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The growth and yield of sweet peppers are constrained by factors such as
fertilization practices and edaphoclimatic conditions, which ultimately threaten
global food security in the context of an ever-growing population. This study
evaluated the effect of a liquid biofertilizer derived from cocoa husks on the
growth and chlorophyll content of sweet pepper (Capsicum chinense) cultivated
in San Martin, Peru. The experiment was conducted at the experimental station of
the National Institute of Agrarian Innovation in Tarapoto, San Martin, Peru (6°35’
00" S, 76°19'46” W). A completely randomized design was applied, consisting of
five treatments (0, 750, 1250, 2250, and 3000 mL) with 20 plants per treatment,
totaling 100 experimental units. The biofertilizer was applied eight days after
sowing (days). Plant height, stem diameter, and leaf chlorophyll content were
measured at 15, 35, and 85 days. After 85 days, the highest plant height was
observed with the 3000 mL and 1250 mL treatments, reaching averages of 29.98
and 28.25 cm, respectively. Stem diameter was maximized with 3000 mL (6.25
cm), whereas the highest chlorophyll content was recorded with 1250 mL,
averaging 35.37 SPAD units. These results highlight the potential of liquid
biofertilizers produced from cocoa shells to enhance nutrient uptake, increase
plant biomass, and improve photosynthetic capacity, thereby contributing to
sustainable sweet pepper production.
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1 Introduction

The global use of fertilizers has been one of the most critical
practices since the systematization of agriculture and the
declaration of food security as a global goal in 1974 (Penueclas
et al, 2023). Recent geopolitical tensions between Russia and
Ukraine have highlighted the heavy reliance of Latin American
countries on fertilizer imports from the Black Sea region. Peru was
no exception, experiencing sharp increases in food prices that
further undermined national food security (FAO et al., 2023). At
the same time, continuous population growth demands a
sustainable increase in agricultural productivity to ensure global
food security for an ever-expanding population (Arora et al., 20205
Singh and Gurjar, 2022).

Modern intensive agricultural practices face multiple challenges
that threaten global food security. To meet the nutritional demands
of a growing population, mineral fertilizers and pesticides are
widely applied to boost agricultural production. However, the
indiscriminate use of agrochemicals has resulted in severe
environmental pollution and poses serious risks to public health,
underscoring the substantial impact of fertilizer use on agricultural
development (Li et al, 2024). In addition, agricultural soils are
progressively losing their quality and physical properties, along with
their chemical balance (nutrient imbalances) and biological health
(Kumar et al., 2022). Moreover, the excessive application of mineral
fertilizers—despite their high nutrient content and ability to
accelerate crop growth—has been shown to endanger both
human health and the environment, while also contributing to
groundwater contamination and atmospheric pollution in the long
term (Mahmud et al., 2021).

Given these challenges and the pressing need to promote
biofertilizer use to enhance the production of crops such as sweet
pepper (Capsicum chinense) in Peru, it is essential to develop
strategies that reduce dependence on imported fertilizers and
foster the creation of innovative products to strengthen fertilizer
supply (Hellegers, 2022). In this context, biofertilizers are emerging
as nutrient-rich soil amendments of growing relevance [9].
Moreover, inadequate waste management provides an
opportunity for their development, as the bioconversion of
organic compounds into biofertilizers can serve as a sustainable
alternative to conventional fertilizers. This approach not only
mitigates the toxic effects of chemical inputs but also improves
crop yields, enhances soil fertility, and contributes to soil protection
(Esmaeilian et al., 2022; Nosheen et al., 2021).

Therefore, there is a pressing need for complementary or
alternative approaches that enhance agricultural productivity in
an environmentally sustainable manner (Hamid et al., 2021; Majeed
etal, 2018). Among these, the use of biofertilizers is regarded as one
of the most promising tools for achieving sustainable gains in crop
production (Kumar et al., 2022). Biofertilizers are gaining
momentum as both complements and, in some cases, alternatives
to chemical fertilizers. They are widely recognized for their ability to
stimulate plant growth by improving nutrient availability and
uptake efficiency (Fadiji et al., 2024). Numerous studies have
reported that biofertilizers enhance growth, yield, and mineral
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concentrations in crops such as lettuce, broccoli, chickpea, and
date palm (Demir et al., 2023; Nabati et al., 2025; Anli et al., 2020),
thereby contributing to food security and sustainable agriculture
(Demir et al., 2023; Daniel et al., 2022).

