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Introduction: Controlling carbon dioxide emissions and pursuing green
development are imperative for global sustainable development. Accurately
predicting agricultural carbon emissions is crucial for accelerating emission
reduction efforts and guiding green technology innovation. This study focuses
on forecasting agricultural carbon emissions in Henan Province to provide data-
driven support for green agricultural development.

Methods: This research utilizes six key influencing factors—chemical fertilizer,
pesticide, and agricultural film usage, among others—to predict total carbon
emissions. Two primary analytical approaches were employed: a neural network
model (comparing Multilayer Perceptron (MLP) and Radial Basis Function (RBF)
models) and a nonlinear surface fitting method (specifically, Gaussian multi-
modal fitting) for regression and prediction.

Results: The analysis yielded three main findings: 1) In carbon emission regression,
the MLP model demonstrated superior performance with a smaller absolute residual
error and significantly higher accuracy (R? = 0.998) compared to the RBF model (R? =
0.933), establishing it as more suitable for this forecasting task. 2) The Gaussian muilti-
modal fitting method effectively predicted the time-varying values of the influencing
factors (all R? > 0.9), enabling reliable further prediction of carbon emissions. 3) Both
methods indicate that agricultural carbon emissions in Henan Province follow a
quadratic trend over time. The forecast for 2001-2030 reveals a pattern of rapid
growth, followed by stable growth, and finally a phase of fluctuating decline.
Discussion: The high-precision prediction results offer a theoretical reference for
advancing green agricultural development in Henan Province. Furthermore, they
provide empirical, data-based support for promoting the "green production” concept
and disseminating low-carbon policies, thereby enhancing the persuasiveness of
ecological education. This contributes to establishing a positive ecological
governance cycle of "consciousness - voluntary action - effect translation,”
ultimately aiding the synergistic enhancement of ecological and social benefits.

prediction model, neural network, complex plane, ecological values, agricultural
carbon emissions
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1 Introduction

The emission of carbon dioxide and other greenhouse gases
causes the acceleration of global warming. It has become an
international consensus to develop low-carbon economy and
control carbon emissions. China has set a goal of peaking its
carbon dioxide emissions by 2030 and striving to achieve a
carbon neutral by 2060. The goal of carbon peak must be realized
at all levels. The development of agriculture plays a vital role in the
national economy, and the reduction of agricultural carbon
emissions is increasingly concerned by the world. Measuring and
analyzing the trend of agricultural carbon emissions is of great
theoretical and practical significance for energy saving,
consumption reduction, control of greenhouse gas emissions,
implementation of rural revitalization strategy and construction
of ecological civilization. Simultaneously, achieving the Dual
Carbon Goals within the agricultural sector necessitates deeply
concerted efforts spanning from conceptual awareness to practical
action across society. As agriculture constitutes a fundamental
industry within the national economy, reducing its carbon
emissions requires not merely technological innovation and
policy regulation, but more crucially, societal mobilization and
value-oriented guidance to forge consensus. This empowers
agricultural producers to embed “ecological priority and green
development” as a core value and actively translate it into practice.

At present, domestic research on carbon emissions should focus
on the calculation and prediction model of carbon emissions. Many
scholars have built models from multiple levels to predict the peak
and time of carbon emissions (Liu et al., 2022; Qiu et al., 2021;
Zhang et al., 2021). Qiao (2021) predicted the development trend of
carbon emissions from land use in Guiyang from 2020 to 2035, and
put forward countermeasures and suggestions for low-carbon
development of Guiyang based on the analysis of the results. Tian
et al. (2021) used the extended STIRPAT model to simulate six
scenarios and predicted the peak and peak time of carbon emissions
in the Yangtze River Economic Belt during 2017-2030. Chu et al.
(2020) used GDIM to study the driving factors of China’s
agricultural carbon emissions from 1985 to 2017, simulated and
predicted China’s agricultural carbon emissions from 2018 to 2030.
Zhao et al. (2018) used the log-average segmentation index (LMDI)
model to explore the relationship between soil and water resources
exploitation and agricultural carbon emissions, and put forward
policy suggestions for the future low-carbon development of
agriculture in China. Using qualitative time series data from 1985
to 2018, Koondhar et al. (2021) analyzed autoregressive distribution
lag, vector error correction model, and a new dynamic ARDL model
to explore the green growth of food production under the
constraints of agricultural carbon emissions and sown area. The
European Green Deal to tackle climate change set a target for 2050.
Particular attention is being paid to the agricultural sector, where
there is a great need to reduce carbon emissions and rebuild the
natural carbon cycle (Scuderi et al., 2021). Governance of carbon
emissions necessitates technological approaches coupled with a
paradigm shift in societal thinking. Agricultural carbon emissions,
as one of the important sources of total carbon emissions, play an
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important role in carbon peak, so agricultural carbon emissions
increasingly become a research hotspot. Chinese scholars have
conducted measurement and analysis of agricultural carbon
emissions and their influencing factors at the municipal,
provincial, and national levels (Yang et al, 2022; Zhu et al,
2022);. In terms of agricultural carbon emission reduction, in
addition to input factors, aspects such as farm size (Zhang et al,
2022a) and policy support (Chen and Wang, 2022; Zhu and Huo,
2022) have been found to exert significant impacts.

