radiation (no shadow), up to 0, corresponding to a complete

shadowing (Equation 10):

ShF   =  
I
GR

(10)

The shadow effect on SLA is assumed for ShF lower than 0.9, where

the increase in SLA was calculated as (Equation 11):

incSLA   =   SLAmax · (1  −ShF)   (11)

where SLAmax represents the maximum increment of SLA in

response to a complete shadowing according to the results

obtained in Site B (0.25; Moretta et al., 2025). incSLA, calculated

on an hourly basis for each tile, is daily averaged and finally used to

update the original SLA and the relevant LAIrate.

The simulation of LAI is completed by the simulation of leaf

area senescent rate (SENrate, m2 m-2) (Equation 12) that is

modelled by assuming a fixed senescence rate (FixSENrate, m2 m-

2) multiplied by a Stage Factor (SF, unitless), a Cover Factor (CF,

unitless), a Temperature Factor (TF, unitless), and a Water Stress

Factor (WSF, unitless) (Yang et al., 2022).

SF starts linearly increasing from active vegetative growth

(SF = 0) to floral buds’ visible stage (BV) (SF = 0.3). This stage is

dependent on daily mean temperature (Tmean,°C) and PP, where
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the attainment of the phase, in the original configuration of Teixeira

et al. (2011), is determined by an accumulation of 700 degree days

(DDA,°C) (base temperature Tb=0°C) at PP = 10h, linearly

decreasing up to 270 DDA at PP>14h condition. After BV,

temperature becomes the primary driver of anthesis, defined as

the stage when 50% of stems have open flowers. This is initially set

to occur at 274 DDA after BV, corresponding to SF = 0.6, which

increases to 1 in the following stage (grain filling).

CF increases linearly from 0 to 0.5 as LAI increases from 2 to 4,

and then continues to increase, reaching a maximum value of 1.5 at

LAI 7.

TF is set to 0.1 for mean daily temperatures between 0 and 5°C,

then increases progressively, reaching 1 at 20°C, and peaking at a

maximum of 1.5 at 40°C.

WSF is assigned a value of 1 when the Fraction of Transpirable

Soil Water (FTSW) is greater than 0.5. Below this threshold, WSF

increases linearly up to 2 as FTSW decreases down to the wilting

point (FTSW = 0.1).

Accordingly:

SENrate(t) = FixSENrate · SF · CF · TF · WSF (12)

LAI at time t is then updated (Equation 13):

LAI(t) = LAI(t−1) + LAIrate(t) − SENrate(t) (13)

A soil water balance module is integrated to simulate water

limitation experienced by the canopy during the growing season

and the relevant impact on plant transpiration and photosynthesis.

The soil water balance is calculated for a single layer where the total

transpirable soil water (TTSW, cm) is estimated considering the

water content availability (WCA, cm cm-1) between field capacity

and wilting point and the root depth (cm). Assuming no surface

runoff, available soil water for the layer (ATSWd, cm) depends on

the ATSW of the previous day (ATSWd-1, cm), and the positive

(rainfall and/or irrigation, mm) and negative contribution (actual

evapotranspiration, ET, mm) to the water budget (Equation 14).

ATSWd = ATSW(d−1) +   (Rainfall(d) + Irrigation(d)) − ET(d) (14)

where rainfall, irrigation and ET are converted from mm to cm.

The calculation of actual evapotranspiration ET is preceded by

the estimation of potential evapotranspiration (PET, mm), that

representing the atmospheric evaporative demand under non-

limiting water conditions, serves as a reference for deriving ET by

incorporating constraints related to soil water availability and crop-

specific stress factors. PET is calculated according to Penman-

Monteith approach at hourly timestep (Equation 15):

PET =  
D(Rn − G) + racp

(es−ea)
ra

� �
D + g (1 + rs

ra
)

� � l−1 (15)

where l is the latent heat of vaporization (J Kg-1), Rn is the net

radiation (Wm-2), G is the soil heat flux (Wm-2), (es-ea) represents

the vapour pressure deficit of the air (VPD, KPa), ra is the mean air

density at constant pressure (Kg m-3), cp is the specific heat of the

air (J K-1m-3), D is the slope of the saturation vapour pressure
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temperature relationship (KPa°C-1), g is the psychrometric constant

(KPa°C-1), and rs and ra are the surface and aerodynamic resistances

(s m-1).

Considering that Rn, G, and VPD data were not available at the

experiment sites, they were calculated according to Allen et al.

(1998). Hourly net radiation Rn was calculated as the difference

between net shortwave radiation (Rns) and net longwave radiation

(Rnl). Rns were obtained by correcting incoming solar radiation for

surface albedo (assumed 0.23), while Rnl was estimated using the

Stefan-Boltzmann law based on hourly air temperature, vapor

pressure, and the ratio of measured to clear-sky solar radiation. G

was calculated as 10% Rn during the day, to 50% at night. Hourly

vapor pressure deficit (VPD) was calculated as the difference

between saturated vapor pressure, derived from air temperature,

and actual vapor pressure, estimated from observed relative

humidity. For more comprehensive information, we recommend

consulting the original publication.

Surface resistance (rs) was assumed to be 70 s m-1 during the

day (Allen et al., 1998) and 700 s m-1 during the night (e.g. Meyers

and Hollinger, 2004) to account for stomatal closure when radiation

is missing.

Aerodynamic resistances ra is calculated according to Thom

and Olivier (1977) as (Equation 16):

ra =
½4:72 · ½ln((z − d + zo)=zo�2�

(   1 + 0:54 · u)
(16)

where u is wind speed (ms-1) at reference height z (2 m), d is the

zero-displacement height equal to 1.04 h0.88 and z0 the roughness

length for momentum and heat transfer equal to 0.062 h1.08, where

h is the crop height, assumed as a function of accumulated AGB

according to a logistic function (SI).

PET is partitioned between plant transpiration and soil

evaporation that are then rescaled to the relevant actual values

considering the limitations imposed by current water conditions.

fPAR is used as a scalar to partition ET between soil and crop, where

the proportion of PET allocated to potential transpiration is fPAR

and that to potential soil evaporation is 1- fPAR (Marsal et al.,

2014). Potential transpiration is rescaled to actual transpiration

considering that plant’s gas exchange is regulated by the extractable

soil water content, expressed by the ratio between ATSW and

TTSW (i.e., fraction of transpirable soil water, FTSW, unitless;

Sinclair and Muchow, 1999) (Equation 17).