Despite the growing body of research on liquid biofertilizers
and their effects on sweet pepper growth and chlorophyll content,
few studies have specifically addressed their influence during the
early developmental stages of Capsicum chinense under local
agroecological conditions. This study evaluates the impact of
liquid biofertilizer on the growth and chlorophyll content
of sweet pepper in San Martin, Peru. The findings contribute
to the development of sustainable alternatives to chemical
inputs and expand current knowledge on the application of
biostimulants in high-value tropical chili crops cultivated across
the Peruvian territory.

2 Materials and methods

2.1 Study site

The research was conducted at the El Porvenir Agricultural
Experiment Station of the National Institute of Agrarian Innovation
(INTA), located in the district of Juan Guerra, province and
department of San Martin, Peru (6°35'00” S, 76°19'46” W). The
study area is characterized by a tropical climate, with average
minimum and maximum temperatures ranging from 19 to 34.5 °
C. Mean annual precipitation is 1123 mm, with monthly rainfall
ranging from 43 mm in July to 151 mm in February. Average
monthly relative humidity (RH) varies between 69% and 75%, and
the mean wind speed is 2.4 m s,

2.2 Soil characteristics and liquid
biofertilizer

The analytical characteristics of the soil were as follows: total
nitrogen (N) 0.19%, phosphorus (P) 342.12 mg kg™, organic matter
3.2%, pH 7.2, and electrical conductivity (EC) 0.11 mS/m. The
liquid biofertilizer (biol) was produced by fermenting 800 kg of
cocoa shells (Theobroma cacao) in a plastic tarp with 100 L of water
and 5 L of molasses for four months. The mixture was stirred three
times per week, and the liquid biofertilizer was obtained at the
beginning of the third month, prepared from solid biofertilizer.
Production followed the methodology for enriched liquid
biofertilizers proposed by the FAO (2013). The properties of the
mature biofertilizer were as follows: total N, 0.02%; total P, 0.40%;
total K, 5.64%; organic matter, 55.70; Ca, 21050.19 mg kg’l; Mg,
8103.58 mg kg’l; pH, 9.80; and EC, 15.28 mSm'.

2.3 Experimental design

The experiment comprised five doses of liquid biofertilizer
(biol): 0.0, 37.5, 62.5, 112.5, and 150 mL plant™, corresponding to
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the control, 750, 1250, 2250, and 3000 mL per treatment,
respectively. Treatments were arranged in a completely
randomized design with 20 plants per treatment (20 replicates),
resulting in a total of 100 experimental units. Seeds extracted from
ripe Capsicum chinense fruits, commonly consumed and marketed
locally, were sown. The liquid biofertilizer was applied eight days
after sowing (seven days before the first evaluation) via foliar
spraying. The trial was conducted under nursery and field
conditions from June to December 2024. Plants were irrigated
periodically with treated water to maintain 60% of field capacity,
without the addition of chemical fertilizers. Growth evaluations
were performed at 15, 35, and 85 days after sowing, measuring plant
height, stem diameter, leaf number, and chlorophyll content.

2.4 Evaluated parameters

Plant height (cm) was measured from the soil surface to the
apex using a metallic measuring tape (precision +1 mm). Stem
diameter (mm) was determined with a digital vernier caliper (+ 0.01
mm) at 2-3 cm above the plant collar, avoiding nodes and swellings.
The number of leaves was recorded as the count of fully expanded
true leaves (=50% unfolded). These measurements followed the
definitions reported in the international descriptors for Capsicum,
ensuring comparability across studies (IPGRI, 1995).