Many scholars have calculated and analyzed China’s
agricultural carbon emission characteristics, carbon emission
efficiency and carbon source structure (Shang et al, 2022; Yang
et al., 2021), laying groundwork for regional low-carbon
development strategies. However, further integration of technical
conclusions with guidance mechanisms remains essential. For
example, Chen et al. (2021) in Jiangsu Province found significant
emission reduction potential in traditional agricultural production -
findings that not only indicate opportunities for technical
improvements but also demonstrate the need to guide farmers
through education to adopt low-carbon production models. Wu
et al. (2021) used Gini coefficient to analyze the dynamic evolution
of agricultural carbon emission intensity in China, and selected
parameter comparison method to measure regional differences in
agricultural carbon offset potential in China. Zhang et al. (2022b)
used the threshold regression model with agricultural carbon
emission as the threshold variable to study the nonlinear
relationship between the narrow sense of agricultural production
efficiency and agricultural carbon emission intensity. Xiong et al.
(2020) utilized the STIRPAT model to identify driving factors of
agricultural carbon emissions in Jiangsu Province. Their proposed
carbon compensation mechanism—targeting structured
urbanization advancement, deployment of low-carbon
technologies, and establishment of agricultural carbon
offset systems.

In the field of forecasting model research, techniques such as
neural networks, nonlinear surface fitting, and Gaussian models
have been widely utilized (Papamarkou et al., 2022; Cheng and
Titterington, 1994). Their integration can effectively enhance
prediction accuracy and strengthen public awareness through
data visualization (Titterington, 2004; Hall and Tajvidi, 20005
Buhlmann and Hothorn, 2007). However, despite the extensive
application of traditional econometric models like STIRPAT,
LMD], and ARDL in factor decomposition and forecasting, they
often rely on linear or parametric assumptions, making it difficult to
fully capture the complex nonlinear interactions within agricultural
emission systems (George et al., 2012; Goddard et al., 2009; Palmer,
2020). Consequently, a significant research gap remains in
combining neural networks with nonlinear surface fitting for
agricultural carbon emission prediction. Research in this direction
is of great importance for innovating pathways toward green
agricultural development and controlling carbon emissions.

Henan Province is located in the Middle East of China, the
middle and lower reaches of the Yellow River, is the national grain
production core area, the province’s arable land area of 8.15 million
hm?, per capita arable land 0.075 hm?. In addition, the consumption
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of chemical fertilizers, pesticides and agricultural film is relatively
high in Henan Province. Selecting Henan Province as a case study
for agricultural carbon emissions research holds significance
beyond its representativeness. As a leading agrarian region, its
endeavors in cultivating ecological awareness among farmers and
advancing green transformation of agricultural practices carry
“Dual Carbon” goal
attainment. This research focuses on Henan’s agricultural carbon

demonstrative weight for national

emissions from 2000 to 2020, employing neural networks and
nonlinear surface fitting to construct predictive models (As
shown in Figure 1). The study serves dual purposes: providing
technical reference for agricultural carbon peaking while exploring
how to leverage data for public awareness education. This approach
ultimately drives the translation of ecological principles into
farming practices, achieving a synthesis of technical rationality
and value rationality.

2 Establishment of carbon emission
prediction model

2.1 Neural network prediction model

2.1.1 Theory
2.1.1.1 Multilayer perceptron

Multilayer perceptron is a feedforward artificial neural network
model which maps multiple input data sets to a single output data
set. The schematic diagram is shown in Figure 2. (The relevant data
in this study are sourced from the Henan Statistical Yearbook
(2000-2021) published by the Henan Provincial Bureau of Statistics,
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FIGURE 1
Model flowchart.

