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Introduction


Controlling carbon dioxide emissions and pursuing green development are imperative for global sustainable development. Accurately predicting agricultural carbon emissions is crucial for accelerating emission reduction efforts and guiding green technology innovation. This study focuses on forecasting agricultural carbon emissions in Henan Province to provide data-driven support for green agricultural development.







Methods


This research utilizes six key influencing factors—chemical fertilizer, pesticide, and agricultural film usage, among others—to predict total carbon emissions. Two primary analytical approaches were employed: a neural network model (comparing Multilayer Perceptron (MLP) and Radial Basis Function (RBF) models) and a nonlinear surface fitting method (specifically, Gaussian multi-modal fitting) for regression and prediction.







Results


The analysis yielded three main findings: 1) In carbon emission regression, the MLP model demonstrated superior performance with a smaller absolute residual error and significantly higher accuracy (R2 = 0.998) compared to the RBF model (R2 = 0.933), establishing it as more suitable for this forecasting task. 2) The Gaussian multi-modal fitting method effectively predicted the time-varying values of the influencing factors (all R2 > 0.9), enabling reliable further prediction of carbon emissions. 3) Both methods indicate that agricultural carbon emissions in Henan Province follow a quadratic trend over time. The forecast for 2001-2030 reveals a pattern of rapid growth, followed by stable growth, and finally a phase of fluctuating decline.







Discussion


The high-precision prediction results offer a theoretical reference for advancing green agricultural development in Henan Province. Furthermore, they provide empirical, data-based support for promoting the "green production" concept and disseminating low-carbon policies, thereby enhancing the persuasiveness of ecological education. This contributes to establishing a positive ecological governance cycle of "consciousness - voluntary action - effect translation," ultimately aiding the synergistic enhancement of ecological and social benefits.
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1 Introduction


The emission of carbon dioxide and other greenhouse gases causes the acceleration of global warming. It has become an international consensus to develop low-carbon economy and control carbon emissions. China has set a goal of peaking its carbon dioxide emissions by 2030 and striving to achieve a carbon neutral by 2060. The goal of carbon peak must be realized at all levels. The development of agriculture plays a vital role in the national economy, and the reduction of agricultural carbon emissions is increasingly concerned by the world. Measuring and analyzing the trend of agricultural carbon emissions is of great theoretical and practical significance for energy saving, consumption reduction, control of greenhouse gas emissions, implementation of rural revitalization strategy and construction of ecological civilization. Simultaneously, achieving the Dual Carbon Goals within the agricultural sector necessitates deeply concerted efforts spanning from conceptual awareness to practical action across society. As agriculture constitutes a fundamental industry within the national economy, reducing its carbon emissions requires not merely technological innovation and policy regulation, but more crucially, societal mobilization and value-oriented guidance to forge consensus. This empowers agricultural producers to embed “ecological priority and green development” as a core value and actively translate it into practice.


At present, domestic research on carbon emissions should focus on the calculation and prediction model of carbon emissions. Many scholars have built models from multiple levels to predict the peak and time of carbon emissions (Liu et al., 2022; Qiu et al., 2021; Zhang et al., 2021). Qiao (2021) predicted the development trend of carbon emissions from land use in Guiyang from 2020 to 2035, and put forward countermeasures and suggestions for low-carbon development of Guiyang based on the analysis of the results. Tian et al. (2021) used the extended STIRPAT model to simulate six scenarios and predicted the peak and peak time of carbon emissions in the Yangtze River Economic Belt during 2017-2030. Chu et al. (2020) used GDIM to study the driving factors of China’s agricultural carbon emissions from 1985 to 2017, simulated and predicted China’s agricultural carbon emissions from 2018 to 2030. Zhao et al. (2018) used the log-average segmentation index (LMDI) model to explore the relationship between soil and water resources exploitation and agricultural carbon emissions, and put forward policy suggestions for the future low-carbon development of agriculture in China. Using qualitative time series data from 1985 to 2018, Koondhar et al. (2021) analyzed autoregressive distribution lag, vector error correction model, and a new dynamic ARDL model to explore the green growth of food production under the constraints of agricultural carbon emissions and sown area. The European Green Deal to tackle climate change set a target for 2050. Particular attention is being paid to the agricultural sector, where there is a great need to reduce carbon emissions and rebuild the natural carbon cycle (Scuderi et al., 2021). Governance of carbon emissions necessitates technological approaches coupled with a paradigm shift in societal thinking. Agricultural carbon emissions, as one of the important sources of total carbon emissions, play an important role in carbon peak, so agricultural carbon emissions increasingly become a research hotspot. Chinese scholars have conducted measurement and analysis of agricultural carbon emissions and their influencing factors at the municipal, provincial, and national levels (Yang et al., 2022; Zhu et al., 2022);. In terms of agricultural carbon emission reduction, in addition to input factors, aspects such as farm size (Zhang et al., 2022a) and policy support (Chen and Wang, 2022; Zhu and Huo, 2022) have been found to exert significant impacts.