RelTr =   (1 + a · exp(b · FTSW))−1 (17)

where RelTr is the fraction of actual to potential transpiration

(ranging from 1, when FTSW is not yet limiting potential

transpiration, to 0, where FTSW completely inhibits transpiration),

and a and b are empirical parameters shaping the response of RelTr

to FTSW. The RelTr is also used to rescale the potential RUE

(Equation 6) to its actual value by considering that the reduction in

RUE is directly proportional to the reduction in transpiration

(Sinclair and Muchow, 1999; Supplementary Figure S4).

Similarly, a rescaling factor for soil evaporation (RedEvap) is

calculated when soil moisture diverges from a condition equivalent to
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that of a wet surface, assumed when FTSW>0.5 (Soltani and Sinclair,

2012). RedEvap is thus calculated as a function of the square root of

time (DYSE, days) since FTSW is lower than 0.5 (Equation 18):

RedEvap = ½(DYSE + 1)0:5 − (DYSE)0:5� (18)

Finally, actual transpiration (ATR, mm) (Equation 19) and soil

evaporation (ASEV; mm) (Equation 20) are calculated as:

ATR   =   fPAR   ·   PET · Kc   ·  RelTr (19)

ASEV   =   (1 − fPAR) ·   PET · Kc   ·  RelEvap (20)

where Kc is the crop coefficient, assumed constant (1.05) during the

growing season (Allen, 1996).

Considering that the hourly energy balance is calculated as

(Equation 21):

Rn = G +H +   lET (21)

where Rn and G are known terms and actual lET may be calculated

as the sum of ATR and ASEV and then converted via l, the sensible
heat H (Wm-2) may be derived as difference and used to calculate

the hourly temperature of the canopy (Tc,°C), accounting for the

effect of a reduced transpiration on plant temperature (Webber

et al., 2018). The Tc (Equation 22) is then introduced as a factor

affecting photosynthetic efficiency (G* and Jmax, SI).

Tc = Ta +
H · ra  
ra · cp

 !
(22)

By embedding the crop growth model within the same platform

as the radiative model in GroIMP, the framework dynamically

accounts not only for the effect of absorbed global radiation and PP

on plant growth and development but also for the impact of

photovoltaic panels water harvesting its subsequent redistribution

to the ground area immediately below their slopes. Accordingly,

rainfall intercepted by the photovoltaic panels is redistributed onto

the ground within the first meter linearly extending from the lower

edge of the panels (Moretta et al., 2025) (Equation 23):

Ra = Rm + Ri (23)

where Rais the total daily cumulated total rainfall (mm), including

daily measured rainfall (Rm) and that intercepted by the panel (Ri)

that is calculated according to (Equation 24):

Ri = Rm · Apanel · Rc (24)

where Apanel is the effective collecting area calculated per linear

meter of panel and Rc is the precipitation runoff conversion

coefficient. In this study, Rc was set to 0.9 (90%). Apanel is

calculated as (Equation 25):

Apanel = Length   ·  Width   ·   cos (a) (25)

where Length is the length of the panel (m), Width is the width of

the panel (m) and a is the tilt angle of the panel relative to the

ground norm.
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Conversely, the water input below the area under the panels’

projection was considered negligible in all cases. In this context, a

1.5 m strip on both sides of each supporting pole, representing the

area most influenced by potential rainfall shielding and runoff from

the panels, was excluded from the computation domain.

Considering the simplified structure of the model, model

calibration was limited to the tuning of a limited subset of

parameters, while core physiological and structural parameters

remained fixed, as they were derived from experimentally

validated sources. Specifically, the calibration considered

coefficients and timing of PC to above/below ground biomass as

these parameters determine the accumulation and subsequent

distribution of biomass in the leaves and stem. In addition, the

flowering period was considered, as it plays a key role in driving leaf

surface senescence.

As such, the model was initially applied over the calibration

sites for testing LAI and biomass accumulation (Site A) and

phenology (Site B) considering the initial parameterization for

phenology and biomass partitioning in accordance with the

literature data (Supplementary Table S1). As a second step, based

on the model’s performance, the relevant parameters were modified

to adjust the model’s performance to the observed results.

To further explore the interaction between crop growth, water

regime and energy production, the calibrated model was used to

perform additional simulations (Site C; 2024) varying the pitch

distance (spacing between PV panel rows) from 4 m to 16 m every

2m. For each configuration we calculated the relative alfalfa yield of

three harvests and the relative PV energy production were

calculated, both under non-limiting and water-limiting conditions

(50 % reduction in seasonal rainfall).
2.4 Statistical analysis

To assess the performance of the integrated modeling

framework in simulating alfalfa above ground biomass, LAI, and

canopy temperature under different AVS configurations, a set of

standard statistical indicators was employed. These included the

Root Mean Square Error (RMSE), the Mean Bias Error (MBE), and

the coefficient of determination (R²). In addition to these

performance metrics, the Akaike Information Criterion (AIC) was

calculated to evaluate the trade-off between model accuracy

and complexity.

Statistical comparisons between shading treatments were

performed using analysis of variance (ANOVA), followed by

Tukey’s Honest Significant Difference (HSD) post-hoc test to

identify differences in biomass accumulation and LAI across

spatial positions. For variables measured repeatedly on the same

plots across multiple sampling dates, a repeated-measures ANOVA

was applied to account for temporal autocorrelation. Normality and

homogeneity of variances were tested using the Shapiro–Wilk and

Levene’s tests, respectively. All statistical analyses were conducted

using R software (version 4.4.3; R Core Team, 2025), and

significance was accepted at p < 0.05 unless otherwise stated.
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3 Results

3.1 Model calibration

Under the initial configuration (Supplementary Table S1), the

model slightly underestimated the DOY of full anthesis recorded in

Site B in both 2023 and 2024. In 2023 the first flowering date was

recorded on DOY 135 and the second, after the first mowing, on

DOY 197, which were simulated respectively on DOY 130 and 190.