Frontiers in Agronomy

03

10.3389/fagro.2025.1684447

which includes statistical data on the usage of agricultural materials
such as Chemical fertilizers, Pesticides, Agricultural film,
Agricultural diesel, Irrigation and Plouging).

In Figure 2, in the prediction model of total carbon emissions,
the input layer is the factor affecting the total carbon emissions, and
the output layer is the expected total carbon emissions. The hidden
layer does not directly receive signals from the outside world
(influence factors), nor does it directly send signals to the outside
world (total carbon emissions). Its role in the neural network is to
calculate, train and verify the influence factors of the input, so as to
obtain the prediction results of total carbon emissions.

2.1.1.2 Radial basis function

The radial basis function (RBF) is a real-valued function whose
value depends only on the distance from the origin. Any one meet
P (x)=D(||x]|) function @ called radial basis function, the
characteristic of standard general using Euclidean distance. In the
neural network structure, it can be used as the main function of the
full connection layer and ReLU layer.

RBF interpolation can be directly applied to geological
exploration, shape design and other fields as interpolation or
approximation of scattered data, and also has a good application
in the construction of neural network.

Structure of the neural network basic method to assume a
certain process belongs to a certain function space function,
then connected into a neural grid, minimal potential tends to run
for a period of time the network to achieve a dynamic balance,
which can find out the function, and select the radial basis function
space is a relatively simple easy to use the method of neural network
to realize.

N
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FIGURE 2
Multilayer perceptron.

2.1.2 Model establishment

According to the specific situation of agricultural carbon
emissions in Henan Province and with reference to the relevant
statistical data of Statistical Yearbook of Henan Province from 2000
to 2021, six factors that have an impact on the total carbon
emissions are comprehensively selected: Chemical fertilizer,
Pesticides, Agricultural film, Agricultural diesel, Irrigation and
Ploughing. The carbon emission coefficient is calculated by
referring to IPCC greenhouse gas emission inventory accounting
(Pan et al., 2023). SPSS software was used to analyze the correlation
between total carbon emissions and influencing factors. Multi-layer
perceptron and radial basis function were used to establish the
neural network prediction model of total carbon emissions. The
model continuously adjusts its weights through iterative training
(with the number of training epochs set to 50), thereby reducing
errors and improving prediction accuracy. as shown in Figure 3.

In Figure 3A, the hidden layer activation function of multilayer
perceptron is hyperbolic tangent, namely (Equation 1):

sinhx e —e*

coshx & +e*

1

tanhx =

In Figure 3A, the weight calculation method of each input layer
is as follows:

1. Set the initial random weight (For the convenience of
calculation, we write “deviation” as the first input factor),
@,,(1 X 6) and @,,(1 x 2) are the weights of input layer
and hidden layer respectively.

2. Multiply each factor of the input layer (x;,) by the weight

(Wln)~
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3. Calculate the output result of hidden layer (Y7).

4. Calculate the error between the output result of hidden
layer and the real result (E).

5. Update weight.

Taking wy; as an example, Using the above method, the
synaptic weight of the input layer of the multilayer perceptron
can be calculated as:

ob (1x6) = (-0.46, —0.188, 0.165, —0.469,— 0.177, 0.055)"

The deviation and synaptic weight of the input layer are -0.215
and -1.679, respectively. The deviation of the hidden layer is -0.307.
The factors of the input layer are calculated with weights, combined
with a bias, and processed through the hyperbolic tangent function to
obtain the hidden layer output, which is then used with the output
layer’s weight and bias to calculate the total carbon emissions.

In Figure 3B, the hidden layer activation function of the radial
basis function is SoftMax, that is (Equation 2):

Softmax(x;) = exp (xi)/i exp (x,,) (2)
n=1

The results of radial perceptron can be calculated by using the
same method as multilayer perceptron. The specific steps will not
be repeated.

Figure 4 shows a comparison between the carbon emission
results calculated from the neural network model in Figure 3 and
the original carbon emission data.

