& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Santosha Rathod,
Indian Institute of Rice Research (ICAR), India

REVIEWED BY
Santosh Ganapati Patil,

Tamil Nadu Agricultural University, India
Rahul Patil,

University of Agricultural Sciences Raichur,
India

*CORRESPONDENCE
Vinayaka
vinayaka.b3vs@gmail.com

"These authors have contributed equally to
this work

RECEIVED 07 August 2025
AccepTeD 21 October 2025
PUBLISHED 05 November 2025

CITATION
Vinayaka, Prasad PRC, Avinash G, Amaresh,
Arun Kumar R, Murali P, Palaniswami C and
Govindaraj P (2025) Harnessing Al and
Remote sensing for precision sugarcane
farming: tackling water stress, salinity,

and nitrogen challenges.

Front. Agron. 7:1681294.

doi: 10.3389/fagro.2025.1681294

COPYRIGHT

© 2025 Vinayaka, Prasad, Avinash, Amaresh,
Arun Kumar, Murali, Palaniswami and
Govindaraj. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Agronomy

TYPE Review
PUBLISHED 05 November 2025
poI110.3389/fagro.2025.1681294

Harnessing Al and Remote
sensing for precision sugarcane
farming: tackling water stress,
salinity, and nitrogen challenges

Vinayaka™, P. Rama Chandra Prasad®', G. Avinash®', Amaresh*,
R. Arun Kumar?®, P. Murali?, C. Palaniswami® and P. Govindaraj*

!Statistics and Economics Section, ICAR-Sugarcane Breeding Institute, Tamil Nadu, India, ?Lab for
Spatial Informatics, International Institute of Information Technology, Gachibowli, Telangana, India,
sExecutive Chairman & CEO, Avyagraha Research and Analytics LLP, Ramasagara, Karnataka, India,
“Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Tamil Nadu, India, *Plant
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Sugarcane is a vital cash crop with substantial significance in both global sugar
production and the biofuel industry. However, its sustainable cultivation faces
persistent challenges from environmental stressors, particularly salinity and water
scarcity. In recent years, the integration of artificial intelligence (Al) and remote
sensing (RS) technologies has proven to be a transformative approach for
detecting and evaluating these stress conditions, offering critical insights for
advancing precision agriculture (PA). This review explores the utilization of
satellite imagery and sensor-based data including RGB, multispectral,
hyperspectral imaging, and unmanned aerial vehicles (UAVs) to monitor stress-
related parameters in sugarcane farming. It emphasizes key indices used to
assess water stress, generate salinity stress maps, and estimate nitrogen levels,
demonstrating their role in equipping farmers with actionable information to
optimize irrigation and nutrient management strategies. These innovations
significantly enhance crop productivity while promoting environmental
sustainability. The review sets out three core objectives: (i) to evaluate the
contribution of Al and RS in assessing water stress in sugarcane cultivation, (ii)
to examine methods for mapping salinity stress using RS and Al tools, and (iii) to
highlight the relevance of spectral indices in tracking nitrogen status in sugarcane
crops. Drawing upon reputable bibliographic sources such as Google Scholar,
Scopus, ResearchGate, and Web of Science, along with current literature on Al
and RS applications in sugarcane stress assessment, the review consolidates
detailed information on advanced sensors and UAV technologies. It also
introduces novel deep learning models and sensor platforms that have
received limited attention in prior studies. In conclusion, the review affirms that
Al-driven remote sensing is a highly effective approach for monitoring and
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managing critical stress factors in sugarcane production. It not only contributes
to enhanced yield and crop quality but also delivers significant socio-economic
and environmental benefits, marking a major step forward in achieving
sustainable and efficient sugarcane cultivation.

KEYWORDS

Al-driven remote sensing, climate change, crop water stress index, leaf nitrogen
content, salinity stress, sugarcane agriculture

1 Introduction

Sugarcane (Saccharum officinarum L.) belongs to the
Andropogoneae species within the Poaceae family (Grof and
Campbell, 2001). It is a crop of considerable economic
importance, primarily cultivated in tropical and subtropical
regions (Driemeier et al, 2016). According to recent estimates
from the Food and Agriculture Organization (FAO) and the
USDA, global raw sugar production for the 2023 — 24 marketing
year is expected to surpass 183.5 million tonnes, marking a steady
rise from 179 million tonnes in 2019 (FAO, 2022). Further
projections estimate a production of approximately 186 million
tonnes in 2024 — 25, spurred by increased output in countries like
Thailand, India, and China (Infomerics Valuation and Rating Pvt.
Ltd, 2024). Beyond its primary use in sugar production, sugarcane
serves as a most important biological resource for creating ethanol,
bagasse, fiber, molasses, rum, and cachaca (Vinayaka and Prasad,
2024; Amaresh et al., 2024; Suresha et al, 2024). Enhancing
agricultural productivity remains a core focus of precision
agriculture (PA), influenced by multiple environmental and
agronomic factors (Amarasingam et al., 2022; Soltanikazemi et al.,
2022). However, sugarcane cultivation is frequently challenged by
abiotic stresses such as salinity and water scarcity, which negatively
impact both yield and crop quality. The crop accounts for around
29% of global agricultural water use (Milagro Jorrat et al., 2018),
and nearly 60% of sugarcane-growing areas in India experience
water limitations often due to insufficient irrigation, canal closures
during summer, and recurrent droughts (Sundara et al., 2002).
Developing water-efficient sugarcane genotypes is essential for
sustaining production while improving regional and global water
security (Tayade et al.,, 2020; Kumar et al., 2020). Salinity poses a
parallel threat: globally, approximately 33% of irrigated land and
20% of cultivated land are affected by saline conditions. In India,
sugarcane is cultivated on nearly 5 million hectares, with about 25%
of this area impacted by salinity, alkalinity, or saline irrigation water
(Vasantha and Gomathi, 2012).

Remote sensing (RS) has become an indispensable tool in crop
stress monitoring due to its ability to capture high-resolution, large-
scale data (Huang et al,, 2018). The accurate assessment of water,
salinity, and nitrogen stress in sugarcane is decisive for informed
crop management. Water deficits can significantly reduce

Frontiers in Agronomy

productivity, underscoring the importance of precise irrigation
scheduling (Hamzeh et al,, 2013). Likewise, salinity stress caused
by high salt concentrations in soil can hinder plant growth and yield
potential (Hamzeh et al., 2016). Early detection allows for timely
mitigation strategies such as leaching or improved drainage (Patil
et al,, 2021; Watanabe et al,, 2022). Leaf nitrogen content (LNC)
serves as a pivotal indicator of crop health and nutritional balance.
Nitrogen deficiency limits growth and productivity, whereas excess
application can cause environmental damage (Anas et al., 2020).
Accurate monitoring of LNC supports optimized fertilization
strategies, promoting sustainable practices (Virnodkar et al., 2020).
Hence, evaluating water, salinity, and nitrogen stress is essential for
improving sugarcane performance (Ferreira et al, 2017; Kumar
et al, 2023b). Water stress in sugarcane is often attributed to
erratic rainfall, exposure to alternating wet and dry periods, and
high evapotranspiration rates (Bispo et al., 2022; Brunini and Turco,
2016). The concept of Crop Water Stress (CWS), introduced by Idso
et al. (1981), has become a standard for assessing water deficits at
both leaf and canopy levels. Salinity stress can arise from saline soil
layers, the use of brackish irrigation water, elevated groundwater
tables, or seawater intrusion (Hamzeh et al., 2016), contributing to
widespread soil degradation in sugarcane-growing regions (Hamzeh
et al, 2013). High water tables exacerbate this problem by raising
salinity to damaging levels, thereby reducing crop output (Hamzeh
et al., 2012). To mitigate such stresses, precision irrigation
techniques and real-time monitoring of soil moisture and crop
development are crucial (Yang H. et al, 2019). Additionally, salt
removal from the root zone and field-specific corrective measures
are necessary to maintain productivity (Burt and Isbell, 2005).
Artificial intelligence (AI) and RS play complementary roles in
assessing water and salinity stress in sugarcane. RS techniques
such as thermal imaging and satellite-based data are valuable for
estimating evapotranspiration (ET) and managing irrigation systems
(Hamzeh et al., 2016; Das et al., 2020; Bispo et al., 2022; Watanabe
et al,, 2022). Energy balance models and vegetation indices are used
to estimate ET and detect crop water stress (Patil et al, 2021;
Virnodkar et al., 2021). Meanwhile, AI approaches, particularly
machine learning (ML) and convolutional neural networks
(CNNs), have shown promise in analyzing RS data to classify and
map stress-affected zones in sugarcane fields. Nitrogen (N) remains
a critical determinant of sugarcane yield and quality (Wiedenfeld,
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1995), influencing attributes such as photosynthesis, tiller
production, stem length, and girth (Gopalasundaram et al.,, 2012).
Effective nitrogen management is thus central to sustainable
productivity (Boschiero et al, 2020; Yang Y. et al., 2019).
Extensive research on the optimal application of nitrogen
fertilizers in sugarcane cultivation has been conducted globally,
considering factors like growth cycle, climatic conditions, cultivar,
and soil properties (Meyer et al., 1986; Wood et al., 1996). Although
traditional techniques such as chlorophyll meters, soil sampling, and
tissue analysis exist, they are often unsuitable for large-scale use due
to their invasive, costly, and time-consuming nature (Ranjan
et al., 2012).

Recent advances in AI and RS have facilitated non-invasive
estimation of foliar nitrogen. Hyperspectral imagery, sensitive to
biochemical changes in vegetation, has been effectively employed
for nitrogen assessment (Soltanikazemi et al., 2022). Indices such as
the Global Environmental Monitoring Index (GEMI), Chlorophyll
Green Index (Clgreen), and Sentinel-2 Red-Edge Position Index
(S2REP) have proven useful in estimating nitrogen levels in
sugarcane leaves (Abdel-Rahman et al., 2013). Feature selection
algorithms like Random Forest (RF) help reduce redundancy in
hyperspectral datasets (Abdel-Rahman et al., 2010), while AI
models including RF and Support Vector Regression (SVR) have
demonstrated success in predicting nitrogen content rapidly and
accurately (Martins et al.,, 2024). These methods offer practical,
cost-effective, and scalable solutions for nitrogen monitoring (Bispo
et al., 2022). Conventional stress monitoring techniques often lack
the precision and speed required for proactive decision-making,
reinforcing the need for advanced technologies. This review,
therefore, emphasizes Al-based RS solutions for assessing key
stressors in sugarcane agriculture. The primary objectives of this
article are to: (i) explore how RS and AI are applied in sugarcane
farming to evaluate crop water stress, (ii) investigate methods for
mapping salinity stress using integrated RS and Al approaches, and
(iii) highlight how spectral indices and AI tools can be leveraged to
monitor the nitrogen status of sugarcane crops. Accordingly, the
article is structured as follows: Section 2 covers bibliographic
analysis; Section 3 presents a detailed discussion on integrated
AI-RS methodologies and statistical software, along with
recommendations for evaluating nitrogen, salinity, and water
stress; Section 4 addresses existing challenges and limitations;
Section 5 outlines future research directions; and Section 6 offers
concluding insights.