Many scholars have calculated and analyzed China’s agricultural carbon emission characteristics, carbon emission efficiency and carbon source structure (Shang et al., 2022; Yang et al., 2021), laying groundwork for regional low-carbon development strategies. However, further integration of technical conclusions with guidance mechanisms remains essential. For example, Chen et al. (2021) in Jiangsu Province found significant emission reduction potential in traditional agricultural production - findings that not only indicate opportunities for technical improvements but also demonstrate the need to guide farmers through education to adopt low-carbon production models. Wu et al. (2021) used Gini coefficient to analyze the dynamic evolution of agricultural carbon emission intensity in China, and selected parameter comparison method to measure regional differences in agricultural carbon offset potential in China. Zhang et al. (2022b) used the threshold regression model with agricultural carbon emission as the threshold variable to study the nonlinear relationship between the narrow sense of agricultural production efficiency and agricultural carbon emission intensity. Xiong et al. (2020) utilized the STIRPAT model to identify driving factors of agricultural carbon emissions in Jiangsu Province. Their proposed carbon compensation mechanism—targeting structured urbanization advancement, deployment of low-carbon technologies, and establishment of agricultural carbon offset systems.


In the field of forecasting model research, techniques such as neural networks, nonlinear surface fitting, and Gaussian models have been widely utilized (Papamarkou et al., 2022; Cheng and Titterington, 1994). Their integration can effectively enhance prediction accuracy and strengthen public awareness through data visualization (Titterington, 2004; Hall and Tajvidi, 2000; Buhlmann and Hothorn, 2007). However, despite the extensive application of traditional econometric models like STIRPAT, LMDI, and ARDL in factor decomposition and forecasting, they often rely on linear or parametric assumptions, making it difficult to fully capture the complex nonlinear interactions within agricultural emission systems (George et al., 2012; Goddard et al., 2009; Palmer, 2020). Consequently, a significant research gap remains in combining neural networks with nonlinear surface fitting for agricultural carbon emission prediction. Research in this direction is of great importance for innovating pathways toward green agricultural development and controlling carbon emissions.


Henan Province is located in the Middle East of China, the middle and lower reaches of the Yellow River, is the national grain production core area, the province’s arable land area of 8.15 million hm2, per capita arable land 0.075 hm2. In addition, the consumption of chemical fertilizers, pesticides and agricultural film is relatively high in Henan Province. Selecting Henan Province as a case study for agricultural carbon emissions research holds significance beyond its representativeness. As a leading agrarian region, its endeavors in cultivating ecological awareness among farmers and advancing green transformation of agricultural practices carry demonstrative weight for national “Dual Carbon” goal attainment. This research focuses on Henan’s agricultural carbon emissions from 2000 to 2020, employing neural networks and nonlinear surface fitting to construct predictive models (As shown in 
Figure 1
). The study serves dual purposes: providing technical reference for agricultural carbon peaking while exploring how to leverage data for public awareness education. This approach ultimately drives the translation of ecological principles into farming practices, achieving a synthesis of technical rationality and value rationality.


