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Introduction: Controlling carbon dioxide emissions and pursuing green

development are imperative for global sustainable development. Accurately

predicting agricultural carbon emissions is crucial for accelerating emission

reduction efforts and guiding green technology innovation. This study focuses

on forecasting agricultural carbon emissions in Henan Province to provide data-

driven support for green agricultural development.

Methods: This research utilizes six key influencing factors—chemical fertilizer,

pesticide, and agricultural film usage, among others—to predict total carbon

emissions. Two primary analytical approaches were employed: a neural network

model (comparing Multilayer Perceptron (MLP) and Radial Basis Function (RBF)

models) and a nonlinear surface fitting method (specifically, Gaussian multi-

modal fitting) for regression and prediction.

Results: The analysis yielded three main findings: 1) In carbon emission regression,

the MLP model demonstrated superior performance with a smaller absolute residual

error and significantly higher accuracy (R2 = 0.998) compared to the RBFmodel (R2 =

0.933), establishing it asmore suitable for this forecasting task. 2) The Gaussianmulti-

modal fitting method effectively predicted the time-varying values of the influencing

factors (all R2 > 0.9), enabling reliable further prediction of carbon emissions. 3) Both

methods indicate that agricultural carbon emissions in Henan Province follow a

quadratic trend over time. The forecast for 2001-2030 reveals a pattern of rapid

growth, followed by stable growth, and finally a phase of fluctuating decline.

Discussion: The high-precision prediction results offer a theoretical reference for

advancing green agricultural development in Henan Province. Furthermore, they

provide empirical, data-based support for promoting the "green production" concept

and disseminating low-carbon policies, thereby enhancing the persuasiveness of

ecological education. This contributes to establishing a positive ecological

governance cycle of "consciousness - voluntary action - effect translation,"

ultimately aiding the synergistic enhancement of ecological and social benefits.
KEYWORDS

prediction model, neural network, complex plane, ecological values, agricultural
carbon emissions
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fagro.2025.1684447/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1684447/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1684447/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1684447/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1684447/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2025.1684447&domain=pdf&date_stamp=2025-10-28
mailto:pysziyou@163.com
https://doi.org/10.3389/fagro.2025.1684447
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2025.1684447
https://www.frontiersin.org/journals/agronomy


Hao and Pan 10.3389/fagro.2025.1684447
1 Introduction

The emission of carbon dioxide and other greenhouse gases

causes the acceleration of global warming. It has become an

international consensus to develop low-carbon economy and

control carbon emissions. China has set a goal of peaking its

carbon dioxide emissions by 2030 and striving to achieve a

carbon neutral by 2060. The goal of carbon peak must be realized

at all levels. The development of agriculture plays a vital role in the

national economy, and the reduction of agricultural carbon

emissions is increasingly concerned by the world. Measuring and

analyzing the trend of agricultural carbon emissions is of great

theoretical and practical significance for energy saving,

consumption reduction, control of greenhouse gas emissions,

implementation of rural revitalization strategy and construction

of ecological civilization. Simultaneously, achieving the Dual

Carbon Goals within the agricultural sector necessitates deeply

concerted efforts spanning from conceptual awareness to practical

action across society. As agriculture constitutes a fundamental

industry within the national economy, reducing its carbon

emissions requires not merely technological innovation and

policy regulation, but more crucially, societal mobilization and

value-oriented guidance to forge consensus. This empowers

agricultural producers to embed “ecological priority and green

development” as a core value and actively translate it into practice.

At present, domestic research on carbon emissions should focus

on the calculation and prediction model of carbon emissions. Many

scholars have built models from multiple levels to predict the peak

and time of carbon emissions (Liu et al., 2022; Qiu et al., 2021;

Zhang et al., 2021). Qiao (2021) predicted the development trend of

carbon emissions from land use in Guiyang from 2020 to 2035, and

put forward countermeasures and suggestions for low-carbon

development of Guiyang based on the analysis of the results. Tian

et al. (2021) used the extended STIRPAT model to simulate six

scenarios and predicted the peak and peak time of carbon emissions

in the Yangtze River Economic Belt during 2017-2030. Chu et al.