In 2024, the flowering date was recorded on DOY 186, as the earlier

cuts prevented reaching this stage previously and simulated on

DOY 180. Accordingly, the thermal time from the bud visible stage

to full anthesis was increased from its original value (270 degree-

days) to 310 degree-days, resulting in a simulated flowering date

within ±1 day of the observed DOY.
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Under this configuration, the model was tested in Site A (2019),

under open field conditions. In this experimental site, alfalfa

showed an observed cumulative production of approximately

1,250 g m-2 (12.5 t ha-1) at the end of the 2019 season. The three

growing cycles, separated by mowing at DOY 153, 211 and 240,

produced about 500, 420 and 330 g m-2, respectively. The LAI

peaked at about 5.1 m² m-2 before the first mowing, followed by

decreasing values and subsequent recoveries with peaks of 3.2 and

2.8 m² m-2 in subsequent cycles. The model well reproduced the

growth dynamics of both biomass and LAI for the first two

mowings (Figure 4), highlighting the overall consistency of the

proposed approach in simulating the process of biomass

accumulation and partitioning and the senescence. Conversely,

the model failed to adequately capture the regrowth dynamics

following the second harvest during the terminal phase of the
FIGURE 4

Seasonal dynamics of yield (g m-2), LAI (m2 m-2), and FTSW under open-field (Site A) conditions in 2019, as a function of DOY. Post-calibration
simulations are shown as black solid lines, while pre-calibration simulations are represented by grey dashed lines. Observed data are indicated by
points with error bars. The bottom panel illustrates the seasonal course of FTSW (black solid line) together with daily precipitation (grey columns).
Vertical red lines indicate dates of full-field harvest.
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growing season (Figure 4) highlighting a potential inconsistency in

the parameterization that defines the period during which biomass

is preferentially allocated to the roots (i.e. at the end of growing

season), as well as in the associated partitioning coefficient. In terms

of predictive performance, the model yielded R² = 0.82, RMSE =

48.6 g m−2, MBE = 12.1 g m−2, and AIC = 125.4 for biomass, and R²

= 0.74, RMSE = 0.62, MBE = 0.18, and AIC = 92.7 for LAI in this

pre-calibration phase.

Accordingly, the PP triggering this shift under shortening day

length conditions, was tuned in a range -1h (original value) to -2h with

respect to the solstice (step 0.5h), considering all possible combinations

with PC to AGB in the range between 0.35 (original value) and 0.5 (step

0.05). Finally, the best combination PP-PC providing the best

performance in simulating biomass and LAI was selected.

Quantitative assessment of model performances after this second

step improved model performances for both total biomass and LAI
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predictions. After calibration, the model achieved an R² of 0.99,

RMSE of 20.76 g m-2, MBE of -14.04 g m-2, and AIC of 30.77 for total

biomass. For LAI, the model reached an R² of 0.98, RMSE of 0.78,

MBE of -0.68, and AIC of 3.68, indicating a substantial enhancement

in accuracy and precision compared to the pre-calibration phase.
3.2 Fixed agrivoltaic system

The performance of the calibrated model was evaluated at the

fixed AVS (Site B) by comparing simulated and observed dry matter

yield of alfalfa under four treatments (TR1-TR4, Supplementary

Table S2) during the 2023 and 2024 growing seasons.

In 2023 (Figure 5), observed biomass accumulation revealed a clear

gradient among treatments: TR1 achieved the highest yields, likely due

to increased soil moisture availability from panel-induced runoff,
FIGURE 5

Seasonal dynamics of alfalfa dry matter yield (g m-2), LAI (m2 m-2), and FTSW under fixed AVS conditions (Site B) in 2023, as a function of DOY.
Simulated values are shown as solid lines for four treatments (TR1–TR4), while observed data are represented by points with error bars (mean ±
standard error). The bottom panel illustrates the seasonal course of FTSW (solid lines) together with daily precipitation (grey columns). Vertical red
lines indicate the dates of full-field harvest.
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followed by TR2, while TR3 and TR4, located in more heavily shaded

areas, showed substantially lower productivity. Before the first cut (DOY

153), TR1 reached approximately 580 g m−2, TR2–510 g m−2, TR3–260

g m−2, and TR4 only 120 g m−2. After the second growth phase (DOY

240), cumulative yields increased to approximately 1,050 gm−2 for TR1,

900 g m−2 for TR2, 560 g m−2 for TR3, and 290 g m−2 for TR4. By the

end of the season, total annual yields were approximately 1,350 g m−2

for TR1, 1,150 g m−2 for TR2, 700 g m−2 for TR3, and 400 g m−2 for

TR4. Using TR2 as a reference, this corresponds to a +17.4% increase in

TR1, and reductions of -39.1% and -65.2% for TR3 and TR4,

respectively. The agreement between observed and simulated values

was good (R² = 0.83, RMSE = 56.6 g m−2, MBE = -23.1 g m−2).

In 2024 (Figure 6), similar spatial patterns were observed,

though overall yields were lower due to different climatic and

management conditions, including a higher number of harvests.

Before the first cut (DOY 122), TR1 reached approximately 230 g
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m−2, TR2–200 g m−2, TR3–120 g m−2, and TR4–80 g m−2. After the

second growth cycle (DOY 211), yields were around 460 g m−2 for

TR1, 360 g m−2 for TR2, 260 g m−2 for TR3, and 160 g m−2 for TR4.

At the end of the season (DOY 268), cumulative yields were

approximately 650 g m−2 for TR1, 520 g m−2 for TR2, 390 g m−2

for TR3, and 280 g m−2 for TR4. Compared to TR2, this

corresponds to a +25.0% increase in TR1, and reductions of

-25.0% and -46.2% for TR3 and TR4, respectively. The model

accurately reproduced treatment-based differences in productivity,

with overall satisfactory performance also in 2024 (R² = 0.85, RMSE

= 41.4 g m−2, MBE = 9.6 g m−2), confirming the robustness of the

approach for simulating spatially heterogeneous AVS.

