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Sugarcane is a vital cash crop with substantial significance in both global sugar

production and the biofuel industry. However, its sustainable cultivation faces

persistent challenges from environmental stressors, particularly salinity and water

scarcity. In recent years, the integration of artificial intelligence (AI) and remote

sensing (RS) technologies has proven to be a transformative approach for

detecting and evaluating these stress conditions, offering critical insights for

advancing precision agriculture (PA). This review explores the utilization of

satellite imagery and sensor-based data including RGB, multispectral,

hyperspectral imaging, and unmanned aerial vehicles (UAVs) to monitor stress-

related parameters in sugarcane farming. It emphasizes key indices used to

assess water stress, generate salinity stress maps, and estimate nitrogen levels,

demonstrating their role in equipping farmers with actionable information to

optimize irrigation and nutrient management strategies. These innovations

significantly enhance crop productivity while promoting environmental

sustainability. The review sets out three core objectives: (i) to evaluate the

contribution of AI and RS in assessing water stress in sugarcane cultivation, (ii)

to examine methods for mapping salinity stress using RS and AI tools, and (iii) to

highlight the relevance of spectral indices in tracking nitrogen status in sugarcane

crops. Drawing upon reputable bibliographic sources such as Google Scholar,

Scopus, ResearchGate, and Web of Science, along with current literature on AI

and RS applications in sugarcane stress assessment, the review consolidates

detailed information on advanced sensors and UAV technologies. It also

introduces novel deep learning models and sensor platforms that have

received limited attention in prior studies. In conclusion, the review affirms that

AI-driven remote sensing is a highly effective approach for monitoring and
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managing critical stress factors in sugarcane production. It not only contributes

to enhanced yield and crop quality but also delivers significant socio-economic

and environmental benefits, marking a major step forward in achieving

sustainable and efficient sugarcane cultivation.
KEYWORDS

AI-driven remote sensing, climate change, crop water stress index, leaf nitrogen
content, salinity stress, sugarcane agriculture
1 Introduction

Sugarcane (Saccharum officinarum L.) belongs to the

Andropogoneae species within the Poaceae family (Grof and

Campbell, 2001). It is a crop of considerable economic

importance, primarily cultivated in tropical and subtropical

regions (Driemeier et al., 2016). According to recent estimates

from the Food and Agriculture Organization (FAO) and the

USDA, global raw sugar production for the 2023 − 24 marketing

year is expected to surpass 183.5 million tonnes, marking a steady

rise from 179 million tonnes in 2019 (FAO, 2022). Further

projections estimate a production of approximately 186 million

tonnes in 2024 − 25, spurred by increased output in countries like

Thailand, India, and China (Infomerics Valuation and Rating Pvt.

Ltd, 2024). Beyond its primary use in sugar production, sugarcane

serves as a most important biological resource for creating ethanol,

bagasse, fiber, molasses, rum, and cachaca (Vinayaka and Prasad,

2024; Amaresh et al., 2024; Suresha et al., 2024). Enhancing

agricultural productivity remains a core focus of precision

agriculture (PA), influenced by multiple environmental and

agronomic factors (Amarasingam et al., 2022; Soltanikazemi et al.,

2022). However, sugarcane cultivation is frequently challenged by

abiotic stresses such as salinity and water scarcity, which negatively

impact both yield and crop quality. The crop accounts for around

29% of global agricultural water use (Milagro Jorrat et al., 2018),

and nearly 60% of sugarcane-growing areas in India experience

water limitations often due to insufficient irrigation, canal closures

during summer, and recurrent droughts (Sundara et al., 2002).

Developing water-efficient sugarcane genotypes is essential for

sustaining production while improving regional and global water

security (Tayade et al., 2020; Kumar et al., 2020). Salinity poses a

parallel threat: globally, approximately 33% of irrigated land and

20% of cultivated land are affected by saline conditions. In India,

sugarcane is cultivated on nearly 5 million hectares, with about 25%

of this area impacted by salinity, alkalinity, or saline irrigation water

(Vasantha and Gomathi, 2012).

Remote sensing (RS) has become an indispensable tool in crop

stress monitoring due to its ability to capture high-resolution, large-

scale data (Huang et al., 2018). The accurate assessment of water,

salinity, and nitrogen stress in sugarcane is decisive for informed

crop management. Water deficits can significantly reduce
02
productivity, underscoring the importance of precise irrigation

scheduling (Hamzeh et al., 2013). Likewise, salinity stress caused

by high salt concentrations in soil can hinder plant growth and yield

potential (Hamzeh et al., 2016). Early detection allows for timely

mitigation strategies such as leaching or improved drainage (Patil

et al., 2021; Watanabe et al., 2022). Leaf nitrogen content (LNC)

serves as a pivotal indicator of crop health and nutritional balance.

Nitrogen deficiency limits growth and productivity, whereas excess

application can cause environmental damage (Anas et al., 2020).

Accurate monitoring of LNC supports optimized fertilization

strategies, promoting sustainable practices (Virnodkar et al., 2020).

Hence, evaluating water, salinity, and nitrogen stress is essential for

improving sugarcane performance (Ferreira et al., 2017; Kumar

et al., 2023b). Water stress in sugarcane is often attributed to

erratic rainfall, exposure to alternating wet and dry periods, and

high evapotranspiration rates (Bispo et al., 2022; Brunini and Turco,

2016). The concept of CropWater Stress (CWS), introduced by Idso

et al. (1981), has become a standard for assessing water deficits at

both leaf and canopy levels. Salinity stress can arise from saline soil

layers, the use of brackish irrigation water, elevated groundwater

tables, or seawater intrusion (Hamzeh et al., 2016), contributing to

widespread soil degradation in sugarcane-growing regions (Hamzeh

et al., 2013). High water tables exacerbate this problem by raising

salinity to damaging levels, thereby reducing crop output (Hamzeh

et al., 2012). To mitigate such stresses, precision irrigation

techniques and real-time monitoring of soil moisture and crop

development are crucial (Yang H. et al., 2019). Additionally, salt

removal from the root zone and field-specific corrective measures

are necessary to maintain productivity (Burt and Isbell, 2005).

Artificial intelligence (AI) and RS play complementary roles in

assessing water and salinity stress in sugarcane. RS techniques

such as thermal imaging and satellite-based data are valuable for

estimating evapotranspiration (ET) andmanaging irrigation systems

(Hamzeh et al., 2016; Das et al., 2020; Bispo et al., 2022; Watanabe

et al., 2022). Energy balance models and vegetation indices are used

to estimate ET and detect crop water stress (Patil et al., 2021;

Virnodkar et al., 2021). Meanwhile, AI approaches, particularly

machine learning (ML) and convolutional neural networks

(CNNs), have shown promise in analyzing RS data to classify and

map stress-affected zones in sugarcane fields. Nitrogen (N) remains

a critical determinant of sugarcane yield and quality (Wiedenfeld,
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1995), influencing attributes such as photosynthesis, tiller

production, stem length, and girth (Gopalasundaram et al., 2012).

Effective nitrogen management is thus central to sustainable

productivity (Boschiero et al., 2020; Yang Y. et al., 2019).

Extensive research on the optimal application of nitrogen

fertilizers in sugarcane cultivation has been conducted globally,

considering factors like growth cycle, climatic conditions, cultivar,

and soil properties (Meyer et al., 1986; Wood et al., 1996). Although

traditional techniques such as chlorophyll meters, soil sampling, and

tissue analysis exist, they are often unsuitable for large-scale use due

to their invasive, costly, and time-consuming nature (Ranjan

et al., 2012).

Recent advances in AI and RS have facilitated non-invasive

estimation of foliar nitrogen. Hyperspectral imagery, sensitive to

biochemical changes in vegetation, has been effectively employed

for nitrogen assessment (Soltanikazemi et al., 2022). Indices such as

the Global Environmental Monitoring Index (GEMI), Chlorophyll

Green Index (Clgreen), and Sentinel-2 Red-Edge Position Index

(S2REP) have proven useful in estimating nitrogen levels in

sugarcane leaves (Abdel-Rahman et al., 2013). Feature selection

algorithms like Random Forest (RF) help reduce redundancy in

hyperspectral datasets (Abdel-Rahman et al., 2010), while AI

models including RF and Support Vector Regression (SVR) have

demonstrated success in predicting nitrogen content rapidly and

accurately (Martins et al., 2024). These methods offer practical,

cost-effective, and scalable solutions for nitrogen monitoring (Bispo

et al., 2022). Conventional stress monitoring techniques often lack

the precision and speed required for proactive decision-making,

reinforcing the need for advanced technologies. This review,

therefore, emphasizes AI-based RS solutions for assessing key

stressors in sugarcane agriculture. The primary objectives of this

article are to: (i) explore how RS and AI are applied in sugarcane

farming to evaluate crop water stress, (ii) investigate methods for

mapping salinity stress using integrated RS and AI approaches, and

(iii) highlight how spectral indices and AI tools can be leveraged to

monitor the nitrogen status of sugarcane crops. Accordingly, the

article is structured as follows: Section 2 covers bibliographic

analysis; Section 3 presents a detailed discussion on integrated

AI–RS methodologies and statistical software, along with

recommendations for evaluating nitrogen, salinity, and water

stress; Section 4 addresses existing challenges and limitations;

Section 5 outlines future research directions; and Section 6 offers

concluding insights.
2 Literary examination of sources

This study offers a comprehensive review of research focused on

key stressors namely water stress, salinity stress, and plant nitrogen

deficiency within the context of sugarcane cultivation. The review

encompasses various aspects such as leaf nitrogen estimation,

detection of water and salinity stress, and associated spectral

signatures and vegetation indices. It particularly emphasizes the

role of AI and RS technologies in addressing these challenges,

highlighting recent advancements, practical applications, and the
Frontiers in Agronomy 03
benefits and limitations of these approaches in sugarcane

agriculture. To ensure a thorough evaluation, an extensive

literature search was conducted using multiple academic

databases, including Google Scholar, Scopus, ResearchGate, and

Web of Science. The search focused on publications from 1981 to

2025, drawing upon peer-reviewed research articles, book chapters,

and review papers. A total of 72 relevant sources (out of 88

references) were identified and systematically organized. Of these,

36 publications specifically demonstrated the effective application of

AI, RS, or integrated approaches in various sugarcane-related

domains such as water stress detection, leaf nitrogen monitoring,

and salinity stress evaluation (Figure 1, Figure 2).