2 Literary examination of sources

This study offers a comprehensive review of research focused on
key stressors namely water stress, salinity stress, and plant nitrogen
deficiency within the context of sugarcane cultivation. The review
encompasses various aspects such as leaf nitrogen estimation,
detection of water and salinity stress, and associated spectral
signatures and vegetation indices. It particularly emphasizes the
role of AI and RS technologies in addressing these challenges,
highlighting recent advancements, practical applications, and the
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benefits and limitations of these approaches in sugarcane
agriculture. To ensure a thorough evaluation, an extensive
literature search was conducted using multiple academic
databases, including Google Scholar, Scopus, ResearchGate, and
Web of Science. The search focused on publications from 1981 to
2025, drawing upon peer-reviewed research articles, book chapters,
and review papers. A total of 72 relevant sources (out of 88
references) were identified and systematically organized. Of these,
36 publications specifically demonstrated the effective application of
Al, RS, or integrated approaches in various sugarcane-related
domains such as water stress detection, leaf nitrogen monitoring,
and salinity stress evaluation (Figure 1, Figure 2).

Journal titles have been abbreviated following the ISO4
standard, with a few exceptions such as Plan Plus, Water SA,
Sustainability, Sugar Tech, and FAO Annual Report. The review
also incorporates valuable content from symposium articles
(Symp), conference proceedings (Proc), and conference papers
(Conf). A strategic search methodology was adopted to compile
the bibliography. Specific keywords and key phrases were used
either individually or in logical combinations to locate relevant
material. These included: “crop water stress”, “water stress of
sugarcane assessment using AI/ML/DL and remote sensing”,

» o«

“salinity stress”, “salinity stress of sugarcane assessment using AlI/

»

ML/DL and remote sensing”, “leaf nitrogen estimation in sugarcane

» o« » o«

using AI/ML/DL and remote sensing”, “drought detection”, “plant

» o« » o«

nitrogen stress”, “evapotranspiration”, “water productivity”, “water
balance”, “water deficit”. These search terms enabled the retrieval of
a broad and diverse set of studies on AI and RS applications in
sugarcane management. Figure 3 illustrates a word frequency
analysis of the selected references, focusing on the prominence of
Al-based RS research in sugarcane stress management. Notably,
several recent publications also served as entry points for accessing
foundational works and earlier studies, offering deeper insight into
the evolution of the field.

3 Detailed critiques

The utilization of RS applications in sugarcane farming
encompasses a wide range of aspects, including crop
classification, harvest planning, yield forecasting, disease detection
and management (Palaniswami et al., 2011; 2014; Vinayaka and
Prasad, 2024), assessment of crop health and growth, and detection
of CWS. Among these, CWS detection plays a crucial role in
predicting yield potential and optimizing irrigation scheduling
across different growth stages and seasons. Various methodologies
have been developed for identifying CWS, integrating soil water
measurements, plant physiological responses, and RS techniques.
The present study provides a comprehensive review of global
approaches for detecting water stress in sugarcane using diverse
RS methods and ML algorithms. The compiled indices (Table 1)
illustrate the breadth of RS-based approaches employed for
evaluating water status in irrigated sugarcane fields, reflecting the
dynamic and adaptable nature of water stress assessment methods.
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2016
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2013

2012

2010

2009

2008

2004

2001

1996

1995

1986

1981

0 1

Number of Publications (1981-2025)

m Field Crops Res.
B Agric. Water Manag. H Sugar Tech
= Comput Electron Agric.

= Sustainability u Other Journals

FIGURE 1

® Int J Remote Sens.

J Indian Soc Remote Sens

u Int. J. Appl. Earth Obs. Geoinf.

= Symp or Proc or Conf

Precis. Agric.

Year wise distribution of referenced studies downloaded from various databases. Field Crops Res.: Field Crops Research, Int. J Remote Sens.:
International Journal of Remote Sensing, Int. J. Appl. Earth Obs. Geoinf.: International Journal of Applied Earth Observation and Geoinformation,
Agric. Water Manag.: Agricultural Water Management, Symp or Proc or Conf: Symposium/Proceedings/Conference Papers, Comput Electron Agric.:
Computers and Electronics in Agriculture, J Indian Soc Remote Sens: Journal of the Indian Society of Remote Sensing, Precis. Agric.: Precision

Agriculture.

Advancements in precision agriculture have further expanded the
role of RS through the integration of AI and the Internet of Things
(IoT), jointly termed AloT-based water management. These systems
leverage real-time data from soil moisture and weather sensors to
optimize irrigation schedules, significantly enhancing water-use
efficiency (Yueanket et al,, 2024). Predictive algorithms such as Long
Short-Term Memory (LSTM) models forecast irrigation requirements
based on crop growth stages, thereby minimizing water wastage and
promoting sustainable resource use. RS complements these systems by
providing high-resolution imagery from satellites and drones for
spatiotemporal monitoring of crop health and water stress through
indices such as Normalized Difference Vegetation Index (NDVT)
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(Pawar et al, 2024). Moreover, thermal and hyperspectral imaging
enable precise monitoring of environmental stressors, facilitating
timely interventions (Swami et al., 2025; Cho et al., 2024).

Beyond water management, RS techniques have also been
effectively employed for salinity stress and nitrogen status
assessment in sugarcane. High soil salinity adversely affects plant
growth, yield, and overall crop health, making its evaluation
essential for sustainable production. Table 2 presents an overview
of the RS-based indices and approaches commonly used for salinity
stress assessment in sugarcane. Similarly, estimation of LNC is
pivotal for optimizing fertilizer application and ensuring optimal
growth and yield. Spectral reflectance measurements, vegetation
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FIGURE 3

Percentage of Articles Pocessing these Keywords
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= Water Stress
= Water Balance or Water Use
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= Salinity or Salt Stress
= Leaf N or Nitrogen Estimation
= Remote Sensing or GIS
® Deep or Machine Learning or RF or SVM
= Satellite Imagery
" Vegetation or Spectral Indices
= Evapotranspiration

= Drought Detection

Keywords or phrases used for searching articles in the online platforms. GIS, Geographic Information System; RF, Random Forest; SVM, Support

Vector Machine.
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TABLE 1 Vegetation or spectral indices used in the referenced studies for crop water stress estimation.

Expression(s)/indices

10.3389/fagro.2025.1681294

Abbreviation & description

Inman-Bamber (2004)

Hellegers et al. (2009)

Singels et al. (2010)

SWD = (drained upper limit) — (soil water content)
and Cumulative ETy =3 ET,

CWP; = Y/ET,

EWP; = (Pix Y x B; x Y; x C;) = ET,y
where, Y; Yield of crop i (kg/ha)

P; Market price received for crop i ($/kg)
B; Variable production cost of crop i ($/kg)
C; Fixed production cost of crop i ($/ha)

i). SWDF, = f; x (WSp/Tmax)

[bound by 0.0 < SWDF; < 1.0] where fi is a process-specific parameter, usually with a
value between 0.0 and 1.0; WSp is potential crop water uptake (i.e., potential supply)
and Tmax is maximum transpiration (i.e., demand)

ii). SWDFi = (1/p;)xRASW

where, RASW is the relative available soil water content of the root zone; pi is the
RASW value where process i is reduced below the potential rate (p; = 0.45 for carbon
assimilation, p, = 0.55 for structural growth and p; = 0.5 for water uptake).

SWD (soil water deficit), and ET, (daily reference
evaporation)

CWP (crop water productivity), and EWP
(economic water productivity)

SWDF (soil water stress
factors)

Lebourgeois et al.
(2010)

Teixeira et al. (2016)

Brunini and Turco
(2016)

CWSIL, = ((Tc-Ta)m-(Tc-Ta)ll)/((Tc-Ta)ul-(Tc-Ta)ll)

here, lower baseline (/) denotes “non-water-stressed baseline”, which is VPD
dependent, and the upper baseline (ul) represents (Tc - Ta) for a canopy with no
transpiration and is VPD independent, and (Tc - Ta)m is the measured difference
between canopy and air temperature.

T, ET,
ET, = [exp{usf + bsf(%TBVI )}] OS’Gcwhere ar and by are regression coefficients,

respectively. The correction factor (ET g¢/5) was applied for atmospheric demand

calibration, being ETy.g¢ the daily ET, grid for sugarcane GC and 5 mmd is the ET,

daily average for the same period during the original modeling condition.

-
NDVI = 2 " (xl; and Tg = /Rs/0eswhere 0, and o; denotes reflectances over the
1

ranges of wavelengths in the near infrared (NIR) and red (RED) regions of the solar

spectrum, respectively. R, is surface emitted long-wave radiation, &is surface emissivity,
and 0=5.67x10-* Wm™2K™ (Stefan-Boltzmann constant).

DWSI = Tc - Ta
where, Tc = temperature of the vegetal cover (°C); and Ta = air temperature (°C).

CWSI, (empirical crop water stress index)

ET, (evapotranspiration), and NDVI (normalized
difference vegetation index)

DWE I (daily water stress index)

Veysi et al. (2017)

CWSI = (Ts = Tcoa)/(Thot — Tcoa)wWhere, Ty is canopy temperature in cropped land,
Tcoia is temperature of well-irrigated pixel which is almost covered fully by vegetation
(Cold pixel), and Ty, is temperature of crop covered pixel with maximum amount of
water stress (Hot pixel).

VWC = (FW - DW/DW) x 100

where, FW= fresh weight, DW= dry weight.

CWSI (crop water stress index), and VWC
(vegetation water content)

Singels et al. (2018)

1 1 . .
DSI = NE (1 — Fvd); WLI = EE (1 — Fvw)where N is number of days with

measured probe data within a given week (usually 7), Fvd and Fvw represent the
severity of drought and waterlogging stress, respectively (1 = no stress, 0 = severely
stressed) on a given day.

DSI (drought stress index), and WLI (waterlogged
stress index)

Picoli et al. (2019)

Wagqas et al. (2019)

Pereira et al. (2020)

NDVI = NIR-RED/NIR+RED
(NIR +0.1) — (SWIR + 0.02)

(NIR +0.1) + (SWIR + 0.02)
NDVIi - NDV Im in

NIR - SWIR2
NDII (SWIR2) = ——— VCI =1 NEW =
© ) NIR + SWIR2 ¢ 00 x( NDVItext max —NDVItext min INEW

RED-SWIR/RED+SWIR
NEW?2 = RED-SWIR2/RED+SWIR2

GVMI = NDII (SWIR 1) = NIR-SWIR/NIR+SWIR

IWR = nEKC[ x ET, x CAwhere, CA; is cropping area of corresponding crop i, in ha.
=1

Kc is crop coefficient and ET, is reference evapotranspiration in m/growing season.