The simulation of FTSW in 2023 revealed pronounced

differences among treatments, reflecting their spatial arrangement

within the fixed AVS (Figure 5). TR1 consistently maintained the

highest FTSW values, remaining above 0.6 for most of the season,
FIGURE 6

Seasonal dynamics of alfalfa dry matter yield (g m-2), LAI (m2 m-2), and FTSW under fixed AVS conditions (Site B) in 2024, as a function of DOY.
Simulated values are shown as solid lines for four treatments (TR1–TR4), while observed data are represented by points with error bars (mean ±
standard error). The bottom panel illustrates the seasonal course of FTSW (solid lines) together with daily precipitation (grey columns). Vertical red
lines indicate the dates of full-field harvest.
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supported by localized water redistribution from the northern panel

edge. TR2 exhibited a steeper decline after the first harvest, with

values approaching 0.5 by mid-season, indicating a faster depletion

of soil water. TR3 and TR4, located beneath the panels and with

limited direct access to rainfall (particularly TR4), showed the

lowest soil moisture availability. In both treatments, FTSW

dropped below 0.4 during the central part of the growing season

(DOY 150–240), confirming greater exposure to water stress.

In 2024, FTSW dynamics followed a similar spatial gradient, but

with overall higher values across all treatments, mainly due to more

frequent rainfall events recorded during the summer period (DOY

160–240). Consequently, differences among treatments were less

pronounced than in 2023. TR1 again maintained the highest FTSW,

although the gap with TR2 and TR3 was reduced. TR4 remained the

lowest, but without the sharp decline observed in the previous year.
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3.3 Bi-axial agrivoltaic system

The performance of the calibrated model was evaluated under

bi-axial AVS (Site C) conditions during the 2024 growing season.

Figure 7 compares simulated and observed dry matter yield for four

treatments (TR1 to TR4), corresponding to different shading levels

and spatial positions relative to the solar panel configuration

(Supplementary Table S2). The model demonstrated strong

predictive accuracy, with a R² of 0.94, RMSE of 39.3 g m-2, and

an MBE of -3.4 g m-2, indicating a slight overestimation of yield.

During the first growth phase (DOY 66-182), TR2 exhibited the

highest productivity, reaching approximately 550 g m-2, followed by

TR3 and TR1, with yields around 500–520 g m-2. TR4 consistently

recorded the lowest yield (~470 g m-2), reflecting a reduction of

about 15% compared to TR2. These results highlight the significant
7FIGURE

Seasonal dynamics of alfalfa dry matter yield (g m-2), LAI (m2 m-2), and FTSW under bi-axial AVS conditions (Site C) in 2024, as a function of DOY.
Simulated values are shown as solid lines for four treatments (TR1–TR4), while observed data are represented by points with error bars (mean ±
standard error). The bottom panel illustrates the seasonal course of FTSW (solid lines) together with daily precipitation (grey columns). Vertical red
lines indicate the dates of full-field harvest.
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influence of spatial positioning and light availability under biaxial

tracking systems on biomass accumulation.

In the second regrowth phase (DOY 182-240), TR2 again

showed the most vigorous recovery, followed by TR3, TR1, and

TR4. Yield differences among treatments remained consistent, with

TR4 accumulating approximately 10–15% less biomass than the

most productive treatment.

During the final growth phase (DOY 240-298), yield levels

among TR1, T2, TR3, and TR4 converged, suggesting a reduced

marginal impact of partial shading under late-season conditions.

Nonetheless, TR4 maintained a slightly lower cumulative yield,

ending the season with approximately 10% less biomass than TR2,

reinforcing the adverse effects of sustained shading on alfalfa

productivity. Considering the annual cumulative biomass

production averaged over harvests, alfalfa grown in Site A (open

field, 2019) recorded the highest mean yields. The bi-axial tracking

AVS (Site C, 2024) achieved a comparable annual output,

remaining generally within about 10 % of the open-field

reference. In the fixed-panel AVS (Site B, 2023–2024), when the

calculation is restricted to the pre-existing, less shaded corridors

(i.e., the productive inter-row areas comparable to TR1 and TR2),

the system reached roughly 70 % of open-field alfalfa productivity

on an annual basis. In contrast, the persistently shaded corridors

contributed negligibly to yearly biomass and would scarcely

justify cultivation.

The FTSW simulations show a very similar trend among the

four treatments, with no marked differences related to the position

with respect to the photovoltaic modules. During the first growth

phase, the values remain close to 1, indicating optimal water

availability. In the middle of the season (DOY 182-280), a

progressive reduction in FTSW is observed, with minimums

around 0.3-0.4, consistent with moderate but uniform water stress

conditions across the plots. Starting from DOY 280, the recovery of

rainfall causes a rapid rise in FTSW towards values close to

saturation, restoring conditions that do not limit growth.
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3.3.1 Canopy temperature simulation
The simulation of canopy temperature was evaluated at Site C

(bi-axial AVS) across four spatial positions (TR1 to TR4) during the

2024 growing season (Figure 8). Observed canopy temperature

dynamics varied across treatments and dates, reflecting both

spatial heterogeneity and seasonal changes. Canopy temperatures

exhibited a clear seasonal trajectory, increasing progressively from

early measurements (DOY 183) to a peak during mid-season (DOY

241), followed by a marked decline by late season (DOY 296).

Across all sampling dates, the highest temperatures were

consistently recorded in the central treatments (TR2 and TR3),

which correspond to the areas with the lowest shading levels. The

model successfully captured observed trends, including the

progressive temperature gradient from heavily shaded (TR1 and

TR4) to less shaded areas (TR2 and TR3). On all sampling dates,

TR1 and TR4 consistently exhibited lower average canopy

temperatures than TR2 and TR3, with the differences being most

pronounced at mid-season (DOY 207 and 241). Simulated

temperatures closely matched observed data, with slight

overestimation in late-season measurements (DOY 296)

particularly under TR1. Overall model performance was strong,

with a coefficient of determination (R²) of 0.96 and a low RMSE of

0.87°C, confirming the accuracy of the simulation in reproducing

observed canopy temperature across treatments.

