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The growth and yield of sweet peppers are constrained by factors such as

fertilization practices and edaphoclimatic conditions, which ultimately threaten

global food security in the context of an ever-growing population. This study

evaluated the effect of a liquid biofertilizer derived from cocoa husks on the

growth and chlorophyll content of sweet pepper (Capsicum chinense) cultivated

in SanMartıń, Peru. The experiment was conducted at the experimental station of

the National Institute of Agrarian Innovation in Tarapoto, San Martıń, Peru (6°35′
00″ S, 76°19′46″ W). A completely randomized design was applied, consisting of

five treatments (0, 750, 1250, 2250, and 3000 mL) with 20 plants per treatment,

totaling 100 experimental units. The biofertilizer was applied eight days after

sowing (days). Plant height, stem diameter, and leaf chlorophyll content were

measured at 15, 35, and 85 days. After 85 days, the highest plant height was

observed with the 3000 mL and 1250 mL treatments, reaching averages of 29.98

and 28.25 cm, respectively. Stem diameter was maximized with 3000 mL (6.25

cm), whereas the highest chlorophyll content was recorded with 1250 mL,

averaging 35.37 SPAD units. These results highlight the potential of liquid

biofertilizers produced from cocoa shells to enhance nutrient uptake, increase

plant biomass, and improve photosynthetic capacity, thereby contributing to

sustainable sweet pepper production.
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1 Introduction

The global use of fertilizers has been one of the most critical

practices since the systematization of agriculture and the

declaration of food security as a global goal in 1974 (Penuelas

et al., 2023). Recent geopolitical tensions between Russia and

Ukraine have highlighted the heavy reliance of Latin American

countries on fertilizer imports from the Black Sea region. Peru was

no exception, experiencing sharp increases in food prices that

further undermined national food security (FAO et al., 2023). At

the same time, continuous population growth demands a

sustainable increase in agricultural productivity to ensure global

food security for an ever-expanding population (Arora et al., 2020;

Singh and Gurjar, 2022).

Modern intensive agricultural practices face multiple challenges

that threaten global food security. To meet the nutritional demands

of a growing population, mineral fertilizers and pesticides are

widely applied to boost agricultural production. However, the

indiscriminate use of agrochemicals has resulted in severe

environmental pollution and poses serious risks to public health,

underscoring the substantial impact of fertilizer use on agricultural

development (Li et al., 2024). In addition, agricultural soils are

progressively losing their quality and physical properties, along with

their chemical balance (nutrient imbalances) and biological health

(Kumar et al., 2022). Moreover, the excessive application of mineral

fertilizers—despite their high nutrient content and ability to

accelerate crop growth—has been shown to endanger both

human health and the environment, while also contributing to

groundwater contamination and atmospheric pollution in the long

term (Mahmud et al., 2021).

Given these challenges and the pressing need to promote

biofertilizer use to enhance the production of crops such as sweet

pepper (Capsicum chinense) in Peru, it is essential to develop

strategies that reduce dependence on imported fertilizers and

foster the creation of innovative products to strengthen fertilizer

supply (Hellegers, 2022). In this context, biofertilizers are emerging

as nutrient-rich soil amendments of growing relevance [9].

Moreover, inadequate waste management provides an

opportunity for their development, as the bioconversion of

organic compounds into biofertilizers can serve as a sustainable

alternative to conventional fertilizers. This approach not only

mitigates the toxic effects of chemical inputs but also improves

crop yields, enhances soil fertility, and contributes to soil protection

(Esmaeilian et al., 2022; Nosheen et al., 2021).

Therefore, there is a pressing need for complementary or

alternative approaches that enhance agricultural productivity in

an environmentally sustainable manner (Hamid et al., 2021; Majeed

et al., 2018). Among these, the use of biofertilizers is regarded as one

of the most promising tools for achieving sustainable gains in crop

production (Kumar et al., 2022). Biofertilizers are gaining

momentum as both complements and, in some cases, alternatives

to chemical fertilizers. They are widely recognized for their ability to

stimulate plant growth by improving nutrient availability and

uptake efficiency (Fadiji et al., 2024). Numerous studies have

reported that biofertilizers enhance growth, yield, and mineral
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concentrations in crops such as lettuce, broccoli, chickpea, and

date palm (Demir et al., 2023; Nabati et al., 2025; Anli et al., 2020),

thereby contributing to food security and sustainable agriculture

(Demir et al., 2023; Daniel et al., 2022).