Relative chlorophyll content was determined non-destructively
using a Konica Minolta SPAD-502Plus. At each evaluation date, the
third and fourth fully expanded leaves from the apex of each plant
were selected. Three readings were taken at the midpoint of the leaf
blade, avoiding the central vein, and averaged to obtain the SPAD
value per plant; treatment means were then calculated. The device
was calibrated beforehand according to the manufacturer’s manual,
and homogeneous light conditions were maintained during all
measurements (Konica Minolta, 2013).

2.5 Statistical analysis

For statistical analysis, data were first tested for normality and
homogeneity of variance using the Shapiro-Wilk and Bartlett tests (p
< 0.05). Mean comparisons were performed with Tukey’s test (p <
0.05) using the agricolae package (Mendiburu, 2010). To visualize
and better interpret the dynamics of plant height in response to liquid
biofertilizer (biol) treatments over time, a three-dimensional
graphical approach was applied through interpolated response
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surfaces. This analysis employed the R packages plot3D and akima.
The plot3D package enables the construction of customizable three-
dimensional graphics, suitable for representing complex agronomic
responses to continuous variables (Soetaert, 2023), while akima was
used for bilinear interpolation of the data matrix, generating
continuous relief surfaces that realistically reflect growth trends and
reduce distortion from isolated points (Akima and Gebhardt, 2022).
These “hill” plots facilitated the visual identification of treatment
zones with the highest responses, particularly valuable in field
experiments where interactions between input dose and evaluation
time are critical for decision-making. Complementary analyses were
performed using GraphPad Prism to generate descriptive statistics
and high-quality graphical outputs suitable for scientific publications.
The software is widely recognized for its ease of use, integrated
statistical tools, and capacity to produce publication-ready figures,
which enhance data interpretation and presentation in biological
sciences (Motulsky, 2022). Its user-friendly interface and
customization options made it an effective complement to the
advanced analyses conducted in R, resulting in a robust and
visually consistent graphical-statistical dataset. Overall, these
procedures enabled a comprehensive characterization of the
treatments and their effects on the evaluated parameters. Statistical
analyses were performed in RStudio (R Core Team, 2024) and
GraphPad Prism (Motulsky, 2022).

3 Results

3.1 Biol influence on plant diameter and
height

Table 1 shows significant differences among treatments for all
three variables studied (plant height, stem diameter, and
chlorophyll content) at the three evaluation times (15, 35, and 85
days after sowing) in sweet pepper plants treated with liquid
biofertilizer derived from cocoa shells.

According to Tukey’s test (Figure 1A), at 15 days, plants treated
with 3000 mL of biofertilizer exhibited the highest mean growth and

«_ »

were grouped as “a,” indicating a statistically significant difference
compared to the other treatments. The control treatment showed
the lowest mean values, and plant growth increased progressively
with higher biol doses. At 35 days, the treatment responses shifted,
with growth responses becoming less consistent across doses,
showing an inverse pattern relative to the 15-day evaluation. By

85 days, treatment differences were more pronounced: the

TABLE 1 Bidirectional F values and probabilities (P) examining the effects of liquid biofertilizer on height, diameter, and chlorophyll content in chili

pepper plants.

Treatments (15 das)

Treatments (35 das)

Treatments (85 das)

Variable
F p
Height plant 1464.37 <0.0001
Stem diameter 129.92 <0.0001
Chlorophyll in plants 5.03 0.0012
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p F p
0.0016 11.98 <0.0001
0.0001 6.43 0.0002
0.0007 4.34 0.0032
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FIGURE 1

(A) State of the height average (B) average of plants diameter of Capsicum chinense to 15, 35y 85 das and seven days after biol application. Different
letters in bars indicate significant differences between treatments according to the Tukey test (P < 0.05). The vertical bars correspond to the

standard error.