[image: Flowchart comparing two prediction models. The left side features a neural network prediction model with steps: radial basis function, multilayer perceptron, comparison of prediction results, model selection, and final prediction results. The right side shows a nonlinear prediction model based on complex planes, with steps: model establishment, classification of influencing factors, Gaussian multi-peak fitting, evaluation, anomalous data processing, and prediction results. Central element “Result Analysis” connects both models.]
Figure 1 | 
Model flowchart.








2 Establishment of carbon emission prediction model





2.1 Neural network prediction model





2.1.1 Theory





2.1.1.1 Multilayer perceptron


Multilayer perceptron is a feedforward artificial neural network model which maps multiple input data sets to a single output data set. The schematic diagram is shown in 
Figure 2
. (The relevant data in this study are sourced from the Henan Statistical Yearbook (2000-2021) published by the Henan Provincial Bureau of Statistics, which includes statistical data on the usage of agricultural materials such as Chemical fertilizers, Pesticides, Agricultural film, Agricultural diesel, Irrigation and Plouging).


[image: A diagram representing a neural network structure with three layers. On the left are three nodes labeled “Input layer,” connected to three nodes in the “Hidden layer” in the middle. These are connected to two nodes on the right labeled “Output layer.” Blue ovals depict nodes, and blue lines show connections between nodes.]
Figure 2 | 
Multilayer perceptron.




In 
Figure 2
, in the prediction model of total carbon emissions, the input layer is the factor affecting the total carbon emissions, and the output layer is the expected total carbon emissions. The hidden layer does not directly receive signals from the outside world (influence factors), nor does it directly send signals to the outside world (total carbon emissions). Its role in the neural network is to calculate, train and verify the influence factors of the input, so as to obtain the prediction results of total carbon emissions.






2.1.1.2 Radial basis function


The radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin. Any one meet Φ(x)=Φ(||x||) function Φ called radial basis function, the characteristic of standard general using Euclidean distance. In the neural network structure, it can be used as the main function of the full connection layer and ReLU layer.


RBF interpolation can be directly applied to geological exploration, shape design and other fields as interpolation or approximation of scattered data, and also has a good application in the construction of neural network.


Structure of the neural network basic method to assume a certain process belongs to a certain function space function, then connected into a neural grid, minimal potential tends to run for a period of time the network to achieve a dynamic balance, which can find out the function, and select the radial basis function space is a relatively simple easy to use the method of neural network to realize.







2.1.2 Model establishment


According to the specific situation of agricultural carbon emissions in Henan Province and with reference to the relevant statistical data of Statistical Yearbook of Henan Province from 2000 to 2021, six factors that have an impact on the total carbon emissions are comprehensively selected: Chemical fertilizer, Pesticides, Agricultural film, Agricultural diesel, Irrigation and Ploughing. The carbon emission coefficient is calculated by referring to IPCC greenhouse gas emission inventory accounting (Pan et al., 2023). SPSS software was used to analyze the correlation between total carbon emissions and influencing factors. Multi-layer perceptron and radial basis function were used to establish the neural network prediction model of total carbon emissions. The model continuously adjusts its weights through iterative training (with the number of training epochs set to 50), thereby reducing errors and improving prediction accuracy. as shown in 
Figure 3
.


[image: Diagram showing two neural network models for predicting agricultural carbon emissions.   Model (a) starts with inputs: chemical fertilizer, pesticides, agricultural film, agricultural diesel, irrigation, and ploughing. These connect to one hidden node (H) and an output node for emissions. Positive and negative synaptic weights are shown in blue and red, respectively. The hidden layer activation function is hyperbolic tangent, and the output layer is identity.  Model (b) includes the same inputs connecting to five hidden nodes (H1 to H5) and then to the emissions output. Activation functions and synaptic weights are similarly displayed.]
Figure 3 | 
Neural network model of total carbon emission prediction. (a) Multilayer perceptron. (b) Radial basis function.