To assess treatment effects on crop microclimate, canopy

temperature was measured and expressed as the difference

between canopy and air temperature (DT = canopy temperature

minus air temperature) across four shading treatments (TR1 to

TR4) and four sampling dates (DOY 183, 207, 241, and 296) at the

Site C. Observed DT values showed clear differences among

treatments and dates, reflecting variations in both shading

intensity and environmental conditions. On days 207 and 241,

corresponding to mid-summer conditions with air temperatures

above 30°C, the largest temperature differences were recorded. The

most shaded treatments (TR1 and TR4) consistently exhibited
FIGURE 8

Observed and simulated canopy temperature (°C) for four treatments (TR1-TR4) across four dates (DOY 183, 207, 241, 296) at Site C. Columns show
observed means with error bars (mean ± SE), while points represent simulated values.
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lower canopy temperatures than the least shaded ones (TR2 and

TR3), with DT differences exceeding 3°C. On cooler days (183 and

296), when air temperatures were below 25°C, treatment differences

were smaller but still evident. The model accurately reproduced

these spatial and temporal patterns, showing good agreement with

observed data (R² = 0.83, RMSE = 0.88°C, and MBE = - 0.11°C;

Figure 9), confirming its effectiveness in simulating canopy thermal

dynamics under variable shading conditions.
3.4 Overall model performance in
simulating biomass yield and LAI across
AVS configurations

The accuracy of the integrated modeling framework was

assessed by comparing simulated and observed values of yield

(Yieldsim vs Yieldobs) and LAI (LAIsim vs LAIobs) across all

experimental sites and treatments, including open field, fixed-

panel AVS (Site B), and bi-axial tracking AVS (Site C).

As shown in Figure 10A, the model captured yield dynamics

with high accuracy (R² = 0.94), with a RMSE of 110,34 g m-2 and a

MBE of –54.7 g m-2, indicating a slight overall underestimation. The

wide distribution of treatment-specific data points (TR1 to TR4)

confirms the model’s robustness in representing productivity across

a range of shading intensities and microclimatic conditions. The

slight underestimation tendency is more evident under high-

yielding conditions (>400 g m−2), where the model showed

conservative predictions, likely due to limitations in simulating

peak growth phases or resource-unlimited scenarios.
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In Figure 10B, the model also accurately reproduced the seasonal

dynamics of LAI, with a coefficient of determination of R² = 0.96,

RMSE =-0.24. Most of the underestimation occurred at moderate to

high LAI values (>3), suggesting that the model may slightly

underestimate canopy expansion during the most favorable growth

periods. Nevertheless, the model successfully represented the full range

of LAI development across treatments, confirming its ability to capture

both regrowth phases post-harvest and senescence-driven declines.
3.5 Scenario simulations on pitch distance
and water availability

Yield and energy production were differently affected by pitch

distance depending on water availability (Figure 11). In the absence
FIGURE 9

Comparison between simulated (DTsim) and observed (DTobs)
canopy-to-air temperature difference (DT = Tcanopy – Tair) across
four shading treatments (TR1–TR4) under the bi-axial tracking
agrivoltaic system (Site C) during the 2024 growing season.
FIGURE 10

Comparison between simulated and observed values of (A) annual
yield (sum per site and treatment) and (B) mean LAI at harvest. Data
include open field (Site A), fixed AVS (Site B), and bi-axial AVS (Site C).
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of water limitations, the reduction in available radiation resulting

from a smaller pitch progressively constrains production relative to

open-field conditions. Yield penalties at 4 m pitch reached about –

50 % for the first harvest, while the second and third harvests

showed progressively smaller reductions. In contrast, energy

production decreased almost linearly with pitch distance, as larger

spacing lowers the installed PV capacity per hectare.

Under water-limiting conditions, the response pattern changed.

Moderate shading (pitch 6–8 m) mitigated drought stress with

respect to open-field conditions by reducing canopy temperature

and evapotranspiration, resulting in higher second-harvest yields

than both narrower and wider layouts. The first harvest, when soil

moisture was still adequate, and the third harvest, constrained by

late-season stress, showed smaller differences among pitches.

Energy production again declined with increasing pitch, but the

agronomic advantage of intermediate spacing partly offset this loss.
FIGURE 11

Modelled relative alfalfa yield of three harvests and PV energy production acros
(bottom; 50 % rainfall) conditions.
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4 Discussion

This study introduced a novel modeling framework based on

the GroIMP platform that integrates a simplified, process-based

crop growth model with a three-dimensional radiation

environment. The proposed approach enabled an explicit,

physics-based simulation of light transport, which successfully

quantified radiation interception by the modeled elements (i.e.,

crop and panels). As highlighted in the literature (Zainali et al.,

2025; Amaducci et al., 2018), most existing modeling platforms are

not well-suited for AVS because they overlook the critical

interaction between panel-induced shading and the morpho-

physiological responses of cultivated plants. Such omissions can

lead to significant biases in model predictions. To address this gap,

our framework was designed to balance parsimony with the ability

to capture essential plant-environment feedback. Specifically, it has
s pitch distances (4–16 m) under non-limiting (top) and water-limiting
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been developed to simulate the effects of hourly dynamic shading on

alfalfa, thereby providing a more accurate assessment of crop

performance under AVS conditions.

In a recent study, Moretta et al. (2025) explored the impact of

shading-induced microclimatic changes on alfalfa grown under the

fixed AVS in Ravenna (Site B) by forcing the SSM crop model

(Soltani and Sinclair, 2012) with image-derived fAPAR data,

thereby circumventing the need to explicitly represent the

morpho-physiological acclimation processes usually induced by

reduced light availability. Conversely, the new prognostic

approach presented here directly accounts for the physiological

effects of lower radiation, providing a realistic simulation of alfalfa

growth under shade that remains comparable to the forced

SSM model.

In fact, the proposed framework incorporates key elements

required to distinguish crop growth responses in shaded versus

full-light conditions beneath PV panels. This integrated approach

enables a more realistic simulation of the combined impacts of

shading, drought and heat stress on plant morpho-physiological

performance, which are especially critical in a Mediterranean

climate where high temperature and low rainfall often limit plant

growth during the season (Holmgren et al., 2012; Xu et al., 2020;

Acevedo et al., 2024). The use of the GroIMP platform enabled the

simulation of radiation dynamics at an hourly time step within a

complex three-dimensional environment. This temporal resolution

was crucial to capture the intra-daily variability of shading patterns

induced by AVS structures. By explicitly representing these

fluctuations, the model improved the realism of light–crop

interactions. In contrast, many crop models commonly used to

evaluate the effect of AVS on crop productivity such as STICS

(Dupraz et al., 2011), EPIC (Campana et al., 2021) and APSIM

(Ahmed et al., 2022), operate at a daily time step. While daily

resolution is often sufficient to capture long-term growth patterns

and seasonal dynamics, it tends to mask strong intra-day variability

characteristic of plant–environment interactions under AVS (Artru

et al., 2018), including the mitigation of midday photosynthesis

depression and the effect of diurnal evapotranspiration patterns

(Marrou et al., 2013; Elamri et al., 2018). This reinforces the

importance of an hourly timestep for mechanistic modelling

approaches (Amaducci et al., 2018; Potenza et al., 2022; Bellone

et al., 2024).