Journal titles have been abbreviated following the ISO4

standard, with a few exceptions such as Plan Plus, Water SA,

Sustainability, Sugar Tech, and FAO Annual Report. The review

also incorporates valuable content from symposium articles

(Symp), conference proceedings (Proc), and conference papers

(Conf). A strategic search methodology was adopted to compile

the bibliography. Specific keywords and key phrases were used

either individually or in logical combinations to locate relevant

material. These included: “crop water stress”, “water stress of

sugarcane assessment using AI/ML/DL and remote sensing”,

“salinity stress”, “salinity stress of sugarcane assessment using AI/

ML/DL and remote sensing”, “leaf nitrogen estimation in sugarcane

using AI/ML/DL and remote sensing”, “drought detection”, “plant

nitrogen stress”, “evapotranspiration”, “water productivity”, “water

balance”, “water deficit”. These search terms enabled the retrieval of

a broad and diverse set of studies on AI and RS applications in

sugarcane management. Figure 3 illustrates a word frequency

analysis of the selected references, focusing on the prominence of

AI-based RS research in sugarcane stress management. Notably,

several recent publications also served as entry points for accessing

foundational works and earlier studies, offering deeper insight into

the evolution of the field.
3 Detailed critiques

The utilization of RS applications in sugarcane farming

encompasses a wide range of aspects, including crop

classification, harvest planning, yield forecasting, disease detection

and management (Palaniswami et al., 2011; 2014; Vinayaka and

Prasad, 2024), assessment of crop health and growth, and detection

of CWS. Among these, CWS detection plays a crucial role in

predicting yield potential and optimizing irrigation scheduling

across different growth stages and seasons. Various methodologies

have been developed for identifying CWS, integrating soil water

measurements, plant physiological responses, and RS techniques.

The present study provides a comprehensive review of global

approaches for detecting water stress in sugarcane using diverse

RS methods and ML algorithms. The compiled indices (Table 1)

illustrate the breadth of RS-based approaches employed for

evaluating water status in irrigated sugarcane fields, reflecting the

dynamic and adaptable nature of water stress assessment methods.
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Advancements in precision agriculture have further expanded the

role of RS through the integration of AI and the Internet of Things

(IoT), jointly termed AIoT-based water management. These systems

leverage real-time data from soil moisture and weather sensors to

optimize irrigation schedules, significantly enhancing water-use

efficiency (Yueanket et al., 2024). Predictive algorithms such as Long

Short-Term Memory (LSTM) models forecast irrigation requirements

based on crop growth stages, thereby minimizing water wastage and

promoting sustainable resource use. RS complements these systems by

providing high-resolution imagery from satellites and drones for

spatiotemporal monitoring of crop health and water stress through

indices such as Normalized Difference Vegetation Index (NDVI)
Frontiers in Agronomy 04
(Pawar et al., 2024). Moreover, thermal and hyperspectral imaging

enable precise monitoring of environmental stressors, facilitating

timely interventions (Swami et al., 2025; Cho et al., 2024).

Beyond water management, RS techniques have also been

effectively employed for salinity stress and nitrogen status

assessment in sugarcane. High soil salinity adversely affects plant

growth, yield, and overall crop health, making its evaluation

essential for sustainable production. Table 2 presents an overview

of the RS-based indices and approaches commonly used for salinity

stress assessment in sugarcane. Similarly, estimation of LNC is

pivotal for optimizing fertilizer application and ensuring optimal

growth and yield. Spectral reflectance measurements, vegetation
FIGURE 1

Year wise distribution of referenced studies downloaded from various databases. Field Crops Res.: Field Crops Research, Int. J Remote Sens.:
International Journal of Remote Sensing, Int. J. Appl. Earth Obs. Geoinf.: International Journal of Applied Earth Observation and Geoinformation,
Agric. Water Manag.: Agricultural Water Management, Symp or Proc or Conf: Symposium/Proceedings/Conference Papers, Comput Electron Agric.:
Computers and Electronics in Agriculture, J Indian Soc Remote Sens: Journal of the Indian Society of Remote Sensing, Precis. Agric.: Precision
Agriculture.
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FIGURE 2

Number of referenced studies related to water, salinity, and nitrogen stress.
FIGURE 3

Keywords or phrases used for searching articles in the online platforms. GIS, Geographic Information System; RF, Random Forest; SVM, Support
Vector Machine.
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TABLE 1 Vegetation or spectral indices used in the referenced studies for crop water stress estimation.

Author(s) Expression(s)/indices Abbreviation & description

Inman-Bamber (2004) SWD = (drained upper limit) – (soil water content)
and Cumulative ET0 =o​ET0

SWD (soil water deficit), and ET0 (daily reference
evaporation)

Hellegers et al. (2009) CWPi = Yi/ETacti

EWPi = (Pi × Yi × Bi × Yi × Ci) = ETacti

where, Yi Yield of crop i (kg/ha)
Pi Market price received for crop i ($/kg)
Bi Variable production cost of crop i ($/kg)
Ci Fixed production cost of crop i ($/ha)

CWP (crop water productivity), and EWP
(economic water productivity)

Singels et al. (2010) i). SWDFi = fi × (WSp/Tmax)
[bound by 0.0 ≤ SWDFi ≤ 1.0] where fi is a process-specific parameter, usually with a
value between 0.0 and 1.0; WSp is potential crop water uptake (i.e., potential supply)
and Tmax is maximum transpiration (i.e., demand)
ii). SWDFi = (1/pi)×RASW
where, RASW is the relative available soil water content of the root zone; pi is the
RASW value where process i is reduced below the potential rate (p1 = 0.45 for carbon
assimilation, p2 = 0.55 for structural growth and p3 = 0.5 for water uptake).

SWDF (soil water stress
factors)

Lebourgeois et al.
(2010)

CWSIe = ((Tc-Ta)m-(Tc-Ta)ll)/((Tc-Ta)ul-(Tc-Ta)ll)
here, lower baseline (ll) denotes ‘‘non-water-stressed baseline’’, which is VPD
dependent, and the upper baseline (ul) represents (Tc - Ta) for a canopy with no
transpiration and is VPD independent, and (Tc - Ta)m is the measured difference
between canopy and air temperature.

CWSIe (empirical crop water stress index)

Teixeira et al. (2016)
ETr = ½exp asf + bsf (

TS

a0NDVI
)

� �
� ET0−GC

5
where asf and bsf are regression coefficients,

respectively. The correction factor (ET0-GC/5) was applied for atmospheric demand
calibration, being ET0-GC the daily ET0 grid for sugarcane GC and 5 mmd-1 is the ET0

daily average for the same period during the original modeling condition.

NDVI =
a2 − a1

a2 + a1
; and TS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS=seS4

p
where a2 and a1 denotes reflectances over the

ranges of wavelengths in the near infrared (NIR) and red (RED) regions of the solar
spectrum, respectively. Rs is surface emitted long-wave radiation, eSis surface emissivity,
and s=5.67×10–8 Wm-2K-4 (Stefan-Boltzmann constant).

ETr (evapotranspiration), and NDVI (normalized
difference vegetation index)

Brunini and Turco
(2016)

DWSI = Tc - Ta
where, Tc = temperature of the vegetal cover (°C); and Ta = air temperature (°C).

DWSI (daily water stress index)

Veysi et al. (2017) CWSI = (TS − TCold)=(THot − TCold)where, Ts is canopy temperature in cropped land,
TCold is temperature of well-irrigated pixel which is almost covered fully by vegetation
(Cold pixel), and THot is temperature of crop covered pixel with maximum amount of
water stress (Hot pixel).
VWC = (FW - DW/DW) × 100
where, FW= fresh weight, DW= dry weight.

CWSI (crop water stress index), and VWC
(vegetation water content)

Singels et al. (2018) DSI =
1
No

​(1  −   Fvd); WLI =
1
No

​(1  −   Fvw)where N is number of days with

measured probe data within a given week (usually 7), Fvd and Fvw represent the
severity of drought and waterlogging stress, respectively (1 = no stress, 0 = severely
stressed) on a given day.

DSI (drought stress index), and WLI (waterlogged
stress index)

Picoli et al. (2019) NDVI = NIR−RED/NIR+RED

GVMI =
(NIR + 0:1) − (SWIR + 0:02)
(NIR + 0:1) + (SWIR + 0:02)

NDII (SWIR 1) = NIR−SWIR/NIR+SWIR

NDII (SWIR 2) =
NIR − SWIR2
NIR + SWIR2

VCI = 100  �(
NDVIi − NDV Im in

NDVItextmax−NDVItextmin
)NEW =

RED−SWIR/RED+SWIR
NEW2 = RED−SWIR2/RED+SWIR2

NDII (normalized diference infrared index), GVMI
(global vegetation moisture index), VCI (vegetation
condition index), and NEW & NEW2 (2 new
indices using NIR and SWIR data)

Waqas et al. (2019) IWR =o
n

i=1

KCi
� ETp � CAwhere, CAi is cropping area of corresponding crop i, in ha.

Kc is crop coefficient and ETp is reference evapotranspiration in m/growing season.

IWR (irrigation water requirement)

Pereira et al. (2020) TS = TB10 + C1(TB10 −  TB11) + C2   (TB10 − TB11)
2 + C0 + (C3 +  W  C4)   (1 − e) +

(C5 + C6W)Dewhere TB10 and TB11 are brightness temperatures of bands 10 and 11 (°
C); Ci, i = 0, 2,…, 6 are parameters of the Split Window algorithm; e = mean emissivity;
and De = emissivity difference in bands.

TS (Land surface temperature, °C)

(Continued)
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indices, hyperspectral imaging, satellite and aerial imagery, and

chlorophyll-based estimations have been widely applied for LNC

evaluation (Table 3). AI-driven decision support systems further

enhance these applications by integrating multi-source RS and IoT

data to provide actionable insights for managing nitrogen levels and

mitigating salinity impacts (Koohi et al., 2023; Cho et al., 2024).

Despite these advancements, challenges such as data quality,

accessibility for small-scale farmers, and economic feasibility

persist, emphasizing the need for scalable and inclusive

technological adoption in sugarcane agriculture.

3.1 Water stress assessment

In the earlier studies, Rahman et al. (2004) employed NDVI to

identify sugarcane areas and assess crop conditions, considering
Frontiers in Agronomy 07
factors like leaf water content, nitrogen deficiency, pigments, foliar

nutrients, and agronomic parameters. Abdel-Rahman and Ahmed

(2008) found that the infrared/red ratio from Landsat TM NIR

radiometer, SWIR bands, and the digital multispectral video

(DMSV) sensor were effective in detecting water content in

sugarcane crops. Detection of water stress, attributed to a

reduction in the photosynthesis process, was found to be best

achieved at the canopy level using VIS, red edge, and NIR regions

(Berni et al., 2009). Brunini and Turco (2016) investigated

sugarcane water stress indices in irrigated areas with different

exposures and slopes. Their evaluation of daily water stress index

and soil water potential revealed variations based on exposure and

slope. The water stress index, derived from infrared thermometry,

helped determine the optimal timing for irrigating sugarcane crops.