TS = TByy + C,(TByy — TBy;) +C, (TByg—TBy)* +Co+(Cs+ W C;) (1-¢)+
(Cs + CsW)Aewhere TB, and TBy; are brightness temperatures of bands 10 and 11 (°

C); C;, i =0,2,...,6 are parameters of the Split Window algorithm; £ = mean emissivity;

and Ae = emissivity difference in bands.

NDII (normalized diference infrared index), GVMI
(global vegetation moisture index), VCI (vegetation
condition index), and NEW & NEW2 (2 new
indices using NIR and SWIR data)

IWR (irrigation water requirement)

Ts (Land surface temperature, °C)
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TABLE 1 Continued

Author(s)

Expression(s)/indices

10.3389/fagro.2025.1681294

Abbreviation & description

Triadi et al. (2020)

Das et al. (2020)

CWST = (Ts = Teoia) / (Trior = Tcola)

ET. is expressed as:

(1 -Y/Ym) = K, (1 - ET/ETy,),

where Y,,, and Y, are maximum and actual yields, ET,, is optimal crop
evapotranspiration, and K, is a yield response factor representing effect of a reduction
in ET. on yield losses.

CWSI

ET. (crop evapotranspiration)

Veysi et al. (2020)

(Pir = PreD)
(pnir + prep + L)

\/(ZPNIR +1)* = 8(pair — Prep)INDWI = (pnir — Pswir)/(Prir + Pswir) TVDI =

(TSops = TSmin)
(a+bNDVI - TS,)

1
NDVI = (pnir — Prep)/ (Pnir + Prep)SAVI = (1+L)MSAVI = E[

CWSI = (Ts = Teoia) / (Trior = Tcota)

TVDI (temperature vegetation dryness index),
NDWI (normalized difference water index), SAVI
(soil adjusted vegetation index), MSAVI (modified
SAVI), NDVI, and CWSI

Patil et al. (2021)

CWST = (Ts = Teoia)/ (Trior = Tola)

CWSI

Gongalves et al. (2022)

Bispo et al. (2022)

SAVI = PN = PRED) (1 L pypTy and geeSEBAL
(Pnir + Prep + L)
SAVI = (Pnir = PreD)

(1 + L)and SETMI hybrid model
(Pnir + Prep + L)

ETa (actual evapotranspiration), SAVI, and
geeSEBAL (Google Earth Engine - Surface Energy
Balance Algorithm for Land)

SAVI, and SETMI (Spatial Evapo-Transpiration
Modeling Interface)

Melo et al. (2022) CWSI = (T, - T,y)/ (Tary = Tyyer)Where Twet is the leaf temperature without water CWSI
stress, Tdry is the leaf temperature under water stress, and Tc is the temperature of the
leaf representing the canopy.

‘Watanabe et al. (2022) CWSI = 1 - E/Ep; where, E=transpiration rate, Ep = potential transpiration, and CWSI

Alavi et al. (2024)

CWSI = 1 - Eyg/Ec; where EC and EWS denote the transpiration rates of Control
(irrigated) and WS (water stressed canopy), respectively.

NDVI = (pnir = Prep)/ (Pnir + Prep)MSI = psywir/pxirEVI =
2.5 (Pnir — Prep)

(Pnir +6Prep = 7-5PpLuE + 1)

Puir — (Pswir — PSWIRZ)D1609 “1_R=1- Pswir

Pk + (Pswir = Pswirz) (0.4431py + 0.5569Psw1r2)

pN,R)Z/ZpN,RNIRv = pnpvr X PairBrightness = 0.3029 ppryg + 0.2786 pgreen + 0.4733

Prep + 0.5599 puir + 0.508 pgyyir + 0.1872pg1y 1k, Greenness = -0.2941 pp; g - 0.243
40,

O + Oy

GNDVI = (preen — Prep)/ (Pereen + Prep)NMDI =

NTR = (1 -

Poreen + 0.5424 prep + 0.7276 Py + 0.0713 pyyig - 0.1608pgyypa RVI =

Ot +3)
(2 +1)

2
Oy [(Cv(Max) Ov = Oy O + Gy) N

DPRVIc =
0, V2

DPSVI =

NDVI, MSI (Moisture Stress Index), EVI (Enhanced
Vegetation Index), GNDVI (Green NDVI), NMDI
(Normalized Multi-Band Drought Index), D1609,
NTR (NIR Transformed Reflectance), NIRv (Near-
Infrared Reflectance of Vegetation), Brightness,
Greenness, RVI (Radar Vegetation Index), DPRVIc
(Dual-pol Radar Vegetation Index), DPSVI (Dual
Polarization SAR Vegetation Index), IDPDD
(Inverse dual-pol Diagonal Distance), VDDPI
(Vertical Dual de-Polarization Index), DPDD (Dual-
Pol Diagonal Distance), ETc (crop
evapotranspiration)

(Cuuatay) O + O Oyt = O] IDPDD = (Cv(vtax) = Ow) + Oy
o,V2 V2
Oy + O,
VDDPI = =¥t 2w
-
c,, + 0,
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indices, hyperspectral imaging, satellite and aerial imagery, and
chlorophyll-based estimations have been widely applied for LNC
evaluation (Table 3). Al-driven decision support systems further
enhance these applications by integrating multi-source RS and IoT
data to provide actionable insights for managing nitrogen levels and
mitigating salinity impacts (Koohi et al., 2023; Cho et al., 2024).
Despite these advancements, challenges such as data quality,
accessibility for small-scale farmers, and economic feasibility
persist, emphasizing the need for scalable and inclusive
technological adoption in sugarcane agriculture.

3.1 Water stress assessment
In the earlier studies, Rahman et al. (2004) employed NDVTI to

identify sugarcane areas and assess crop conditions, considering
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factors like leaf water content, nitrogen deficiency, pigments, foliar
nutrients, and agronomic parameters. Abdel-Rahman and Ahmed
(2008) found that the infrared/red ratio from Landsat TM NIR
radiometer, SWIR bands, and the digital multispectral video
(DMSV) sensor were effective in detecting water content in
sugarcane crops. Detection of water stress, attributed to a
reduction in the photosynthesis process, was found to be best
achieved at the canopy level using VIS, red edge, and NIR regions
(Berni et al, 2009). Brunini and Turco (2016) investigated
sugarcane water stress indices in irrigated areas with different
exposures and slopes. Their evaluation of daily water stress index
and soil water potential revealed variations based on exposure and
slope. The water stress index, derived from infrared thermometry,
helped determine the optimal timing for irrigating sugarcane crops.
Experiments conducted during various growing phases (tillering,
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TABLE 2 Vegetation or spectral indices used in the referenced studies for salinity stress assessment.

Author(s) Expression(s)/indices

Hamzeh et al. (2012) NDVI = (R800 —R670)/(R800 +R670)

NDWI = (R860 —R1240)/(R860 +R1240)
SWSI 1 = (R803 — R681)/+/(R905 + R972)SWSI 3 = (R803-R681 ) /
(R1174 + R972)

Hamzeh et al. (2013) NDVI = (R800-R670)/(R800+R670)

NDVlos = (R750-R705)/(R750+R705)

SR = R750/R705
VOGI = R740/R720
REP = 700 + 40{[(R670+R780)/2—R700]/(R740~R700)}
mNDVI,45 = (R750-R705)/(R750+R705-2R445)

mSRyos = (R750 — R445)/(R705 — Rd45)
MCARI (70700, = [(R700 - R670) - 0.2(R700 — R550)] x (R700/R670)
TCARI(670,700) = 3[(R700 - R670) - 0.2(R700 — R550)] x(R700/R670)

ARI = (1/R550) - (1/R700)

10.3389/fagro.2025.1681294

Abbreviation & description

NDVI (normalized difference vegetation index),
NDWI (normalized difference water index), SAVI
(Soil-Adjusted Vegetation Index), and SWSI 1 & 3
(Salinity and Water Stress Indices 1 & 3)

NDVI (normalized difference vegetation index),
NDVI,5 (Red edge normalized difference vegetation
index), SR (Simple ratio), VOG1 (Vogelmann red
edge index), REP (Red-edge position), mNDVI;,s
(Modified red edge normalized difference vegetation
index), mSRyo5 (Modified SR), MCARI(470,700)»
TCARI 670,700y ARI (Anthocyanin reflectance index),
MSAVI (Modified soil adjusted vegetation index),
OSAVI (Optimized soil-adjusted vegetation index),
PRI (Photochemical reflectance index), PRI 2

2R800 + 1
MSAVI = § |

~/(2R800 + 1) — 8(R800 — R670)
(R800+R670 + 0.16)

PRI = (R531 - R570)/(R531 + R570)
PRI2 = (R570 - R539)/(R570 + R539)
CRI = (1/R510) - (1/R550)

MSI = R1599/R819

JOSAVI = (1 + 0.16) (R800 - R670)/

(Photochemical reflectance index 2), CRI
(Carotenoid reflectance index), MSI (Moisture stress
index), NDII (Normalized difference infrared index),
WI (Water index), NDWI (normalized difference
water index), NDWI-Hyp (NDWI-hyperion),
DSWI-1 (Disease-water stress index 1), SAVI (Soil-
Adjusted Vegetation Index), and SWSI' 1,2 & 3
(Salinity and Water Stress Indices 1, 2 & 3)

NDII = (R819 - R1649)/(R819 + R1649)

‘WI = R900/R970

NDWI = (R860 —R1240)/(R860 +R1240)
NDWI-Hyp = (R1070 - R1200)/(R1070 + R1200)

DSWI-1 = R800/R1660

SWSI 1 = (R803 — R681)/+/(R905 + R972)SWSI 2 = (R803-R681 ) /

/(R1326 + R11507)SWSI 3 = (R803-R681 ) /+/(R1174 + R972)where, Rx is the

reflectance at x nm.

Hamzeh et al. (2016) Ry
NDVI = (RNIR_RREI))/(RNIR+RRED)
SR = Ryir/Rrep
SAVI = L(Rnir—Rrep)/(Ryir+Rrep + L)
NDWI = (Rxir—Ri650)/(Rnr+R1650)

SWSI 1 = (R803 — R681)/1/(R905 + R972)SWSI 2 = (R803-R681 ) /

Ryir, NDVT (normalized difference vegetation
index), SR (Simple ratio), SAVI (Soil-Adjusted
Vegetation Index), NDWI (normalized difference
water index), SWSI 1, 2 & 3 (Salinity and Water
Stress Indices 1, 2 & 3), and SWSI-L (Salinity and
Water stress Index- Landsat)

v/ (R1326 + R11507)SWSI 3 = (R803-R681 ) /1/(R1174 + R972)SWSI-L = (Ryir

—Rgep) /v/Rigsowhere, Rygp for Landsat: 660 nm for Hyperion: 660 nm Ryg for

Landsat: 825 nm for Hyperion: 823 nm.

growth, and maturation) on surfaces with slopes ranging from 0 to
40% and different solar exposures indicated that the ideal irrigation
timing varied between 2.0 to 5.0 °C, depending on the sugarcane
phase. A review by Katsoulas et al. (2016) focused on crop water
stress and nutrient detection using reflectance measurement
approaches and sensors in a greenhouse. They observed that
ground-based sensor data indices were efficient for water stress
detection but were influenced by factors such as leaf age, thickness,
soil background, and canopy structure. Veysi et al. (2017)
introduced a novel method for computing Crop Water Stress
Index (CWSI) from satellite data, utilizing hot and cold pixels
without the need for ground ancillary data. The study focused on
irrigation scheduling in sugarcane during the growing season
(May-September) and demonstrated superior performance
compared to two alternative approaches, showing a strong
coefficient of determination. The researchers observed a negative
correlation between Vegetation Water Content (VWC) and CWSI,
with R values ranging from 0.42 to 0.78. Validation of the new
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approach involved the analysis of eight Landsat 8 satellite images
alongside ground truth data obtained through in situ measurements
of canopy temperature and VWC.