Figure 4 shows the importance of each influence factor under
the two neural network models. Figure 4 shows that in the multi-
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FIGURE 3

Neural network model of total carbon emission prediction. (a) Multilayer perceptron. (b) Radial basis function.
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layer perceptron model, the order of importance of influencing
factors is Agricultural diesel >Irrigation > Pesticides > Agricultural
film > Chemical fertilizer > Ploughing. In the RBF model, the order
of importance of influencing factors is Irrigation > Agricultural

= Pesticides >Chemical fertilizer =

diesel =Ploughing

Agricultural film.
The importance of influencing factors reflects their role in neural

network models. As can be seen from Figure 4, in the multi-layer

perceptron model, the weight difference of each influencing factor is
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obvious, among which the importance of agricultural diesel is the
highest, the importance of fertilizer and ploughing is less. In the RBF
model, the importance arrangement of each influencing factor is
relatively close, which is concentrated in the range of 0.13~0.18,
indicating that the model is not sensitive to the perception of each
influencing factor and cannot distinguish the importance of all
influencing factors, resulting in low accuracy of regression prediction.

As can be seen from Figure 4, the carbon emission prediction
results obtained by the two neural network models of multi-layer

frontiersin.org
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FIGURE 4
Importance analysis of influencing factors

perceptron and radial basis function have a high similarity with the
original recovery result. In order to analyze the fitting degree of the
two models in detail, the residual (&) and correlation coefficients
(R?) of the two prediction results should be calculated. as shown
in Figure 5.

The Figure 6 shows that the absolute value of multilayer

perceptron residual |§;|€[0,0.06], correlation coefficient R
0.998. the absolute value of radial basis function residual |G
€[0,0.4], correlation coefficient R* = 0.933. the accuracy of
multilayer perceptron is obviously higher than that of radial basis
function. The results show that the accuracy of the multi-layer
perceptron is obviously higher than that of the radial basis function,
and it has a good effect on the regression and prediction of total
agricultural carbon emissions. Therefore, the multi-layer

perceptron is selected for further prediction calculation.

2.2 Nonlinear prediction model based on
complex plane

2.2.1 Classification of influencing factors

In this section, the nonlinear surface fitting method is used to
analyze the variation rule of total carbon emission with each
influencing factor (Zhang et al,, 2022). First, SPSS software was used
to analyze the linear correlation between total carbon emissions and
various influencing factors, as shown in Table 1. In Table I,
A: Agricultural film, B: Chemical fertilizer, C: Ploughing,
D: Agricultural diesel, E: Irrigation F: Pesticides, CE: Carbon Emissions.

As can be seen from Table 1, different from the importance of
each factor in the neural network model, correlation analysis shows
that the Pearson (Aldrich (1995); Tjostheim et al. (2022) correlation

between each factor and the total carbon emission is as follows in

4.0 7
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Multilayer perceptron predicts results

_ Radial basis function prediction results 37
Ié 3»53_3*6 mellms 5,35
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FIGURE 5
Neural network model prediction results
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FIGURE 6
Residual analysis of neural network prediction results.

descending order: chemical fertilizer, agricultural film, agricultural  to simplify calculation and increase the principle of visibility,
diesel, ploughing, pesticide and irrigation. imaginary units j and i are introduced, and Z is divided into three
The six influencing factors are not independent variables. In  parts, namely (Equation 3):
order to better analyze the impact of these influencing factors on
total carbon emissions, the six influencing factors are grouped and Z=17y+]2 12, (3)
multidimensional prediction is made. First, each influencing factor Therefore (Equation 4):
is grouped in pairs to obtain 15 permutations, as shown in Table 2.
Calculate the mean value of the correlation coefficients of the |Z| = \/ 22 + 22 + 72 (4)
influencing factors of the three groups corresponding to each
permutation in Table 2. The greater the mean value, the greater
the correlation of the influencing factors in each group in the 2.2.2 Model establishment
permutation. The average correlation of the second group was the As shown in Table 3, Let a, b and ¢ be the weights of Z;, Z, and
highest of 0.90, so the second category was selected for calculation: ~ Z; respectively, then Z,= %Zl and Z;= %Zl, As shown in
Z, was agricultural film and chemical fertilizer, Z, was tillage and ~ Equation 5.
irrigation, and Z; was diesel oil and pesticide. Z;, Z, and Z;

correspond to two influencing factors respectively, as shown in 7, = ﬁ .z (5)
o . . V

Table 3. Assume that Total Carbon Emissions is Z. Since Chemical R

fertilizer, Agricultural film, Agricultural diesel, Ploughing, Pesticide Three-dimensional nonlinear fitting surfaces of {x;= Chemical

and Irrigation are not completely independent parameters, in order  fertilizer, y;= Agricultural film, Z,}, {x,= Ploughing, y,= Irrigation,

TABLE 1 Correlation analysis between total carbon emission and influencing factors.