In 
Figure 3A
, the hidden layer activation function of multilayer perceptron is hyperbolic tangent, namely (Equation 1):
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In 
Figure 3A
, the weight calculation method of each input layer is as follows:


	
Set the initial random weight (For the convenience of calculation, we write “deviation” as the first input factor), 
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 as an example, Using the above method, the synaptic weight of the input layer of the multilayer perceptron can be calculated as:
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The deviation and synaptic weight of the input layer are -0.215 and -1.679, respectively. The deviation of the hidden layer is -0.307. The factors of the input layer are calculated with weights, combined with a bias, and processed through the hyperbolic tangent function to obtain the hidden layer output, which is then used with the output layer’s weight and bias to calculate the total carbon emissions.


In 
Figure 3B
, the hidden layer activation function of the radial basis function is SoftMax, that is (Equation 2):
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The results of radial perceptron can be calculated by using the same method as multilayer perceptron. The specific steps will not be repeated.




Figure 4
 shows a comparison between the carbon emission results calculated from the neural network model in 
Figure 3
 and the original carbon emission data.


[image: Bar graph comparing the significance of contributing factors, with Multilayer Perceptron shown in orange and Radial Basis Function in green. Agricultural diesel has the highest significance for Multilayer Perceptron at 0.41, while irrigation is highest for Radial Basis Function at 0.18. Other factors include chemical fertilizers, pesticides, agricultural film, and ploughing.]
Figure 4 | 
Importance analysis of influencing factors.






Figure 4
 shows the importance of each influence factor under the two neural network models. 
Figure 4
 shows that in the multi-layer perceptron model, the order of importance of influencing factors is Agricultural diesel >Irrigation > Pesticides > Agricultural film > Chemical fertilizer > Ploughing. In the RBF model, the order of importance of influencing factors is Irrigation > Agricultural diesel =Ploughing = Pesticides >Chemical fertilizer = Agricultural film.


The importance of influencing factors reflects their role in neural network models. As can be seen from 
Figure 4
, in the multi-layer perceptron model, the weight difference of each influencing factor is obvious, among which the importance of agricultural diesel is the highest, the importance of fertilizer and ploughing is less. In the RBF model, the importance arrangement of each influencing factor is relatively close, which is concentrated in the range of 0.13~0.18, indicating that the model is not sensitive to the perception of each influencing factor and cannot distinguish the importance of all influencing factors, resulting in low accuracy of regression prediction.


As can be seen from 
Figure 4
, the carbon emission prediction results obtained by the two neural network models of multi-layer perceptron and radial basis function have a high similarity with the original recovery result. In order to analyze the fitting degree of the two models in detail, the residual (δ
i) and correlation coefficients (


R
2



) of the two prediction results should be calculated. as shown in 
Figure 5
.


[image: Bar chart showing total carbon emissions and predictions from 2001 to 2020. Orange bars represent actual emissions, green bars show multilayer perceptron predictions, and purple bars indicate radial basis function predictions. The chart illustrates fluctuations and overall growth in emissions, with predictions closely aligning to actual data across most years. Emissions increase notably from 3.2 in 2004 to 3.7 in 2011.]
Figure 5 | 
Neural network model prediction results.




The 
Figure 6
 shows that the absolute value of multilayer perceptron residual 

|

δ
i

|


∈[0,0.06], correlation coefficient R2 = 0.998. the absolute value of radial basis function residual 

|

δ
i

|


∈[0,0.4], correlation coefficient R2 = 0.933. the accuracy of multilayer perceptron is obviously higher than that of radial basis function. The results show that the accuracy of the multi-layer perceptron is obviously higher than that of the radial basis function, and it has a good effect on the regression and prediction of total agricultural carbon emissions. Therefore, the multi-layer perceptron is selected for further prediction calculation.


[image: Line and bar chart showing residuals from 2000 to 2020. The chart compares multilayer perceptron (gray) and radial basis function (red) residuals. Line graph plots residual values with multilayer perceptron (R²=0.998) and radial basis function (R²=0.933). Bars represent standardized residuals. The horizontal axis shows years, and the vertical axes show residual and standardized residual values.]
Figure 6 | 
Residual analysis of neural network prediction results.