An in-depth analysis of the studies in Table 4 reveals the
progressive evolution of crop water stress assessment
methodologies, integrating diverse data sources, modelling
frameworks, and RS techniques. Early efforts, such as by Hellegers
etal. (2009) and Singels et al. (2010), employed models like Surface
Energy Balance Algorithm for Land (SEBAL) and CANEGRO for
estimating ET and simulating physiological responses under stress,
although they faced limitations in replicating yield-related
processes. As studies progressed, RS technologies became central,
with Teixeira et al. (2016) and Veysi et al. (2017, 2020) combining
MODIS, Landsat, and SEBAL with meteorological and soil data,
enabling improved spatial and temporal resolution in ET and water
productivity estimates. Thermal-based indices, particularly the
CWSI, emerged as powerful indicators in studies like Lebourgeois
et al. (2010) and Farsi et al., demonstrating strong correlation with
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TABLE 3 Vegetation or spectral indices used in the referenced studies for nitrogen levels evaluation.

Expression(s)/indices

Abbreviation & description

Mokhele and Ahmed
(2010)

Abdel-Rahman et al.
(2010)

RVI = (R810/R560)

PRI = (R531-R570)/(R531+R570)

PSRI = (R680-R500)/R750

mSR = (R750-R445)/(R705-R445)

REI = R740/R720

CI = R760/R695

NPCI = (R680-R430)/(R680+R430)
GMI = R750/R700

ND = (R1075-R730)/(R1075+R730)
NDNRI = (R1770-R693)/(R1770+R693)
NDVI = (R750-R560)/(R750+R560)
mNDVI=(R2200-R2025)/(R2200+R2025)
SR = D744/D2142

WHBI = R970/R900

WBR = R960/R930

D730, D740, D744

SR(743, 1316) = R743/R1316
SR(743, 1317) = R743/R1317
SR(741, 1323 = R741/R1323

RVI (Ratio Vegetation Index), PRI (Photochemical
Reflectance Index), PSRI (Plant Senescence Reflectance
Index), mSR (Modified Spectral Ratio), REI (Red-Edge
Index), CI (Carter Index), NPCI (Normalized Pigment
Chlorophyll Index), GMI (Gitelson & Merzylak Index),
ND (Normalized Difference), NDNRI (Normalized
Difference Nitrogen

Reflectance Index), NDVI (Normalized Difference
Vegetation Index), mNDVI (Modified NDVI), SR
(Spectral Ratio -Derivatives), WBI (Water Band Index),
WBR (Water Band Ratio), and First derivatives at 730,
740, 744.

SR (simple ratio)

Abdel-Rahman et al.
(2013)

NDVI (691, 2042)
NDVI (2042, 691)
NDVI (691, 1588)
NDVI (518, 1710)
NDVI (518, 478)

NDVI (518, 1578)
NDVI (691, 1710)
NDVI (1730, 691)
NDVI (691, 1699)
NDVI (1710, 518)
NDVI (1578, 518)
NDVI (1588, 691)
NDVI (2042, 518)
NDVI (691, 1730)
NDVI (691, 478)

NDVI (518, 1588)
NDVI (478, 1578)
NDVI (1730, 691)
NDVI (691, 518)

NDVI (478, 1699)
NDVI (1578, 691)

NDVI (Normalized Difference Vegetation Index)

Soltanikazemi et al. (2022)

NDVI = (NIRgs,~REDg65)/(NIRg42~REDes5)

=(B8-B4)/(B8+B4)

B4 - 0.125} _2x B8? - B4% + 1.5B8 + 0.SB4NDI45 _

1-B4 B8 —B4+0.5

(RED7OS - RED&GS)/(REDN)S - RED665)

= (B5 — B4)/(B5 + B4)

MTCI = (NIR749 — RED7¢5)/(NIR749 = RED70s)

= (B6 — B5)/(B5 — B4)

IRECI = (NIR;g5 — REDgg5)/(NIR55/NIR;40)

= (B7 — B4)/(B5/B6)

GNDVI = (NIRyg3 — RGse0)/(NIR7g3 + Gseo)

= (B7 — B3)/(B7 + B3)

PSSRa = NIR;g3/REDgqs = B7/B4

(NIRzg; + REDgg5/2) — REDy¢s,
NIR;49 — RED,q5 .

GEMI = [n(1 - 0.25n) -

S2REP = 705 + 35 X | 705 + 35 x [{(B7+B4)/

2}-B5]/(B6-B5)
Clgreen = NIR;33/GREENs4, = (B8/B3) -1
Clred-edge = NIR;g3/(RED — EDGEyo5) = (B8/B5) -1

NDVI (Normalized Difference Vegetation Index), GEMI
(Global Environmental Monitoring Index), NDI45
(Normalized Difference Index 45), MTCI (Meris
Terrestrial Chlorophyll Index), IRECI (Inverted Red-
Edge Chlorophyll Index), GNDVI (Green NDVI),
PSSRa (Pigment specific simple ratio), S2REP (Sentinel-
2 Red-Edge Position Index), Clgreen (Chlorophyll green
index), and Clred-edge (Chlorophyll Red-edge)
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TABLE 3 Continued

Author(s)

Expression(s)/indices

10.3389/fagro.2025.1681294

Abbreviation & description

Martins et al. (2024) Bni = (R750-R500)/(R705-R500)
GMil = R750/R550

GMi2 = R750/R700

GNDVI = (R780-R550)/(R780+R550)
mND,gs= (R750-R705)/(R750+R705-2R500)
MTCI = (R750-R710)/(R710-R680)
NDCI = (R762-R527)/(R762+R527)
NDRE = (R790-R720)/(R790+R720)
PSNDa = (R800-R680)/(R800+R680)
PSNDbD = (R800-R635)/(R800+R635)
PSNDc = (R800-R470)/(R800+R470)
RI-1Db = R735/R720

RI-2dB = R738/R720

RI-3dB = R741/R717

RI-half = R747/R708

RNDVI = (R780-R670)/(R780+R670)
SR705 = R750/R705

VOGa = R740/R720

VOGb = (R734-R747)/(R715-R726)
VOGec = (R734-R747)/(R715-R720)

field-based measures of water deficit, despite challenges like cloud
interference and calibration complexity. ML and deep learning (DL)
significantly enhanced CWS assessment in later studies. For
instance, Virnodkar et al. (2021) employed DenseResUNet and
achieved high segmentation accuracy for stressed fields, while Alavi
et al. (2024) and Melo et al. (2022) showed that advanced ML
models like Random Forest and Inception-ResNet-v2 provided
highly accurate predictions (R* = 0.92-0.99, RMSE = 2.02-0.32
mmd ) of crop water demand and thermal stress patterns. Notably,
Gongalves et al. (2022) and Bispo et al. (2022) showcased hybrid
modeling approaches using Google Earth Engine - Surface Energy
Balance Algorithm for Land (geeSEBAL) and Spatial Evapo-
Transpiration Modeling Interface (SETMI), integrating RS with
in-field micrometeorological data to refine ET estimates and
irrigation management (RMSE = 0.46, R* = 0.94 — 0.97). Across
studies, spectral indices (e.g., TVDI: temperature vegetation dryness
index; NDVI), soil moisture probes, thermal imaging, and energy
balance models consistently contributed to assessing water stress,
though limitations such as low-resolution meteorological data,
cloud cover, and sensor calibration persisted. Collectively, these
investigations underline a clear trend toward integrating multi-
source RS data with AI/ML algorithms, enabling more precise,
scalable, and real-time assessments of water stress in sugarcane
agriculture supporting smarter irrigation scheduling and resilient
crop management.

3.2 Monitoring and estimation of salinity
stress

Salinity is a critical factor affecting soil health and crop growth
(Chele et al,, 2021). Salinity stress assessment in sugarcane fields
involves evaluating the effects of salinity on sugarcane growth,
physiology, and yield. Various studies have been conducted to
assess the impact of salinity stress on sugarcane. Kumar et al.
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BNi (Buschman and Nagel index), GMil (Gitelson and
Merzlyak index-1), GMi2 (Gitelson and Merzlyak
index-2), GNDVI (Green normalized difference
vegetation index), mND;os (Modified normal difference
index), MTCI (MERIS terrestrial chlorophyll index),
NDCI (Normalized difference Chlorophyll index),
NDRE (Normalized difference red-edge), PSNDa,b,c
(Pigment specific Normalized difference a, b, & ¢), RI-
idB (Ratio indice-idB, i=1,2,3), RI-half (Ratio index-
Half), RNDVI (Red normalized difference vegetation
index), SRyos (Simple ratio 705), VOGa,b,c (Vogelman
indice-a, b, & ¢).

(2023a) found that salinity stress significantly affected sugarcane
yield, commercial cane sugar (CCS) yield, number of millable cane
(NMC), single cane weight (SCW), and pol % in juice. Vu et al. (2023)
demonstrated that the application of biochar had positive effects on
the growth and physiology of sugarcane under both saline and non-
saline conditions. Dhansu et al. (2022) conducted experiments to
evaluate the response of popular sub-tropical sugarcane varieties to
salinity stress and observed significant reductions in growth, relative
water content (RWC), and gas exchange traits under saline
conditions. Simoes et al. (2023) evaluated the growth-related traits
of Saccharum genotypes under saline and non-saline conditions and
identified promising genotypes with enhanced salinity tolerance.
Djajadi et al. (2022) investigated the influence of salinity stress on
sugarcane growth, soil nutrient content, and leaves and found that
saline stress decreased soil organic and available K (Potassium), as
well as the content of N and K in sugarcane leaves. Mohanan et al.
(2021) also discussed the assessment of salinity stress tolerance in
transgenic sugarcane plants overexpressing the Glyoxalase III gene.
However, these studies not utilized the Al algorithms and RS data. As
per the current advancements, Al algorithms applied to RS data can
effectively identify and quantify soil salinity levels.