Experiments conducted during various growing phases (tillering,
TABLE 1 Continued

Author(s) Expression(s)/indices Abbreviation & description

Triadi et al. (2020) CWSI = (TS − TCold)=(THot − TCold) CWSI

Das et al. (2020) ETc is expressed as:
(1 − Ya/Ym) = Ky (1 − ETc/ETm),
where Ym and Ya are maximum and actual yields, ETm is optimal crop
evapotranspiration, and Ky is a yield response factor representing effect of a reduction
in ETc on yield losses.

ETc (crop evapotranspiration)

Veysi et al. (2020)
NDVI = (rNIR − rRED)=(rNIR + rRED)SAVI =

(rNIR − rRED)
(rNIR + rRED + L)

(1 + L)MSAVI =
1
2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2rNIR + 1)2 − 8(rNIR − rRED)

q
�NDWI = (rNIR − rSWIR)=(rNIR + rSWIR)TVDI =

(TSobs − TSmin)
(a + bNDVI − TSmin)

CWSI = (TS − TCold)=(THot − TCold)

TVDI (temperature vegetation dryness index),
NDWI (normalized difference water index), SAVI
(soil adjusted vegetation index), MSAVI (modified
SAVI), NDVI, and CWSI

Patil et al. (2021) CWSI = (TS − TCold)=(THot − TCold) CWSI

Gonçalves et al. (2022)
SAVI =

(rNIR − rRED)
(rNIR + rRED + L)

(1 + L)ETa and geeSEBAL
ETa (actual evapotranspiration), SAVI, and
geeSEBAL (Google Earth Engine - Surface Energy
Balance Algorithm for Land)

Bispo et al. (2022)
SAVI =

(rNIR − rRED)
(rNIR + rRED + L)

(1 + L)and SETMI hybrid model
SAVI, and SETMI (Spatial Evapo-Transpiration
Modeling Interface)

Melo et al. (2022) CWSI = (Tc − Twet )=(Tdry − Twet)where Twet is the leaf temperature without water

stress, Tdry is the leaf temperature under water stress, and Tc is the temperature of the
leaf representing the canopy.

CWSI

Watanabe et al. (2022) CWSI = 1 – E/EP; where, E=transpiration rate, Ep = potential transpiration, and
CWSI = 1 – EWS/EC; where EC and EWS denote the transpiration rates of Control
(irrigated) and WS (water stressed canopy), respectively.

CWSI

Alavi et al. (2024) NDVI = (rNIR − rRED)=(rNIR + rRED)MSI = rSWIR=rNIREVI =
2:5   (rNIR − rRED)

(rNIR + 6rRED − 7:5rBLUE + 1)
GNDVI = (rGREEN − rRED)=(rGREEN + rRED)NMDI =

rNIR − (rSWIR − rSWIR2)
rNIR + (rSWIR − rSWIR2)

D1609 = 1 − R = 1-
rSWIR

(0:4431rNIR + 0:5569rSWIR2)
NTR = (1 −

rNIR)
2=2rNIRNIRv = rNDVI � rNIRBrightness = 0.3029 rBLUE + 0.2786 rGREEN + 0.4733

rRED + 0.5599 rNIR + 0.508 rSWIR + 0.1872rSWIR2Greenness = -0.2941 rBLUE - 0.243

rGREEN + 0.5424 rRED + 0.7276 rNIR + 0.0713 rSWIR - 0.1608rSWIR2RVI =
4svh

svh + svv

DPRVIc =
svh(

svh
svv

+ 3)

( svh
svv

+ 1)2
DPSVI =

svh½(svv(Max)svh − svvsvh + s 2
vh)

svv

ffiffiffi
2

p +

(svv(Max)svv + svvsvh − s 2
vv)�

svv

ffiffiffi
2

p IDPDD =
(svv(Max) − svv) + svhffiffiffi

2
p

VDDPI =
svh + svv

svv

DPDD =
svv + svhffiffiffi

2
p ETc = Kc �ET0

NDVI, MSI (Moisture Stress Index), EVI (Enhanced
Vegetation Index), GNDVI (Green NDVI), NMDI
(Normalized Multi-Band Drought Index), D1609,
NTR (NIR Transformed Reflectance), NIRv (Near-
Infrared Reflectance of Vegetation), Brightness,
Greenness, RVI (Radar Vegetation Index), DPRVIc
(Dual-pol Radar Vegetation Index), DPSVI (Dual
Polarization SAR Vegetation Index), IDPDD
(Inverse dual-pol Diagonal Distance), VDDPI
(Vertical Dual de-Polarization Index), DPDD (Dual-
Pol Diagonal Distance), ETc (crop
evapotranspiration)
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growth, and maturation) on surfaces with slopes ranging from 0 to

40% and different solar exposures indicated that the ideal irrigation

timing varied between 2.0 to 5.0 °C, depending on the sugarcane

phase. A review by Katsoulas et al. (2016) focused on crop water

stress and nutrient detection using reflectance measurement

approaches and sensors in a greenhouse. They observed that

ground-based sensor data indices were efficient for water stress

detection but were influenced by factors such as leaf age, thickness,

soil background, and canopy structure. Veysi et al. (2017)

introduced a novel method for computing Crop Water Stress

Index (CWSI) from satellite data, utilizing hot and cold pixels

without the need for ground ancillary data. The study focused on

irrigation scheduling in sugarcane during the growing season

(May–September) and demonstrated superior performance

compared to two alternative approaches, showing a strong

coefficient of determination. The researchers observed a negative

correlation between Vegetation Water Content (VWC) and CWSI,

with R2 values ranging from 0.42 to 0.78. Validation of the new
Frontiers in Agronomy 08
approach involved the analysis of eight Landsat 8 satellite images

alongside ground truth data obtained through in situmeasurements

of canopy temperature and VWC.

An in-depth analysis of the studies in Table 4 reveals the

progressive evolution of crop water stress assessment

methodologies, integrating diverse data sources, modelling

frameworks, and RS techniques. Early efforts, such as by Hellegers

et al. (2009) and Singels et al. (2010), employed models like Surface

Energy Balance Algorithm for Land (SEBAL) and CANEGRO for

estimating ET and simulating physiological responses under stress,

although they faced limitations in replicating yield-related

processes. As studies progressed, RS technologies became central,

with Teixeira et al. (2016) and Veysi et al. (2017, 2020) combining

MODIS, Landsat, and SEBAL with meteorological and soil data,

enabling improved spatial and temporal resolution in ET and water

productivity estimates. Thermal-based indices, particularly the

CWSI, emerged as powerful indicators in studies like Lebourgeois

et al. (2010) and Farsi et al., demonstrating strong correlation with
TABLE 2 Vegetation or spectral indices used in the referenced studies for salinity stress assessment.

Author(s) Expression(s)/indices Abbreviation & description

Hamzeh et al. (2012) NDVI = (R800 −R670)/(R800 +R670)
NDWI = (R860 −R1240)/(R860 +R1240)

SWSI 1 = (R803 − R681)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R905 + R972)

p
SWSI 3 = (R803-R681 ) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(R1174 + R972)
p

NDVI (normalized difference vegetation index),
NDWI (normalized difference water index), SAVI
(Soil-Adjusted Vegetation Index), and SWSI 1 & 3
(Salinity and Water Stress Indices 1 & 3)

Hamzeh et al. (2013) NDVI = (R800−R670)/(R800+R670)
NDVI705 = (R750−R705)/(R750+R705)

SR = R750/R705
VOG1 = R740/R720

REP = 700 + 40{[(R670+R780)/2−R700]/(R740−R700)}
mNDVI705 = (R750−R705)/(R750+R705−2R445)

mSR705 = (R750 – R445)/(R705 – R445)
MCARI(670,700) = [(R700 – R670) – 0.2(R700 – R550)] �(R700/R670)
TCARI(670,700) = 3[(R700 – R670) – 0.2(R700 – R550)] �(R700/R670)

ARI = (1/R550) – (1/R700)

MSAVI = §  ½
2R800 + 1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2R800 + 1)2 − 8(R800 − R670)

p �OSAVI = (1 + 0.16) (R800 – R670)/

(R800+R670 + 0.16)
PRI = (R531 – R570)/(R531 + R570)
PRI2 = (R570 – R539)/(R570 + R539)

CRI = (1/R510) – (1/R550)
MSI = R1599/R819

NDII = (R819 – R1649)/(R819 + R1649)
WI = R900/R970

NDWI = (R860 −R1240)/(R860 +R1240)
NDWI-Hyp = (R1070 – R1200)/(R1070 + R1200)

DSWI-1 = R800/R1660

SWSI 1 = (R803 − R681)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R905 + R972)

p
SWSI 2 = (R803-R681 ) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(R1326 + R11507)
p

SWSI 3 = (R803-R681 ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R1174 + R972)

p
where, Rx is the

reflectance at x nm.

NDVI (normalized difference vegetation index),
NDVI705 (Red edge normalized difference vegetation
index), SR (Simple ratio), VOG1 (Vogelmann red
edge index), REP (Red-edge position), mNDVI705
(Modified red edge normalized difference vegetation
index), mSR705 (Modified SR), MCARI(670,700),
TCARI(670,700), ARI (Anthocyanin reflectance index),
MSAVI (Modified soil adjusted vegetation index),
OSAVI (Optimized soil-adjusted vegetation index),
PRI (Photochemical reflectance index), PRI 2
(Photochemical reflectance index 2), CRI
(Carotenoid reflectance index), MSI (Moisture stress
index), NDII (Normalized difference infrared index),
WI (Water index), NDWI (normalized difference
water index), NDWI-Hyp (NDWI-hyperion),
DSWI-1 (Disease-water stress index 1), SAVI (Soil-
Adjusted Vegetation Index), and SWSI 1, 2 & 3
(Salinity and Water Stress Indices 1, 2 & 3)

Hamzeh et al. (2016) RNIR

NDVI = (RNIR−RRED)/(RNIR+RRED)
SR = RNIR/RRED

SAVI = L(RNIR−RRED)/(RNIR+RRED + L)
NDWI = (RNIR−R1650)/(RNIR+R1650)

SWSI 1 = (R803 − R681)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R905 + R972)

p
SWSI 2 = (R803-R681 ) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(R1326 + R11507)
p

SWSI 3 = (R803-R681 ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R1174 + R972)

p
SWSI-L = (RNIR

−RRED) =
ffiffiffiffiffiffiffiffiffiffi
R1650

p
where, RRED for Landsat: 660 nm for Hyperion: 660 nm RNIR for

Landsat: 825 nm for Hyperion: 823 nm.