CE 0.994 0.995 0.906 0.968 0.776 0.839
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TABLE 2 Correlation grouping.

10.3389/fagro.2025.1684447

Group 1 Groupl correlation Group 2 Group 2 correlation Group 3 Group3 correlation Mean correlation

A B 0.99 C D 0.85 E F 0.33 0.72
A B 0.99 C E 0.78 D F 0.93 0.90
A B 0.99 C F 0.66 D E 0.61 0.75
A C 0.91 B D 0.96 E F 0.33 0.73
A C 0.91 B E 0.80 D F 0.93 0.88
A C 0.91 B F 0.81 E D 0.61 0.78
A D 0.96 F C 0.66 E B 0.80 0.80
A D 0.96 F E 0.33 C B 0.91 0.73
A D 0.96 F B 0.81 E C 0.78 0.85
A E 0.78 D F 0.93 B C 0.91 0.87
A E 0.78 D B 0.96 F C 0.66 0.80
A E 0.78 D C 0.85 F B 0.81 0.81
A F 0.81 C E 0.78 D B 0.96 0.85
A F 0.81 C D 0.85 E B 0.80 0.82
A F 0.81 C B 0.91 D E 0.61 0.78

Z,} and {x3= Agricultural diesel, y;= Tillage, Z;} were established
respectively, as shown in Figure 7. The fitting formula is shown in
Equation 6.
21 =0.89+0.031x, + 0.1y,
2, = =0.71 +0.25x, + 0.11y, (6)
z3 = 0.47 + 0.23x3 — 0.07y;
By substituting Equation 6 into Equation 3, the fitting formula

of total carbon emission based on six influencing factors can be
obtained:

Z = (0.89 +0.03x; — 0.1y;) +j( = 0.71 + 0.25x, + 0.11y,) +i0.47 + 0.23x; — 0.07y;
|Z] = \/(0.89 +0.03x; — 0.1y;)> + (— 0.71 +0.25x, + 0.11y,)* + (0.47 + 0.23x3 — 0.07y3)*

7)

Equation 7 represents the influence rule of the six influencing
factors on the total carbon emission. The calculation results of the
real and imaginary parts of Equation 7 are combined with their
corresponding years to draw a three-dimensional dot plot, as shown
in Figure 8.

The prediction results of the carbon emission model were
calculated by Equation 7. To further analyze the trend of total
carbon emissions over years, quadratic polynomial fitting was

TABLE 3 Weight of group.

Group

Factor of influence P, (weight; n =1, 2, 3)

Frontiers in Agronomy

performed on the prediction curve, and the curve of carbon
emissions over years was obtained as follows (As shown in
Equation 8):

y=0.89+0.031x; + 0.1y, — 0.71 + 0.25x, + 0.11y, + 0.47

+0.23x; — 0.07y; (8)

The influencing factors of agricultural carbon emissions were
substituted into polynomial calculation. Figure 9 shows the
comparison between the predicted results and the actual
agricultural carbon emissions. The overall development trend of
the two is unchanged, and the numerical difference is small. As can
be seen from Figure 10, the absolute value of multilayer perceptron
residual |§;|€[0,0.1], and the standardized residual value is mostly
located at [-2, 1.5]. The correlation coefficient between the
calculated actual value and the predicted value R* = 0.974,
indicating that the polynomial can better fit the predicted results
of the model.

3 Predicted results

3.1 Backward prediction of each
influencing factor

In order to use the model established in section 2 to predict
agricultural carbon emissions, it is necessary to first determine the
future trend of each influencing factor. Therefore, the Gaussian
multi-peak fitting method is adopted in this section to fit the data
and time of six factors affecting agricultural carbon emissions.