Increasing SLA is a key trait underlying plant acclimation to

low-light environments, as it enhances light interception per unit

biomass (Valladares and Niinemets, 2008). While this plastic

adjustment does not always confer a net fitness advantage (Liu

et al., 2016), it is consistently observed as part of shade acclimation

strategies (Poorter et al., 2009). Importantly, this behavior has also

been specifically reported in crops cultivated beneath photovoltaic

panels, such as alfalfa (Moretta et al., 2025; Zhang et al., 2017) and

corroborated by similar findings in soybean (Potenza et al., 2022),

tomato (Scarano et al., 2024), apple (Juillion et al., 2024) and lettuce

(Marrou et al., 2013). The need to represent SLA dynamically in

response to environmental stresses has recently been emphasized by

Zhang et al. (2025) for the WOFOST model, whereas the original

version only uses fixed tabular values linked to development stages.
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Similar limitations exist in the APSIM-Nwheat model (Asseng et al.,

2003), while CropSyst (Stöckle et al., 2003) uses even a fixed SLA.

APSIM Next Generation, developed for alfalfa, omits SLA

altogether and simulates LAI with a double-sigmoid function of

thermal time modulated by photoperiod, which further limits its

ability to account for stress-induced adjustments in leaf

morphology. In contrast, the GroIMP platform introduces a

dynamic correction factor for SLA under shade, consistent with

observations of Moretta et al. (2025). This adjustment accounts for

the degree of shading across canopy zones and the associated

variation in SLA, thus capturing the spatio-temporal

heterogeneity of the canopy light environment and enabling a

more accurate simulation of cumulative radiation interception

throughout the growing season.

Increases in SLA are frequently associated with a reduction in

the maximum electron transport capacity (Jmax), reflecting

coordinated trait syndromes under shade and leading, in the

latter case, to a downregulation of photosynthetic capacity per

unit leaf area in shaded environments (Valladares and Niinemets,

2008). Functionally, this adjustment represents an optimization

strategy: shaded leaves typically exhibit lower nitrogen per unit area

and reallocate it from photosynthetic enzymes toward light-

harvesting structures and pigments, including increased SLA, to

maximize light capture (Evans, 2001). Such downregulation aligns

photosynthetic capacity with available light, while retaining the

ability to respond to intermittent high-light pulses (Eichelmann et

al., 2005). Conversely, crop models based on RUE (e.g., APSIM,

EPIC, CROPSYST, STICS) typically account for water or nutrient

stress on photosynthetic efficiency but ignore shading as a reducing

factor. This oversight may bias biomass estimates and systematically

underestimate both crop plasticity and the agronomic impacts of

shading in AVS. To address this limitation, the GroIMP platform

incorporates a response function, following Waring et al. (2023), to

account for the effect of shading on the maximum electron

transport capacity normalized at 25°C (Jmax25). This approach

captures well-established acclimation processes of the

photosynthetic apparatus to low irradiance (Waring et al., 2023;

Dai et al., 2004) and ultimately enhances the realism of

photosynthetic simulations under AVS conditions.

The modelling framework explicitly accounts for the

interactions between transpiration, leaf temperature, and

photosynthetic efficiency through an energy balance approach. In

this formulation, reduced transpiration lowers latent heat flux,

thereby increasing the proportion of net radiation dissipated as

sensible heat. This shift leads to higher leaf temperatures, which are

directly resolved by the model’s energy balance module and

subsequently used to drive photosynthetic efficiency (Equation

22), thereby capturing the contrasting responses of plants grown

under full light versus shaded conditions.

The roof effect induced by PV panels, introduced by Wu et al.

(2022) to substantially modify rainfall distribution beneath PV

installations, is systematically overlooked in current crop

modelling studies on AVS, resulting in an incomplete

representation of water dynamics. In contrast, our framework

embeds the crop growth model within the 3D representation of
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the AVS, dynamically accounting for panel-mediated water

interception and redistribution to the soil, and explicitly

capturing the effects of canopy coverage on field water balance

over time.

The simplified structure of the crop model requires calibration

of only a few key parameters, primarily those controlling biomass

partitioning and phenology, while most values are derived from the

literature. This parsimony avoids overfitting to site-specific

conditions, a common limitation of models with large parameter

sets (Sinclair and Seligman, 2000). As a result, the model achieves

greater robustness and transferability across different environments

(i.e., open field, fixed AVS and bi-axial AVS).

In the control experiment at Site A, the late-season increase in

root allocation occurred later and to a lesser extent than initially

described by Brown et al. (2006), suggesting a delayed and reduced

investment in belowground growth under experimental

Mediterranean conditions. Specifically, the daylength threshold

(PP) for increasing root partitioning shifted from -1 hour (i.e.,

when daylength decreases by 1 hour from the solstice) to -2 hours in

our study, with the end-of-season partitioning coefficient decreasing

from 0.65 to 0.5. This pattern likely reflects a local adaptation to

Mediterranean climates, where mild autumn–winter temperatures

extend the growing season and thus modify seasonal allocation

strategies of Alfalfa. The retrieved partitioning coefficient (0.5)

remains in any case within the range reported in the literature

(Teixeira et al., 2009).

The calibrated model showed overall good performance results

at simulating plant processes, including biomass accumulation, leaf

area development and crop temperature, emphasizing differences

between fixed and dynamic AVS.