RNIR, NDVI (normalized difference vegetation
index), SR (Simple ratio), SAVI (Soil-Adjusted
Vegetation Index), NDWI (normalized difference
water index), SWSI 1, 2 & 3 (Salinity and Water
Stress Indices 1, 2 & 3), and SWSI-L (Salinity and
Water stress Index- Landsat)
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TABLE 3 Vegetation or spectral indices used in the referenced studies for nitrogen levels evaluation.

Author(s) Expression(s)/indices Abbreviation & description

Mokhele and Ahmed
(2010)

RVI = (R810/R560)
PRI = (R531-R570)/(R531+R570)
PSRI = (R680-R500)/R750
mSR = (R750-R445)/(R705-R445)
REI = R740/R720
CI = R760/R695
NPCI = (R680-R430)/(R680+R430)
GMI = R750/R700
ND = (R1075-R730)/(R1075+R730)
NDNRI = (R1770-R693)/(R1770+R693)
NDVI = (R750-R560)/(R750+R560)
mNDVI=(R2200-R2025)/(R2200+R2025)
SR = D744/D2142
WBI = R970/R900
WBR = R960/R930
D730, D740, D744

RVI (Ratio Vegetation Index), PRI (Photochemical
Reflectance Index), PSRI (Plant Senescence Reflectance
Index), mSR (Modified Spectral Ratio), REI (Red-Edge
Index), CI (Carter Index), NPCI (Normalized Pigment
Chlorophyll Index), GMI (Gitelson & Merzylak Index),
ND (Normalized Difference), NDNRI (Normalized
Difference Nitrogen
Reflectance Index), NDVI (Normalized Difference
Vegetation Index), mNDVI (Modified NDVI), SR
(Spectral Ratio -Derivatives), WBI (Water Band Index),
WBR (Water Band Ratio), and First derivatives at 730,
740, 744.

Abdel-Rahman et al.
(2010)

SR(743, 1316) = R743/R1316
SR(743, 1317) = R743/R1317
SR(741, 1323) = R741/R1323

SR (simple ratio)

Abdel-Rahman et al.
(2013)

NDVI (691, 2042)
NDVI (2042, 691)
NDVI (691, 1588)
NDVI (518, 1710)
NDVI (518, 478)
NDVI (518, 1578)
NDVI (691, 1710)
NDVI (1730, 691)
NDVI (691, 1699)
NDVI (1710, 518)
NDVI (1578, 518)
NDVI (1588, 691)
NDVI (2042, 518)
NDVI (691, 1730)
NDVI (691, 478)
NDVI (518, 1588)
NDVI (478, 1578)
NDVI (1730, 691)
NDVI (691, 518)
NDVI (478, 1699)
NDVI (1578, 691)

NDVI (Normalized Difference Vegetation Index)

Soltanikazemi et al. (2022) NDVI = (NIR842−RED665)/(NIR842−RED665)
=(B8-B4)/(B8+B4)

GEMI = ½n(1 − 0:25n) −
B4 − 0:125
1 − B4

� =
2� B82 − B42 + 1:5B8 + 0:5B4

B8 − B4 + 0:5
NDI45 =

(RED705 − RED665)/(RED705 − RED665)
= (B5 − B4)/(B5 + B4)
MTCI = (NIR740 − RED705)/(NIR740 − RED705)
= (B6 − B5)/(B5 − B4)
IRECI = (NIR783 − RED665)/(NIR705/NIR740)
= (B7 − B4)/(B5/B6)
GNDVI = (NIR783 − RG560)/(NIR783 + G560)
= (B7 − B3)/(B7 + B3)
PSSRa = NIR783/RED665 = B7/B4

S2REP = 705 + 35 × ½(NIR783 + RED665=2) − RED705

NIR740 − RED705
�= 705 + 35 × [{(B7+B4)/

2}-B5]/(B6-B5)
Clgreen = NIR783/GREEN560 = (B8/B3) −1
Clred-edge = NIR783/(RED − EDGE705) = (B8/B5) −1

NDVI (Normalized Difference Vegetation Index), GEMI
(Global Environmental Monitoring Index), NDI45
(Normalized Difference Index 45), MTCI (Meris
Terrestrial Chlorophyll Index), IRECI (Inverted Red-
Edge Chlorophyll Index), GNDVI (Green NDVI),
PSSRa (Pigment specific simple ratio), S2REP (Sentinel-
2 Red-Edge Position Index), Clgreen (Chlorophyll green
index), and Clred-edge (Chlorophyll Red-edge)

(Continued)
F
rontiers in Agronomy
 09
 frontiersin.org

https://doi.org/10.3389/fagro.2025.1681294
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Vinayaka et al. 10.3389/fagro.2025.1681294
field-based measures of water deficit, despite challenges like cloud

interference and calibration complexity. ML and deep learning (DL)

significantly enhanced CWS assessment in later studies. For

instance, Virnodkar et al. (2021) employed DenseResUNet and

achieved high segmentation accuracy for stressed fields, while Alavi

et al. (2024) and Melo et al. (2022) showed that advanced ML

models like Random Forest and Inception-ResNet-v2 provided

highly accurate predictions (R2 = 0.92–0.99, RMSE = 2.02–0.32

mmd−1) of crop water demand and thermal stress patterns. Notably,

Gonçalves et al. (2022) and Bispo et al. (2022) showcased hybrid

modeling approaches using Google Earth Engine - Surface Energy

Balance Algorithm for Land (geeSEBAL) and Spatial Evapo-

Transpiration Modeling Interface (SETMI), integrating RS with

in-field micrometeorological data to refine ET estimates and

irrigation management (RMSE = 0.46, R2 = 0.94 − 0.97). Across

studies, spectral indices (e.g., TVDI: temperature vegetation dryness

index; NDVI), soil moisture probes, thermal imaging, and energy

balance models consistently contributed to assessing water stress,

though limitations such as low-resolution meteorological data,

cloud cover, and sensor calibration persisted. Collectively, these

investigations underline a clear trend toward integrating multi-

source RS data with AI/ML algorithms, enabling more precise,

scalable, and real-time assessments of water stress in sugarcane

agriculture supporting smarter irrigation scheduling and resilient

crop management.
3.2 Monitoring and estimation of salinity
stress

Salinity is a critical factor affecting soil health and crop growth

(Chele et al., 2021). Salinity stress assessment in sugarcane fields

involves evaluating the effects of salinity on sugarcane growth,

physiology, and yield. Various studies have been conducted to

assess the impact of salinity stress on sugarcane. Kumar et al.
Frontiers in Agronomy 10
(2023a) found that salinity stress significantly affected sugarcane

yield, commercial cane sugar (CCS) yield, number of millable cane

(NMC), single cane weight (SCW), and pol % in juice. Vu et al. (2023)

demonstrated that the application of biochar had positive effects on

the growth and physiology of sugarcane under both saline and non-

saline conditions. Dhansu et al. (2022) conducted experiments to

evaluate the response of popular sub-tropical sugarcane varieties to

salinity stress and observed significant reductions in growth, relative

water content (RWC), and gas exchange traits under saline

conditions. Simoes et al. (2023) evaluated the growth-related traits

of Saccharum genotypes under saline and non-saline conditions and

identified promising genotypes with enhanced salinity tolerance.

Djajadi et al. (2022) investigated the influence of salinity stress on

sugarcane growth, soil nutrient content, and leaves and found that

saline stress decreased soil organic and available K (Potassium), as

well as the content of N and K in sugarcane leaves. Mohanan et al.

(2021) also discussed the assessment of salinity stress tolerance in

transgenic sugarcane plants overexpressing the Glyoxalase III gene.

However, these studies not utilized the AI algorithms and RS data. As

per the current advancements, AI algorithms applied to RS data can

effectively identify and quantify soil salinity levels.

The combined analysis of studies in Table 5 demonstrates the

growing effectiveness of integrating hyperspectral and multispectral

RS data with ML algorithms to assess salinity stress in agricultural

soils, particularly sugarcane fields. Hamzeh et al. (2012) laid

foundational work by applying classifiers like Support Vector

Machine (SVM), Spectral Angle Mapper (SAM), Minimum

Distance (MD) and Maximum Likelihood algorithm (MLA) on

Hyperion imagery in Khuzestan, Iran, where SVM outperformed

others with a classification accuracy of 78.7%, revealing that RS-

based salinity mapping can support targeted management of

sugarcane in varied salinity zones. Building on this, Hamzeh et al.

(2013) compared 21 hyperspectral vegetation indices (VIs),

identifying optimized indices like OSAVI (Optimized soil-

adjusted vegetation index) and VOG1 (Vogelmann red edge
TABLE 3 Continued

Author(s) Expression(s)/indices Abbreviation & description

Martins et al. (2024) Bni = (R750-R500)/(R705-R500)
GMi1 = R750/R550
GMi2 = R750/R700
GNDVI = (R780-R550)/(R780+R550)
mND705= (R750-R705)/(R750+R705-2R500)
MTCI = (R750-R710)/(R710-R680)
NDCI = (R762-R527)/(R762+R527)
NDRE = (R790-R720)/(R790+R720)
PSNDa = (R800-R680)/(R800+R680)
PSNDb = (R800-R635)/(R800+R635)
PSNDc = (R800-R470)/(R800+R470)
RI-1Db = R735/R720
RI-2dB = R738/R720
RI-3dB = R741/R717
RI-half = R747/R708
RNDVI = (R780-R670)/(R780+R670)
SR705 = R750/R705
VOGa = R740/R720
VOGb = (R734-R747)/(R715-R726)
VOGc = (R734-R747)/(R715-R720)

BNi (Buschman and Nagel index), GMi1 (Gitelson and
Merzlyak index-1), GMi2 (Gitelson and Merzlyak
index-2), GNDVI (Green normalized difference
vegetation index), mND705 (Modified normal difference
index), MTCI (MERIS terrestrial chlorophyll index),
NDCI (Normalized difference Chlorophyll index),
NDRE (Normalized difference red-edge), PSNDa,b,c
(Pigment specific Normalized difference a, b, & c), RI-
idB (Ratio indice-idB, i=1,2,3), RI-half (Ratio index-
Half), RNDVI (Red normalized difference vegetation
index), SR705 (Simple ratio 705), VOGa,b,c (Vogelman
indice-a, b, & c).
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TABLE 4 Critical observations from referenced studies for crop water stress assessment.

Studies Study area and data Methods used Results Remarks

Inman-
Bamber
(2004)

Kalamia Estate, Ayr,
Queensland, Australia.
Objectives: validate 50-stalk
elongation criterion, study dry
matter partitioning. Neutron
moisture meter, AWS
installed for data collection.
Stress tracked via SWD,
cumulative ETo.

Randomized split plot design.
Significance of treatment effects
determined using TTEST procedure in
SYSTAT.