2.2 Nonlinear prediction model based on complex plane





2.2.1 Classification of influencing factors


In this section, the nonlinear surface fitting method is used to analyze the variation rule of total carbon emission with each influencing factor (Zhang et al., 2022). First, SPSS software was used to analyze the linear correlation between total carbon emissions and various influencing factors, as shown in 
Table 1
. In 
Table 1
, A: Agricultural film, B: Chemical fertilizer, C: Ploughing, D: Agricultural diesel, E: Irrigation F: Pesticides, CE: Carbon Emissions.



Table 1 | 
Correlation analysis between total carbon emission and influencing factors.





	Group
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B


	
C


	
D


	
E


	
F







	
CE

	0.994
	0.995
	0.906
	0.968
	0.776
	0.839










As can be seen from 
Table 1
, different from the importance of each factor in the neural network model, correlation analysis shows that the Pearson (Aldrich (1995); Tjostheim et al. (2022) correlation between each factor and the total carbon emission is as follows in descending order: chemical fertilizer, agricultural film, agricultural diesel, ploughing, pesticide and irrigation.


The six influencing factors are not independent variables. In order to better analyze the impact of these influencing factors on total carbon emissions, the six influencing factors are grouped and multidimensional prediction is made. First, each influencing factor is grouped in pairs to obtain 15 permutations, as shown in 
Table 2
.



Table 2 | 
Correlation grouping.
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Calculate the mean value of the correlation coefficients of the influencing factors of the three groups corresponding to each permutation in 
Table 2
. The greater the mean value, the greater the correlation of the influencing factors in each group in the permutation. The average correlation of the second group was the highest of 0.90, so the second category was selected for calculation: 
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 correspond to two influencing factors respectively, as shown in 
Table 3
. Assume that Total Carbon Emissions is Z. Since Chemical fertilizer, Agricultural film, Agricultural diesel, Ploughing, Pesticide and Irrigation are not completely independent parameters, in order to simplify calculation and increase the principle of visibility, imaginary units j and i are introduced, and Z is divided into three parts, namely  (Equation 3):



Table 3 | 
Weight of group.
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2.2.2 Model establishment


As shown in 
Table 3
, Let a, b and c be the weights of 
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Three-dimensional nonlinear fitting surfaces of {
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} were established respectively, as shown in 
Figure 7
. The fitting formula is shown in Equation 6.


[image: Three 3D scatter plots with fitted planes. (a) Plot with axes: agricultural film (10 grams), pesticide (10 grams), Z with a fitted plane Z1 = 0.89 + 0.0311 + 0.11, R² = 0.993. (b) Plot with axes: piggery (10 grams), irrigation (10 hours), Z with plane Z2 = -0.71 + 0.252 + 0.112, R² = 0.812. (c) Plot with axes: agricultural waste (10 tons), pesticide (10 grams), Z with plane Z3 = 0.47 + 0.233 - 0.073, R² = 0.963. Red data points are scattered across the plots.]
Figure 7 | 
The fitting formula of each influencing factor. (A) 
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By substituting Equation 6 into Equation 3, the fitting formula of total carbon emission based on six influencing factors can be obtained:



{




Z
=
(
0.89
+
0.03

x
1

−
0.1

y
1

)
+
j
(
−
0.71
+
0.25

x
2

+
0.11

y
2

)
+
i
0.47
+
0.23

x
3

−
0.07

y
3







|
Z
|
=




(
0.89
+
0.03

x
1

−
0.1

y
1

)

2

+


(
−
0.71
+
0.25

x
2

+
0.11

y
2

)

2

+


(
0.47
+
0.23

x
3

−
0.07

y
3

)

2









(7)



Equation 7 represents the influence rule of the six influencing factors on the total carbon emission. The calculation results of the real and imaginary parts of Equation 7 are combined with their corresponding years to draw a three-dimensional dot plot, as shown in 
Figure 8
.