application of 3000 mL biol produced the highest values, with
significant differences compared to the other treatments
(Figure 1A). Among the treatments, the control (without biol
application) exhibited the lowest plant height at both 15 and 85
days after sowing, with mean values of 5.44 and 25.48 cm,
respectively. According to Tukey’s test for stem diameter
(Figure 1B), at 15 days after sowing, the 1250 mL biol treatment
produced the greatest mean stem diameter (3.23 cm), while the
control (without biol application) presented the lowest value,
showing significant differences among treatments. At 35 days, two
distinct groups were observed: the highest average diameters
corresponded to the 750, 1250, 2250, and 3000 mL treatments, all
of which outperformed the control. By 85 days, the control, 1250
mL, and 3000 mL treatments formed the first group with the
greatest stem diameters (6.22, 5.73, and 6.25 cm, respectively),
whereas the lowest diameters were recorded in the second group,
ranging from 4.56 to 5.38 cm, with significant differences between
the two groups (Figure 1B). The control treatment exhibited the
greatest stem diameter in sweet pepper at both 15 and 35 days after
planting, with mean values of 0.10 and 3.21 cm, respectively.
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Significant differences in mean plant height were observed at 15,
35, and 85 days after biofertilizer application. At 15 days, the most
pronounced growth curves corresponded to the 2250 and 3000 mL
treatments. At 35 days, the most marked responses were recorded in
the control, 750, and 1250 mL treatments. By 85 days, the highest
curves were observed with the 1250 and 3000 mL treatments
(Figure 2A). Similarly, mean stem diameter showed significant
differences at all evaluation times. At 15 days, the 750 and 1250
mL treatments consistently displayed the highest curves. At 35 days,
pronounced responses were observed with 750, 1250, 2250, and
3000 mL. By 85 days, the control, 1250, and 3000 mL treatments
exhibited the most pronounced curves (Figure 2B).

3.2 Biol influence on chlorophyll content in
plant leaves

According to Tukey’s test (Figure 3), at 15 days after sowing, the
1250 mL biol treatment exhibited the highest chlorophyll content,
averaging 27.1 SPAD units, whereas the control (without biol
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FIGURE 2

(A) Distribution of height average and (B) average of diameter in plants of Capsicum chinense at 15, 35 and 85 das; seven days after biol application.
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application) showed the lowest value (22.2 SPAD units), with
significant differences among treatments. At 35 days, the 1250
and 750 mL treatments recorded the highest values (43.0 and 40.3
SPAD units, respectively), while the control presented the lowest
value (39.3 SPAD units), again with significant differences
between treatments. By 85 days, the 1250 and 3000 mL
treatments produced the highest chlorophyll contents (35.4 and
32.9 SPAD units, respectively), which were significantly different
from the other treatments (Figure 3). Meanwhile, one of the
treatments that showed the lowest chlorophyll content was
the control (without biol application), with mean values of 22.95,
39.35, and 28.97 SPAD units at 15, 35, and 85 days after
sowing, respectively.

Significant differences in mean values were observed at 15, 35,
and 85 days after biofertilizer application. At 15 days, the 750 mL
treatment consistently exhibited the highest curve compared to the
other treatments. At 35 days, pronounced responses were recorded
in the 1250 and 750 mL treatments. By 85 days, the most
pronounced curves were observed with the 1250 and 3000 mL
treatments (Figure 4).
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4 Discussion

4.1 Biol influence on plant diameter and
height

Sini et al. (2024) reported an average plant height of 15.62 cm
with organic fertilizer and 15.54 cm without fertilizer, measured 145
days after the emergence of Capsicum annuum L. seeds. Similarly,
Coulibaly et al. (2021) evaluated tomato plant height under
compost- and bokashi-based biofertilizer treatments, obtaining
values of approximately 14 cm at 30 days, 16 cm at 45 days, 25
cm at 60 days, and 50 cm at 80 days. Biofertilizers are recognized for
enhancing nutrient availability and promoting soil and plant health,
thereby improving crop yields (Suliasih, 2018; KamLesh and
Smritikana, 2019). They represent a modernized form of organic
fertilizers enriched with beneficial microorganisms (Kalbani et al.,
2016). Nacro (2018) further demonstrated improved plant growth
through organic fertilizers that supply additional nutrients and
enhance the efficiency of mineral fertilizers by increasing nutrient
availability. Likewise, compost-based biofertilizers have been shown
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FIGURE 3

Chlorophyll content in plants of Capsicum chinense at 15, 35y 85 das; seven after biol application. Different letters in bars indicate significant
differences between treatments according to the Tukey test (P < 0.05). The vertical bars correspond to the standard error.
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to improve the height of coffee and cocoa plants (Vallejos-Torres
et al., 2019; 2022).