In fixed-panel systems (Site B, 2023–2024), treatments showed

marked differences in biomass accumulation. TR1 consistently

outperformed the other treatments, with final yield advantages

reaching up to 400 g m-2 compared to TR4. These yield gaps can

be explained by persistent shaded zones in some treatments,

especially TR3, where the fixed panel geometry restricted light

availability for long periods during the day and across the growing

season. When comparing TR1 and TR2, both received almost the

same amount of radiation (+4% in TR1 relative to TR2), yet TR1

achieved substantially higher biomass production (+17.4% in 2023

and +25.0% in 2024). The simulations accurately reproduced this

trend, capturing the pronounced shading gradients generated by the

fixed AVS. This further supports the idea that static shading imposes

an asymmetrical distribution of light and accentuates productivity

gradients along transects (Tahir and Butt, 2022). In alfalfa, these

gradients were not compensated by increased leaf area resulting from

higher SLA under shading conditions, highlighting its sensitivity to

persistent shading. This classifies alfalfa among light-demanding

crops (Argenti et al., 2021), such as corn (Ramos-Fuentes et al.,

2023) and kiwifruit (Jiang et al., 2022), which experience significant

yield losses under fixed-panel systems. In contrast, shade-tolerant

species, including lettuce and other leafy vegetables (Marrou et al.,

2013; Elamri et al., 2018), rice (Gonocruz et al., 2021), and winter

wheat (Weselek et al., 2019), can maintain stable or even improved

yields under similar conditions, benefitting from moderated canopy
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temperatures, reduced evapotranspiration, and enhanced water-use

efficiency. Importantly, the higher biomass production observed in

TR1 with respect to TR2 was also accurately captured by the model,

indicating that this difference is primarily attributable to water

harvesting. Indeed, the additional water input from rainfall

intercepted by the panels effectively mitigated summer water stress,

underscoring the need to account for panel-driven water

redistribution when estimating the effects of photovoltaic structures

in open-field conditions (Adeh et al., 2018; Wu et al., 2022; Moretta

et al., 2025).

By contrast, in the dual axis tracking system (Site C, 2024),

differences among treatments were limited, with final biomass gaps

generally below 100 g m−2 (≈1 t ha−1). This outcome suggests that

panel movement effectively reduced the heterogeneity of light

distribution across the field, leading to more uniform yield

patterns. A similar conclusion was reached by Edouard et al.

(2023), who tested alfalfa under a bi-axial AVS with shading

levels ranging from 29% to 44%. In that study, yield differences

between shaded and full-sunlight conditions remained within ±10%

of annual biomass), confirming that bi-axial tracking systems

mit igate spat ia l var iab i l i ty compared to fixed-panel

configurations. Collectively, these results demonstrate that

advanced AVS layouts not only reduce average yield penalties but

also enhance yield uniformity across space. As shown in similar

studies (e.g., Zainali et al., 2025; Asa’a et al., 2025), the temporal

dynamics of light availability, rather than total shading percentage

alone, play a decisive role in determining crop performance under

AVS. Nonetheless, the trade-off between plant growth, biomass

production and energy output from the photovoltaic system must

be considered, since greater panel mobility or spacing, while

beneficial for yield uniformity, may reduce the overall efficiency

of electricity generation. The model proved also effective in

estimating canopy surface temperature, capturing both its spatial

variability within the field and its seasonal dynamics. This outcome

indicates a realistic representation of the canopy radiative balance,

with an appropriate partitioning of net radiation into latent and

sensible heat fluxes. The seasonal patterns of canopy–air

temperature differences (DT = Tcanopy – Tair) revealed clear

treatment effects, with shaded plots (TR1 and TR4) consistently

exhibiting lower canopy temperatures compared to the more light-

exposed central treatments (TR2-TR3). The model reproduced

these dynamics with good accuracy (R² = 0.83; MBE = –0.11°C,

Figure 9), confirming its ability to capture the complex interactions

among water availability, transpiration, and canopy thermal

regulation. These mechanisms became particularly evident under

water-limiting conditions, as observed on DOY 241 (FTSW < 0.4 in

all treatments; Figure 7). On this date, canopy–air temperature

differences reached their maximum seasonal range, from values

close to zero in the shaded corridor (TR1; DT ≈ 0°C) to markedly

positive in sun-exposed treatments (up to +4.5°C in TR2 and

+3.1°C in TR3). The model successfully reproduced this gradient

(+3.3°C in TR3, + 1.6°C in TR4, and +0.3°C in TR1), highlighting its

capacity to simulate the coupling between transpiration and leaf

energy balance. These results align with previous studies show that

shading mitigates canopy heating and improves leaf thermal
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regulation (Alves et al., 2022; Chopard et al., 2024). Conversely, in

sun-exposed plots, water stress exacerbated canopy warming,

limiting transpiration-driven cooling and leading to positive DT
values (Disciglio et al., 2025). Overall, the ability of the model to

reproduce these contrasting responses emphasizes its suitability for

exploring the role of microclimatic heterogeneity in modulating

crop resilience to water stress and for assessing the potential benefits

of shading strategies under future climate scenarios.

The scenario analysis (section 3.5) also highlights the strategic

importance of the second harvest, which proved most responsive to

moderate shading under drought. By slightly increasing pitch

distance or temporarily adjusting panel tilt during this critical

regrowth phase, it may be possible to maximize forage yield while

limiting the impact on annual energy output. Such seasonal, model-

guided adjustments could enhance the resilience and overall

efficiency of AVS, aligning biomass production with periods of

highest crop sensitivity without substantially reducing electricity

generation. Beyond yield responses, our findings indicate that the

panel-induced microclimate may foster conditions that promote

long-term soil health and fertility. Moderate shading reduces

canopy and soil temperatures, which in turn can lower

evapotranspiration and slow the decomposition of soil organic

matter (Luo et al., 2024). Additionally, rainfall redistribution

along panel edges enhances soil moisture availability, supporting

nutrient cycling and improving water-use efficiency. Therefore,

future research should investigate these dynamics further to

develop a comprehensive understanding of the soil–vegetation

interplay under AVS, clarifying how improvements in soil

conditions affect plant growth and how vegetation feedback, in

turn, contribute to the enhancement of soil quality.

These results indicate that by resolving the contrasting

impacts of different AVS configurations, the model can provide

valuable insights for system design and management. Adaptable

tracking architectures appear to enhance crop performance by

promoting a more balanced distribution of light, while in fixed-

panel systems, targeted management, such as prioritizing

cultivation in less shaded inter-row corridors, may help mitigate

yield penalties. These findings highlight the potential of integrated

modelling approaches to translate morpho-physiological

understanding into agronomic recommendations, thereby

strengthening the role of modelling in supporting sustainable

AVS deployment. In addition, the framework provides key

inputs for future cost-benefit assessments and investment

planning by quantifying, in advance, the interactions between

shading, water dynamics and yield formation that underpin

economic performance. This information can help farmers

stabilize income, lower water and energy costs, and enhance the

long-term profitability of AVS.