(2020) used GDIM to study the driving factors of China’s

agricultural carbon emissions from 1985 to 2017, simulated and

predicted China’s agricultural carbon emissions from 2018 to 2030.

Zhao et al. (2018) used the log-average segmentation index (LMDI)

model to explore the relationship between soil and water resources

exploitation and agricultural carbon emissions, and put forward

policy suggestions for the future low-carbon development of

agriculture in China. Using qualitative time series data from 1985

to 2018, Koondhar et al. (2021) analyzed autoregressive distribution

lag, vector error correction model, and a new dynamic ARDLmodel

to explore the green growth of food production under the

constraints of agricultural carbon emissions and sown area. The

European Green Deal to tackle climate change set a target for 2050.

Particular attention is being paid to the agricultural sector, where

there is a great need to reduce carbon emissions and rebuild the

natural carbon cycle (Scuderi et al., 2021). Governance of carbon

emissions necessitates technological approaches coupled with a

paradigm shift in societal thinking. Agricultural carbon emissions,

as one of the important sources of total carbon emissions, play an
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important role in carbon peak, so agricultural carbon emissions

increasingly become a research hotspot. Chinese scholars have

conducted measurement and analysis of agricultural carbon

emissions and their influencing factors at the municipal,

provincial, and national levels (Yang et al., 2022; Zhu et al.,

2022);. In terms of agricultural carbon emission reduction, in

addition to input factors, aspects such as farm size (Zhang et al.,

2022a) and policy support (Chen and Wang, 2022; Zhu and Huo,

2022) have been found to exert significant impacts.

Many scholars have calculated and analyzed China’s

agricultural carbon emission characteristics, carbon emission

efficiency and carbon source structure (Shang et al., 2022; Yang

et al., 2021), laying groundwork for regional low-carbon

development strategies. However, further integration of technical

conclusions with guidance mechanisms remains essential. For

example, Chen et al. (2021) in Jiangsu Province found significant

emission reduction potential in traditional agricultural production -

findings that not only indicate opportunities for technical

improvements but also demonstrate the need to guide farmers

through education to adopt low-carbon production models. Wu

et al. (2021) used Gini coefficient to analyze the dynamic evolution

of agricultural carbon emission intensity in China, and selected

parameter comparison method to measure regional differences in

agricultural carbon offset potential in China. Zhang et al. (2022b)

used the threshold regression model with agricultural carbon

emission as the threshold variable to study the nonlinear

relationship between the narrow sense of agricultural production

efficiency and agricultural carbon emission intensity. Xiong et al.

(2020) utilized the STIRPAT model to identify driving factors of

agricultural carbon emissions in Jiangsu Province. Their proposed

carbon compensation mechanism—targeting structured

urbanization advancement, deployment of low-carbon

technologies, and establishment of agricultural carbon

offset systems.

In the field of forecasting model research, techniques such as

neural networks, nonlinear surface fitting, and Gaussian models

have been widely utilized (Papamarkou et al., 2022; Cheng and

Titterington, 1994). Their integration can effectively enhance

prediction accuracy and strengthen public awareness through

data visualization (Titterington, 2004; Hall and Tajvidi, 2000;

Buhlmann and Hothorn, 2007). However, despite the extensive

application of traditional econometric models like STIRPAT,

LMDI, and ARDL in factor decomposition and forecasting, they

often rely on linear or parametric assumptions, making it difficult to

fully capture the complex nonlinear interactions within agricultural

emission systems (George et al., 2012; Goddard et al., 2009; Palmer,

2020). Consequently, a significant research gap remains in

combining neural networks with nonlinear surface fitting for

agricultural carbon emission prediction. Research in this direction

is of great importance for innovating pathways toward green

agricultural development and controlling carbon emissions.