Sugarcane biomass tolerates soil water
deficits, affecting dry matter partitioning.
Stress reduces leaf and stalk elongation,
increasing sucrose yield. Senescence
reduces green leaf number per stalk. Leaf
elongation and appearance are
interdependent. Mean leaf extension rate
correlated with daily minimum
temperature.

Limited understanding: water
stress impact on sugar yield
and yield-forming processes.
Dry matter partitioning
response to water deficits
unclear. Sugarcane growth
models need enhancement.

Hellegers
et al. (2009)

South Africa. Landsat image
of the Inkomati catchment
(Path 168-Row 78). Actual
water consumption and
associated biomass production
using SEBAL.

Crop water productivity (CWP) is
analyzed by using Surface Energy
Balance Algorithm for Land (SEBAL)
and RS. Socio-economic analysis to
quantify foregone economic water
productivity (EWP).

The results show that diverting water
away from crops with low CWP is not
always cost-effective in terms of foregone
EWP.

Production costs cannot be
derived by RS. Not all
biomass produced is beneficial
biomass. Only the ET from
irrigation can be managed by
water reallocation.

Teixeira
et al. (2016)

Sao Paulo state, Brazil.
MODIS images and gridded
weather data.

SAFER quantifies ET. Monteith’s RUE
(Radiation Use Efficiency) model
quantifies biomass (BIO). Water
productivity (WP) calculates ratio of
BIO to ET.

Mean values for ET: 0.6-4.0 mm/day. BIO:
20–200 kg/ha/day. WP: 2.8-6.0 kg/m³. Soil
moisture suggests supplementary
irrigation during grand growth.

Estimate errors for emissivity
in Sao Paulo, Brazil
contrasting environmental
conditions.

Singels et al.
(2010)

Data from two experiments at
Mount Edgecombe, South
Africa were used: 2002/03
trial monitored WU (Water
uptake), CAR, Plant extension
(PER) (PER), SA over 40
days, starting with 5-month-
old well-watered sugarcane.
1998/99 trial-imposed stress 3
months post-planting.

CANEGRO model calculated root length
density. BEWAB WU model
recommended over CERES WU. Models
simulated water stress impact on sink
activity and sucrose accumulation (SA).

Soil water’s limiting point differed
between Experiment A (0.129) and B
(0.307), due to evaporative demand
variations. Sink activity responded faster
and at higher soil water contents in
Experiment B. Severe water stress resulted
in the cessation of sucrose accumulation.

Models minimized time gaps
between sink and source
activity reduction. CANESIM
overlooked water stress
impact on sink. CANEGRO
capped root length density.
CANESIM inadequately
replicated sucrose
accumulation variance under
water stress.

Lebourgeois
et al. (2010)

Southern Reunion Island.
Thermal data from clear days
and 1-hour afternoon in 2007
set empirical CWSIe
baselines. 2008 data tested
method’s robustness.

Empirical CWSIe method, Water Deficit
Index method. Theoretical method
(CWSIt), and Diurnal study method.

AET/MET vs. (1 - CWSIe) regression
(0.4–1 range) showed significant
correlation (global R2 = 0.75,
RMSE = 0.12), indicating CWSIe’s efficacy
even in humid conditions [vapor pressure
deficit (VPD) 0.5-2.1].

CWSIt not for irrigation
scheduling. Unsuitable for
early season. No canopy
temperature for irrigation
calculation.

Brunini and
Turco
(2016)

Jaboticabal, SP, Brazil.
Experiment used weather
station data. Soil samples
monitored moisture.
Tensiometers measured water
potential. Irrigation based on
ET.

Experimental area assessed various
surfaces. Daily water stress index and
soil water potential evaluated. Drip
irrigation employed. Temperature
readings taken. Water stress index
calculated. Analysis done via ANOVA
and Tukey test.

Sugarcane water stress varies with terrain
exposure and slope while areas with water
stress index was above 5.0 °C had lower
yield values. Lack of water affects tillering.
Complementary irrigation mitigates yield
reduction.

Rainfall limited in initial
sugarcane growth months.
2013–14 water stress damaged
crop severely. Yield affected
by low rainfall, high
temperatures.

Veysi et al.
(2017)

Salman Farsi Agro industry,
Iran. Dataset: canopy
temperature, eight Landsat 8
images. Regression set
temperature, VPD lower
boundary. Three water stress
index methods analyzed.

Empirical CWSI, Idso method with
handheld IR thermometer, and Landsat
8 thermal data. New satellite CWSI
retrieval proposed. Hot and cold pixel
method used.

Strong correlation: field-based and
satellite-derived CWSI. Negative VWC-
CWSI relationship (R2: 0.42–0.78). Water
stress categorized: high, medium, low.
Proposed CWSI approach aids irrigation
scheduling in sugarcane.

Challenges in field
temperature measurement.
Key calculations establish
temperature bounds. Requires
additional data and complex
computations.

Singels et al.
(2018)

Mpumalanga, South Africa.
RS data (2011-2013) via
SEBAL. Ground FPAR and
biomass estimates. ET
measured using surface
renewal system.
Meteorological data from
National Oceanic and
Atmospheric Administration
(NOAA) database. Soil water

RS estimates ET, biomass via SEBAL.
Ground FPAR, biomass measures.
Surface renewal (SR) system estimates
ET. Kc values calculated from ET, grass
evaporation. Comparison with field data.
Soil water monitored. drought stress
index (DSI) and waterlogged stress index
(WLI) computed. Thresholds calibrated
using SEBAL. Meteorological data for
Penman-Monteith ET.

RS FPAR, biomass correlate strongly with
field (R2 = 0.89, 0.78). SEBAL ET
surpasses SR by 5mm/week. SEBAL Kc
values aligns better with literature.

32% fields below economic
thresholds. SEBAL shows
lower ET without sufficient
soil water. SEBAL biomass
production (TDM) should
exceed aboveground dry
biomass (ADM). SR estimates
ET via energy balance
equation.

(Continued)
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TABLE 4 Continued

Studies Study area and data Methods used Results Remarks

monitored with Aquacheck
probes.

Picoli et al.
(2019)

Northwest São Paulo State,
Brazil. Landsat detects
sugarcane drought. Spectral
indices from Red, NIR, SWIR
bands. Climatological soil-
water balance (CSWB) model
predicts water status.
European Centre for
Medium-Range Weather
Forecasts (ECMWF) provides
meteorological data.

Assessing plant-sensitive spectral indices.
Comparing with CSWB-estimated soil
moisture. Developing new indices
combining NIR, SWIR. Using cluster,
discriminant analysis for drought
detection and monitoring.

New indices for sugarcane drought via
Landsat. Spectral indices correlate with
water balance. 65% accuracy drought
system via cluster analysis. Discriminant
analysis optimal for drought monitoring.

CSWB serves as benchmark,
but prone to errors. Future
studies prioritize fewer
indices, local variables,
especially during phenological
phases. Caution against low-
resolution meteorological data
like ECMWF.

Waqas et al.
(2019)

Command area of 3
distributaries, namely
Killianwala, Mungi and
Khurrianwala lying in the
district of Faisalabad,
Pakistan. Multispectral images
of LANDSAT-7 were used for
study.

NDVI classification, accuracy assessed.
ET by Penman-Monteith equation. Crop
water via 10-day Kc value, irrigation
demand from LULC.

LULC mapping for three distributaries.
Accuracy: 84% and 86%. Estimation of
crop water requirement, irrigation
demand. Canal water deficit (CWD)
calculated.

Comparatively satisfactory
results were noticed.

Pereira et al.
(2020)

Central Goiás, Brazil. Leaf
temperature (TL and land
surface temperature (TS)
measurements. Landsat 8
imagery. Weather data,
rainfall. Bands 10, 11 for
NDVI.

TL by IR thermometer, TS
viaLandsat8.Waterbalance detects water
deficit (WD) and surplus (WS). TL-Ta,
TS-Ta calculated. Bands 10, 11 for
temperature. Emissiv
itycalibratedwithsoil cover factor (SCF).

TL detects WD, WS in sugarcane. TS has
limited in WD detection. At band 11, TS
tends to smaller. Calibration uncertainty
mainly with band 11.

TS needs improvement based
on surface properties. TL -Ta

error at 20% for some dates.
Band 11 calibration was
uncertain. Further
investigation needed.

Triadi et al.
(2020)

Sugarcane plantation in
Djengkol, Kediri, East Java.
Secondary data from various
sources, Oct 2017-Sep 2019.
Landsat 8, MODIS-Aqua
satellite data for water vapour.

CWSI, NDVI, Split-window algorithm to
calculate CWSI by analysing drought
stress response from land surface
temperature (LST).

CWSI and NDVI can effectively estimate
the level of water stress in sugarcane. The
results can be useful for irrigation
management in sugarcane fields.

CWSI is very sensitive to
cloud cover. The water vapor
data used has a very large
resolution so it tends to be
inaccurate.

Virnodkar
et al. (2020)

Not explicitly mentioned the
specific dataset used.

RS and ML methods, coupled with
canopy temperature-based spectral
indices, alongside various techniques
such as IR thermometry, stomatal
conductance and stem water potential
measurements.

Review on ML techniques and RS have
been used for CWS assessment in various
crops including sugarcane. ML and RS can
be used to improve water management
and irrigation practices in agriculture.

Existing methods for
evaluating water stress can be
greatly improved. CWS
assessments require attention
from the research community.

Das et al.
(2020)

Northeast Thailand. Dataset:
Kc, Leaf Area Index (LAI),
yield data. Split into training/
testing sets. Linear,
polynomial regression for
prediction.

RS observation with ML and land
surface model (LSM). Regression and
polynomial models established for LAI
vs Kc and found 6th order polynomial is
accurate with adjusted R2 = 0.87,
RMSE = 0.089, MAPE = 8.63. High-
resolution LSM computes daily ET.
Yield response was analyzed in 19 fields.

Initial and early stages have minimal ETc
distribution, contrasting with higher levels
during grand growth and yield formation.
Spatiotemporal disparities noted across
fields. Comprehensive analysis affirms
yield-water consumption correlation.

Limited field scale studies on
actual water consumption of
sugarcane. Uncertainty in
yield due to various factors.
Dependence on optimal
conditions for maximum yield
and ET.

Veysi et al.
(2020)

Sugarcane farms of Salman
Farsi. Salman Farsi, southwest
of Iran. Landsat 8 satellite
images.

Field measurements of soil moisture and
canopy temperature, alongside calculated
indices using optical and thermal IR
wavelengths, to analyze their
relationship with soil moisture.