Despite the growing body of research on liquid biofertilizers

and their effects on sweet pepper growth and chlorophyll content,

few studies have specifically addressed their influence during the

early developmental stages of Capsicum chinense under local

agroecological conditions. This study evaluates the impact of

liquid biofertilizer on the growth and chlorophyll content

of sweet pepper in San Martıń, Peru. The findings contribute

to the development of sustainable alternatives to chemical

inputs and expand current knowledge on the application of

biostimulants in high-value tropical chili crops cultivated across

the Peruvian territory.
2 Materials and methods

2.1 Study site

The research was conducted at the El Porvenir Agricultural

Experiment Station of the National Institute of Agrarian Innovation

(INIA), located in the district of Juan Guerra, province and

department of San Martıń, Peru (6°35′00″ S, 76°19′46″ W). The

study area is characterized by a tropical climate, with average

minimum and maximum temperatures ranging from 19 to 34.5 °

C. Mean annual precipitation is 1123 mm, with monthly rainfall

ranging from 43 mm in July to 151 mm in February. Average

monthly relative humidity (RH) varies between 69% and 75%, and

the mean wind speed is 2.4 m s-1.
2.2 Soil characteristics and liquid
biofertilizer

The analytical characteristics of the soil were as follows: total

nitrogen (N) 0.19%, phosphorus (P) 342.12 mg kg-1, organic matter

3.2%, pH 7.2, and electrical conductivity (EC) 0.11 mS/m. The

liquid biofertilizer (biol) was produced by fermenting 800 kg of

cocoa shells (Theobroma cacao) in a plastic tarp with 100 L of water

and 5 L of molasses for four months. The mixture was stirred three

times per week, and the liquid biofertilizer was obtained at the

beginning of the third month, prepared from solid biofertilizer.

Production followed the methodology for enriched liquid

biofertilizers proposed by the FAO (2013). The properties of the

mature biofertilizer were as follows: total N, 0.02%; total P, 0.40%;

total K, 5.64%; organic matter, 55.70; Ca, 21050.19 mg kg-1; Mg,

8103.58 mg kg-1; pH, 9.80; and EC, 15.28 mSm-1.
2.3 Experimental design

The experiment comprised five doses of liquid biofertilizer

(biol): 0.0, 37.5, 62.5, 112.5, and 150 mL plant-1, corresponding to
frontiersin.org
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the control, 750, 1250, 2250, and 3000 mL per treatment,

respectively. Treatments were arranged in a completely

randomized design with 20 plants per treatment (20 replicates),

resulting in a total of 100 experimental units. Seeds extracted from

ripe Capsicum chinense fruits, commonly consumed and marketed

locally, were sown. The liquid biofertilizer was applied eight days

after sowing (seven days before the first evaluation) via foliar

spraying. The trial was conducted under nursery and field

conditions from June to December 2024. Plants were irrigated

periodically with treated water to maintain 60% of field capacity,

without the addition of chemical fertilizers. Growth evaluations

were performed at 15, 35, and 85 days after sowing, measuring plant

height, stem diameter, leaf number, and chlorophyll content.
2.4 Evaluated parameters

Plant height (cm) was measured from the soil surface to the

apex using a metallic measuring tape (precision ±1 mm). Stem

diameter (mm) was determined with a digital vernier caliper (± 0.01

mm) at 2–3 cm above the plant collar, avoiding nodes and swellings.

The number of leaves was recorded as the count of fully expanded

true leaves (≥50% unfolded). These measurements followed the

definitions reported in the international descriptors for Capsicum,

ensuring comparability across studies (IPGRI, 1995).