Henan Province is located in the Middle East of China, the

middle and lower reaches of the Yellow River, is the national grain

production core area, the province’s arable land area of 8.15 million

hm2, per capita arable land 0.075 hm2. In addition, the consumption
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of chemical fertilizers, pesticides and agricultural film is relatively

high in Henan Province. Selecting Henan Province as a case study

for agricultural carbon emissions research holds significance

beyond its representativeness. As a leading agrarian region, its

endeavors in cultivating ecological awareness among farmers and

advancing green transformation of agricultural practices carry

demonstrative weight for national “Dual Carbon” goal

attainment. This research focuses on Henan’s agricultural carbon

emissions from 2000 to 2020, employing neural networks and

nonlinear surface fitting to construct predictive models (As

shown in Figure 1). The study serves dual purposes: providing

technical reference for agricultural carbon peaking while exploring

how to leverage data for public awareness education. This approach

ultimately drives the translation of ecological principles into

farming practices, achieving a synthesis of technical rationality

and value rationality.
2 Establishment of carbon emission
prediction model

2.1 Neural network prediction model

2.1.1 Theory
2.1.1.1 Multilayer perceptron

Multilayer perceptron is a feedforward artificial neural network

model which maps multiple input data sets to a single output data

set. The schematic diagram is shown in Figure 2. (The relevant data

in this study are sourced from the Henan Statistical Yearbook

(2000-2021) published by the Henan Provincial Bureau of Statistics,
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which includes statistical data on the usage of agricultural materials

such as Chemical fertilizers, Pesticides, Agricultural film,

Agricultural diesel, Irrigation and Plouging).

In Figure 2, in the prediction model of total carbon emissions,

the input layer is the factor affecting the total carbon emissions, and

the output layer is the expected total carbon emissions. The hidden

layer does not directly receive signals from the outside world

(influence factors), nor does it directly send signals to the outside

world (total carbon emissions). Its role in the neural network is to

calculate, train and verify the influence factors of the input, so as to

obtain the prediction results of total carbon emissions.

2.1.1.2 Radial basis function

The radial basis function (RBF) is a real-valued function whose

value depends only on the distance from the origin. Any one meet

F(x)=F(||x||) function F called radial basis function, the

characteristic of standard general using Euclidean distance. In the

neural network structure, it can be used as the main function of the

full connection layer and ReLU layer.

RBF interpolation can be directly applied to geological

exploration, shape design and other fields as interpolation or

approximation of scattered data, and also has a good application

in the construction of neural network.

Structure of the neural network basic method to assume a

certain process belongs to a certain function space function,

then connected into a neural grid, minimal potential tends to run

for a period of time the network to achieve a dynamic balance,

which can find out the function, and select the radial basis function

space is a relatively simple easy to use the method of neural network

to realize.
FIGURE 1

Model flowchart.
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2.1.2 Model establishment
According to the specific situation of agricultural carbon

emissions in Henan Province and with reference to the relevant

statistical data of Statistical Yearbook of Henan Province from 2000

to 2021, six factors that have an impact on the total carbon

emissions are comprehensively selected: Chemical fertilizer,

Pesticides, Agricultural film, Agricultural diesel, Irrigation and

Ploughing. The carbon emission coefficient is calculated by

referring to IPCC greenhouse gas emission inventory accounting

(Pan et al., 2023). SPSS software was used to analyze the correlation

between total carbon emissions and influencing factors. Multi-layer

perceptron and radial basis function were used to establish the

neural network prediction model of total carbon emissions. The

model continuously adjusts its weights through iterative training

(with the number of training epochs set to 50), thereby reducing

errors and improving prediction accuracy. as shown in Figure 3.

In Figure 3A, the hidden layer activation function of multilayer

perceptron is hyperbolic tangent, namely (Equation 1):

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x
(1)

In Figure 3A, the weight calculation method of each input layer

is as follows:
Fron
1. Set the initial random weight (For the convenience of

calculation, we write “deviation” as the first input factor),

w1n(1� 6) and w2n(1� 2) are the weights of input layer

and hidden layer respectively.