Before the calculation, the scatter plot was used to test the data
of each factor. According to Figure 10, irrigation data in 2013 and
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FIGURE 7
The fitting formula of each influencing factor. (A) zfitting formula. (B) z;fitting formula. (C) zsfitting formula

2014 were significantly different from the overall curve trend and
were identified as outliers. In order to make the model more
accurate, we eliminate the two outliers and use the Lagrange
interpolation method to approximate the function. The specific
steps are as follows: take three points before and after the notch to
construct the interpolation polynomial Ps(x). After calculation, the
remaining term is less than 3.2*107, which meets the accuracy
requirements. The polynomial was used to recalculate the data at
the year =2013 and 2014, and the corrected agricultural film-time
scatter plot was obtained, as shown in the red dot in Figure 11
As shown in Figure 12. the fitting formula of agricultural diesel

is as follows (As shown in Equation 9):
2010.7162

= 20.1033 —; 2
N1 =83213 4 xexp{—2( 2007162 )2}
- , } 2
y =832 U ep{2CRER)
: = 2
y1= 83213+ 2B s exp{ 20
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7,=-0.71+0.25x,4+0.11y,
R>=0.812

Z,=0.47+0.23x;-0.07y,
R*=0.963

According to the above steps, calculate the fitting formula for

the remaining influencing factors.
The fitting equation of each influencing factor is obtained

through customs clearance calculation to predict the data of the
next ten years, and the prediction results are shown in Figure 13
It can be seen from the above figures that the development trend
of each influencing factor presents a trend of gradual development
after a rise, and each factor reaches its peak and gradually declines
between 2015 and 2025. Through the above function calculation,
the predicted results of each factor after 2021 are as

follows (Table 4):

3.2 Analysis of carbon emission prediction
results

The prediction results of each factor by Gaussian multi-peak
fitting in Section 4 were respectively put into the multi-layer
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perceptron model and nonlinear surface fitting model for
prediction calculation. The agricultural carbon emission data in
the next ten years were obtained and the curve was drawn
as follows:

The blue shaded part in the figure is the fitting effect diagram of

the actual value. As can be seen from the Figure 14, the first stage
was from 2001 to 2012, when agricultural carbon emissions in
Henan Province rose rapidly. In the second stage, from 2012 to

2015, agricultural carbon emissions rose slowly and reached a peak,
and then showed a downward trend after 2015. Henan Province is
the core producing area of grain production in China, and its
cultivated land area ranks the third in China. From 2001 to 2012,
with the abolition of China’s agricultural tax and the rapid
development of agriculture in Henan Province, the consumption
of chemical fertilizer, agricultural diesel, irrigation and agricultural
film in agricultural production increased significantly, resulting in a
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FIGURE 9
Nonlinear surface prediction model results.
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rapid growth of total agricultural carbon emissions. With the
promotion of modern agricultural production system and the
gradual improvement of production efficiency from 2012 to 2015,
agricultural carbon emissions showed a slow growth, and showed a
downward trend after 2015.In the third stage, there is a downward
trend from 2015 to 2020, with the promotion of agricultural
modernization in Henan Province, there will be a small increase
from 2020 to 2023.

The pink shaded part of the figure shows the projected
agricultural carbon emissions of Henan Province from 2021 to
2030. The first three stages show that the prediction results of the
two models are close to each other. In the fifth stage, the prediction
results of the two models show great differences. The predicted
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value of the multi-layer perceptron model is significantly higher
than that of the nonlinear surface fitting model, and the downward
trend tends to be gentle. This is because the nonlinear surface fitting
model is based on the historical function relationship, and the closer
the model is to the historical data, the better the prediction effect
will be. Conversely, the further the model move away from
historical data, the worse the prediction.

With the proposal of carbon neutrality and carbon peaking and
the promotion of green sustainable agriculture, agricultural carbon
emissions in Henan Province will inevitably show a downward
trend. Therefore, the prediction model of agricultural carbon
emission proposed in this paper is reasonable.

4 Discussion

Employing neural networks and nonlinear surface fitting with
six influencing factors (including chemical fertilizers, pesticides,
and agricultural plastic films), this study conducted regression
analysis and projection of agricultural carbon emissions in Henan
Province. From an interdisciplinary perspective, controlling
agricultural emissions constitutes both a technological challenge
and a socio-cognitive issue involving transformational producer
awareness and societal consensus building.