At the same time, some limitations should be acknowledged.

Although the proposed framework proved robust in reproducing

key physiological and yield responses, it does not yet account for

certain crop processes (e.g nutrient uptake and limitation or biotic

interactions) and for the microclimatic disturbances induced by

photovoltaic panels, which may affect canopy-atmosphere

interactions. Addressing these aspects would further improve the
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realism and applicability of the model under diverse agrivoltaic

configurations. Another limitation lies in the relatively limited data

set available for calibration. The restricted size and diversity of the

calibration dataset may reduce the model’s capacity to fully capture

the variability observed across contrasting environmental

conditions, management practices, and crop responses. As a

result, further efforts should focus on expanding both calibration

and validation datasets to enhance model generalization

and reliability.

Photosynthesis was represented using a simplified formulation,

with water stress was introduced by scaling assimilation with FTSW

(Sinclair, 1986). This approach is parsimonious and widely applied

(e.g. Moriondo et al., 2019; Leolini et al., 2023; Cui et al., 2024), but

it does not explicitly capture stomatal regulation or the differential

effects of water stress on biochemical parameters, potentially

underestimating transient or heterogeneous stress responses.

Further, in this empirical formulation both photosynthesis and

transpiration decline when FTSW falls below 0.4 (Supplementary

Figure S3). Although this threshold was not experimentally

determined for alfalfa, it is broadly consistent with values

reported for other herbaceous legumes, including soybean,

chickpea, and field pea (Soltani et al., 2000; Lecoeur et al., 1996).

Phenological development is driven by air rather than crop

temperature, so neither potential shading effects nor the impact of

water stress on canopy temperature that may alter thermal time

accumulation are captured. Field evidence has previously shown

that shading beneath photovoltaic panels can delay the phenological

cycle of maize (Ramos-Fuentes et al., 2023) and durum wheat (Dal

Prà et al., 2024) by lowering canopy temperature and reducing the

incoming radiation. While no treatment-related differences were

observed in this study with respect to the timing of phenological

stages (e.g., anthesis), a parameterization based on crop

temperature would likely offer a more effective representation of

shading and water-stress effects, as implemented, for example, in

the CropSyst model (Stöckle et al., 2003).

In our model, both photosynthesis and transpiration are scaled

according to the fraction of transpirable soil water (FTSW) to account

for water stress. This approach provides a simple and practical way to

include the first-order effects of soil moisture limitation at the leaf or

canopy level (Sinclair and Muchow, 2001). However, it assumes that

reductions in photosynthesis and transpiration occur proportionally,

which may not reflect plant physiology under drought. Stomatal

closure often reduces transpiration more strongly than

photosynthesis, leading to an increase in water use efficiency

(Chaves et al., 2009). Similarly, photosynthetic capacity can be

affected by biochemical limitations, especially under severe stress,

whereas transpiration is primarily governed by stomatal behavior and

atmospheric demand (Flexas et al., 2004). As a result, the responses of

carbon assimilation and water loss to soil drying are generally not

strictly proportional, and direct scaling with FTSWmay oversimplify

these dynamics. Incorporating the reciprocal modulation of stomatal

conductance and photosynthetic capacity according to an iterative

approach (e.g. Leuning et al., 1995) may preserve physiological

realism, allowing carbon assimilation to be consistent to water

stress and transpiration.
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The model currently neglects the aerodynamic influence of

photovoltaic panels, their effect on outgoing longwave radiation,

and their potential cooling impact on air temperature, which is

assumed constant. Incorporating these processes would improve

the realism of simulated microclimatic conditions and canopy–

atmosphere interactions under different AVS configurations.

The simulation of water harvesting and rainfall redistribution

proved to be an important process influencing crop water balance.

However, in bi-axial AVS (Site C), the dynamic movement of the

panels makes this process particularly challenging to represent, water

fluxes as a function of panel orientation and thus a no-water

harvesting assumption was adopted for this configuration.

Although the pitch-to-panel width ratio at Site C (12 m x 1.98 m)

may have minimized the effect of water redistribution in plant

growth, it likely contributed to the similarity in simulated FTSW

values between treatments. Therefore, future investigations should

account for the perturbations induced by dynamic panel movements

on major environmental drivers and their cascading effects on the

soil–plant system, as modulated by the pitch-to-panel width ratio.

In the fixed AVS, rainfall flux was assumed to fall

perpendicularly to the ground surface, although in reality it

reaches the soil at an angle, influenced by wind speed and panel

geometry (Wu et al., 2022). This simplification may introduce bias

in simulating water harvesting, especially in areas close to the

photovoltaic panel. Once these processes are integrated, the

framework could evolve into a comprehensive tool for reliably

assessing crop performance under diverse AVS configurations

and climatic conditions.
5 Conclusions

This study presents an integrated, process-based modelling

framework designed to simulate the impacts of spatio-temporal

shading on alfalfa growth under different AVS configurations. The

results show that the system effectively captures the feedback between

photovoltaic shading and crop performance. A key strength of the

framework lies in its ability to dynamically couple simulated

irradiance with crop morpho-physiological processes, reflecting

plant adaptation to microclimatic variability. The model reliably

reproduced dry matter yield, leaf area, canopy temperature and soil

water dynamics across diverse shading scenarios, demonstrating its

capacity to represent both light distribution and its interactions with

plant physiology. The integration of morpho-physiological realism

and computational scalability makes the framework a robust

decision-support tool for optimizing AVS design and crop

management in a site-specific context, with broad applications in

agronomic research and precision agriculture. Incorporating a

radiative and crop growth model within the same platform

provides a clear advantage over alternative approaches, capturing

the bidirectional feedback between shading and crop responses. The

framework allows not only estimation of yield impacts under

different shading scenarios but also active modulation of shading

during key phenological stages. This capability enables targeted

increases in light availability when crops are most sensitive,
Frontiers in Agronomy 21
improving the assessment of trade-offs between energy production

and agricultural output. Overall, the tool supports dynamic, data-

driven management of AVS, maximizing the combined benefits of

food and electricity production. Future developments should extend

this approach to additional crop species with varying shade tolerance

and incorporate other limiting factors, such as nutrient and pest

dynamics, to further enhance predictive capacity under real-world

agroecosystem conditions.
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