2. Multiply each factor of the input layer (x1n) by the weight

(w1n).
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3. Calculate the output result of hidden layer (Y1).

4. Calculate the error between the output result of hidden

layer and the real result (E).

5. Update weight.
Taking w11 as an example, Using the above method, the

synaptic weight of the input layer of the multilayer perceptron

can be calculated as:

wT
1n (1� 6)  =  ( − 0:46,   − 0:188,  0:165,   − 0:469,− 0:177,  0:055)T

The deviation and synaptic weight of the input layer are -0.215

and -1.679, respectively. The deviation of the hidden layer is -0.307.

The factors of the input layer are calculated with weights, combined

with a bias, and processed through the hyperbolic tangent function to

obtain the hidden layer output, which is then used with the output

layer’s weight and bias to calculate the total carbon emissions.

In Figure 3B, the hidden layer activation function of the radial

basis function is SoftMax, that is (Equation 2):

Softmax(xi) = exp (xi)=o
6

n=1
exp (xn) (2)

The results of radial perceptron can be calculated by using the

same method as multilayer perceptron. The specific steps will not

be repeated.

Figure 4 shows a comparison between the carbon emission

results calculated from the neural network model in Figure 3 and

the original carbon emission data.

Figure 4 shows the importance of each influence factor under

the two neural network models. Figure 4 shows that in the multi-
FIGURE 2

Multilayer perceptron.
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layer perceptron model, the order of importance of influencing

factors is Agricultural diesel >Irrigation > Pesticides > Agricultural

film > Chemical fertilizer > Ploughing. In the RBF model, the order

of importance of influencing factors is Irrigation > Agricultural

diesel =Ploughing = Pesticides >Chemical fertil izer =

Agricultural film.

The importance of influencing factors reflects their role in neural

network models. As can be seen from Figure 4, in the multi-layer

perceptron model, the weight difference of each influencing factor is
Frontiers in Agronomy 05
obvious, among which the importance of agricultural diesel is the

highest, the importance of fertilizer and ploughing is less. In the RBF

model, the importance arrangement of each influencing factor is

relatively close, which is concentrated in the range of 0.13~0.18,

indicating that the model is not sensitive to the perception of each

influencing factor and cannot distinguish the importance of all

influencing factors, resulting in low accuracy of regression prediction.

As can be seen from Figure 4, the carbon emission prediction

results obtained by the two neural network models of multi-layer
FIGURE 3

Neural network model of total carbon emission prediction. (a) Multilayer perceptron. (b) Radial basis function.
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perceptron and radial basis function have a high similarity with the

original recovery result. In order to analyze the fitting degree of the

two models in detail, the residual (di) and correlation coefficients

(R2) of the two prediction results should be calculated. as shown

in Figure 5.

The Figure 6 shows that the absolute value of multilayer

perceptron residual dij j∈[0,0.06], correlation coefficient R2 =

0.998. the absolute value of radial basis function residual dij j
∈[0,0.4], correlation coefficient R2 = 0.933. the accuracy of

multilayer perceptron is obviously higher than that of radial basis

function. The results show that the accuracy of the multi-layer

perceptron is obviously higher than that of the radial basis function,

and it has a good effect on the regression and prediction of total

agricultural carbon emissions. Therefore, the multi-layer

perceptron is selected for further prediction calculation.
Frontiers in Agronomy 06
2.2 Nonlinear prediction model based on
complex plane

2.2.1 Classification of influencing factors
In this section, the nonlinear surface fitting method is used to

analyze the variation rule of total carbon emission with each

influencing factor (Zhang et al., 2022). First, SPSS software was used

to analyze the linear correlation between total carbon emissions and

various influencing factors, as shown in Table 1. In Table 1,

A: Agricultural film, B: Chemical fertilizer, C: Ploughing,

D: Agricultural diesel, E: Irrigation F: Pesticides, CE: Carbon Emissions.