The combined analysis of studies in Table 5 demonstrates the
growing effectiveness of integrating hyperspectral and multispectral
RS data with ML algorithms to assess salinity stress in agricultural
soils, particularly sugarcane fields. Hamzeh et al. (2012) laid
foundational work by applying classifiers like Support Vector
Machine (SVM), Spectral Angle Mapper (SAM), Minimum
Distance (MD) and Maximum Likelihood algorithm (MLA) on
Hyperion imagery in Khuzestan, Iran, where SVM outperformed
others with a classification accuracy of 78.7%, revealing that RS-
based salinity mapping can support targeted management of
sugarcane in varied salinity zones. Building on this, Hamzeh et al.
(2013) compared 21 hyperspectral vegetation indices (VIs),
identifying optimized indices like OSAVI (Optimized soil-
adjusted vegetation index) and VOG1 (Vogelmann red edge
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TABLE 4 Critical observations from referenced studies for crop water stress assessment.

Studies

Inman-
Bamber
(2004)

Hellegers
et al. (2009)

Teixeira
et al. (2016)

Study area and data

Kalamia Estate, Ayr,
Queensland, Australia.
Objectives: validate 50-stalk
elongation criterion, study dry
matter partitioning. Neutron
moisture meter, AWS
installed for data collection.
Stress tracked via SWD,
cumulative ET,.

South Africa. Landsat image
of the Inkomati catchment
(Path 168-Row 78). Actual
water consumption and
associated biomass production
using SEBAL.

Sao Paulo state, Brazil.
MODIS images and gridded
weather data.

Methods used

Randomized split plot design.
Significance of treatment effects
determined using TTEST procedure in
SYSTAT.

Crop water productivity (CWP) is
analyzed by using Surface Energy
Balance Algorithm for Land (SEBAL)
and RS. Socio-economic analysis to
quantify foregone economic water
productivity (EWP).

SAFER quantifies ET. Monteith’s RUE
(Radiation Use Efficiency) model
quantifies biomass (BIO). Water
productivity (WP) calculates ratio of
BIO to ET.

Results

Sugarcane biomass tolerates soil water
deficits, affecting dry matter partitioning.
Stress reduces leaf and stalk elongation,
increasing sucrose yield. Senescence
reduces green leaf number per stalk. Leaf
elongation and appearance are
interdependent. Mean leaf extension rate
correlated with daily minimum
temperature.

The results show that diverting water
away from crops with low CWP is not
always cost-effective in terms of foregone
EWP.

Mean values for ET: 0.6-4.0 mm/day. BIO:
20-200 kg/ha/day. WP: 2.8-6.0 kg/m”. Soil
moisture suggests supplementary
irrigation during grand growth.

10.3389/fagro.2025.1681294

Remarks

Limited understanding: water
stress impact on sugar yield
and yield-forming processes.
Dry matter partitioning
response to water deficits
unclear. Sugarcane growth
models need enhancement.

Production costs cannot be
derived by RS. Not all
biomass produced is beneficial
biomass. Only the ET from
irrigation can be managed by
water reallocation.

Estimate errors for emissivity
in Sao Paulo, Brazil
contrasting environmental
conditions.

Singels et al.
(2010)

Lebourgeois
et al. (2010)

Brunini and
Turco
(2016)

Veysi et al.
(2017)

Data from two experiments at
Mount Edgecombe, South
Africa were used: 2002/03
trial monitored WU (Water
uptake), CAR, Plant extension
(PER) (PER), SA over 40
days, starting with 5-month-
old well-watered sugarcane.
1998/99 trial-imposed stress 3
months post-planting.

Southern Reunion Island.
Thermal data from clear days
and 1-hour afternoon in 2007
set empirical CWSIe
baselines. 2008 data tested
method’s robustness.

Jaboticabal, SP, Brazil.
Experiment used weather
station data. Soil samples
monitored moisture.
Tensiometers measured water
potential. Irrigation based on
ET.

Salman Farsi Agro industry,
Iran. Dataset: canopy
temperature, eight Landsat 8
images. Regression set
temperature, VPD lower
boundary. Three water stress
index methods analyzed.

CANEGRO model calculated root length
density. BEWAB WU model
recommended over CERES WU. Models
simulated water stress impact on sink
activity and sucrose accumulation (SA).

Empirical CWSIe method, Water Deficit
Index method. Theoretical method
(CWSIt), and Diurnal study method.

Experimental area assessed various
surfaces. Daily water stress index and
soil water potential evaluated. Drip
irrigation employed. Temperature
readings taken. Water stress index
calculated. Analysis done via ANOVA
and Tukey test.

Empirical CWSI, Idso method with
handheld IR thermometer, and Landsat
8 thermal data. New satellite CWSI
retrieval proposed. Hot and cold pixel
method used.

Soil water’s limiting point differed
between Experiment A (0.129) and B
(0.307), due to evaporative demand
variations. Sink activity responded faster
and at higher soil water contents in
Experiment B. Severe water stress resulted
in the cessation of sucrose accumulation.

AET/MET vs. (1 - CWSIe) regression
(0.4-1 range) showed significant
correlation (global R?=0.75,

RMSE = 0.12), indicating CWSIe’s efficacy
even in humid conditions [vapor pressure
deficit (VPD) 0.5-2.1].

Sugarcane water stress varies with terrain
exposure and slope while areas with water
stress index was above 5.0 °C had lower
yield values. Lack of water affects tillering.
Complementary irrigation mitigates yield
reduction.

Strong correlation: field-based and
satellite-derived CWSI. Negative VWC-
CWSI relationship (R* 0.42-0.78). Water
stress categorized: high, medium, low.
Proposed CWSI approach aids irrigation
scheduling in sugarcane.

Models minimized time gaps
between sink and source
activity reduction. CANESIM
overlooked water stress
impact on sink. CANEGRO
capped root length density.
CANESIM inadequately
replicated sucrose
accumulation variance under
water stress.

CWSIt not for irrigation
scheduling. Unsuitable for
early season. No canopy
temperature for irrigation
calculation.

Rainfall limited in initial
sugarcane growth months.
2013-14 water stress damaged
crop severely. Yield affected
by low rainfall, high
temperatures.

Challenges in field
temperature measurement.
Key calculations establish
temperature bounds. Requires
additional data and complex
computations.

Singels et al.

(2018)

Mpumalanga, South Africa.
RS data (2011-2013) via
SEBAL. Ground FPAR and
biomass estimates. ET
measured using surface
renewal system.
Meteorological data from
National Oceanic and
Atmospheric Administration
(NOAA) database. Soil water

RS estimates ET, biomass via SEBAL.
Ground FPAR, biomass measures.
Surface renewal (SR) system estimates
ET. Kc values calculated from ET, grass
evaporation. Comparison with field data.
Soil water monitored. drought stress
index (DSI) and waterlogged stress index
(WLI) computed. Thresholds calibrated
using SEBAL. Meteorological data for
Penman-Monteith ET.

RS FPAR, biomass correlate strongly with
field (R* = 0.89, 0.78). SEBAL ET
surpasses SR by 5mm/week. SEBAL Kc
values aligns better with literature.

32% fields below economic
thresholds. SEBAL shows
lower ET without sufficient
soil water. SEBAL biomass
production (TDM) should
exceed aboveground dry
biomass (ADM). SR estimates
ET via energy balance
equation.
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TABLE 4 Continued

Studies

Picoli et al.
(2019)

Study area and data

monitored with Aquacheck
probes.

Northwest Sao Paulo State,
Brazil. Landsat detects
sugarcane drought. Spectral
indices from Red, NIR, SWIR
bands. Climatological soil-
water balance (CSWB) model
predicts water status.
European Centre for
Medium-Range Weather
Forecasts (ECMWF) provides
meteorological data.

Methods used

Assessing plant-sensitive spectral indices.
Comparing with CSWB-estimated soil
moisture. Developing new indices
combining NIR, SWIR. Using cluster,
discriminant analysis for drought
detection and monitoring.

Results

New indices for sugarcane drought via
Landsat. Spectral indices correlate with
water balance. 65% accuracy drought
system via cluster analysis. Discriminant
analysis optimal for drought monitoring.

10.3389/fagro.2025.1681294

Remarks

CSWB serves as benchmark,
but prone to errors. Future
studies prioritize fewer
indices, local variables,
especially during phenological
phases. Caution against low-
resolution meteorological data
like ECMWE.

Wagqas et al.
(2019)

Pereira et al.
(2020)

Command area of 3
distributaries, namely
Killianwala, Mungi and
Khurrianwala lying in the
district of Faisalabad,
Pakistan. Multispectral images
of LANDSAT-7 were used for
study.

Central Goias, Brazil. Leaf
temperature (TL and land
surface temperature (TS)
measurements. Landsat 8
imagery. Weather data,
rainfall. Bands 10, 11 for
NDVL

NDVI classification, accuracy assessed.
ET by Penman-Monteith equation. Crop
water via 10-day Kc value, irrigation
demand from LULC.

TL by IR thermometer, TS
viaLandsat8.Waterbalance detects water
deficit (WD) and surplus (WS). T;-T,,
Ts-T, calculated. Bands 10, 11 for
temperature. Emissiv
itycalibratedwithsoil cover factor (SCF).

LULC mapping for three distributaries.
Accuracy: 84% and 86%. Estimation of
crop water requirement, irrigation
demand. Canal water deficit (CWD)
calculated.

TL detects WD, WS in sugarcane. TS has
limited in WD detection. At band 11, TS
tends to smaller. Calibration uncertainty

mainly with band 11.

Comparatively satisfactory
results were noticed.

TS needs improvement based
on surface properties. Ty, -T,
error at 20% for some dates.
Band 11 calibration was
uncertain. Further
investigation needed.

Triadi et al.

Sugarcane plantation in

CWSI, NDVI, Split-window algorithm to

CWSI and NDVI can effectively estimate

CWS I is very sensitive to

(2020) Djengkol, Kediri, East Java. calculate CWSI by analysing drought the level of water stress in sugarcane. The | cloud cover. The water vapor
Secondary data from various stress response from land surface results can be useful for irrigation data used has a very large
sources, Oct 2017-Sep 2019. temperature (LST). management in sugarcane fields. resolution so it tends to be
Landsat 8, MODIS-Aqua inaccurate.
satellite data for water vapour.

Virnodkar Not explicitly mentioned the RS and ML methods, coupled with Review on ML techniques and RS have Existing methods for

etal. (2020)  specific dataset used. canopy temperature-based spectral been used for CWS assessment in various evaluating water stress can be

Das et al.
(2020)

Veysi et al.
(2020)

Northeast Thailand. Dataset:
Kc, Leaf Area Index (LAI),
yield data. Split into training/
testing sets. Linear,
polynomial regression for
prediction.

Sugarcane farms of Salman
Farsi. Salman Farsi, southwest
of Iran. Landsat 8 satellite
images.

indices, alongside various techniques
such as IR thermometry, stomatal
conductance and stem water potential
measurements.