Both CWSI and temperature vegetation
dryness index (TVDI) align in assessing
soil moisture, implying their suitability for
irrigation scheduling. TVDI shows
stronger correlation 0.35≤R2 ≤ 0.66 and
spatial consistency with soil moisture.
RMSE was less than 0.2. Comparison
between recorded irrigation and soil
moisture levels in the farms revealed three
distinct classes.

Vegetation indices based on
optical bands do not show a
good coefficient of
determination R2.

(Continued)
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TABLE 4 Continued

Studies Study area and data Methods used Results Remarks

Patil et al.
(2021)

Area not specified. Landsat 8
satellite image.

In R, METRIC-based water package
computes broadband albedo, LAI, Land
surface temperature (Ts), long-wave
radiation, Rn, incoming solar radiation,
and top-of-atmosphere (TOA)
reflectance.

The comparative results indicate that both
the results are 91% alike. The comparison
of ET and CWSI indicated that both
CWSI and ET maps can be used for the
assessment of crop water status and
irrigation scheduling.

Further works should consider
the influence of cultivation
methods, climate conditions
and other factors affecting
CWSI.

Virnodkar
et al. (2021)

A dataset containing water-
stressed sugarcane crops from
four talukas (Gokak, Raibag,
Jamkhandi, and Mudhol) in
Karnataka, India. Cloud-free
Sentinel-2 satellite images.

Encoder-decoder architecture with
UNet, SegNet, and FCN models.
DenseNet architecture with densely
connected layers. Semantic segmentation
using deep learning (DL) techniques.

The ‘DenseResUNet’ model achieves
robust performance, with 61.91% mean
Intersection over Union (mIoU) and
80.53% accuracy in segmenting water-
stressed sugarcane fields, outperforming
UNet, ResUNet, and DenseUNet with
scores of 32.20%, 58.34%, and 53.15%,
respectively.

Results highlight semantic
segmentation for CWS
detection with limited RS
data. Increasing training
samples could improve
accuracy.

Gonçalves
et al. (2022)

24 ha commercial field in
western Sao Paulo, Brazil.
Landsat 8 Operational Land
Imager (OLI) and Thermal
Infrared Sensor (TIRS),
Landsat 7 Enhanced Thematic
Mapper Plus (ETM), ERA5-
Land reanalysis dataset,
Shuttle Radar Topography
Mission (SRTM) digital
elevation data.

RS method estimates actual
evapotranspiration (ETa). Google Earth
Engine (GEE)-Surface Energy Balance
Algorithm for Land (geeSEBAL) used.
Calibration with Inverse Modeling at
Extreme Conditions (CIMEC).
Comparison with eddy covariance (EC)
data. RS-based soil water balance for
water stress. Statistical analysis includes
R2, RMSE, and Bias.

geeSEBAL accurately estimated sugarcane
ETa (RMSE = 0.46, R2 = 0.97) in Brazil,
matching EC data, standard values, and
flux tower data. It identified water stress,
aiding irrigation management.

Soil heat flux (W/m2) values
have little influence on energy
balance (EB) due to their low
values. Soil-adjusted
vegetation index (SAVI)
values decrease during the
maturation stage of sugarcane.
Limited availability of climate
data in certain areas.

Bispo et al.
(2022)

Field data from EC system in
Andradina, São Paulo.
Meteorological data from
Itapura station. RS data used
for Spatial
EvapoTranspiration Modeling
Interface (SETMI) model.
Spectral reflectance informs
Kcbrf relationship. SCS
Runoff equation for effective
precipitation.

Eddy covariance tower for
micrometeorological variables. RS
method for ETa. Two-source energy
balance model (TSEB) and RS-water
balance (RSWB) coupling. Hybrid model
SETMI. Basal Kc from SAVI. Bowen
Ratio adjusts latent heat flux (lE) and
sensitive heat flux (H). IE converted for
ETa. Reference evapotranspiration (ETo)
from FAO-56. Water use optimization
for sugarcane.

Energy balance components correlated
strongly with EC data (ET R2 = 0.94,
Correlation coefficient=0.88). Model
linked SAVI to sugarcane’s crop
coefficient (Kcb). Average Kcb: 0.73 for
4th ratoon, 0.70 for 5th. Maximum Kcb
about 1.23. ETa averaged 1025 mm, with
daily rates of 2.9 mm. SETMI model
enhanced irrigation management.

Much significant results were
observed.

Melo et al.
(2022)

University of Sao Paulo,
Brazil. Inception-Resnet-v2
pretrained on ImageNet (10
million images, 10,000
categories). Model trained on
1.2 million images.
Validation: 1008 images.

Inception-Resnet-v2 neural network
model evaluated thermal sugarcane
images, outperforming traditional
methods in water stress assessment
accuracy.

Inception-Resnet-2 surpassed human
assessments, showing 23%, 17%, and 14%
higher accuracy in detecting thermal stress
across soil available water capacity (AWC)
classes of 25%, 50%, and 100%,
respectively.

No strong limitations were
noticed.

Watanabe
et al. (2022)

University of Ryukyus
greenhouse, Okinawa, Japan:
Monitored canopy
temperature (CT) under
control and water stress,
along with photosynthesis,
CWSI, and thermal images’
RGB channels. Recorded gray
levels for both conditions.

Temperature measured by thermal
camera and infrared thermometer. Mean
CT values for control and water-stressed
canopies analyzed statistically in R.
Correlation assessed.

Thermal images can distinguish between
well-watered and water-stressed canopies.
CT measurement and thermography are
both useful for water stress detection. R
gray level is a good indicator of sugarcane
water status. CWSI is correlated with
differences in CT and R gray level.

CT readings may be
influenced by weather
conditions. Comparing CT
readings may not be reliable
in bad weather. Thermal
images may more accurately
reflect changes in CT.

Alavi et al.
(2024)

Khuzestan province,
southwest of Iran.
Multisource RS data.
Meteorological and ground
measurements (Meteo-GM).
Sentinel-1 Synthetic Aperture
Radar (SAR) data.

4 most popular tree-based ML
algorithms, namely M5-pruned (M5P),
random forest regression (RFR),
gradient-boosted regression trees
(GBRT) and extreme gradient boosting
(XGBoost).

The RFR algorithm yielded the most
accurate ETc estimates, followed by
XGBoost, GBRT, and M5P algorithms
(R2 = 0.92–0.99, RMSE = 2.02–0.32
mmd−1). Meteo-GM models improved
with optical, thermal infrared (TIR), and
SAR RS data (R2 = 0.99, RMSE = 0.32
mmd−1 for TIR, R2 = 0.98, RMSE = 0.65
mmd−1 for SAR). Sobol’s sensitivity
analysis identified key input variables for
ETc estimation.

Optical RS methods have
limitations in assessing crop
water requirements. Hybrid
approaches combining
thermal and optical
information are needed.
Cloud cover restricts the
application of optical sensors.
Reliance on radar sensing,
specifically Sentinel-1 SAR, for
continuous observation.
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index) as reliable predictors of soil salinity with strong correlations

(R² up to 0.69), underscoring the importance of selecting

appropriate spectral bands sensitive to chlorophyll and water

content. Hamzeh et al. (2016) further contrasted Hyperion and

Landsat data, concluding that while Landsat delivered superior

categorical classification accuracy (84.84%, Kappa 0.77), Hyperion

was better suited for continuous salinity estimation. Notably, their

findings introduced the Salinity and Water Stress Index (SWSI) as a

robust metric for predicting salinity levels. Recent studies shifted

toward advanced ML approaches for broader applicability. Haq

et al. (2023) and Kaplan et al. (2023) demonstrated that ensemble

learning methods such as RF Regression (RFR) and SVM using

Landsat 8 and Sentinel-2 data respectively, achieved high accuracy

in salinity prediction (R² = 0.94 and 0.84), confirming the scalability

of RS-ML integration for local to regional salinity monitoring.

Overall, the comparative findings highlight a consensus that

hyperspectral data combined with tree-based ML models yield

reliable predictions of salinity stress, with vegetation indices and

spectral reflectance offering crucial insight. However, accuracy is

often limited by sensor resolution, endmember variability, and the

spatial distribution of ground truth data. Accurate yield predictions

based on salinity levels can also help optimize resource allocation

and improve overall crop management strategies, potentially

increasing sugarcane yield and quality (Waters et al., 2025). These

studies collectively highlight the value of tailored RS-ML

frameworks in salinity stress management, enabling precision

interventions in salt-affected sugarcane agroecosystems.
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3.3 Estimation of nitrogen levels

Reckoning leaf N using RS in sugarcane crops is important for

optimizing nitrogen fertilizer management and improving crop

growth and yield (Reyes-Trujillo et al., 2021). In recent years,

different algorithms have been developed to combine spectral

reflectance features with ML techniques for the estimation of leaf

physiological parameters, including chlorophyll content, moisture

content, and nitrogen content (Gai et al., 2023). RS techniques, such

as digital image processing, hyperspectral data analysis, and drone

multispectral imaging, can provide valuable information on leaf N

concentrations and crop vigor. These techniques allow for non-

destructive and fast estimation of nitrogen levels, enabling more

precise and efficient fertilizer application (Lofton, 2012; Barros

et al., 2021). By analyzing the correlation between LNC and

various image features, regression models can be constructed to

accurately estimate nitrogen content based on color and texture

parameters (Li et al., 2022). Additionally, RS can help determine the

optimum nitrogen rate and application timing for sugarcane

production, ensuring that nitrogen is applied at the right time

and in the right amount to maximize crop yield (Abebe et al., 2023).

The studies summarized in Table 6 emphasize the growing

reliance on hyperspectral and multispectral RS combined with ML

models for estimating nitrogen (N) content in sugarcane crops.

Ahmed (2010) used hyperspectral RS in shade house trials to assess

the impact of nitrogen and silicon treatments, identifying

correlations between red-edge indices (e.g., R740/R720) and N
TABLE 5 Critical observations from referenced studies for salinity stress estimation.

Studies Study area and data Methods used Results Remarks

Hamzeh
et al.
(2012)

Hakim Farabi Farming and Industrial Lands,
Khuzestan, Iran, spanning 774 km2. Field data
collected in Sep 2010 at 191 locations, sampling
soil (0–45 cm) salinity levels ranging from 1.5
to 9.7 dSm−1. Modeling used 125 samples,
validation 66. Hyperion image classified with
various classifiers.

Support Vector Machine
(SVM), Spectral Angle
Mapper (SAM),
Minimum Distance (MD)
and Maximum Likelihood
algorithm (MLA).

SVM classifier or PCA (1-5) achieved the
highest accuracy (78.7%) and kappa
coefficient (0.68) in salinity stress
classification. Salinity maps aid agricultural
management, indicating low, moderate, and
high salinity areas affecting crop yield.