As can be seen from Table 1, different from the importance of

each factor in the neural network model, correlation analysis shows

that the Pearson (Aldrich (1995); Tjostheim et al. (2022) correlation

between each factor and the total carbon emission is as follows in
FIGURE 5

Neural network model prediction results.
FIGURE 4

Importance analysis of influencing factors.
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descending order: chemical fertilizer, agricultural film, agricultural

diesel, ploughing, pesticide and irrigation.

The six influencing factors are not independent variables. In

order to better analyze the impact of these influencing factors on

total carbon emissions, the six influencing factors are grouped and

multidimensional prediction is made. First, each influencing factor

is grouped in pairs to obtain 15 permutations, as shown in Table 2.

Calculate the mean value of the correlation coefficients of the

influencing factors of the three groups corresponding to each

permutation in Table 2. The greater the mean value, the greater

the correlation of the influencing factors in each group in the

permutation. The average correlation of the second group was the

highest of 0.90, so the second category was selected for calculation:

Z1 was agricultural film and chemical fertilizer, Z2 was tillage and

irrigation, and Z3 was diesel oil and pesticide. Z1, Z2 and Z3

correspond to two influencing factors respectively, as shown in

Table 3. Assume that Total Carbon Emissions is Z. Since Chemical

fertilizer, Agricultural film, Agricultural diesel, Ploughing, Pesticide

and Irrigation are not completely independent parameters, in order
Frontiers in Agronomy 07
to simplify calculation and increase the principle of visibility,

imaginary units j and i are introduced, and Z is divided into three

parts, namely (Equation 3):

Z = Z1 + jZ2 + iZ3 (3)

Therefore (Equation 4):

Zj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1 + Z2

2 + Z2
3

q
(4)
2.2.2 Model establishment
As shown in Table 3, Let a, b and c be the weights of Z1, Z2 and

Z3 respectively, then Z2=
P2
P1
Z1 and Z3=

P3
P1
Z1, As shown in

Equation 5.

Z1 =
P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P12 + P2 + P3
p · Z (5)

Three-dimensional nonlinear fitting surfaces of {x1= Chemical

fertilizer, y1= Agricultural film, Z1}, {x2= Ploughing, y2= Irrigation,
TABLE 1 Correlation analysis between total carbon emission and influencing factors.

Group A B C D E F

CE 0.994 0.995 0.906 0.968 0.776 0.839
FIGURE 6

Residual analysis of neural network prediction results.
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Z2} and {x3= Agricultural diesel, y3= Tillage, Z3} were established

respectively, as shown in Figure 7. The fitting formula is shown in

Equation 6.

z1 = 0:89 + 0:031x1 + 0:1y1

z2 = −0:71 + 0:25x2 + 0:11y2

z3 = 0:47 + 0:23x3 − 0:07y3

8>><
>>: (6)

By substituting Equation 6 into Equation 3, the fitting formula

of total carbon emission based on six influencing factors can be

obtained:

Z = (0:89 + 0:03x1 − 0:1y1) + j( − 0:71 + 0:25x2 + 0:11y2) + i0:47 + 0:23x3 − 0:07y3

Zj j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:89 + 0:03x1 − 0:1y1)

2 + ( − 0:71 + 0:25x2 + 0:11y2)
2 + (0:47 + 0:23x3 − 0:07y3)

2
p

(

(7)

Equation 7 represents the influence rule of the six influencing

factors on the total carbon emission. The calculation results of the

real and imaginary parts of Equation 7 are combined with their

corresponding years to draw a three-dimensional dot plot, as shown

in Figure 8.