RS observation with ML and land
surface model (LSM). Regression and
polynomial models established for LAI
vs Kc and found 6™ order polynomial is
accurate with adjusted R* = 0.87,

RMSE = 0.089, MAPE = 8.63. High-
resolution LSM computes daily ET.
Yield response was analyzed in 19 fields.

Field measurements of soil moisture and
canopy temperature, alongside calculated
indices using optical and thermal IR
wavelengths, to analyze their
relationship with soil moisture.

crops including sugarcane. ML and RS can
be used to improve water management
and irrigation practices in agriculture.

Initial and early stages have minimal ETc
distribution, contrasting with higher levels
during grand growth and yield formation.
Spatiotemporal disparities noted across
fields. Comprehensive analysis affirms
yield-water consumption correlation.

Both CWSI and temperature vegetation
dryness index (TVDI) align in assessing
soil moisture, implying their suitability for
irrigation scheduling. TVDI shows
stronger correlation 0.35<R* < 0.66 and
spatial consistency with soil moisture.
RMSE was less than 0.2. Comparison
between recorded irrigation and soil
moisture levels in the farms revealed three
distinct classes.

greatly improved. CWS
assessments require attention
from the research community.

Limited field scale studies on
actual water consumption of
sugarcane. Uncertainty in
yield due to various factors.
Dependence on optimal
conditions for maximum yield
and ET.

Vegetation indices based on
optical bands do not show a
good coefficient of
determination R”.
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TABLE 4 Continued

Studies

Patil et al.
(2021)

Virnodkar

et al. (2021)

Gongalves
et al. (2022)

Bispo et al.
(2022)

Melo et al.
(2022)

Watanabe
et al. (2022)

Alavi et al.
(2024)

Study area and data

Area not specified. Landsat 8
satellite image.

A dataset containing water-
stressed sugarcane crops from
four talukas (Gokak, Raibag,
Jamkhandi, and Mudhol) in
Karnataka, India. Cloud-free
Sentinel-2 satellite images.

24 ha commercial field in
western Sao Paulo, Brazil.
Landsat 8 Operational Land
Imager (OLI) and Thermal
Infrared Sensor (TIRS),
Landsat 7 Enhanced Thematic
Mapper Plus (ETM), ERA5-
Land reanalysis dataset,
Shuttle Radar Topography
Mission (SRTM) digital
elevation data.

Field data from EC system in
Andradina, Sdo Paulo.
Meteorological data from
Itapura station. RS data used
for Spatial
EvapoTranspiration Modeling
Interface (SETMI) model.
Spectral reflectance informs
Kcbrf relationship. SCS
Runoff equation for effective
precipitation.

University of Sao Paulo,
Brazil. Inception-Resnet-v2
pretrained on ImageNet (10
million images, 10,000
categories). Model trained on
1.2 million images.
Validation: 1008 images.

University of Ryukyus
greenhouse, Okinawa, Japan:
Monitored canopy
temperature (CT) under
control and water stress,
along with photosynthesis,
CWSI, and thermal images’
RGB channels. Recorded gray
levels for both conditions.

Khuzestan province,
southwest of Iran.
Multisource RS data.
Meteorological and ground
measurements (Meteo-GM).
Sentinel-1 Synthetic Aperture
Radar (SAR) data.

Frontiers in Agronomy

Methods used

In R, METRIC-based water package
computes broadband albedo, LAI, Land
surface temperature (Ts), long-wave
radiation, Rn, incoming solar radiation,
and top-of-atmosphere (TOA)
reflectance.

Encoder-decoder architecture with
UNet, SegNet, and FCN models.
DenseNet architecture with densely
connected layers. Semantic segmentation
using deep learning (DL) techniques.

RS method estimates actual
evapotranspiration (ETa). Google Earth
Engine (GEE)-Surface Energy Balance
Algorithm for Land (geeSEBAL) used.
Calibration with Inverse Modeling at
Extreme Conditions (CIMEC).
Comparison with eddy covariance (EC)
data. RS-based soil water balance for
water stress. Statistical analysis includes
R’, RMSE, and Bias.

Eddy covariance tower for
micrometeorological variables. RS
method for ETa. Two-source energy
balance model (TSEB) and RS-water
balance (RSWB) coupling. Hybrid model
SETMI. Basal Kc from SAVI. Bowen
Ratio adjusts latent heat flux (IE) and
sensitive heat flux (H). IE converted for
ETa. Reference evapotranspiration (ETo)
from FAO-56. Water use optimization
for sugarcane.

Inception-Resnet-v2 neural network
model evaluated thermal sugarcane
images, outperforming traditional
methods in water stress assessment
accuracy.

Temperature measured by thermal
camera and infrared thermometer. Mean
CT values for control and water-stressed
canopies analyzed statistically in R.
Correlation assessed.

4 most popular tree-based ML
algorithms, namely M5-pruned (M5P),
random forest regression (RFR),
gradient-boosted regression trees
(GBRT) and extreme gradient boosting
(XGBoost).
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Results

The comparative results indicate that both
the results are 91% alike. The comparison
of ET and CWSI indicated that both
CWSI and ET maps can be used for the
assessment of crop water status and
irrigation scheduling.

The ‘DenseResUNet’” model achieves
robust performance, with 61.91% mean
Intersection over Union (mloU) and
80.53% accuracy in segmenting water-
stressed sugarcane fields, outperforming
UNet, ResUNet, and DenseUNet with
scores of 32.20%, 58.34%, and 53.15%,
respectively.

geeSEBAL accurately estimated sugarcane
ETa (RMSE = 0.46, R? = 0.97) in Brazil,
matching EC data, standard values, and
flux tower data. It identified water stress,
aiding irrigation management.

Energy balance components correlated
strongly with EC data (ET R® = 0.94,
Correlation coefficient=0.88). Model
linked SAVT to sugarcane’s crop
coefficient (Kcb). Average Kcb: 0.73 for
4th ratoon, 0.70 for 5th. Maximum Kcb
about 1.23. ETa averaged 1025 mm, with
daily rates of 2.9 mm. SETMI model
enhanced irrigation management.

Inception-Resnet-2 surpassed human
assessments, showing 23%, 17%, and 14%
higher accuracy in detecting thermal stress
across soil available water capacity (AWC)
classes of 25%, 50%, and 100%,
respectively.

Thermal images can distinguish between
well-watered and water-stressed canopies.
CT measurement and thermography are
both useful for water stress detection. R
gray level is a good indicator of sugarcane
water status. CWSI is correlated with
differences in CT and R gray level.

The RFR algorithm yielded the most
accurate ETc estimates, followed by
XGBoost, GBRT, and M5P algorithms
(R2 =0.92-0.99, RMSE = 2.02-0.32
mmd ™). Meteo-GM models improved
with optical, thermal infrared (TIR), and
SAR RS data (R* = 0.99, RMSE = 0.32
mmd ' for TIR, R* = 0.98, RMSE = 0.65
mmd™" for SAR). Sobol’s sensitivity
analysis identified key input variables for
ETc estimation.

10.3389/fagro.2025.1681294

Remarks

Further works should consider
the influence of cultivation
methods, climate conditions
and other factors affecting
CWSL

Results highlight semantic
segmentation for CWS
detection with limited RS
data. Increasing training
samples could improve
accuracy.

Soil heat flux (W/m2) values
have little influence on energy
balance (EB) due to their low
values. Soil-adjusted
vegetation index (SAVI)
values decrease during the
maturation stage of sugarcane.
Limited availability of climate
data in certain areas.

Much significant results were
observed.

No strong limitations were
noticed.

CT readings may be
influenced by weather
conditions. Comparing CT
readings may not be reliable
in bad weather. Thermal
images may more accurately
reflect changes in CT.

Optical RS methods have
limitations in assessing crop
water requirements. Hybrid
approaches combining
thermal and optical
information are needed.
Cloud cover restricts the
application of optical sensors.
Reliance on radar sensing,
specifically Sentinel-1 SAR, for
continuous observation.
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TABLE 5 Critical observations from referenced studies for salinity stress estimation.

Studies Study area and data Methods used Results Remarks
Hakim Farabi Farmi d Industrial Lands, . . . .
akim Faradt armmg'an neus Zna . ands Support Vector Machine SVM classifier or PCA (1-5) achieved the SAM classifier accuracy
Khuzestan, Iran, spanning 774 km®. Field data R
. . . (SVM), Spectral Angle highest accuracy (78.7%) and kappa depends on endmember
Hamzeh collected in Sep 2010 at 191 locations, sampling X X . .
K . R Mapper (SAM), coefficient (0.68) in salinity stress selection. ML needs
et al. soil (0-45 cm) salinity levels ranging from 1.5 o A . . . ) . .
1 . Minimum Distance (MD) | classification. Salinity maps aid agricultural adequate training data for
(2012) to 9.7 dSm™". Modeling used 125 samples, i o . . L.
o oo K . and Maximum Likelihood | management, indicating low, moderate, and covariance. Limited
validation 66. Hyperion image classified with . . . ; .
R . algorithm (MLA). high salinity areas affecting crop yield. datasets vs. bands.
various classifiers.
Hyperspectral VIs Hyperspectral RS vital for
) i - evaluated for soil salinity . precision. Satellite data
Khuzestan, Iran, 774 km? area. Soil salinity . SWSI-3, SWSI-1, VOG1, SWSI-2 optimal for . .
Hamzeh . estimation included 21 . 1 limited. PRI effectiveness
measured at 108 sugarcane points, 60 for L salinity, RMSE 1.14-1.17 dSm™". Chlorophyll/ L
etal . . o existing VIs and newly . 5 varies with crop type,
modeling, 48 for validation. Hyperion image water bands effective. OSAVI (R” = 0.69), ;
(2013) acquired Sep 2, 2010 developed ones, such as chlorophyll/NIR indices correlate strongl growth stage. Pigment-
9 L ' optimized SAVI and PRy & related indices weaken
Vogelmann red edge. season-end.
Landsat excelled in categorical salinity stress Confusion between low/
classification (84.84% accuracy, Kappa 0.77), moderate and moderate/
Hamzeh Khuzestan, Iran. Sep 2010 field data: 25 fields, while Hyperion outperformed in quantitative high salinity classes.
et al. 0-45 cm depth, 191 samples with varied SVM, SAM, MD, MLA. estimation. Salinity and Water Stress Index Indirect assessment is
(2016) salinity. Modeling: 125; validation: 66. (SWSI) demonstrated superior prediction for costly. In situ accuracy
salinity stress, favoring Landsat for categorical | relies on ground data
mapping. density/distribution.
Landsat 8 data fc tral analysis. Efficient method f
Hagq et al. fm sa ? a for spectral analysis RER achieved R? of 0.94 using Differential c1e-n me- © K c‘)r
Fifty-five soil samples from field survey of Kot RFR, SVM . assessing soil salinity at
(2023) X Vegetation Index (DVI).
Addu, Pakistan. local scales.
Kaplan 393 soil samples drawn in United Arab Interesting findings for
St lation (0.84) betw delli
et al. Emirates. Sentinel-2 satellite imagery for RS RF, SVM rong correlation (0.84) between modelling future studies at other
and test results. .
(2023). data. sites.