[image: Three-dimensional graph illustrating complex data points with coordinates labeled as Z equals Z one plus j Z two plus i Z three. The graph shows data for years 2001 and 2020, highlighting points at modulus values 2.23 and 2.72. Blue spheres represent the data, connected by a pink line, indicating a trend over time. Axes are marked with j Z two and i Z three.]
Figure 8 | 
Complex plane model diagram.




The prediction results of the carbon emission model were calculated by Equation 7. To further analyze the trend of total carbon emissions over years, quadratic polynomial fitting was performed on the prediction curve, and the curve of carbon emissions over years was obtained as follows (As shown in Equation 8):
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The influencing factors of agricultural carbon emissions were substituted into polynomial calculation. 
Figure 9
 shows the comparison between the predicted results and the actual agricultural carbon emissions. The overall development trend of the two is unchanged, and the numerical difference is small. As can be seen from 
Figure 10
, the absolute value of multilayer perceptron residual 

|

δ
i

|


∈[0,0.1], and the standardized residual value is mostly located at [-2, 1.5]. The correlation coefficient between the calculated actual value and the predicted value R2 = 0.974, indicating that the polynomial can better fit the predicted results of the model.


[image: Bar chart comparing actual and predicted agricultural carbon emissions from 2000 to 2020. Emissions rise steadily, peaking around 2013, then slightly decrease. Actual values are in orange, predicted in green.]
Figure 9 | 
Nonlinear surface prediction model results.




[image: Line and bar graph displaying residuals from the year 2000 to 2020. The orange squares connected by a line depict residuals, fluctuating around zero. Green bars represent standardized residuals with values ranging from negative 0.3 to positive 0.1. The R-squared value is 0.97.]
Figure 10 | 
Residual analysis of nonlinear surface prediction results.










3 Predicted results





3.1 Backward prediction of each influencing factor


In order to use the model established in section 2 to predict agricultural carbon emissions, it is necessary to first determine the future trend of each influencing factor. Therefore, the Gaussian multi-peak fitting method is adopted in this section to fit the data and time of six factors affecting agricultural carbon emissions.


Before the calculation, the scatter plot was used to test the data of each factor. According to 
Figure 10
, irrigation data in 2013 and 2014 were significantly different from the overall curve trend and were identified as outliers. In order to make the model more accurate, we eliminate the two outliers and use the Lagrange interpolation method to approximate the function. The specific steps are as follows: take three points before and after the notch to construct the interpolation polynomial P
5(x). After calculation, the remaining term is less than 3.2*10-3, which meets the accuracy requirements. The polynomial was used to recalculate the data at the year =2013 and 2014, and the corrected agricultural film-time scatter plot was obtained, as shown in the red dot in 
Figure 11
.


[image: A line graph displays irrigation data over time from 2000 to 2020, measured in million hectares. Black squares represent original data, while red circles indicate corrected values. An anomaly in 2015 is highlighted where the original value drops, followed by a corrected increase. Legends identify the symbols.]
Figure 11 | 
Test of outliers.




As shown in 
Figure 12
. the fitting formula of agricultural diesel is as follows (As shown in Equation 9):


[image: Six graphs illustrate agricultural data trends from 2000 to 2020, showing agricultural diesel, ploughing, irrigation, chemical fertilizer, agricultural film, and pesticides. Each graph includes observed data points, peak fittings, and cumulative peak fitting lines, with specific peaks labeled. Time on the x-axis and different units on the y-axis vary by graph, highlighting patterns and peak transition years.]
Figure 12 | 
Gaussian multi-peak fitting results. (a) Agricultural diesel. (b) Ploughing. (c) Irrigation. (d) Chemical fertilizer. (e) Agricultural film. (f) Pesticides.
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(9)


According to the above steps, calculate the fitting formula for the remaining influencing factors.


The fitting equation of each influencing factor is obtained through customs clearance calculation to predict the data of the next ten years, and the prediction results are shown in 
Figure 13
.