The prediction results of the carbon emission model were

calculated by Equation 7. To further analyze the trend of total

carbon emissions over years, quadratic polynomial fitting was
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performed on the prediction curve, and the curve of carbon

emissions over years was obtained as follows (As shown in

Equation 8):

y = 0:89 + 0:031x1 + 0:1y1 − 0:71 + 0:25x2 + 0:11y2 + 0:47

+ 0:23x3 − 0:07y3 (8)

The influencing factors of agricultural carbon emissions were

substituted into polynomial calculation. Figure 9 shows the

comparison between the predicted results and the actual

agricultural carbon emissions. The overall development trend of

the two is unchanged, and the numerical difference is small. As can

be seen from Figure 10, the absolute value of multilayer perceptron

residual dij j∈[0,0.1], and the standardized residual value is mostly

located at [-2, 1.5]. The correlation coefficient between the

calculated actual value and the predicted value R2 = 0.974,

indicating that the polynomial can better fit the predicted results

of the model.
3 Predicted results

3.1 Backward prediction of each
influencing factor

In order to use the model established in section 2 to predict

agricultural carbon emissions, it is necessary to first determine the

future trend of each influencing factor. Therefore, the Gaussian

multi-peak fitting method is adopted in this section to fit the data

and time of six factors affecting agricultural carbon emissions.

Before the calculation, the scatter plot was used to test the data

of each factor. According to Figure 10, irrigation data in 2013 and
TABLE 3 Weight of group.

Group Factor of influence Pn (weight; n = 1, 2, 3)

Z1 A B 0.99

Z2 C E 0.84

Z3 D F 0.90
TABLE 2 Correlation grouping.

Group 1 Group1 correlation Group 2 Group 2 correlation Group 3 Group3 correlation Mean correlation

A B 0.99 C D 0.85 E F 0.33 0.72

A B 0.99 C E 0.78 D F 0.93 0.90

A B 0.99 C F 0.66 D E 0.61 0.75

A C 0.91 B D 0.96 E F 0.33 0.73

A C 0.91 B E 0.80 D F 0.93 0.88

A C 0.91 B F 0.81 E D 0.61 0.78

A D 0.96 F C 0.66 E B 0.80 0.80

A D 0.96 F E 0.33 C B 0.91 0.73

A D 0.96 F B 0.81 E C 0.78 0.85

A E 0.78 D F 0.93 B C 0.91 0.87

A E 0.78 D B 0.96 F C 0.66 0.80

A E 0.78 D C 0.85 F B 0.81 0.81

A F 0.81 C E 0.78 D B 0.96 0.85

A F 0.81 C D 0.85 E B 0.80 0.82

A F 0.81 C B 0.91 D E 0.61 0.78
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2014 were significantly different from the overall curve trend and

were identified as outliers. In order to make the model more

accurate, we eliminate the two outliers and use the Lagrange

interpolation method to approximate the function. The specific

steps are as follows: take three points before and after the notch to

construct the interpolation polynomial P5(x). After calculation, the

remaining term is less than 3.2*10-3, which meets the accuracy

requirements. The polynomial was used to recalculate the data at

the year =2013 and 2014, and the corrected agricultural film-time

scatter plot was obtained, as shown in the red dot in Figure 11.

As shown in Figure 12. the fitting formula of agricultural diesel

is as follows (As shown in Equation 9):

y1 = 8:3213 + 20:1033
7:1157*

ffiffi
p
2

p * exp −2( x−2010:71627:1157 )2
� �

y1 = 8:3213 + 5:1567
3:7811*

ffiffi
p
2

p * exp −2( x−2014:92923:7811 )2
� �

y1 = 8:3213 + 13:2514
7:0083*

ffiffi
p
2

p * exp −2( x−2018:08557:0083 )2
� �

8>>>>><
>>>>>:

(9)
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According to the above steps, calculate the fitting formula for

the remaining influencing factors.

The fitting equation of each influencing factor is obtained

through customs clearance calculation to predict the data of the

next ten years, and the prediction results are shown in Figure 13.