SAM classifier accuracy
depends on endmember
selection. ML needs
adequate training data for
covariance. Limited
datasets vs. bands.

Hamzeh
et al.
(2013)

Khuzestan, Iran, 774 km² area. Soil salinity
measured at 108 sugarcane points, 60 for
modeling, 48 for validation. Hyperion image
acquired Sep 2, 2010.

Hyperspectral VIs
evaluated for soil salinity
estimation included 21
existing VIs and newly
developed ones, such as
optimized SAVI and
Vogelmann red edge.

SWSI-3, SWSI-1, VOG1, SWSI-2 optimal for
salinity, RMSE 1.14-1.17 dSm−1. Chlorophyll/
water bands effective. OSAVI (R2 = 0.69),
chlorophyll/NIR indices correlate strongly.

Hyperspectral RS vital for
precision. Satellite data
limited. PRI effectiveness
varies with crop type,
growth stage. Pigment-
related indices weaken
season-end.

Hamzeh
et al.
(2016)

Khuzestan, Iran. Sep 2010 field data: 25 fields,
0–45 cm depth, 191 samples with varied
salinity. Modeling: 125; validation: 66.

SVM, SAM, MD, MLA.

Landsat excelled in categorical salinity stress
classification (84.84% accuracy, Kappa 0.77),
while Hyperion outperformed in quantitative
estimation. Salinity and Water Stress Index
(SWSI) demonstrated superior prediction for
salinity stress, favoring Landsat for categorical
mapping.

Confusion between low/
moderate and moderate/
high salinity classes.
Indirect assessment is
costly. In situ accuracy
relies on ground data
density/distribution.

Haq et al.
(2023)

Landsat 8 data for spectral analysis.
Fifty-five soil samples from field survey of Kot
Addu, Pakistan.

RFR, SVM
RFR achieved R2 of 0.94 using Differential
Vegetation Index (DVI).

Efficient method for
assessing soil salinity at
local scales.

Kaplan
et al.
(2023).

393 soil samples drawn in United Arab
Emirates. Sentinel-2 satellite imagery for RS
data.

RF, SVM
Strong correlation (0.84) between modelling
and test results.

Interesting findings for
future studies at other
sites.
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levels. However, the study faced limitations such as weak

reflectance-biochemical correlations and inconsistency between

spectral and chemical sampling methods. Abdel-Rahman et al.

(2010) advanced the analysis by using first-order derivative

spectra to identify sensitive wavelengths, achieving an R² of 0.76

with the R743/R1316 ratio, yet noted the need for scalability to

canopy-level applications. Expanding the scope, Abdel-Rahman

et al. (2013) evaluated 163 hyperspectral bands using RF and

stepwise multiple linear (SML) regression models, both yielding

reliable predictions (RF: R² = 0.67, RMSEV = 0.15%; SML: R² = 0.71,

RMSEV = 0.19%), demonstrating the potential of hyperspectral

data for accurate N monitoring. In a more recent study,

Soltanikazemi et al. (2022) utilized Sentinel-2 imagery and

calculated multiple vegetation indices (e.g., S2REP, IRECI:

Inverted Red-Edge Chlorophyll Index, NDVI) using RF and SVR,

achieving modest performance (R² = 0.59, RMSE = 0.08), with RF

slightly outperforming SVR (R² = 0.58, RMSE = 0.09). They

emphasized the benefit of larger ground datasets and multi-

temporal imagery to improve robustness. Finally, Martins et al.

(2024) provided a detailed comparison of vegetation indices such as

BNi: Buschman and Nagel index, NDRE: Normalized Difference

Red-Edge, GNDVI: Green NDVI, and RI-1db: Ratio Index, all

yielding R² > 0.65 and RMSE< 3.7 g/kg. However, environmental
Frontiers in Agronomy 15
variability across locations and seasons influenced the predictive

capacity of their models, with performance dropping by up to 50%

for the same variety (SP 81 3250). Together, these studies indicate

that while RS-based N estimation in sugarcane is promising,

particularly with indices targeting red-edge and near-infrared

regions, the accuracy is influenced by factors like sensor

resolution, environmental heterogeneity, sample consistency, and

model type. The integration of ML, especially ensemble models like

RF, enhances predictive reliability, but operational deployment still

requires more stable, scalable, and temporally adaptive frameworks

for practical field use.
3.4 Software application

This review systematically examined all the referenced studies

to identify the use of specific statistical software, programming

languages, or analytical tools for implementing AI-RS

methodologies related to the estimation of water stress, salinity

stress, and LNC in sugarcane farming. Six studies explicitly

mentioned the use of software or coding frameworks. These

include SYSTAT (Inman-Bamber, 2004), QGIS Desktop (Triadi

et al., 2020), R, Python, and MATLAB (Virnodkar et al., 2020;
TABLE 6 Critical observations from referenced studies for nitrogen content evaluation.

Studies Study area and data Methods used Results Remarks

Ahmed (2010) South African Sugarcane
Research Institute (SASRI),
South Africa, conducts N ×
Si × variety trials in shade
houses to study stalk borer
(Eldana saccharina)
infestation.

Hyperspectral RS and ANOVA
analyzed for significant
reflectance differences due to
N and Si (Silicon) treatments
at each wave length across
cane ages.

Red-edge (R740/R720) correlates with N
concentration. NDVI (R750-R560)/(R750+R560)
with Si concentration. ND (R1075-R730)/(R1075
+R730) with N: Si ratio. N treatment influences
400–740 nm reflectance (p< 0.05) on 10-month
cane.

High RMSE in N and Si
regression models. Weak leaf
reflectance-biochemical
correlations. Spectral data
from one leaf, chemical
analysis from three leaves.

Abdel-
Rahman et al.
(2010)

Umfolozi mill supply area in
KwaZulu-Natal (KZN)
Province, South Africa. In
situ spectroscopic data of
sugarcane leaf samples.

First-order derivative spectra.
Calculation of slope of the
spectrum. Locating positions
of absorption features and
inflection points.

R743/R1316 ratio VI from reflectance’s first-order
derivatives had highest R2 = 0.76 correlation with
sugarcane leaf N concentration.

Need to explore the usefulness
of in situ spectroscopy at
canopy level using handheld,
airborne and spaceborne
sensors.

Abdel-
Rahman et al.
(2013)

KwaZulu-Natal Province,
South Africa. 163 out of 196
calibrated wavebands were
used in this study.

RF analyzes hyperspectral data,
predicts sugarcane N
concentration using RF
regression. Forward selection
identifies crucial vegetation
indices; RFs iteratively fit for
index inclusion.

RF and Stepwise multiple linear (SML) regression
models predict sugarcane N concentration well
(RF: R2 = 0.67, RMSEV = 0.15%; SML: R2 = 0.71,
RMSEV = 0.19%). RF shows promise with
hyperspectral data.

Excluded spectral regions with
strong water absorption. Used
163 of 196 wavebands. The
method may not suit low-N
sites, or small-scale farms due
to spatial resolution
limitations.

Soltanikazemi
et al. (2022)

Amir Kabir Sugarcane Agro-
industry located in Ahvaz
city, Khuzestan province,
Iran. Sentinel-2 data.

RF model, and SVR model.
NDVI, GEMI, MTCI, S2REP,
PSSRa, NDI45, IRECI,
GNDVI, Clgreen, and Clred-
edge indices were calculated
using QGIS software.

R2 for RF and SVR were 0.59 and 0.58,
respectively, and the corresponding RMSE was 0.08
and 0.09, respectively.

RF better than SVR for N yield
estimation. More ground data
allows diverse DL model
application. Multi-temporal
data enhances results.

Martins et al.
(2024)

Jau, Piracicaba, Santa Maria
da Serra. Data from the
variety SP 81 3250,
cultivated in three
experimental areas.

Obtained spectral curve,
applied vegetation indices. Lab
analyzed plant tissues for Total
Foliage Nitrogen (TFN).
Model predicted sugarcane N.

Top indices:
BNi (R2 > 0.66, RMSE< 3.50 g/kg), GNDVI (R2 >
0.65, RMSE< 3.67 g/kg), NDRE (R2 > 0.68, RMSE<
3.18 g/kg), RI-1db (R2 > 0.69, RMSE< 3.66 g/kg),
VOGa (R2> 0.69, RMSE< 3.44 g/kg). SP813250
variety’s predictive potential reduced up to 50% in
R2, in some cases due to environmental factors.

Reflectance varies in same
variety across soils. Model
instability across harvests.
High noise in blue wavelengths
of spectral curves.
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2021), R and MATLAB (Watanabe et al., 2022), Microsoft Excel

2019 and Python’s Scikit-learn library (Gai et al., 2023), and

Environment for Visualizing Imagery (ENVI) 5.3.1 for image

visualization and analysis (Alavi et al., 2024). Although many

studies reported the application of RS and ML methods, only a

few provided explicit details of the software environments or coding

frameworks used.
3.5 Recommendations: best solutions from
referenced studies

A critical synthesis of previous research (1981–2025) highlights

several methodological approaches that stand out as best-practice

solutions for stress detection in sugarcane agriculture. Thermal and

hyperspectral remote sensing combined with energy balance

models, such as SEBAL and CWSI, have provided reliable

estimates of evapotranspiration and crop water stress, especially

when integrated with meteorological and soil data to support

irrigation scheduling (Hellegers et al., 2009; Veysi et al., 2017;

Teixeira et al., 2016; Gonçalves et al., 2022). Recent advances

demonstrate that deep learning models, including DenseResUNet

and Inception-ResNet-v2, applied to high-resolution Sentinel-2 and

UAV imagery, significantly improve canopy-level water stress

segmentation and thermal pattern prediction (Virnodkar et al.,

2021; Alavi et al., 2024; Melo et al., 2022). For salinity stress

assessment, the combination of hyperspectral imagery with SVM

classifiers and tree-based ensemble methods such as RFR has

consistently yielded high classification accuracy and predictive

performance across diverse environments (Hamzeh et al., 2012,

2013; Haq et al., 2023; Kaplan et al., 2023). Similarly, for nitrogen

estimation, red-edge and NIR vegetation indices integrated with RF

or SVR have shown strong correlations with leaf nitrogen content,

offering scalable and non-destructive nutrient monitoring solutions

(Abdel-Rahman et al., 2010, 2013; Soltanikazemi et al., 2022;

Martins et al., 2024). In addition, data fusion approaches and

cloud-based platforms like Google Earth Engine have enabled the

integration of multi-sensor datasets, improving spatiotemporal

resolution and analytical efficiency (Gonçalves et al., 2022; Bispo

et al., 2022). Jointly, these approaches represent the most effective,

validated solutions for operationalizing AI-RS frameworks in

precision water, salinity, and nutrient management for sugarcane.
4 Challenges and limitations

Despite significant advancements, several challenges and

limitations persist in the application of RS and AI technologies

for assessing water stress, salinity stress, and LNC in sugarcane

crops. These challenges primarily arise from the complexity of

environmental conditions, limitations in sensor technology, data

processing requirements, and the need for robust model calibration

and validation.
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4.1 Technical and sensor limitations

Spatial resolution remains a major constraint, as RS instruments

often struggle to capture detailed information at the individual plant

or plot level in large sugarcane plantations. Similarly, limited

temporal resolution hampers the ability to monitor short-term

fluctuations in water stress, salinity, and nutrient dynamics, which

are critical for understanding crop responses across growth stages.