Relative chlorophyll content was determined non-destructively

using a Konica Minolta SPAD-502Plus. At each evaluation date, the

third and fourth fully expanded leaves from the apex of each plant

were selected. Three readings were taken at the midpoint of the leaf

blade, avoiding the central vein, and averaged to obtain the SPAD

value per plant; treatment means were then calculated. The device

was calibrated beforehand according to the manufacturer’s manual,

and homogeneous light conditions were maintained during all

measurements (Konica Minolta, 2013).
2.5 Statistical analysis

For statistical analysis, data were first tested for normality and

homogeneity of variance using the Shapiro–Wilk and Bartlett tests (p

< 0.05). Mean comparisons were performed with Tukey’s test (p <

0.05) using the agricolae package (Mendiburu, 2010). To visualize

and better interpret the dynamics of plant height in response to liquid

biofertilizer (biol) treatments over time, a three-dimensional

graphical approach was applied through interpolated response
Frontiers in Agronomy 03
surfaces. This analysis employed the R packages plot3D and akima.

The plot3D package enables the construction of customizable three-

dimensional graphics, suitable for representing complex agronomic

responses to continuous variables (Soetaert, 2023), while akima was

used for bilinear interpolation of the data matrix, generating

continuous relief surfaces that realistically reflect growth trends and

reduce distortion from isolated points (Akima and Gebhardt, 2022).

These “hill” plots facilitated the visual identification of treatment

zones with the highest responses, particularly valuable in field

experiments where interactions between input dose and evaluation

time are critical for decision-making. Complementary analyses were

performed using GraphPad Prism to generate descriptive statistics

and high-quality graphical outputs suitable for scientific publications.

The software is widely recognized for its ease of use, integrated

statistical tools, and capacity to produce publication-ready figures,

which enhance data interpretation and presentation in biological

sciences (Motulsky, 2022). Its user-friendly interface and

customization options made it an effective complement to the

advanced analyses conducted in R, resulting in a robust and

visually consistent graphical–statistical dataset. Overall, these

procedures enabled a comprehensive characterization of the

treatments and their effects on the evaluated parameters. Statistical

analyses were performed in RStudio (R Core Team, 2024) and

GraphPad Prism (Motulsky, 2022).
3 Results

3.1 Biol influence on plant diameter and
height

Table 1 shows significant differences among treatments for all

three variables studied (plant height, stem diameter, and

chlorophyll content) at the three evaluation times (15, 35, and 85

days after sowing) in sweet pepper plants treated with liquid

biofertilizer derived from cocoa shells.

According to Tukey’s test (Figure 1A), at 15 days, plants treated

with 3000 mL of biofertilizer exhibited the highest mean growth and

were grouped as “a,” indicating a statistically significant difference

compared to the other treatments. The control treatment showed

the lowest mean values, and plant growth increased progressively

with higher biol doses. At 35 days, the treatment responses shifted,

with growth responses becoming less consistent across doses,

showing an inverse pattern relative to the 15-day evaluation. By

85 days, treatment differences were more pronounced: the
TABLE 1 Bidirectional F values and probabilities (P) examining the effects of liquid biofertilizer on height, diameter, and chlorophyll content in chili
pepper plants.

Variable
Treatments (15 das) Treatments (35 das) Treatments (85 das)

F p F p F p

Height plant 1464.37 <0.0001 4.84 0.0016 11.98 <0.0001

Stem diameter 129.92 <0.0001 7.1 0.0001 6.43 0.0002

Chlorophyll in plants 5.03 0.0012 5.42 0.0007 4.34 0.0032
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application of 3000 mL biol produced the highest values, with