[image: Six line graphs illustrating fitted and predicted values from 2000 to 2030 for different agricultural factors. Graphs (a) to (f) represent agricultural film, chemical fertilizer, ploughing, agricultural diesel, pesticides, and irrigation, respectively. Each graph shows trends with blue for fitted values and pink for predicted values. Notable trends include increases and decreases around 2015, with predictions diverging post-2020.]
Figure 13 | 
Predicted results of each influencing factor. (a) Agricultural film. (b) Chemical fertilizer. (c) Ploughing. (d) Agricultural diesel. (e) Pesticides. (f) Irrigation.




It can be seen from the above figures that the development trend of each influencing factor presents a trend of gradual development after a rise, and each factor reaches its peak and gradually declines between 2015 and 2025. Through the above function calculation, the predicted results of each factor after 2021 are as follows (
Table 4
):



Table 4 | 
Prediction results of each influence factor.





	Year

	
A


	
B


	
C


	
D


	
E


	
F







	2021
	15.50
	6.30
	8.04
	9.48
	6.27
	10.20



	2022
	15.94
	6.05
	7.93
	9.20
	7.73
	10.21



	2023
	16.33
	5.79
	7.79
	8.94
	8.50
	10.13



	2024
	16.51
	5.53
	7.64
	8.74
	7.42
	10.01



	2025
	16.40
	5.29
	7.46
	8.59
	6.09
	9.90



	2026
	15.97
	5.06
	7.27
	8.49
	5.60
	9.83



	2027
	15.29
	4.85
	7.06
	8.43
	5.53
	9.78



	2028
	14.46
	4.66
	6.83
	8.40
	5.53
	9.76



	2029
	13.56
	4.49
	6.59
	8.38
	5.53
	9.74



	2030
	12.70
	4.36
	6.34
	8.38
	5.53
	9.73














3.2 Analysis of carbon emission prediction results


The prediction results of each factor by Gaussian multi-peak fitting in Section 4 were respectively put into the multi-layer perceptron model and nonlinear surface fitting model for prediction calculation. The agricultural carbon emission data in the next ten years were obtained and the curve was drawn as follows:


The blue shaded part in the figure is the fitting effect diagram of the actual value. As can be seen from the 
Figure 14
, the first stage was from 2001 to 2012, when agricultural carbon emissions in Henan Province rose rapidly. In the second stage, from 2012 to 2015, agricultural carbon emissions rose slowly and reached a peak, and then showed a downward trend after 2015. Henan Province is the core producing area of grain production in China, and its cultivated land area ranks the third in China. From 2001 to 2012, with the abolition of China’s agricultural tax and the rapid development of agriculture in Henan Province, the consumption of chemical fertilizer, agricultural diesel, irrigation and agricultural film in agricultural production increased significantly, resulting in a rapid growth of total agricultural carbon emissions. With the promotion of modern agricultural production system and the gradual improvement of production efficiency from 2012 to 2015, agricultural carbon emissions showed a slow growth, and showed a downward trend after 2015.In the third stage, there is a downward trend from 2015 to 2020, with the promotion of agricultural modernization in Henan Province, there will be a small increase from 2020 to 2023.


[image: Line graph showing agricultural carbon emissions from 2001 to 2030. Blue squares represent neural network predictions, while pink circles denote a function model based on the complex plane. The graph is divided into fitted values (2001-2022) and predicted values (2023-2030). Both models show a rise until peaking near 2019, followed by a decline. The background is colored blue for historical data and pink for predictions.]
Figure 14 | 
Projections of agricultural carbon emissions.




The pink shaded part of the figure shows the projected agricultural carbon emissions of Henan Province from 2021 to 2030. The first three stages show that the prediction results of the two models are close to each other. In the fifth stage, the prediction results of the two models show great differences. The predicted value of the multi-layer perceptron model is significantly higher than that of the nonlinear surface fitting model, and the downward trend tends to be gentle. This is because the nonlinear surface fitting model is based on the historical function relationship, and the closer the model is to the historical data, the better the prediction effect will be. Conversely, the further the model move away from historical data, the worse the prediction.