The findings of this study are consistent with Lu et al. (2020), who
reported that biofertilizers effectively enhance plant growth and
influence soil microbial community diversity. In line with this,
Coulibaly et al. (2021) found that tomato stem diameter under
compost- and bokashi-based biofertilizers reached approximately 8
cm at 80 days, results comparable to those obtained in sweet pepper at
85 days. Liquid biofertilizers (LBF) have been reported to improve
plant growth and soil fertility (Le et al., 2025). Similarly, Lee et al.

(2025) demonstrated that LBF treatments significantly enhanced the
morphological and physiological traits of Chinese cabbage. Organic
fertilizers primarily release nutrients, whereas biofertilizers improve
nutrient uptake through beneficial microbial activity, generating a
synergistic effect that enhances soil fertility and plant resilience
(Elsayed et al,, 2020; Koskey et al, 2021). These improvements are
consistent with reports showing that biofertilizers increase soil organic
matter and facilitate the availability and uptake of essential nutrients,
partly through bacterial secretion and pH modulation (Kour
et al,, 2019).
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FIGURE 4

Distribution of chlorophyll content in plants of Capsicum chinense at 15, 35 y 85 das; seven days after biol applications.
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TABLE 2 Effect of amendments obtained from cocoa shell.

10.3389/fagro.2025.1673914

. . - n Author and
Journal Quartile Effect of biofertilizer obtained from cocoa shells year
Journal of Cleaner al Cocoa pod shells are an important agricultural waste that represents a considerable export of nutrients, Mwafulirwa et al.
Production particularly phosphorus and potassium. (2024)
Plant and Soil Ql Organic amendments from cocoa pod shells can replenish soil nutrients, representing an economical and Hougni et al.
ant and Soi
affordable strategy to maintain soil fertility and productivity; particularly phosphorus and potassium. (2021)
Carbohydrat Mufioz-Alms
arbollycrate Q1 Cocoa pod shells represent between 52% and 76% of the dry pods or biomass of the crop. Yiunoz-A magro
Polymers et al. (2019)
Archives of - . . . . . .
. Application of biochar to soil from cocoa husk can increase the total concentration of soil nutrients, as well as Pouangam et al.
Agronomy and Soil Q2 . . - . . .
. mediate their availability by increasing soil pH. (2023)
Science
Scientific African Ql Composting cocoa pod shells helps r?cycle nutri.ents and restore' ecolog%cal functions; in turn contribute to the =~ Amponsah-Doku
formation and maintenance of soil organic matter et al. (2022)

4.2 Biol influence on chlorophyll content in
plant leaves

At 15 days after sowing, the 1250 mL biol treatment produced
the highest chlorophyll content, with a mean of 27.1 SPAD units. At
35 days, the 1250 and 750 mL treatments exhibited the highest
values, averaging 43.0 and 40.3 SPAD units, respectively. By 85
days, the highest chlorophyll contents were recorded in the 1250
and 3000 mL treatments, with averages of 35.4 and 32.9 SPAD
units, respectively, clearly highlighting the positive effect of liquid
biofertilizer on chlorophyll accumulation. These findings are
consistent with Le et al. (2025), who reported SPAD values of
42.51 and 43.26 in liquid biofertilizer treatments at 54 and 73 days,
compared with 40.15 and 41.86 in the control group at the same
time points.