significant differences compared to the other treatments

(Figure 1A). Among the treatments, the control (without biol

application) exhibited the lowest plant height at both 15 and 85

days after sowing, with mean values of 5.44 and 25.48 cm,

respectively. According to Tukey’s test for stem diameter

(Figure 1B), at 15 days after sowing, the 1250 mL biol treatment

produced the greatest mean stem diameter (3.23 cm), while the

control (without biol application) presented the lowest value,

showing significant differences among treatments. At 35 days, two

distinct groups were observed: the highest average diameters

corresponded to the 750, 1250, 2250, and 3000 mL treatments, all

of which outperformed the control. By 85 days, the control, 1250

mL, and 3000 mL treatments formed the first group with the

greatest stem diameters (6.22, 5.73, and 6.25 cm, respectively),

whereas the lowest diameters were recorded in the second group,

ranging from 4.56 to 5.38 cm, with significant differences between

the two groups (Figure 1B). The control treatment exhibited the

greatest stem diameter in sweet pepper at both 15 and 35 days after

planting, with mean values of 0.10 and 3.21 cm, respectively.
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Significant differences in mean plant height were observed at 15,

35, and 85 days after biofertilizer application. At 15 days, the most

pronounced growth curves corresponded to the 2250 and 3000 mL

treatments. At 35 days, the most marked responses were recorded in

the control, 750, and 1250 mL treatments. By 85 days, the highest

curves were observed with the 1250 and 3000 mL treatments

(Figure 2A). Similarly, mean stem diameter showed significant

differences at all evaluation times. At 15 days, the 750 and 1250

mL treatments consistently displayed the highest curves. At 35 days,

pronounced responses were observed with 750, 1250, 2250, and

3000 mL. By 85 days, the control, 1250, and 3000 mL treatments

exhibited the most pronounced curves (Figure 2B).
3.2 Biol influence on chlorophyll content in
plant leaves

According to Tukey’s test (Figure 3), at 15 days after sowing, the

1250 mL biol treatment exhibited the highest chlorophyll content,

averaging 27.1 SPAD units, whereas the control (without biol
FIGURE 1

(A) State of the height average (B) average of plants diameter of Capsicum chinense to 15, 35 y 85 das and seven days after biol application. Different
letters in bars indicate significant differences between treatments according to the Tukey test (P < 0.05). The vertical bars correspond to the
standard error.
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application) showed the lowest value (22.2 SPAD units), with

significant differences among treatments. At 35 days, the 1250

and 750 mL treatments recorded the highest values (43.0 and 40.3

SPAD units, respectively), while the control presented the lowest

value (39.3 SPAD units), again with significant differences

between treatments. By 85 days, the 1250 and 3000 mL

treatments produced the highest chlorophyll contents (35.4 and

32.9 SPAD units, respectively), which were significantly different

from the other treatments (Figure 3). Meanwhile, one of the

treatments that showed the lowest chlorophyll content was

the control (without biol application), with mean values of 22.95,

39.35, and 28.97 SPAD units at 15, 35, and 85 days after

sowing, respectively.

Significant differences in mean values were observed at 15, 35,

and 85 days after biofertilizer application. At 15 days, the 750 mL

treatment consistently exhibited the highest curve compared to the

other treatments. At 35 days, pronounced responses were recorded

in the 1250 and 750 mL treatments. By 85 days, the most

pronounced curves were observed with the 1250 and 3000 mL

treatments (Figure 4).
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4 Discussion

4.1 Biol influence on plant diameter and
height

Sini et al. (2024) reported an average plant height of 15.62 cm

with organic fertilizer and 15.54 cm without fertilizer, measured 145

days after the emergence of Capsicum annuum L. seeds. Similarly,

Coulibaly et al. (2021) evaluated tomato plant height under

compost- and bokashi-based biofertilizer treatments, obtaining

values of approximately 14 cm at 30 days, 16 cm at 45 days, 25

cm at 60 days, and 50 cm at 80 days. Biofertilizers are recognized for

enhancing nutrient availability and promoting soil and plant health,

thereby improving crop yields (Suliasih, 2018; KamLesh and

Smritikana, 2019). They represent a modernized form of organic

fertilizers enriched with beneficial microorganisms (Kalbani et al.,

2016). Nacro (2018) further demonstrated improved plant growth

through organic fertilizers that supply additional nutrients and

enhance the efficiency of mineral fertilizers by increasing nutrient

availability. Likewise, compost-based biofertilizers have been shown
FIGURE 2

(A) Distribution of height average and (B) average of diameter in plants of Capsicum chinense at 15, 35 and 85 das; seven days after biol application.
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to improve the height of coffee and cocoa plants (Vallejos-Torres

et al., 2019; 2022).