It can be seen from the above figures that the development trend

of each influencing factor presents a trend of gradual development

after a rise, and each factor reaches its peak and gradually declines

between 2015 and 2025. Through the above function calculation,

the predicted results of each factor after 2021 are as

follows (Table 4):
3.2 Analysis of carbon emission prediction
results

The prediction results of each factor by Gaussian multi-peak

fitting in Section 4 were respectively put into the multi-layer
FIGURE 7

The fitting formula of each influencing factor. (A) z1fitting formula. (B) z2fitting formula. (C) z3fitting formula.
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perceptron model and nonlinear surface fitting model for

prediction calculation. The agricultural carbon emission data in

the next ten years were obtained and the curve was drawn

as follows:

The blue shaded part in the figure is the fitting effect diagram of

the actual value. As can be seen from the Figure 14, the first stage

was from 2001 to 2012, when agricultural carbon emissions in

Henan Province rose rapidly. In the second stage, from 2012 to
Frontiers in Agronomy 10
2015, agricultural carbon emissions rose slowly and reached a peak,

and then showed a downward trend after 2015. Henan Province is

the core producing area of grain production in China, and its

cultivated land area ranks the third in China. From 2001 to 2012,

with the abolition of China’s agricultural tax and the rapid

development of agriculture in Henan Province, the consumption

of chemical fertilizer, agricultural diesel, irrigation and agricultural

film in agricultural production increased significantly, resulting in a
FIGURE 8

Complex plane model diagram.
FIGURE 9

Nonlinear surface prediction model results.
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rapid growth of total agricultural carbon emissions. With the

promotion of modern agricultural production system and the

gradual improvement of production efficiency from 2012 to 2015,

agricultural carbon emissions showed a slow growth, and showed a

downward trend after 2015.In the third stage, there is a downward

trend from 2015 to 2020, with the promotion of agricultural

modernization in Henan Province, there will be a small increase

from 2020 to 2023.

The pink shaded part of the figure shows the projected

agricultural carbon emissions of Henan Province from 2021 to

2030. The first three stages show that the prediction results of the

two models are close to each other. In the fifth stage, the prediction

results of the two models show great differences. The predicted
Frontiers in Agronomy 11
value of the multi-layer perceptron model is significantly higher

than that of the nonlinear surface fitting model, and the downward

trend tends to be gentle. This is because the nonlinear surface fitting

model is based on the historical function relationship, and the closer

the model is to the historical data, the better the prediction effect

will be. Conversely, the further the model move away from

historical data, the worse the prediction.

With the proposal of carbon neutrality and carbon peaking and

the promotion of green sustainable agriculture, agricultural carbon

emissions in Henan Province will inevitably show a downward

trend. Therefore, the prediction model of agricultural carbon

emission proposed in this paper is reasonable.
4 Discussion

Employing neural networks and nonlinear surface fitting with

six influencing factors (including chemical fertilizers, pesticides,

and agricultural plastic films), this study conducted regression

analysis and projection of agricultural carbon emissions in Henan

Province. From an interdisciplinary perspective, controlling

agricultural emissions constitutes both a technological challenge

and a socio-cognitive issue involving transformational producer

awareness and societal consensus building.

Amid growing emphasis on green agriculture, the relationship

between chemical inputs (e.g., fertilizers/pesticides) and carbon

emissions has become a research focal point. Our predictive

model offers novel pathways for quantitative analysis. Agricultural

carbon emission reduction requires the dissemination of technical

optimization protocols and education-driven “green production”

principles to farmers. In this process, model predictions can

enhance farmers’ intuitive understanding of emission impacts,

catalyzing a behavioral shift from passive compliance to active
FIGURE 11

Test of outliers.
FIGURE 10

Residual analysis of nonlinear surface prediction results.
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participation (Lyu et al., 2023; Guo et al., 2023). In Henan—China’s

core grain production region—integrating our predictions (e.g.,

post-2015 emission declines linked to policy interventions) into

rural education programs could strengthen farmers’ trust in

decarbonization policies, thereby improving compliance.