Overall, the results demonstrate that biofertilizer application
significantly enhances chlorophyll content and thereby promotes
plant growth. Similar results were obtained by Mthiyane et al.
(2024), who recorded values of approximately 42 SPAD units in rice
plants following biofertilizer application. Other studies have also
shown that biofertilizers increase total chlorophyll content and
photosynthesis (Khajeeyan et al., 2019), with positive effects on

TABLE 3 Effect of liquid biofertilizers.

corn grain yield (Dragicevic et al., 2024; Janosevic et al., 2017). Since
chlorophyll is a key indicator of crop growth and a direct measure of
leaf photosynthetic capacity, it provides valuable insights into the
exchange of materials and energy between crops and their
environment, serving as a reliable marker of crop health and
development (Shi et al., 2023).

Moreover, the use of biofertilizers has significant potential for
improving soil nutritional quality and enhancing crop growth and
development (Table 2). Organic amendments derived from cocoa
shell can replenish soil nutrients, providing an economical and
accessible strategy to maintain soil fertility and productivity,
particularly with respect to phosphorus and potassium (Table 3).
Chlorophyll is the primary pigment responsible for light absorption
during photosynthesis and plant growth. In domesticated chili
crops cultivated under modern high-density systems, excessive
investment in chlorophyll production has been reported to reduce
both light-use efficiency and nitrogen-use efficiency (Cho et al,
2024; Chu et al, 2024). In this study, the cocoa shell-based
biofertilizer significantly increased chlorophyll content, suggesting
an enhanced nitrogen supply, as most plant nitrogen is
incorporated into leaf chlorophyll (Schlemmer et al, 2013; Lu
et al., 2019).

. S . Author
Journal Quartile Effect of liquid biofertilizer
and year
Frontiers in Plant Science Ql Biofertilizers improve the yield of various cr(-)ps by 25% and r-educe. nitrogen requirement by 50% and Aloo et al.
phosphorus requirement by 25% in agriculture (2022)
Field Crops Research Q1 Bioferti?izers. incr.ease the yield of crogs such as cot.ton (Gossypium sp.) by increfasing m.1t-rients and Ding et al.
microbial biomass; at the same time, appropriately reduce the use of chemical fertilizers. (2024)
Applied Microbiology and Qi Biofertilizers have the effect of nourishing plants, with greater root production, they are healthier and Santos et al.
Biotechnology more resistant to pest attacks, diseases and drought damage. (2024)
Sustainability Qi Biofertilizer application increases plant height by 31.% and chlorophyll content increase by 42% in Oryza Mthiyane et al.
sativa L. (2024)
Environmental Science Q1 Biofertilizers promote sustainable agriculture, due to their higher nutrient content; in turn they improve Ammar et al.
and Pollution Research soil fertility and increase plant productivity. (2023)
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5 Conclusions

At 15 days after sowing (days) Capsicum chinense, the maximum
plant height was obtained with the 3000 mL biofertilizer treatment,
with an average of 12.4 cm. Stem diameter was greatest at the 1250 mL
dose, averaging 3.23 cm. Similarly, the highest chlorophyll content was
observed at 3000 mL, with a mean value of 26.96 SPAD units. At 35
days, maximum plant height was recorded in the control and 750 mL
treatments, averaging 17.20 cm. Stem diameter was highest at 750 and
1250 mL, with mean values of 3.88 and 3.87 c¢m, respectively, while
chlorophyll content peaked at 1250 mL with an average of 42.99
SPAD units. At 85 days, plant height reached its maximum under the
3000- and 1250-mL treatments, averaging 29.98 and 28.25 cm,
respectively. Stem diameter was greatest at 3000 mL (6.25 cm), and
the highest chlorophyll content was found at 1250 mL, with a mean of
35.37 SPAD units.

Overall, liquid biofertilizer from cocoa shells improved nutrient
uptake and increased plant height, stem diameter, and chlorophyll
content by 17.66%, 2.63%, and 22.10%, respectively. These results
underscore the potential of biofertilizers to enhance early plant
development and physiological performance. Future research
should address their long-term agronomic impact under diverse
field conditions, particularly in relation to yield and post-harvest
quality, to provide a more comprehensive understanding of their
role in sustainable agriculture and their applicability in the
Amazon region.
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