The findings of this study are consistent with Lu et al. (2020), who

reported that biofertilizers effectively enhance plant growth and

influence soil microbial community diversity. In line with this,

Coulibaly et al. (2021) found that tomato stem diameter under

compost- and bokashi-based biofertilizers reached approximately 8

cm at 80 days, results comparable to those obtained in sweet pepper at

85 days. Liquid biofertilizers (LBF) have been reported to improve

plant growth and soil fertility (Le et al., 2025). Similarly, Lee et al.
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(2025) demonstrated that LBF treatments significantly enhanced the

morphological and physiological traits of Chinese cabbage. Organic

fertilizers primarily release nutrients, whereas biofertilizers improve

nutrient uptake through beneficial microbial activity, generating a

synergistic effect that enhances soil fertility and plant resilience

(Elsayed et al., 2020; Koskey et al., 2021). These improvements are

consistent with reports showing that biofertilizers increase soil organic

matter and facilitate the availability and uptake of essential nutrients,

partly through bacterial secretion and pH modulation (Kour

et al., 2019).
URE 3FIG

Chlorophyll content in plants of Capsicum chinense at 15, 35 y 85 das; seven after biol application. Different letters in bars indicate significant
differences between treatments according to the Tukey test (P < 0.05). The vertical bars correspond to the standard error.
FIGURE 4

Distribution of chlorophyll content in plants of Capsicum chinense at 15, 35 y 85 das; seven days after biol applications.
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4.2 Biol influence on chlorophyll content in
plant leaves

At 15 days after sowing, the 1250 mL biol treatment produced

the highest chlorophyll content, with a mean of 27.1 SPAD units. At

35 days, the 1250 and 750 mL treatments exhibited the highest

values, averaging 43.0 and 40.3 SPAD units, respectively. By 85

days, the highest chlorophyll contents were recorded in the 1250

and 3000 mL treatments, with averages of 35.4 and 32.9 SPAD

units, respectively, clearly highlighting the positive effect of liquid

biofertilizer on chlorophyll accumulation. These findings are

consistent with Le et al. (2025), who reported SPAD values of

42.51 and 43.26 in liquid biofertilizer treatments at 54 and 73 days,

compared with 40.15 and 41.86 in the control group at the same

time points.

Overall, the results demonstrate that biofertilizer application

significantly enhances chlorophyll content and thereby promotes

plant growth. Similar results were obtained by Mthiyane et al.

(2024), who recorded values of approximately 42 SPAD units in rice

plants following biofertilizer application. Other studies have also

shown that biofertilizers increase total chlorophyll content and

photosynthesis (Khajeeyan et al., 2019), with positive effects on
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corn grain yield (Dragičević et al., 2024; Janosevic et al., 2017). Since

chlorophyll is a key indicator of crop growth and a direct measure of

leaf photosynthetic capacity, it provides valuable insights into the

exchange of materials and energy between crops and their

environment, serving as a reliable marker of crop health and

development (Shi et al., 2023).

Moreover, the use of biofertilizers has significant potential for

improving soil nutritional quality and enhancing crop growth and

development (Table 2). Organic amendments derived from cocoa

shell can replenish soil nutrients, providing an economical and

accessible strategy to maintain soil fertility and productivity,

particularly with respect to phosphorus and potassium (Table 3).

Chlorophyll is the primary pigment responsible for light absorption

during photosynthesis and plant growth. In domesticated chili

crops cultivated under modern high-density systems, excessive

investment in chlorophyll production has been reported to reduce

both light-use efficiency and nitrogen-use efficiency (Cho et al.,

2024; Chu et al., 2024). In this study, the cocoa shell-based

biofertilizer significantly increased chlorophyll content, suggesting

an enhanced nitrogen supply, as most plant nitrogen is

incorporated into leaf chlorophyll (Schlemmer et al., 2013; Lu

et al., 2019).
TABLE 2 Effect of amendments obtained from cocoa shell.