Amid growing emphasis on green agriculture, the relationship
between chemical inputs (e.g., fertilizers/pesticides) and carbon
emissions has become a research focal point. Our predictive
model offers novel pathways for quantitative analysis. Agricultural
carbon emission reduction requires the dissemination of technical
optimization protocols and education-driven “green production”
principles to farmers. In this process, model predictions can
enhance farmers’ intuitive understanding of emission impacts,
catalyzing a behavioral shift from passive compliance to active
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FIGURE 12

Gaussian multi-peak fitting results. (a) Agricultural diesel. (b) Ploughing. (c) Irrigation. (d) Chemical fertilizer. (e) Agricultural film. (f) Pesticides.

participation (Lyu et al., 2023; Guo et al., 2023). In Henan—China’s

core grain production region—integrating our predictions (e.g.,

post-2015 emission declines linked to policy interventions) into

rural education programs could strengthen farmers’ trust in

decarbonization policies, thereby improving compliance.

Furthermore, Gaussian multi-peak projections indicate

agricultural plastic

Frontiers in Agronomy

film usage remains at elevated levels,

12

warranting intensified promotion of biodegradable alternatives’

environmental merits. During usage decline phases, consolidating

emission reductions through demonstration projects and

experience-sharing prevents rebound. Such “temporally adaptive”

education strategies enhance guidance relevance and efficacy.

Compared to the models employed in this study, deep learning

models enable a shift from “verifying preset hypotheses” to
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Predicted results of each influencing factor. (a) Agricultural film. (b) Chemical fertilizer. (c) Ploughing. (d) Agricultural diesel. (e) Pesticides. (f) Irrigation.

“discovering complex patterns from data,” thereby providing a more
powerful scientific tool for agricultural low-carbon development
research in terms of accuracy, depth, and decision-making support
value (Chai et al, 2022). Future research should integrate deep
learning models to enhance their practical predictive guidance
capabilities, while also incorporating subjective variables, such as
“policy awareness” and “ecological values”, to explore the synergistic
mechanisms between technical forecasting and value-based guidance.

TABLE 4 Prediction results of each influence factor.

This will ultimately establish a virtuous cycle where data empowers
education, and education accelerates emission reduction.

5 Conclusion

Based on six influencing factors—including chemical fertilizers,
pesticides, and agricultural plastic films—this study employs neural

Year A B (& D E F
2021 15.50 6.30 8.04 9.48 6.27 10.20
2022 15.94 6.05 7.93 9.20 7.73 10.21
2023 16.33 5.79 7.79 8.94 8.50 10.13
2024 16.51 5.53 7.64 8.74 7.42 10.01
2025 16.40 5.29 7.46 8.59 6.09 9.90
2026 15.97 5.06 7.27 8.49 5.60 9.83
2027 15.29 4.85 7.06 8.43 5.53 9.78
2028 14.46 4.66 6.83 8.40 5.53 9.76
2029 13.56 4.49 6.59 8.38 5.53 9.74
2030 12.70 4.36 6.34 8.38 5.53 9.73
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network modeling and nonlinear surface fitting to conduct
regression analysis and projection of agricultural carbon emission
totals in Henan Province. The research provides dual insights for
advancing agricultural green development, offering both intellectual
guidance for policy formation and actionable pathways for
implementation. Key findings are as follows:

1) The total carbon emissions prediction model based on two
neural network methods of multilayer perceptron and
radial basis function was established. The absolute value
of residual error of multilayer perceptron model is less than
that of radial basis function model, instructions in
regression and prediction of carbon emissions, multi-layer
perceptron model has a better effect. It’s Its identification of
critical drivers, particularly highlighting agricultural diesel
and irrigation, accentuates the dominant role of diesel
consumption in carbon emissions.

2) Combine the results of neural network and nonlinear surface
fitting method, the total carbon emission of Henan Province
is predicted. It is concluded that the total carbon emission of
Henan province shows a quadratic change law with time.
Based on the time axis, the development of total agricultural
carbon emissions in Henan Province from 2001 to 2030
shows the characteristics of rapid growth, stable growth and
fluctuation decline.

3) Through comparative data analysis, the prediction results
objectively reflect the transformative outcomes of
agricultural development models. In the practice of
agricultural carbon emission reduction, educational
initiatives should prioritize promoting biodegradable
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alternatives through policy interpretation and cost-benefit
analysis to enhance farmers’ environmental awareness.
Simultaneously, it is essential to consolidate outcomes
through demonstration projects and peer-to-peer
knowledge exchange, achieving precisely calibrated “time-
limited educational interventions” that foster multi-
stakeholder participation in cultivating social norms of
ecological consciousness.
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