With the proposal of carbon neutrality and carbon peaking and the promotion of green sustainable agriculture, agricultural carbon emissions in Henan Province will inevitably show a downward trend. Therefore, the prediction model of agricultural carbon emission proposed in this paper is reasonable.







4 Discussion


Employing neural networks and nonlinear surface fitting with six influencing factors (including chemical fertilizers, pesticides, and agricultural plastic films), this study conducted regression analysis and projection of agricultural carbon emissions in Henan Province. From an interdisciplinary perspective, controlling agricultural emissions constitutes both a technological challenge and a socio-cognitive issue involving transformational producer awareness and societal consensus building.


Amid growing emphasis on green agriculture, the relationship between chemical inputs (e.g., fertilizers/pesticides) and carbon emissions has become a research focal point. Our predictive model offers novel pathways for quantitative analysis. Agricultural carbon emission reduction requires the dissemination of technical optimization protocols and education-driven “green production” principles to farmers. In this process, model predictions can enhance farmers’ intuitive understanding of emission impacts, catalyzing a behavioral shift from passive compliance to active participation (Lyu et al., 2023; Guo et al., 2023). In Henan—China’s core grain production region—integrating our predictions (e.g., post-2015 emission declines linked to policy interventions) into rural education programs could strengthen farmers’ trust in decarbonization policies, thereby improving compliance. Furthermore, Gaussian multi-peak projections indicate agricultural plastic film usage remains at elevated levels, warranting intensified promotion of biodegradable alternatives’ environmental merits. During usage decline phases, consolidating emission reductions through demonstration projects and experience-sharing prevents rebound. Such “temporally adaptive” education strategies enhance guidance relevance and efficacy.


Compared to the models employed in this study, deep learning models enable a shift from “verifying preset hypotheses” to “discovering complex patterns from data,” thereby providing a more powerful scientific tool for agricultural low-carbon development research in terms of accuracy, depth, and decision-making support value (Chai et al., 2022). Future research should integrate deep learning models to enhance their practical predictive guidance capabilities, while also incorporating subjective variables, such as “policy awareness” and “ecological values”, to explore the synergistic mechanisms between technical forecasting and value-based guidance. This will ultimately establish a virtuous cycle where data empowers education, and education accelerates emission reduction.






5 Conclusion


Based on six influencing factors—including chemical fertilizers, pesticides, and agricultural plastic films—this study employs neural network modeling and nonlinear surface fitting to conduct regression analysis and projection of agricultural carbon emission totals in Henan Province. The research provides dual insights for advancing agricultural green development, offering both intellectual guidance for policy formation and actionable pathways for implementation. Key findings are as follows:


	
1) The total carbon emissions prediction model based on two neural network methods of multilayer perceptron and radial basis function was established. The absolute value of residual error of multilayer perceptron model is less than that of radial basis function model, instructions in regression and prediction of carbon emissions, multi-layer perceptron model has a better effect. It’s Its identification of critical drivers, particularly highlighting agricultural diesel and irrigation, accentuates the dominant role of diesel consumption in carbon emissions.


	
2) Combine the results of neural network and nonlinear surface fitting method, the total carbon emission of Henan Province is predicted. It is concluded that the total carbon emission of Henan province shows a quadratic change law with time. Based on the time axis, the development of total agricultural carbon emissions in Henan Province from 2001 to 2030 shows the characteristics of rapid growth, stable growth and fluctuation decline.


	
3) Through comparative data analysis, the prediction results objectively reflect the transformative outcomes of agricultural development models. In the practice of agricultural carbon emission reduction, educational initiatives should prioritize promoting biodegradable alternatives through policy interpretation and cost-benefit analysis to enhance farmers’ environmental awareness. Simultaneously, it is essential to consolidate outcomes through demonstration projects and peer-to-peer knowledge exchange, achieving precisely calibrated “time-limited educational interventions” that foster multi-stakeholder participation in cultivating social norms of ecological consciousness.
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