index) as reliable predictors of soil salinity with strong correlations
(R*> up to 0.69), underscoring the importance of selecting
appropriate spectral bands sensitive to chlorophyll and water
content. Hamzeh et al. (2016) further contrasted Hyperion and
Landsat data, concluding that while Landsat delivered superior
categorical classification accuracy (84.84%, Kappa 0.77), Hyperion
was better suited for continuous salinity estimation. Notably, their
findings introduced the Salinity and Water Stress Index (SWSI) as a
robust metric for predicting salinity levels. Recent studies shifted
toward advanced ML approaches for broader applicability. Haq
et al. (2023) and Kaplan et al. (2023) demonstrated that ensemble
learning methods such as RF Regression (RFR) and SVM using
Landsat 8 and Sentinel-2 data respectively, achieved high accuracy
in salinity prediction (R* = 0.94 and 0.84), confirming the scalability
of RS-ML integration for local to regional salinity monitoring.
Overall, the comparative findings highlight a consensus that
hyperspectral data combined with tree-based ML models yield
reliable predictions of salinity stress, with vegetation indices and
spectral reflectance offering crucial insight. However, accuracy is
often limited by sensor resolution, endmember variability, and the
spatial distribution of ground truth data. Accurate yield predictions
based on salinity levels can also help optimize resource allocation
and improve overall crop management strategies, potentially
increasing sugarcane yield and quality (Waters et al., 2025). These
studies collectively highlight the value of tailored RS-ML
frameworks in salinity stress management, enabling precision
interventions in salt-affected sugarcane agroecosystems.
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3.3 Estimation of nitrogen levels

Reckoning leaf N using RS in sugarcane crops is important for
optimizing nitrogen fertilizer management and improving crop
growth and yield (Reyes-Trujillo et al., 2021). In recent years,
different algorithms have been developed to combine spectral
reflectance features with ML techniques for the estimation of leaf
physiological parameters, including chlorophyll content, moisture
content, and nitrogen content (Gai et al,, 2023). RS techniques, such
as digital image processing, hyperspectral data analysis, and drone
multispectral imaging, can provide valuable information on leaf N
concentrations and crop vigor. These techniques allow for non-
destructive and fast estimation of nitrogen levels, enabling more
precise and efficient fertilizer application (Lofton, 2012; Barros
et al, 2021). By analyzing the correlation between LNC and
various image features, regression models can be constructed to
accurately estimate nitrogen content based on color and texture
parameters (Li et al., 2022). Additionally, RS can help determine the
optimum nitrogen rate and application timing for sugarcane
production, ensuring that nitrogen is applied at the right time
and in the right amount to maximize crop yield (Abebe et al., 2023).

The studies summarized in Table 6 emphasize the growing
reliance on hyperspectral and multispectral RS combined with ML
models for estimating nitrogen (N) content in sugarcane crops.
Ahmed (2010) used hyperspectral RS in shade house trials to assess
the impact of nitrogen and silicon treatments, identifying
correlations between red-edge indices (e.g., R740/R720) and N

frontiersin.org
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TABLE 6 Critical observations from referenced studies for nitrogen content evaluation.

Studies Study area and data Methods used

Ahmed (2010) | South African Sugarcane
Research Institute (SASRI),
South Africa, conducts N x

Si x variety trials in shade

Hyperspectral RS and ANOVA
analyzed for significant
reflectance differences due to
N and Si (Silicon) treatments

houses to study stalk borer at each wave length across

Results

Red-edge (R740/R720) correlates with N
concentration. NDVI (R750-R560)/(R750+R560)
with Si concentration. ND (R1075-R730)/(R1075
+R730) with N: Si ratio. N treatment influences
400-740 nm reflectance (p< 0.05) on 10-month

10.3389/fagro.2025.1681294

Remarks

High RMSE in N and Si
regression models. Weak leaf
reflectance-biochemical
correlations. Spectral data
from one leaf, chemical

(Eldana saccharina) cane ages. cane. analysis from three leaves.
infestation.
Abdel- Umfolozi mill supply area in | First-order derivative spectra. R743/R1316 ratio VI from reflectance’s first-order Need to explore the usefulness
Rahman et al. | KwaZulu-Natal (KZN) Calculation of slope of the derivatives had highest R? = 0.76 correlation with of in situ spectroscopy at
(2010) Province, South Africa. In spectrum. Locating positions sugarcane leaf N concentration. canopy level using handheld,
situ spectroscopic data of of absorption features and airborne and spaceborne
sugarcane leaf samples. inflection points. SEnsors.
Abdel- KwaZulu-Natal Province, RF analyzes hyperspectral data, | RF and Stepwise multiple linear (SML) regression Excluded spectral regions with
Rahman et al. | South Africa. 163 out of 196 | predicts sugarcane N models predict sugarcane N concentration well strong water absorption. Used
(2013) calibrated wavebands were concentration using RF (RF: R? = 0.67, RMSEV = 0.15%; SML: R® = 0.71, 163 of 196 wavebands. The

used in this study. regression. Forward selection
identifies crucial vegetation
indices; RFs iteratively fit for

index inclusion.

RF model, and SVR model.
NDVI, GEMI, MTCI, S2REP,
PSSRa, NDI45, IRECI,
GNDVI, Clgreen, and Clred-
edge indices were calculated
using QGIS software.

Soltanikazemi
et al. (2022)

Amir Kabir Sugarcane Agro-
industry located in Ahvaz
city, Khuzestan province,
Iran. Sentinel-2 data.

Martins et al.
(2024)

Jau, Piracicaba, Santa Maria
da Serra. Data from the
variety SP 81 3250,
cultivated in three

Obtained spectral curve,
applied vegetation indices. Lab
analyzed plant tissues for Total
Foliage Nitrogen (TFN).

experimental areas. Model predicted sugarcane N.

levels. However, the study faced limitations such as weak
reflectance-biochemical correlations and inconsistency between
spectral and chemical sampling methods. Abdel-Rahman et al.
(2010) advanced the analysis by using first-order derivative
spectra to identify sensitive wavelengths, achieving an R* of 0.76
with the R743/R1316 ratio, yet noted the need for scalability to
canopy-level applications. Expanding the scope, Abdel-Rahman
et al. (2013) evaluated 163 hyperspectral bands using RF and
stepwise multiple linear (SML) regression models, both yielding
reliable predictions (RF: R* = 0.67, RMSEV = 0.15%; SML: R> = 0.71,
RMSEV = 0.19%), demonstrating the potential of hyperspectral
data for accurate N monitoring. In a more recent study,
Soltanikazemi et al. (2022) utilized Sentinel-2 imagery and
calculated multiple vegetation indices (e.g., S2REP, IRECI:
Inverted Red-Edge Chlorophyll Index, NDVI) using RF and SVR,
= 0.59, RMSE = 0.08), with RF
= 0.58, RMSE = 0.09). They
emphasized the benefit of larger ground datasets and multi-

achieving modest performance (R*
slightly outperforming SVR (R*

temporal imagery to improve robustness. Finally, Martins et al.
(2024) provided a detailed comparison of vegetation indices such as
BNi: Buschman and Nagel index, NDRE: Normalized Difference
Red-Edge, GNDVI: Green NDVI, and RI-1db: Ratio Index, all
yielding R* > 0.65 and RMSE< 3.7 g/kg. However, environmental
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RMSEV = 0.19%). RF shows promise with
hyperspectral data.

R* for RF and SVR were 0.59 and 0.58,
respectively, and the corresponding RMSE was 0.08
and 0.09, respectively.

Top indices:

BNi (R > 0.66, RMSE< 3.50 g/kg), GNDVI (R* >
0.65, RMSE< 3.67 g/kg), NDRE (R? > 0.68, RMSE<
3.18 g/kg), RI-1db (R* > 0.69, RMSE< 3.66 g/kg),
VOGa (R*> 0.69, RMSE< 3.44 g/kg). SP813250
variety’s predictive potential reduced up to 50% in
R?, in some cases due to environmental factors.

method may not suit low-N
sites, or small-scale farms due
to spatial resolution
limitations.

RF better than SVR for N yield
estimation. More ground data
allows diverse DL model
application. Multi-temporal
data enhances results.

Reflectance varies in same
variety across soils. Model
instability across harvests.
High noise in blue wavelengths
of spectral curves.
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variability across locations and seasons influenced the predictive
capacity of their models, with performance dropping by up to 50%
for the same variety (SP 81 3250). Together, these studies indicate
that while RS-based N estimation in sugarcane is promising,
particularly with indices targeting red-edge and near-infrared
regions, the accuracy is influenced by factors like sensor
resolution, environmental heterogeneity, sample consistency, and
model type. The integration of ML, especially ensemble models like
RF, enhances predictive reliability, but operational deployment still
requires more stable, scalable, and temporally adaptive frameworks
for practical field use.

3.4 Software application

This review systematically examined all the referenced studies
to identify the use of specific statistical software, programming
languages, or analytical tools for implementing AI-RS
methodologies related to the estimation of water stress, salinity
stress, and LNC in sugarcane farming. Six studies explicitly
mentioned the use of software or coding frameworks. These
include SYSTAT (Inman-Bamber, 2004), QGIS Desktop (Triadi
et al, 2020), R, Python, and MATLAB (Virnodkar et al., 2020;
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2021), R and MATLAB (Watanabe et al., 2022), Microsoft Excel
2019 and Python’s Scikit-learn library (Gai et al, 2023), and
Environment for Visualizing Imagery (ENVI) 5.3.1 for image
visualization and analysis (Alavi et al., 2024). Although many
studies reported the application of RS and ML methods, only a
few provided explicit details of the software environments or coding
frameworks used.

3.5 Recommendations: best solutions from
referenced studies

A critical synthesis of previous research (1981-2025) highlights
several methodological approaches that stand out as best-practice
solutions for stress detection in sugarcane agriculture. Thermal and
hyperspectral remote sensing combined with energy balance
models, such as SEBAL and CWSI, have provided reliable
estimates of evapotranspiration and crop water stress, especially
when integrated with meteorological and soil data to support
irrigation scheduling (Hellegers et al., 2009; Veysi et al, 2017;
Teixeira et al, 2016; Gongalves et al., 2022). Recent advances
demonstrate that deep learning models, including DenseResUNet
and Inception-ResNet-v2, applied to high-resolution Sentinel-2 and
UAV imagery, significantly improve canopy-level water stress
segmentation and thermal pattern prediction (Virnodkar et al,
20215 Alavi et al, 2024; Melo et al, 2022). For salinity stress
assessment, the combination of hyperspectral imagery with SVM
classifiers and tree-based ensemble methods such as RFR has
consistently yielded high classification accuracy and predictive
performance across diverse environments (Hamzeh et al, 2012,
2013; Haq et al,, 2023; Kaplan et al,, 2023). Similarly, for nitrogen
estimation, red-edge and NIR vegetation indices integrated with RF
or SVR have shown strong correlations with leaf nitrogen content,
offering scalable and non-destructive nutrient monitoring solutions
(Abdel-Rahman et al., 2010, 2013; Soltanikazemi et al., 2022;
Martins et al., 2024). In addition, data fusion approaches and
cloud-based platforms like Google Earth Engine have enabled the
integration of multi-sensor datasets, improving spatiotemporal
resolution and analytical efficiency (Gongalves et al., 2022; Bispo
et al., 2022). Jointly, these approaches represent the most effective,
validated solutions for operationalizing AI-RS frameworks in
precision water, salinity, and nutrient management for sugarcane.