Journal Quartile Effect of biofertilizer obtained from cocoa shells
Author and

year

Journal of Cleaner
Production

Q1
Cocoa pod shells are an important agricultural waste that represents a considerable export of nutrients,

particularly phosphorus and potassium.
Mwafulirwa et al.

(2024)

Plant and Soil Q1
Organic amendments from cocoa pod shells can replenish soil nutrients, representing an economical and
affordable strategy to maintain soil fertility and productivity; particularly phosphorus and potassium.

Hougni et al.
(2021)

Carbohydrate
Polymers

Q1 Cocoa pod shells represent between 52% and 76% of the dry pods or biomass of the crop.
Muñoz-Almagro
et al. (2019)

Archives of
Agronomy and Soil

Science
Q2

Application of biochar to soil from cocoa husk can increase the total concentration of soil nutrients, as well as
mediate their availability by increasing soil pH.

Pouangam et al.
(2023)

Scientific African Q1
Composting cocoa pod shells helps recycle nutrients and restore ecological functions; in turn contribute to the

formation and maintenance of soil organic matter
Amponsah-Doku

et al. (2022)
TABLE 3 Effect of liquid biofertilizers.

Journal Quartile Effect of liquid biofertilizer
Author
and year

Frontiers in Plant Science Q1
Biofertilizers improve the yield of various crops by 25% and reduce nitrogen requirement by 50% and

phosphorus requirement by 25% in agriculture
Aloo et al.
(2022)

Field Crops Research Q1
Biofertilizers increase the yield of crops such as cotton (Gossypium sp.) by increasing nutrients and

microbial biomass; at the same time, appropriately reduce the use of chemical fertilizers.
Ding et al.
(2024)

Applied Microbiology and
Biotechnology

Q1
Biofertilizers have the effect of nourishing plants, with greater root production, they are healthier and

more resistant to pest attacks, diseases and drought damage.
Santos et al.

(2024)

Sustainability Q1
Biofertilizer application increases plant height by 31% and chlorophyll content increase by 42% in Oryza

sativa L.
Mthiyane et al.

(2024)

Environmental Science
and Pollution Research

Q1
Biofertilizers promote sustainable agriculture, due to their higher nutrient content; in turn they improve

soil fertility and increase plant productivity.
Ammar et al.

(2023)
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5 Conclusions

At 15 days after sowing (days) Capsicum chinense, the maximum

plant height was obtained with the 3000 mL biofertilizer treatment,

with an average of 12.4 cm. Stem diameter was greatest at the 1250 mL

dose, averaging 3.23 cm. Similarly, the highest chlorophyll content was

observed at 3000 mL, with a mean value of 26.96 SPAD units. At 35

days, maximum plant height was recorded in the control and 750 mL

treatments, averaging 17.20 cm. Stem diameter was highest at 750 and

1250 mL, with mean values of 3.88 and 3.87 cm, respectively, while

chlorophyll content peaked at 1250 mL with an average of 42.99

SPAD units. At 85 days, plant height reached its maximum under the

3000- and 1250-mL treatments, averaging 29.98 and 28.25 cm,

respectively. Stem diameter was greatest at 3000 mL (6.25 cm), and

the highest chlorophyll content was found at 1250 mL, with a mean of

35.37 SPAD units.

Overall, liquid biofertilizer from cocoa shells improved nutrient

uptake and increased plant height, stem diameter, and chlorophyll

content by 17.66%, 2.63%, and 22.10%, respectively. These results

underscore the potential of biofertilizers to enhance early plant

development and physiological performance. Future research

should address their long-term agronomic impact under diverse

field conditions, particularly in relation to yield and post-harvest

quality, to provide a more comprehensive understanding of their

role in sustainable agriculture and their applicability in the

Amazon region.
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