Furthermore, Gaussian multi-peak projections indicate

agricultural plastic film usage remains at elevated levels,
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warranting intensified promotion of biodegradable alternatives’

environmental merits. During usage decline phases, consolidating

emission reductions through demonstration projects and

experience-sharing prevents rebound. Such “temporally adaptive”

education strategies enhance guidance relevance and efficacy.

Compared to the models employed in this study, deep learning

models enable a shift from “verifying preset hypotheses” to
FIGURE 12

Gaussian multi-peak fitting results. (a) Agricultural diesel. (b) Ploughing. (c) Irrigation. (d) Chemical fertilizer. (e) Agricultural film. (f) Pesticides.
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“discovering complex patterns from data,” thereby providing a more

powerful scientific tool for agricultural low-carbon development

research in terms of accuracy, depth, and decision-making support

value (Chai et al., 2022). Future research should integrate deep

learning models to enhance their practical predictive guidance

capabilities, while also incorporating subjective variables, such as

“policy awareness” and “ecological values”, to explore the synergistic

mechanisms between technical forecasting and value-based guidance.
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This will ultimately establish a virtuous cycle where data empowers

education, and education accelerates emission reduction.
5 Conclusion

Based on six influencing factors—including chemical fertilizers,

pesticides, and agricultural plastic films—this study employs neural
FIGURE 13

Predicted results of each influencing factor. (a) Agricultural film. (b) Chemical fertilizer. (c) Ploughing. (d) Agricultural diesel. (e) Pesticides. (f) Irrigation.
TABLE 4 Prediction results of each influence factor.

Year A B C D E F

2021 15.50 6.30 8.04 9.48 6.27 10.20

2022 15.94 6.05 7.93 9.20 7.73 10.21

2023 16.33 5.79 7.79 8.94 8.50 10.13

2024 16.51 5.53 7.64 8.74 7.42 10.01

2025 16.40 5.29 7.46 8.59 6.09 9.90

2026 15.97 5.06 7.27 8.49 5.60 9.83

2027 15.29 4.85 7.06 8.43 5.53 9.78

2028 14.46 4.66 6.83 8.40 5.53 9.76

2029 13.56 4.49 6.59 8.38 5.53 9.74

2030 12.70 4.36 6.34 8.38 5.53 9.73
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network modeling and nonlinear surface fitting to conduct

regression analysis and projection of agricultural carbon emission

totals in Henan Province. The research provides dual insights for

advancing agricultural green development, offering both intellectual

guidance for policy formation and actionable pathways for

implementation. Key findings are as follows:
Fron
1) The total carbon emissions prediction model based on two

neural network methods of multilayer perceptron and

radial basis function was established. The absolute value

of residual error of multilayer perceptron model is less than

that of radial basis function model, instructions in

regression and prediction of carbon emissions, multi-layer

perceptron model has a better effect. It’s Its identification of

critical drivers, particularly highlighting agricultural diesel

and irrigation, accentuates the dominant role of diesel

consumption in carbon emissions.

2) Combine the results of neural network and nonlinear surface

fitting method, the total carbon emission of Henan Province

is predicted. It is concluded that the total carbon emission of

Henan province shows a quadratic change law with time.

Based on the time axis, the development of total agricultural

carbon emissions in Henan Province from 2001 to 2030

shows the characteristics of rapid growth, stable growth and

fluctuation decline.

3) Through comparative data analysis, the prediction results

objectively reflect the transformative outcomes of

agricultural development models. In the practice of

agricultural carbon emission reduction, educational

initiatives should prioritize promoting biodegradable
tiers in Agronomy 14
alternatives through policy interpretation and cost-benefit

analysis to enhance farmers’ environmental awareness.

Simultaneously, it is essential to consolidate outcomes

through demonstration projects and peer-to-peer

knowledge exchange, achieving precisely calibrated “time-

limited educational interventions” that foster multi-

stakeholder participation in cultivating social norms of

ecological consciousness.
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