4 Challenges and limitations

Despite significant advancements, several challenges and
limitations persist in the application of RS and Al technologies
for assessing water stress, salinity stress, and LNC in sugarcane
crops. These challenges primarily arise from the complexity of
environmental conditions, limitations in sensor technology, data
processing requirements, and the need for robust model calibration
and validation.
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4.1 Technical and sensor limitations

Spatial resolution remains a major constraint, as RS instruments
often struggle to capture detailed information at the individual plant
or plot level in large sugarcane plantations. Similarly, limited
temporal resolution hampers the ability to monitor short-term
fluctuations in water stress, salinity, and nutrient dynamics, which
are critical for understanding crop responses across growth stages.
While hyperspectral sensors can provide improved spectral
resolution, they often face limitations in spatial coverage, data
volume, and operational costs. Low radiometric sensitivity
(radiometric resolution) can also limit the detection of subtle crop
stress signals, especially in early stages. Cloud cover further
complicates consistent monitoring by obstructing satellite
imagery, particularly in regions prone to frequent cloudiness. In
addition, high-quality RS data from advanced sensors can be
expensive and less accessible, restricting adoption among
resource-limited farmers and researchers.

4.2 Environmental and field variability

Variations in soil type, crop age, plant density, and
microclimatic conditions significantly influence spectral
reflectance, complicating the accurate discrimination of stress
signals (Waters et al., 2025). Non-crop interference, such as
background soil reflectance or surrounding vegetation, may
introduce noise that obscures the true radiometric signals from
sugarcane canopies (Som-Ard et al., 2021). Such variability makes it
challenging to develop generalized models that can accurately

capture stress patterns across diverse environments.

4.3 Data processing and integration
challenges

The processing of RS data involves extensive pre-processing
steps such as atmospheric correction, radiometric calibration, and
cloud masking to ensure accuracy, which can be time-consuming
and computationally demanding (Som-Ard et al., 2021). Integrating
data from multiple sensors or platforms for comprehensive stress
assessment requires sophisticated algorithms and standardized
analysis-ready data (ARD) formats, which are still evolving.
Obtaining reliable ground truth data for model calibration and
validation remains another challenge, especially across large or
remote agricultural regions.

4.4 Modelling and analytical constraints
ML and deep learning models, though promising, face

constraints when applied to heterogeneous agricultural datasets.
Unbalanced data distributions, intra-species variability, and
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insufficient ground truth samples can reduce model accuracy and
generalizability (Kamarudin et al., 2021; Koohi et al., 2023).
Effective calibration and validation are essential for improving
model reliability across different environmental and
management conditions.

Addressing these limitations requires continuous research,
technological innovation, and interdisciplinary collaboration
among RS scientists, agronomists, data analysts, and
policymakers. Ongoing integration of AI and RS approaches
holds great potential to overcome current barriers and enhance
the precision and scalability of stress detection in sugarcane
farming. The present review also emphasizes previous research
that combines these emerging technologies to evaluate crop
stresses, specifically water, salinity, and nitrogen in sugarcane
cultivation systems.

5 Future directions

The future of sustainable agriculture depends on the widespread
integration of advanced technologies such as ML, RS, IoT, robotics,
PA, and cloud computing. Although these technologies possess
immense potential, their adoption particularly in developing
regions remains limited. In the context of increasing challenges
such as climate change, land degradation, and water scarcity, the
deployment of intelligent systems is essential to ensure efficient
management of water and nutrient resources during crop
production. Real-time monitoring and predictive analytics play a
pivotal role in addressing critical stressors such as water deficiency,
salinity, and nitrogen imbalance. When applied to RS data, ML
techniques can effectively detect spatial variability in water use
efficiency, particularly in low-productivity zones, thereby improving
irrigation scheduling and enhancing crop management without
expanding cultivated land or increasing water consumption.
Integration of advanced RS technologies has further
revolutionized sugarcane monitoring and management.
Hyperspectral imaging enables precise detection of water and
nutrient levels, improving the ability to assess crop health and
stress conditions (Swami et al., 2025). The use of unmanned aerial
vehicles (UAVs) and CubeSats provides high-resolution spatial and
temporal data crucial for real-time monitoring of environmental
stressors (Swami et al., 2025). Data fusion techniques, which
combine information from multiple sensors and platforms,
enhance the accuracy of assessing crop conditions and resource
availability (Swami et al, 2025). Al-driven predictive modelling
further strengthens decision-making in precision agriculture. The
ML algorithms enhance the prediction of crop responses to water
and nutrient availability, supporting site-specific management
strategies (Gupta et al., 2024). Real-time monitoring systems, such
as SWARM, dynamically adjust irrigation and nutrient delivery
based on live data, optimizing resource use and improving efficiency
(Babu et al., 2006).

Moreover, coupling RS datasets with ML classification
algorithms especially those utilizing full spectral ranges has shown
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high accuracy in assessing salinity and nitrogen levels in sugarcane
crops. Integrating explainable AI (XAI) approaches is crucial to
enhance model transparency and interpretability. XAI provides
insights into the decision-making process of ML models, allowing
agronomists and farmers to understand which spectral features or
environmental factors drive specific predictions. This
interpretability builds trust in Al-driven recommendations and
promotes informed field management decisions. However, several
barriers remain. The high cost of proprietary cognitive farming
solutions, coupled with the computational demands of advanced
ML algorithms, continues to limit large-scale adoption. To
overcome these challenges, the development of open-source,
farmer-friendly platforms is essential to democratize access to
digital technologies and reduce dependency on expensive
commercial software. Furthermore, optimizing ML models to
reduce processing time and computational overhead through
lightweight algorithms and edge computing will enable
integration with RS systems on resource-constrained devices.
Future research should also prioritize sensor calibration, data
accessibility, and ethical data management, ensuring privacy and
equitable use of agricultural data. Establishing clear frameworks for
data ownership and protection will foster trust and encourage the
broader adoption of AI- and RS-based technologies. Collectively,
these innovations will pave the way toward scalable, cost-effective,
and sustainable precision management systems for water, salinity,
and nutrient optimization in sugarcane cultivation (Figure 4).

6 Concluding remarks

Over the past decade, agricultural systems have increasingly
integrated AI and RS technologies to address critical challenges and
boost productivity. This review compiles current knowledge on the
application of AT and RS in sugarcane cultivation, highlighting their
strengths and constraints in managing crop water stress, leaf
nitrogen estimation, and salinity stress mapping. Although their
adoption in agriculture lags behind other sectors, the continuous
evolution of sensors, UAVs, and ML algorithms presents substantial
opportunities for innovation in sugarcane farming. Despite these
advancements, significant barriers remain — including high initial
investment, sensor limitations, complex data processing
requirements, limited technical expertise, and farmer
apprehension. Nevertheless, Al-driven RS approaches show great
promise for improving both yield and quality in sugarcane, while
contributing positively to environmental and socio-
economic outcomes.

Conventional soil moisture monitoring methods are often
constrained by high sensor costs, installation complexity, and
inaccuracies, especially across varied soil types and crop systems.
Plant-based assessments, while more reliable and accurate, often
lack scalability and are time-intensive. Research consistently shows
that remotely sensed indices such as the Photochemical Reflectance
Index (PRI) and NDVI are significantly correlated with
physiological parameters like leaf water potential (LWP), stomatal
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Blueprint for future research: A flowchart for precisely estimating crop stress factors through Al-driven remote sensing. LiDER, Light Detection and
Ranging; UAVs, Unmanned Aerial Vehicles; VIF, Variance Inflation Factor; ML, Machine Learning; DL, Deep Learning; RF, Random Forest; DCNN,

Deep Convolutional Neural Networks.

conductance, crop coefficient, and stem water potential. However,
relying solely on single-parameter metrics for plant water status
estimation often falls short in precision. Among water stress
indicators, the CWSI, particularly when derived from Earth
Observation (EO) data has emerged as a preferred metric for
assessing sugarcane water status across local to regional scales.
Infrared thermometers continue to serve as effective ground tools
for measuring canopy temperature, providing critical validation for
RS-based observations. Midday stem water potential also remains a
standard reference point for cross-verifying RS-derived estimates.
For salinity stress evaluation, studies endorse the use of
multispectral (e.g., Landsat ETM+) and hyperspectral (e.g.,
Hyperion) satellite data, with classification algorithms like
minimum distance (MD) consistently delivering reliable results.
Nitrogen estimation in sugarcane has similarly benefited from
vegetation indices that combine near-infrared, green, and red-
edge wavelengths. Indices such as SAVT (soil adjusted vegetation
index), MSAVI (modified SAVI), NDVI, and OSAVI have been
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effectively incorporated into linear, nonlinear, and ML-based
models, with ML approaches consistently outperforming
traditional methods in accuracy and adaptability.

Among ML techniques, Artificial Neural Networks (ANNs)
have shown particular success in analyzing UAV multispectral
data and in determining variable contributions to target
outcomes. Support Vector Machines (SVM) and Random Forests
(RF) also demonstrate high potential in RS-based classification,
though their full capabilities in detecting crop stresses specifically
water, salinity, and nitrogen are still underexplored. Recent
innovations like oblique and rotation-based RF classifiers have
exhibited improved performance across varied datasets. The
oblique RF approach, effective with discrete factorial features, is
promising for evaluating water stress and warrants deeper
investigation. Similarly, the rotation RF model, which integrates
multiple rotated feature spaces, has surpassed traditional classifiers
such as RF, SVM, and k-NN in several studies. Despite this, both
rotation RF and deep CNNs remain underutilized in stress
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assessment involving RS data sources such as microwave imagery,
UAVs, and Light Detection and Ranging (LiDAR). Machine
learning’s capacity to aggregate and analyze data from diverse
sources including ground measurements, sensor networks,
meteorological data, and RS platforms like satellites, drones, and
airborne systems makes it central to the future of digital agriculture.
While ML has been widely applied in tasks such as crop
classification, yield prediction, and condition monitoring, more
targeted research is needed to fully harness its potential for stress
assessments in sugarcane, particularly in water, salinity, and
nitrogen dynamics. These areas are vital for informed irrigation
planning and sustainable crop management, and thus demand
greater attention from the research community. Continued
advancements in this field will significantly benefit sugarcane
agriculture by enhancing productivity, supporting long-term
sustainability, and improving resilience against challenges such as
climate variability, resource constraints, and market instability.
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