While hyperspectral sensors can provide improved spectral

resolution, they often face limitations in spatial coverage, data

volume, and operational costs. Low radiometric sensitivity

(radiometric resolution) can also limit the detection of subtle crop

stress signals, especially in early stages. Cloud cover further

complicates consistent monitoring by obstructing satellite

imagery, particularly in regions prone to frequent cloudiness. In

addition, high-quality RS data from advanced sensors can be

expensive and less accessible, restricting adoption among

resource-limited farmers and researchers.
4.2 Environmental and field variability

Variations in soil type, crop age, plant density, and

microclimatic conditions significantly influence spectral

reflectance, complicating the accurate discrimination of stress

signals (Waters et al., 2025). Non-crop interference, such as

background soil reflectance or surrounding vegetation, may

introduce noise that obscures the true radiometric signals from

sugarcane canopies (Som-Ard et al., 2021). Such variability makes it

challenging to develop generalized models that can accurately

capture stress patterns across diverse environments.
4.3 Data processing and integration
challenges

The processing of RS data involves extensive pre-processing

steps such as atmospheric correction, radiometric calibration, and

cloud masking to ensure accuracy, which can be time-consuming

and computationally demanding (Som-Ard et al., 2021). Integrating

data from multiple sensors or platforms for comprehensive stress

assessment requires sophisticated algorithms and standardized

analysis-ready data (ARD) formats, which are still evolving.

Obtaining reliable ground truth data for model calibration and

validation remains another challenge, especially across large or

remote agricultural regions.
4.4 Modelling and analytical constraints

ML and deep learning models, though promising, face

constraints when applied to heterogeneous agricultural datasets.

Unbalanced data distributions, intra-species variability, and
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insufficient ground truth samples can reduce model accuracy and

generalizability (Kamarudin et al., 2021; Koohi et al., 2023).

Effective calibration and validation are essential for improving

model rel iabi l i ty across di fferent environmental and

management conditions.

Addressing these limitations requires continuous research,

technological innovation, and interdisciplinary collaboration

among RS scientists , agronomists, data analysts , and

policymakers. Ongoing integration of AI and RS approaches

holds great potential to overcome current barriers and enhance

the precision and scalability of stress detection in sugarcane

farming. The present review also emphasizes previous research

that combines these emerging technologies to evaluate crop

stresses, specifically water, salinity, and nitrogen in sugarcane

cultivation systems.
5 Future directions

The future of sustainable agriculture depends on the widespread

integration of advanced technologies such as ML, RS, IoT, robotics,

PA, and cloud computing. Although these technologies possess

immense potential, their adoption particularly in developing

regions remains limited. In the context of increasing challenges

such as climate change, land degradation, and water scarcity, the

deployment of intelligent systems is essential to ensure efficient

management of water and nutrient resources during crop

production. Real-time monitoring and predictive analytics play a

pivotal role in addressing critical stressors such as water deficiency,

salinity, and nitrogen imbalance. When applied to RS data, ML

techniques can effectively detect spatial variability in water use

efficiency, particularly in low-productivity zones, thereby improving

irrigation scheduling and enhancing crop management without

expanding cultivated land or increasing water consumption.

Integration of advanced RS technologies has further

revolutionized sugarcane monitoring and management.

Hyperspectral imaging enables precise detection of water and

nutrient levels, improving the ability to assess crop health and

stress conditions (Swami et al., 2025). The use of unmanned aerial

vehicles (UAVs) and CubeSats provides high-resolution spatial and

temporal data crucial for real-time monitoring of environmental

stressors (Swami et al., 2025). Data fusion techniques, which

combine information from multiple sensors and platforms,

enhance the accuracy of assessing crop conditions and resource

availability (Swami et al., 2025). AI-driven predictive modelling

further strengthens decision-making in precision agriculture. The

ML algorithms enhance the prediction of crop responses to water

and nutrient availability, supporting site-specific management

strategies (Gupta et al., 2024). Real-time monitoring systems, such

as SWARM, dynamically adjust irrigation and nutrient delivery

based on live data, optimizing resource use and improving efficiency

(Babu et al., 2006).

Moreover, coupling RS datasets with ML classification

algorithms especially those utilizing full spectral ranges has shown
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high accuracy in assessing salinity and nitrogen levels in sugarcane

crops. Integrating explainable AI (XAI) approaches is crucial to

enhance model transparency and interpretability. XAI provides

insights into the decision-making process of ML models, allowing

agronomists and farmers to understand which spectral features or

environmental factors drive specific predictions. This

interpretability builds trust in AI-driven recommendations and

promotes informed field management decisions. However, several

barriers remain. The high cost of proprietary cognitive farming

solutions, coupled with the computational demands of advanced

ML algorithms, continues to limit large-scale adoption. To

overcome these challenges, the development of open-source,

farmer-friendly platforms is essential to democratize access to

digital technologies and reduce dependency on expensive

commercial software. Furthermore, optimizing ML models to

reduce processing time and computational overhead through

lightweight algorithms and edge computing will enable

integration with RS systems on resource-constrained devices.

Future research should also prioritize sensor calibration, data

accessibility, and ethical data management, ensuring privacy and

equitable use of agricultural data. Establishing clear frameworks for

data ownership and protection will foster trust and encourage the

broader adoption of AI- and RS-based technologies. Collectively,

these innovations will pave the way toward scalable, cost-effective,

and sustainable precision management systems for water, salinity,

and nutrient optimization in sugarcane cultivation (Figure 4).
6 Concluding remarks

Over the past decade, agricultural systems have increasingly

integrated AI and RS technologies to address critical challenges and

boost productivity. This review compiles current knowledge on the

application of AI and RS in sugarcane cultivation, highlighting their

strengths and constraints in managing crop water stress, leaf

nitrogen estimation, and salinity stress mapping. Although their

adoption in agriculture lags behind other sectors, the continuous

evolution of sensors, UAVs, and ML algorithms presents substantial

opportunities for innovation in sugarcane farming. Despite these

advancements, significant barriers remain − including high initial

investment, sensor limitations, complex data processing

requirements, l imited technical expertise, and farmer

apprehension. Nevertheless, AI-driven RS approaches show great

promise for improving both yield and quality in sugarcane, while

contr ibut ing posi t ive ly to environmental and socio-

economic outcomes.

Conventional soil moisture monitoring methods are often

constrained by high sensor costs, installation complexity, and

inaccuracies, especially across varied soil types and crop systems.

Plant-based assessments, while more reliable and accurate, often

lack scalability and are time-intensive. Research consistently shows

that remotely sensed indices such as the Photochemical Reflectance

Index (PRI) and NDVI are significantly correlated with

physiological parameters like leaf water potential (LWP), stomatal
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conductance, crop coefficient, and stem water potential. However,

relying solely on single-parameter metrics for plant water status

estimation often falls short in precision. Among water stress

indicators, the CWSI, particularly when derived from Earth

Observation (EO) data has emerged as a preferred metric for

assessing sugarcane water status across local to regional scales.

Infrared thermometers continue to serve as effective ground tools

for measuring canopy temperature, providing critical validation for

RS-based observations. Midday stem water potential also remains a

standard reference point for cross-verifying RS-derived estimates.

For salinity stress evaluation, studies endorse the use of

multispectral (e.g., Landsat ETM+) and hyperspectral (e.g.,

Hyperion) satellite data, with classification algorithms like

minimum distance (MD) consistently delivering reliable results.

Nitrogen estimation in sugarcane has similarly benefited from

vegetation indices that combine near-infrared, green, and red-

edge wavelengths. Indices such as SAVI (soil adjusted vegetation

index), MSAVI (modified SAVI), NDVI, and OSAVI have been
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effectively incorporated into linear, nonlinear, and ML-based

models, with ML approaches consistently outperforming

traditional methods in accuracy and adaptability.

Among ML techniques, Artificial Neural Networks (ANNs)

have shown particular success in analyzing UAV multispectral

data and in determining variable contributions to target

outcomes. Support Vector Machines (SVM) and Random Forests

(RF) also demonstrate high potential in RS-based classification,

though their full capabilities in detecting crop stresses specifically

water, salinity, and nitrogen are still underexplored. Recent

innovations like oblique and rotation-based RF classifiers have

exhibited improved performance across varied datasets. The

oblique RF approach, effective with discrete factorial features, is

promising for evaluating water stress and warrants deeper

investigation. Similarly, the rotation RF model, which integrates

multiple rotated feature spaces, has surpassed traditional classifiers

such as RF, SVM, and k-NN in several studies. Despite this, both

rotation RF and deep CNNs remain underutilized in stress
FIGURE 4

Blueprint for future research: A flowchart for precisely estimating crop stress factors through AI-driven remote sensing. LiDER, Light Detection and
Ranging; UAVs, Unmanned Aerial Vehicles; VIF, Variance Inflation Factor; ML, Machine Learning; DL, Deep Learning; RF, Random Forest; DCNN,
Deep Convolutional Neural Networks.
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assessment involving RS data sources such as microwave imagery,

UAVs, and Light Detection and Ranging (LiDAR). Machine

learning’s capacity to aggregate and analyze data from diverse

sources including ground measurements, sensor networks,

meteorological data, and RS platforms like satellites, drones, and

airborne systems makes it central to the future of digital agriculture.

While ML has been widely applied in tasks such as crop

classification, yield prediction, and condition monitoring, more

targeted research is needed to fully harness its potential for stress

assessments in sugarcane, particularly in water, salinity, and

nitrogen dynamics. These areas are vital for informed irrigation

planning and sustainable crop management, and thus demand

greater attention from the research community. Continued

advancements in this field will significantly benefit sugarcane

agriculture by enhancing productivity, supporting long-term

sustainability, and improving resilience against challenges such as

climate variability, resource constraints, and market instability.
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Barros, P. P. D. S., Fiorio, P. R., Demattê, J. A. D. M., Martins, J. A., Montezano, Z. F.,
and Dias., F. L. F. (2021). Estimation of leaf nitrogen levels in sugarcane using
hyperspectral models. Ciec. Rural 52. doi: 10.1590/0103-8478cr20200630
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